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Abstract — This paper proposes a heural network for building and ofimizing fuzzy models. The
network can be regarded both as an adaptive fuzz inference system with the capability of
learning fuzz rules from data, and as a conredionist architedure provided with lingustic
meaning. Fuzz rules are exracted from training examples by a hybrid learning scheme
comprised of two phaes. rule generation phase from data using a modified competitive
learning, and rule parameter tuning phase using gadient descent learning. This allows
simultaneous definition o the structure and the parameters of the fuzzy rule base. After
learning, the network encodes in its topdogy the esential design paameters of a fuzzy
inference system. A well-known classfication benchmark is used to ill ustrate apgicability of
the propaosed neuro-fuzzy hybrid network.

1 Introduction

Esentialy, system modeling is the task of buil ding models from a combination of a-priori knowledge and empiricd
data. When we ae trying to model a complex system, usually the only available information is a wlledion of
empiricd data, which are inherently impredse & obtained from the observation of the system behavior. One type of
modeling with impredse data is fuzzy modeling, whose objedive is to extrad a model in the form of fuzzy
inference rules. Fuzzy modeling based on numerica data, which was first explored systematicdly by Takagi and
Sugeno [1] has found numerous succesgul applications to complex system modeling. Generally speking, there ae
two challenging design isaues to be aldressed in fuzzy modeling: structure and parameter identificaion of the fuzzy
rule base. Structure identificaion amounts to determine the number of rules neeled, i.e. finding how many rules are
necessary and sufficient to properly model the avail able data, and the number of membership functions for input and
output variables. Parameter identificaion concerns the definition of parameters of membership functions used to
describe anteceadent and consequent parts of fuzzy rules.

Considerable work has been done to integrate the excdlent leaning cgpability of neural networks with fuzzy
inference systems, resulting in neuro-fuzzy modeling approaches that combine the benefits of these two powerful
paradigms into a single casule and provide apowerful framework to extrad fuzzy rules from numericd data [2],
[3], [4], [5], [6]. However, as pointed aut in [7], many neuro-fuzzy design techniques address only the parameter
identificaion issue, and discard the identificaion of the structure, which has to be spedfied in advance To aur
knowledge, few results on simultaneous gructure and parameter determination have been reported in literature so far
(8. [9].

In this paper, a neural network is proposed that is able to perform both structure and parameter identification of the
fuzzy rules, based on the available data. The network is trained by a hybrid leaning scheme that combines a
competitive leaning phase with a gradient descent (supervised) leaning phase to extrad a set of fuzzy rules that
adequately represent a given dataset. In the first phase, a modified competitive leaning is employed to establish the
structure and initial parameters of afuzzy rule base. In contrast to most existing neuro-fuzzy approaches [8], [9], the
proper number of fuzzy rules and membership functions (network structure size), together with initial values of rule
parameters (network weights) are simultaneously determined in the first leaning phase. In the second leaning
phase, parameters of the fuzzy rules are optimized via agradient descent technique with an effort to improve the



performance of the derived fuzzy model. Once the leaning is completed, the network architedure encodes the
knowledge learned in the form of fuzzy rules and processes data foll owing fuzzy reasoning principles.
Simulations on awell-known clasdficaion benchmark verify the effedivenessof the propaosed network.

2  Architecture of the neural network

The achitedure of the network propcsed here redizes the inference mechanism of a zeo-order Takagi-Sugeno
fuzzy model, based on a wlledion of H rules of the form:

R : IF (x is AX) AND...AND (x, is AX) THEN (y; is Vi;) AND...AND(Y;, iS Vi)

where R, isthekthrule (1sk<H), {x}i , aretheinput variables, {y;}-, , arethe output variables, A are
fuzzy sets defined on the input variables, and Vi | are fuzzy singletons defined on the output variables.

