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Abstract: One significant feature of artificial immune systems is 
their ability to adapt to continuously changing 
environments, dynamically learning the fluid patterns of 
‘self’ and predicting new patterns of ‘non-self’. This paper 
introduces and investigates the behaviour of dynamiCS, a 
dynamic clonal selection algorithm, designed to have such 
properties of self-adaptation. The effects of three 
important system parameters: tolerisation period, 
activation threshold, and life span are explored. The 
abilities of dynamiCS to perform incremental learning on 
converged data, and to adapt to novel data are also 
demonstrated. 

I INTRODUCTION 
In this paper, we continue our effort to understand the role of 
important components of artificial immune systems 
especially for providing an appropriate artificial immune 
response against network intrusions. Following our previous 
work investigating two different evolutionary stages of AIS: 
negative selection (Kim and Bentley, 2001a) and static clonal 
selection (Kim and Bentley, 2001b), this paper focuses on the 
investigation of what we term here dynamic clonal selection. 

A real environment (which a network-based IDS needs to 
monitor) produces new network traffic continuously in real-
time.  Thus antigens faced by the AIS will be different every 
day.  More importantly, normal behaviours of network traffic 
on one day, which are considered as self antigens, can be 
different from normal behaviours of network traffic on 
another day.  Therefore, the AIS needs to be extended, firstly 
to learn normal behaviours by undergoing only a small subset 
of self antigens at one time.  Secondly its detectors should be 
replaced whenever previously observed normal behaviours 
no longer represent current normal behaviours. This paper 
describes a dynamic clonal selection algorithm that has the 
above two properties.  

II DYNAMIC NON-SELF ANTIGEN DETECTION BY                
HUMAN IMMUNE SYSTEMS  

As our cells are constantly being made and dying, new 
immune cells are also endlessly being made and dying. The 
birth and death of immune cells is vital to assure satisfactory 
self-tolerance and non-self antigen detection. Several 
mechanisms are used to achieve these properties. In 
particular, central tolerisation, distributed tolerisation, 
costimulation and affinity maturation contribute to ensure an 
adequate extent of self-tolerance. Memory cells provide 
quicker and more efficient non-self antigen detection.  The 

limited life spans of immune cells improve both self-
tolerance and non-self antigen detection by maintaining 
immune cells that reflect currently existing antigens. 

III DYNAMIC ANOMALY DETECTION BY AIS 
Hofmeyr (1999) extended a negative selection algorithm in 
order to allow it to adapt to a continuously changing 
environment. Hofmeyr’s extended AIS (Hofmeyr, 1999) 
generates detectors using negative selection with a currently 
obtained self antigen set.  In contrast to other AIS’s 
producing detectors by monitoring a static antigen set, his 
extended AIS creates new detectors every day after the 
system experiences new network traffic which has not been 
presented before. The replacement of detectors is achieved by 
introducing new parameters to determine the usefulness of 
detectors in order to detect current non-self antigens.  

In his system, Hofmeyr follows the life cycle of T-cells to 
implement dynamic network-based IDS. Each T-cell goes 
through various tests at different stages and it gains diverse 
features that are necessary to draw a complete immune 
response when it passes each test.  Therefore, the success of 
this system greatly depends on the tests introduced in the 
system. These can be characterised by the following 
questions: how long an immature detector has to be tested by 
negative selection, how long a mature detector can stay alive 
before it binds to a sufficient number of anomalies, what is a 
sufficient number of anomaly matches for a mature detector, 
etc.  He also proposed interesting components that allow his 
system to provide answers to these questions. These 
components are tolerisation period, activation threshold, life 
span, decay rate, costimulation, sensitisation, distributed 
tolerisation, dynamic detectors and memory detector death 
rates. 

IV DYNAMIC CLONAL SELECTION (DynamiCS) 
ALGORITHM 

The new AIS introduced in this paper follows the basic 
concept of the AIS proposed by Hofmeyr (1999). The 
adaptability of Hofmeyr’s AIS was achieved via co-ordinated 
dynamics of three different detector populations: immature, 
mature, and memory detector populations. In order to fully 
comprehend the co-ordinated dynamics of these three 
detector populations in terms of AIS adaptability, we 
introduce an artificial immune algorithm, called the dynamic 
clonal selection algorithm (DynamiCS). Although Hofmeyr 
proposed various new features in order to effect great 
adaptability and distributed detection, DynamiCS attempts to 



                                                                                                                                            

   

distill only the crucial components that yield adaptability to 
the system (and reduce the number of system parameters to 
ensure the algorithm is usable). The following pseudo code 
provides an overview of DynamiCS. 
 

Initialise Dynamic Clonal Selection Algorithm 
Create an initial immature detector population with random detectors; 

 
Generation_Number = 1; 
Do  
{ 

If (Generation_Number = N)               
     Select a new antigen cluster. 
 
Select 80% of self and non-self antigens from a chosen antigen cluster;

  
Reset Parameters 
       Generation_Number++;      
       Memory Detector Age++; 
       Mature Detector Age++; 
       Immature Detector Age++; 

                                          
Monitor Antigens 
{ 
     Monitor Antigens by Memory Detectors      
          Check whether any memory detector detects any non-self antigen;  
          Check whether any memory detector detects any self antigen; 

           
     Monitor Antigens by Mature Detectors    
          Check whether any mature detector detects any non-self antigen;  
          Check whether any mature detector detects any self antigen; 
          Create new memory detectors; 
          Old mature detectors are killed; 
       
      Monitor Antigens by Immature Detectors 
          Check whether any immature detector detects any self antigen; 
          Delete any immature detector matching any self antigen;  
          Create new mature detectors;       
} 
 

     If (immature detector population size + mature detector population size  
         < non-memory detector pop size) 
     { 

    Do 
   { 
       Generate a random detector; 
       Add a random detector to an immature detector population; 
    } Until  (immature detector population size +  
                  mature detector population size =  
                  non-memory detector pop size); 

     } 
} While (generation Number < max Generation) 

 

DynamiCS Overview 
DynamiCS starts by seeding initial immature detectors with 
random genotypes. DynamiCS then employs negative 
selection by comparing immature detectors to the given 
antigen set. As the result, immature detectors that bind to any 
antigens are deleted from the immature detector population 
and new immature detectors are generated until the number 
of immature detectors becomes the maximum size of the non-
memory detector population. These same processes continue 
for the tolerisation period (T) number of generations. When 
the total number of generations reaches T, those immature 
detectors whose age reaches T (born at generation 1), become 
mature detectors.  

At generation T + 1, a new antigen set is presented to the 
mature detectors to be monitored. Whenever a mature 
detector matches an antigen, the match count of a mature 
detector increases by one. After all the given antigens have 
been compared to all the existing mature detectors, the 
system checks: i) whether the match counts of mature 
detectors are larger than a pre-defined activation threshold 
(A) and ii) whether the ages of mature detectors meet a pre-
defined life span (L). If there is a mature detector with a 
match count that is larger than A, this mature detector 
becomes a memory detector only if it indeed detects an 
intrusion. When a human security officer acknowledges that 
this detector detects any intrusion signature (costimulation), 
the detector activates and eventually becomes a memory 
detector. In addition, if the ages of mature detectors meet L, 
those mature detectors are deleted from the mature detector 
population.  

At generation T + 2, when memory detectors match any 
antigen, confirmation is sought immediately from a human 
security officer. In this case, if the detected antigen patterns 
are confirmed as intrusion signatures, the detected antigen 
patterns are instantly deleted from the antigen set. After 
monitoring of new antigens by memory detectors, the 
remaining antigens are shown to mature detectors (if there 
are any). After the antigens have been monitored by the 
mature detectors, they are passed to immature detectors to 
perform negative selection. From generation T + 3 onwards, 
the same monitoring procedures that operated at generation T 
+ 2 continue in order to monitor constantly changing antigen 
sets until the system terminates. 