Fuzzy sets A" are defined by bell -shaped (Gausgan) membership functions

L (%) = e_(xi -wy)?/of
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where wy and o, arethe center and the width of the Gausgan function, respedively.
By adopting singleton fuzzification, product rule inference and center average defuzzficaion, the inferred crisp
output value of this fuzzy system for any input X° = (x{, x3,...,.x%) , is calculated as:
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where gy (X°) = [ ti (%) isthe adivation strength of the kth rule.
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To redizethe described fuzzy inference mecdhanism, we propase aneural network with threelayers.

1. Layer L. Unitsinthislayer recave the input values (X, X,,...,X,) and ad as fuzzy sets representing the
terms of the arresponding input variable. Nodes in this layer are aranged into H groups, each group
representing the IF-part of a fuzzy rule. Each node i, O, receves the input variable cmncerned, i.e. x;

and computes the membership value i (x;) that spedfies the degreeto which the input value % belongs

to the fuzzy set A". Hence, the output of node i, (0L, isin the range [0, 1] and is computed by the
following function:
filgl)(xi) =g (W) ok

2. Layer L,. The number of nodes in this layer is equal to the number of fuzzy rules. A node in this layer

represents afuzzy rule; for ead node, there ae n fixed links from the input term nodes representing the I F-
part of the fuzzy rule. The kth node performs the AND operation for precondition matching of the kth rule
by Larsen product operator; thus the output of thisnodeis:
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3. Layer L;. Nodesinthislayer represent the output variables of the system. Each node j ads as a defuzzfier
and computes the output values according to (1):
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This neuro-fuzzy network encodes a set of fuzzy rules in its topdogy, and processes information in a way that
matches the fuzzy reasoning scheme alopted. The weights of the network correspond to the Gausdan membership
functions parameters {vvik} ,{aik} and to the consequent singletons {vkj}. In other words, ead node kL, is

asociated with two premise weight vedors W, :(W]k,...,Wnk), Oy = (alk,...,ank) and one mnsequent weight

vedor v, = (vkl,...,vkm) . The achitedure of this neuro-fuzzy inference network is depicted in figure 1, where nodes
representing the premise part of afuzzy rule ae enclosed in agray circle.
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Figure 1. The neural fuzzy network.

3 Hybrid learning scheme

The leaning scheme is mainly compaosed of two phases. In the first phase, the number of rule nodes (and hencethe
structure of the network) and initial rule parameters (weights) are determined using a competitive leaning scheme;
in the latter all parameters are ajusted using a supervised leaning scheme. To initiate the leaning scheme, a
training set composed by input-output data samples, i.e. S= {(ip, y°), p :L...P}, and the desired or guessed coarse

fuzzy partition, i.e. the initial number K of fuzzy rules, must be provided from the outside world. The schematic
block diagram of the hybrid learning scheme isillustrated in figure 2.
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Figure 2. The hybrid learning scheme

3.1  Competitivelearning phase

The first leaning phase is aimed to find simultaneously the number of rules, and the antecadent and consequent
parameters of ead rule. This is achieved by clustering the input spacethrough a modified competitive leaning
algorithm similar to [10], and deriving a fuzzy rule from ead cluster. Unlike common clustering-based methods
(e.g. c-means, fuzzy c-means, conventional competitive leaning) which require the number of clusters, and hence
the number of rules, to be gpropriately pre-seleded, the alopted modified competitive leaning scheme performs
clustering with the aility to adapt the number of clusters as the leaning proceals. Before this leaning phase, an
initial structure of the neuro-fuzzy network is first constructed based on the guessed number of rules given as aform
of apriori knowledge. Then, during leaning, a rival penaized medanism gradually drives the weight vedors
(cluster centers) of extra nodes far away from the distribution of the data. In this way the gpropriate number of
rules for representing the input data is automaticaly selected.