V DYNAMIC CLONAL SELECTION 
EXPERIMENTS 

Objective 
As introduced above, there are several parameters that will 
control the performance of DynamiCS. Among them, three 
parameters, tolerisation period (T), activation threshold (A) 
and life span (L) are newly introduced in order to provide the 
adaptability of the AIS with a constantly changing antigen 
set. Although these parameters were introduced from 
previous work (Hofmeyr, 1999), the behaviours of the AIS 
directed by the various values of these parameters were not 
thoroughly analysed. The following experiments focus on 
understanding system behaviours under different values of 
these three parameters. The experimental results are 
investigated primarily in terms of how each parameter affects 
the adaptability of the AIS.  

Data and Parameter Setting 
The experiments performed for this paper used the Wisconsin 
breast cancer data set that was employed for the study of the 
static clonal selection algorithm in (Kim and Bentley, 2001b). 
The cancer data has two classes, ‘Malignant’ and ‘Benign’. 
‘Malignant’ has 240 examples and ‘Benign’ has 460 
examples.  The system treated ‘Malignant’ as non-self and 
‘Benign’ as self. 

Since the main benchmarking measure for the new 
experiments was the adaptability of the new algorithm, one 



                                                                                                                                            

   

criterion for the provision of antigen data to the AIS was that 
antigen data sets given in each generation should have varied 
distributions.  Furthermore, in order to comprehend the 
systems’ new behaviours, it was necessary to understand the 
degree of differences between various distributions of antigen 
sets in advance.  Therefore, we adopted a following method 
for providing antigen data to DynamiCS. 

In order to be sure of providing antigens of novel 
distributions, self and non-self antigen data was clustered into 
several groups and antigen data randomly selected from one 
cluster was presented for N generations. The Expectation 
Maximization (EM) clustering algorithm (Mitchell, 1997) 
was applied to cluster antigen data into three groups.  As the 
result of clustering, 240 ‘Malignant’ examples were divided 
into three clusters of 45, 117 and 78 examples.  Similarly, 
460 ‘Benign’ examples were grouped into three clusters 42, 
355 and 63 examples.  

80% of the self and non-self antigen data belonging to each 
cluster were randomly selected for N generations.  N, the 
number of generations that each cluster was used for 
selecting antigen data, was pre-defined. Therefore, 
DynamiCS was provided with different antigen data at each 
generation and the distributions of these data changed at 
every N generations.  In addition, the antigen clusters used 
for providing antigen data were selected in a regular cyclical 
order, with the first cluster re-used after 3 * N generations. In 
addition, the costimulation mechanism involving a security 
officer was implemented by simply increasing the match 
count only when a detector detects non-self antigens.  

All experiments were run for 2000 generations and 
repeated five times.  A non-memory detector population size 
of 240 was used. Experiments were run by taking various 
values of the three parameters: tolerisation period of an 
immature detector (T), activation threshold of a mature 
detector (A) and the life span of a mature detector.  

Experiment Design 
Two series of experiments were performed by varying the 
distributions of the provided antigen data.  The first series of 
experiments was carried out by providing DynamiCS with 
antigen data of a different distribution at every generation 
(i.e., the value of N was 1, ensuring that the system was able 
to experience the complete antigen data set). In contrast, the 
values of N employed for the second series of experiments 
ranged from 5 to 50.  As N increases, the system will overfit 
the distribution of only one antigen cluster more. Thus, the 
significant question for investigation in the second set of 
experiments is how quickly the system is able to learn the 
distribution of a new antigen cluster, when an antigen cluster 
is replaced.  

VI EXPERIMENT RESULTS 1: EXAMINATION OF 
COMPLETE ANTIGEN DATA 
Effect of the Tolerisation Period  
Figure 1 illustrates the results of the first set of experiments, 
where tolerisation period (T) was varied from 5 to 10, 20 and 
50 with activation threshold (A) equal to 100 and life span (L) 
equal to 10. The X-axes of these graphs represent the number 

of generations and the Y-axes indicate detection rates.  Each 
graph has two lines, one displaying a True Positive (TP) rate 
and another showing a False Positive (FP) rate. TP was the 
“non-self” detection rate and FP was the rate at which “self” 
was mistakenly detected by a generated detector set.  . 

First of all, it can be seen that TP values oscillate between 
two converged minimum and maximum values and these 
converged values decrease as T increases. The effects are 
illustrated in figure 1. Another key result revealed by figure 1 
is a dramatic drop in FP when T increases from 5 to 10.  
When T = 5, FP steadily increases and reaches 0.6 by the 
time the number of generations becomes 2000.  By contrast, 
when T = 10, FP is zero from generation one and stays at this 
optimal value for the entire 2000 generations. Thus, two 
significant changes were effected by varying T: firstly both 
TP and FP rates decrease and secondly the drop in FP is 
much sharper than the drop in TP. 

These results clearly illustrate the role that the tolerisation 
period plays in DynamiCS. They demonstrate that the 
employment of a tolerisation period directly benefits the 
system. Although only a subset of antigens is provided at 
each generation, as long as immature detectors have an 
opportunity to experience various antigen distributions for a 
sufficient period, which is defined by the tolerisation period, 
FP can be dramatically reduced to an almost perfect rate. 

Moreover, these results confirm that having large value of 
T results in a high degree of self tolerisation at the expense of 
TP. This outcome can be scrutinised by examining the 
proportion of the population made up of non-memory 
detectors. Since the maximum number of non-memory 
detectors, consisting of immature detectors and mature 
detectors, is fixed, one type of detector has to diminish when 
another type of detector expands.  Since a large value of T 
forces detectors to remain immature longer, the average 
immature detector population size per generation gets larger 
and the average mature detector population size per 
generation becomes smaller.  This is shown in table 1.   

The smaller number of mature detectors implies that a 
smaller number of candidate detectors are qualified to 
activate. Consequently, this results in a smaller number of 
total detector activations.  For the same reason, a large value 
of T leads the system to produce a smaller number of memory 
detectors in total. Since DynamiCS does not employ any 
niching mechanism like the one introduced in the static clonal  

A=5 Total No. 
of 

Memory 
Detectors 

Av. Mature 
Detector 
Pop. Size 

per 
Generation 

Av. Immature 
Detector Pop. 

Size per 
Generation 

Av. No. of 
New Mature 
Detector per 
Generation 

T=5 65.5 
(13.67) 

151.58 
(0.141) 

88.42 
(0.141) 

15.21 
(0.0014) 

T=10 42 
(23.33) 

122.99 
(0.0024) 

127.01 
(0.0024) 

11.343 
(0.00001) 

T=20 39 
(24.66) 

76.51 
(0.0006) 

163.49 
(0.0006) 

7.68 
(0.000002) 

T=50 37.25 
(40.92) 

38.45 
(0.0007) 

201.55 
(0.0007) 

3.87 
(0.000006) 

Table 1 Proportion of Three Different Types of Detectors when T varies 
and A = 5, L = 10, N =1. The values in parentheses are variances 



                                                                                                                                            

   

selection algorithm, the smaller number of generated mature 
and memory detectors directly causes low TP and FP rates. 
This is because it is unlikely that any detector will match a 
significantly larger number of antigens than any other 
detector when all detectors are randomly generated. Random 
generation might produce a powerful detector by chance, but 
this will not occur consistently.  Thus, a more consistently 
expected outcome, which is shown from the experiments, is 
that more mature detectors produce more frequent antigen 
detection. 