Only the second layer of the network is involved in the competitive leaning phase. When a n-dimensional vedor
X is presented, nodesin thislayer compete and the node whose weight vedor is closest to the vedor X ischosen as
winner. The dosenessis measured in terms of Euclidean distance scded up with the winning frequency of the node.
The second closest node is marked as the rival. Then, the weight vedor of the winning neuron is updated so as to
bemme doser to the current input vedor X, while the weight vedor of the rival is updated so as to move it away
from the pattern. This mechanism triesto push the weight vedor of the rival node far away from the duster, towards
which the weight vector of the winner is moving, thus implicitly making sure that ead cluster is represented by only
one weight vector. The use of this rival-penalized mechanism, that gradually drives the weight vedors of extra
nodes far away from the distribution of the data, all ows the gpropriate number of nodes in the second layer, and
hence the number of rules, to be aitomaticdly seleded. The mmplete leaning algorithm is described in Figure 3.
Starting with K nodes in the second layer, the modified competitive leaning dynamicdly finds a set of H nodes
(H < K) whose weight vectors w,, k =1,...,H represent the aenters of clustersin the input space The mmponents

of eath weight vedor W represent the initial center values of the Gausdan membership functions in the premise
part of the kth rule. To complete the initiaizaion of premise parameters of fuzzy rules, the weights {aik}

representing the widths of the membership functions must be derived. They are obtained using the N-first-nearest-
neighbor heuristic:

Oy ="Wkrih” for i=1,...,n

where W, isthe duster center neaest to W, and r isan overlap parameter rangingin [1.0,2.0].
Finaly, initial values of weights {vkj} representing rule cnsequent parameters are obtained using the duster



Hence, during the first leaning phase, the structure @ well as the initial weights of the neuro-fuzzy network are
established. This corresponds to determine the number of fuzzy rules and the initial parameters of each rule. This
initial fuzzy rule base is used as garting point for the subsequent supervised learning phase to oltain the final fuzzy
rule base.

/* Competitivelearning */

1. Inpu: Randomly take an input vedor X from adata set S, and compute:

d(x, W)= |x-w|  for k=1..K

>
t=1
n, is the aumulative number of the winning occurrences for node kO L, .
2. Competition: Determine the winning neuron ¢ and itsrival r using the rule:

d(%,W,) = min{d (%, W } d(%,W,) = min{d(x, W, }

3. Adjustment: Update weight vectors of the winning and the rival neuron accrding to:

W, =W, +a X~ W, W, =W, —a, [X-W,|

where O0<a, <a.<1 are the leaning rates for the winner and the rival,

respedively.

K 2
4. If %< kZl"Wk (t+1)-w, ()] <& then gotostep 5 elsegotostep 1

5. Node seledion: Remove dl nodeswith n, =0
6. End.

Figure 3. The modified competitive learning algorithm

3.2  Supervised learning phase

After a set of fuzzy rules is extraded from the current training data, i.e. the structure and initial weights of the
network are established, the network enters the second leaning phase to ogtimally adjust the parameters based on
the same training data (seefigure 2). A gradient method performing the stegpest descent on a surfacein the network
weight spaceis used.

P
Given the training set, the goal isto adjust weights © asto minimize an overal error function e = % z Ep with
p=1
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where f J-(3)(Xp) is the jth output of the neuro-fuzzy network for the arrent sample XP, and yp is the

corresponding desired output. For the sake of simplicity, the subscript p indicaing the current sample will be
dropped in the following. The general update formula for a generic weight o is Aa =-ndE/da wheren is the
leaning rate. Starting at the first layer, a forward passis used to compute the adivity levels of al the nodes in the
network to oltain the aurrent output values. Then, starting at the output nodes, a badkward passis used to compute
0E/da for &l the nodes. The cmplete leaning algorithm is summearized in Figure 4.