In addition, the range between maximum and minimum 
values of TP rates tends to get larger as T increases.  This 
difference is more evidently presented when two cases, when 
T = 5 and T = 10, are compared in figure 1.  This can also be 
explained with the same reason.  The smaller number of 
mature detectors tends to cover a smaller number of the 
niches that could exist in the non-self antigen set.  Since three 
different distributions of antigen set were given in turn at 
each generation, oscillating TP rates indicate differing results 
of detection of non-self antigens between the three different 
clusters. Therefore, the range of fluctuation in TP rates will 
be reduced if detectors which are qualified to perform antigen 
detection cover niches in non-self antigen clusters evenly. A 
smaller number of detectors will only cover a smaller number 
of randomly scattered niches in each non-self antigen cluster.  

Effect of Activation Threshold 
The second series of experiments were carried out with 
tolerisation period (T) equal to 5 and Life Span (L) equal to 
10 with four different activation thresholds (A): {5, 10, 20, 
50}. The figures 2 show the experimental results, displaying 
TP and FP rates obtained from these eight experiments. As 
seen in the previous set of experiments, the results gained 
from the new series of experiments also exhibit fluctuating 
TP and FP values between two converged minimum and 
maximum values.  Both TP and FP rates tend to decrease as 
A increases. These results confirm that the activation 
threshold contributes to reduce FP further by making the 
system stricter in triggering activation. However, similar 
symptoms that were observed from the previous experiments 
are also found: lowering FP causes decline of TP. 

The explanation of variations in TP and FP rates according 
to various values for A can be found in table 2.  As can be 
seen, differing values for A do not affect the average mature 
and immature detector population sizes per generation.  
Unlike T, a large A does not reduce the number of candidate 
detectors activated.  Instead, large A causes the activation of 
mature detectors to be much less frequent.  Accordingly, a 
much smaller number of memory detectors were generated 
during the full 2000 generations. As described in the previous 
section, when detectors are mainly generated by a negative 
selection without a niching mechanism, higher TP rates are 
expected when mature detectors can detect diverse niches 
existing in a non-self antigen set. Thus, the smaller amount of 
antigen detection detects only a subset of non-self antigen 
niches randomly scattered and induces lower TP and FP 
rates.  

 
 
 

Total No. 
of Memory 
Detectors 

Av. Mature 
Detector 
Pop. Size 
per gen. 

Av.Immature 
Detector 

Pop. Size per 
generation 

Av. No. of 
New Mature 
Detector per 
generation 

A=5 63.75 
(49.58) 

151.59 
(0.26) 

88.41 
 (0.26) 

15.21 
(0.0026) 

A=10 37.5 
(33.67) 

150.03 
(0.119) 

89.97 
(0.119) 

15.05 
(0.0011) 

A=20 22.5 
(12.33) 

149.30 
(0.013) 

90.70 
(0.013) 

14.98 
(0.0002) 

A=50 14 
 (6) 

149.13 
(0.079) 

90.87 
(0.079) 

14.96 
(0.001) 

Table 2 Proportion of Three Different Types of Detector when A varies 
and T = 5, L = 10, N =1. The values in parentheses are variances. 

Effect of Life Span  
The third series of experiments were executed by varying the 
life span (L) of mature detectors from 5 to 10, 20 and 50, 
with the tolerisation period (T) fixed at 5 and the activation 
threshold (A) set at 150. Figure 3 exhibits TP and FP rates 
gained from four different experiments.  As was seen in the 
previous experiments, these results also show that TP rates 
oscillating between minimum and maximum values had 
stabilised after 2000 generations.  

 Total No.of 
Memory 
Detectors 

Av. Mature 
Detector 
Pop. Size 
per gen. 

Av. 
Immature 
Det. Pop. 
Size / gen. 

Av. No. of 
New Mature 
Detectors / 

gen. 

Av. No. of 
Mature 

Detector 
deleted / gen.

L=5 4.75 
 (2.92) 

108.07 
(0.007) 

131.93 
(0.007) 

21.65 
(0.0004) 

21.59 
(0.0003) 

L=10 7 
 (3.33) 

149.14 
(0.024) 

90.86 
(0.024) 

14.96 
(0.0003) 

14.88 
(0.0002) 

L=20 10.75 
 (4.25) 

183.79 
(0.005) 

56.21 
(0.005) 

9.24 
(0.00002) 

9.14 
(0.00001) 

L=50 18.25 
 (8.25) 

213.74 
(0.006) 

26.27 
(0.006) 

3.34  
(0.006) 

4.19  
(0.0002) 

Table 3 Proportion of Three Different Types of Detector when L varies and 
T = 5, A = 150, N =1. The values in parentheses are variances. 

As L gets larger, two similar tendencies of TP rate changes 
are perceived. Firstly, its minimum and maximum values get 
larger and secondly, the oscillating scopes between minimum 
and maximum values tend to be narrower.  These outcomes 
can also be interpreted by examining the proportion of the 
population that is made up of non-memory detectors, shown 
in table 3. The larger number of mature detectors again 
implies that a larger number of candidate detectors were to be 
activated. Consequently, the larger number of mature 
detectors triggers a higher frequency of detector activation 
and this results in higher TP rates. The second effect can also 
be interpreted by the same reason discussed in the previous 
sections. Large L allows a mature detector to remain longer 
and thus lets it to experience more diverse non-self antigen 
clusters, more evenly. When each TP rate represents a TP 
rate for each non-self antigen cluster, the TP rate differences 
among three non-self clusters are not large when L is 
sufficiently large. Conversely, the differences become wider 
as smaller values of L are given. In summary, a mature 
detector that meets more non-self antigens can learn the 
distributions of each cluster better and also learn different 
distributions more evenly. 



                                                                                                                                            

   

Analysis  
The above experiments showed clearly that the three 
parameters investigated in this paper influence the non-self 
antigen detection (TP) and self-tolerance (FP) rates 
significantly.  A common trait found in the three different 
result sets is that TP and FP rates vary depending on the 
number of detectors which are qualified to activate.  Since 
DynamiCS generated its initial immature detectors only 
through negative selection, the degree of antigen detection 
did not vary greatly between detectors.  This was because no 
detector had evolved to match existing niches in the given 
antigen set.  To summarise, the antigen detection capability 
of DynamiCS was governed by the total number of detector 
activations and this number was directly affected by three 
parameters.  

The results suggest that lowering A and increasing L 
should be considered together in order to get an optimal 
result from DynamiCS.  The appropriate decisions about 
lowering A or increasing L, or both, will be different 
according to the given environment.  For instance, if we 
know that the distribution of an antigen subset presented at 
each generation will appear again in a near future, lowering A 
can be a good idea that can boost TP rates by detecting small 
niches.  However, if any situation shows that the distribution 
of antigen subsets presented over time changes substantially, 
lowering A and keeping memory detectors cannot be such a 
good idea. Likewise, increasing T and L can also be equally 
bad for similar reasons.  Since larger T and L imply keeping a 
larger number of immature and mature detectors that are not 
qualified to activate yet, increasing T and L can be an 
impractical idea, although they can reduce FP rate and 
generate more general and efficient detectors.  The artificial 
scenario created for the experiments in this section follows 
the former case.  We shall see that choosing arbitrarily large 
values for T can be a bad idea for the latter case in the next 
section. 

VII EXPERIMENT RESULTS 2: EXAMINATION OF 
INCOMPLETE ANTIGEN DATA 

In contrast to the first experiment results, the detectors 
generated in the following experiments were presented with 
only a subset of antigens for a number of generations so that 
generated detectors overfit a certain antigen cluster.  This 
experimental setting is defined in order to test whether 
DynamiCS is able to learn newly emerged behaviours of self 
antigens and forget old behaviours that are no longer parts of 
the self antigen behaviour.  