/* Supervised learning */
1. Inpu: Seled the next sample (X.y) from S
2. Forward step: propagate X through the network and determine the output values

£, j=1...m
3. Backward step: compute eror terms for units jOLg, kOL, and i, OL, in the
order:
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4. Adjustment: update weights {v,}.{w, } and {o;,} respedively acordingto the
update quantities:
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5. If E<e then gotostep 6. elsegoto step 1

6. End.

Figure 4. The supervised leaning algorithm

4  Experimental results

The validity of our approac to fuzzy inference and rule extradion hes been tested on the well-known benchmark
Iris data problem [11]. The dasdficdion problem of the Iris data cnsists of clasgfying threespedes of iris flowers
(setosa, versicolor and virginica). There ae 150 samples for this problem, 50 d ead class A sample is a four-
dimensional pattern vedor representing four attributes of the iris flower (sepal length, sepal width, petal length, and
petal width).

A neuro-fuzzy network architedure with 4 inputs and 3 aitputs, corresponding to the 3 classes, was considered.

To estimate the performance of the fuzzy rules extracted by the proposed neuro-fuzzy network, we caried out a 10-
fold crossvalidation. The whole data set was divided into 10equally sized parts (15 samples uniformly drawn from
the three d¢asses). Each part was used as a test set for the network trained with the remaining 135 dta. In ead run,
aninitial number of 10 clusters were mnsidered for the self-organizing phase and the supervised leaning procedure
was gopped when 100% classfication rate was achieved or a maximum number of 1000epoch.



Table 1 summarizes the dassification rate of the 10 neuro-fuzzy networks obtained by the two-stage leaning
process As anillustrative example, in Figure 5 the final fuzzy rules extraded by our network are shown for the first
trial.

The fuzzy rule bases generated by our approach provide good performance in terms of classificaion rate, when
compared with other classifiers propaosed in literature for the same benchmark problem [12][13][14]. Most of these
clasdfiers were @le to predict testing data with the number of misclassified petterns between 2-5. Moreover, it is
worth mentioning that most of these results are obtained by computing the gparent misclassification rate, i.e. the
error estimated with a one-shot train and test procedure, which is usually an over-optimistic estimate of the adual
misclassification rate. In addition, our results outperform those reported in literature in terms of simplicity,
providing the small er number of rules.

after competitive learning after supervised leaning
training set test set Training set Test set
run | no. rules| |clasdficaion| no. classfication no. Classificaio no. classfication no.
rate misclass rate misclass nrate misclass rate misclass
1 5 88,89 15 80,00 3 99,26 1 100,00 0
2 6 91,11 12 86,67 2 99,26 1 93,33 1
3 6 88,89 15 93,33 1 99,26 1 100,00 0
4 9 88,89 15 93,33 1 100,00 0 93,33 1
5 9 88,89 15 86,67 2 100,00 0 86,67 2
6 7 91,11 12 73,33 4 100,00 0 100,00 0
7 7 97,04 4 93,33 1 100,00 0 86,67 2
8 7 88,89 15 93,33 1 100,00 0 100,00 0
9 5 88,15 16 86,67 2 99,26 1 100,00 0
10 8 95,56 6 100,00 0 100,00 0 100,00 0
ave. 6,90 90,74 12,50 88,67 1,70 99,70 0,40 96,00 0,60
Table 1. Results of the 10-fold crossvalidation.
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Figure 5. Final fuzzy rules obtained in the first of the 10trials.



5 Conclusions

In this paper a neural network with a two-phase hybrid leaning scheme is proposed to resolve the main problem of

fuzzy modeling, i.e. structural and parametric identification of a fuzzy rule base. The main feaures and advantages

of the developed network are:

e itisagenera framework that combines two technologies, namely neural networks and fuzzy systems

e the inside of the neural network can be explained in concept of a fuzzy model and hence it can be eaily
understood

e the network encodes in its structure the esential design parameters to asemble afuzzy model and processes
data acording to afuzzy reasoning mechanism

e theonly apriori information needed from the designer is an initial guessed humber of fuzzy rules: the network
determines both structure and parameters of the fuzzy rule base vialeaning from data

Simulations on a well-known classfication benchmark verify the effedivenessof the proposed network. We exped
that the propaosed network, and the underlying approadch, should be cmnsidered further in resped to a wider range of
red-world problems. These gplicaions are the subjed of our on-going reseach.
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