Varying the Generation Numbers to Provide Antigens from 
a Same Cluster 
In order to let generated detectors to overfit a specific antigen 
cluster, a large value was given for N, the number of 
generations that antigens are selected from a same cluster. 
The values of N employed for the second series of 
experiments ranged from 5 to 30.  As N increases, the system 
will overfit the distribution of only one antigen cluster for N 
generations. Figure 4 shows the results of four different 

experiments when four different values, {5, 10, 20, 30} were 
given to N. The other three parameters: T, A and L were set to 
30, 100 and 10 respectively for these experiments.  

However, subtle differences between the results of these 
two series of experiments can be found, as the overall TP and 
FP increases as N grows. Particularly, the previous results 
with a relatively large T value (see figure 1) always show 
nearly perfect FP rates of zero. However, the FP rates seen in 
figure 4 start increasing when N = 20 and N = 30. These are 
not surprising results. This is because although T = 30 was 
large enough for detectors to activate only when they 
experience three antigen clusters evenly (because N = 1), this 
is no longer true when N = 20 and 30. For instance, when N = 
30, mature detectors were generated by experiencing only 
one particular cluster or a maximum of two clusters.  Then 
these detectors increased their match counts by matching 
antigens belonging to a different cluster which was not used 
for negative selection. Therefore, new memory detectors, 
which were generated as the results of activation, never had 
sufficient self-tolerance and easily made errors in detecting 
self-antigens, although they can increase TP rates by 
detecting small niches in each cluster.  Thus, the increase of 
TP by new detector activation can cause an increase of FP at 
the same time.  

VIII CONCLUSIONS 

The dynamic clonal selection algorithm (DynamiCS) was 
introduced in this paper as a step towards an artificial 
immune system that is better able to deal with a real 
environment where self behaviours change after a certain 
period and only a small subset of self antigens is visible at 
one time. The significant features that allow the human 
immune system to provide these desired properties were 
identified. They are central tolerisation, distributed 
tolerisation, costimulation, affinity maturation, life span and 
memory detectors.  DynamiCS implemented these features 
by introducing three important parameters: tolerisation 
period, activation threshold and life span.  

Two sets of experiments were performed in order to 
examine system behaviours under various values of the three 
parameters. The first series of experiments tested whether the 
system can incrementally learn the globally converged 
distributions when only its one subset distribution is given at 
each generation.  The experimental results showed that the 
AIS was able to incrementally learn the globally converged 
distributions when only one small subset of antigens was 
given at each generation. It was revealed that the system 
performance measured by TP and FP rates was primarily 
controlled by the number of detector activations in total, and 
that this number was directed by values of the three 
parameters.  

A large tolerisation period directly lowered FP by allowing 
more immature detectors to remain and pushing mature 
detectors out.  It was also found that both lowering the 
activation threshold and increasing life span could guide the 
system to attain a higher TP rate.  From analysis, lowering A 
and increasing L should be considered together in order to 
obtain an effective application of DynamiCS. The appropriate 



                                                                                                                                            

   

decision about lowering A or increasing L, or both, will be 
different according to a given environment.  

In order to see different effects of parameter values 
depending in different scenarios, the second set of 
experiments simulated a situation in which converged 
behaviours learned in an incremental way are suddenly 
altered due to legal self change.  The experimental results 
showed that large T values that were sufficient to show 
perfect FP rates in previous experiments no longer 
demonstrated perfect FP rates.  This was because memory 
detectors had never been exposed to a certain antigen cluster 
and thus they could not have perfect self-tolerance. This 
reason drives a further extension of DynamiCS, so that it can 
handle memory detectors based on their detection results. 
The modified dynamic clonal selection algorithm that 
employs this idea is currently under investigation. 
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L = 50 
Figure 1. TP and FP rates when A = 5, L = 10, N =1 Figure 2. TP and FP rates when T = 5, L = 100, N = 1 Figure 3. TP and FP rates when T = 5, A = 150, N = 1 
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 N = 30 
Figure 4. TP and FP rates when T = 30, A = 100, L= 10 

 

 


