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Abstract: One significant feature of artificial immune systems is
their  ability to adapt to continuously changing
environments, dynamically learning the fluid patterns of
‘self’ and predicting new patterns of ‘non-self’. This paper
introduces and investigates the behaviour of dynamiCs, a
dynamic clonal selection algorithm, designed to have such
properties of self-adaptation. The effects of three
important system parameters: tolerisation period,
activation threshold, and life span are explored. The
abilities of dynamiCS to perform incremental learning on
converged data, and to adapt to novel data are also
demonstrated.

I INTRODUCTION

In this paper, we continue our effort to understand the role of
important components of artificial immune systems
especially for providing an appropriate artificial immune
response against network intrusions. Following our previous
work investigating two different evolutionary stages of AIS:
negative selection (Kim and Bentley, 2001a) and static clonal
selection (Kim and Bentley, 2001b), this paper focuses on the
investigation of what we term here dynamic clonal selection.

A real environment (which a network-based IDS needs to
monitor) produces new network traffic continuously in real-
time. Thus antigens faced by the AIS will be different every
day. More importantly, normal behaviours of network traffic
on one day, which are considered as self antigens, can be
different from normal behaviours of network traffic on
another day. Therefore, the AIS needs to be extended, firstly
to learn normal behaviours by undergoing only a small subset
of self antigens at one time. Secondly its detectors should be
replaced whenever previously observed normal behaviours
no longer represent current normal behaviours. This paper
describes a dynamic clonal selection algorithm that has the
above two properties.

II DYNAMIC NON-SELF ANTIGEN DETECTION BY
HUMAN IMMUNE SYSTEMS

As our cells are constantly being made and dying, new
immune cells are also endlessly being made and dying. The
birth and death of immune cells is vital to assure satisfactory
self-tolerance and non-self antigen detection. Several
mechanisms are used to achieve these properties. In
particular, central tolerisation, distributed tolerisation,
costimulation and affinity maturation contribute to ensure an
adequate extent of self-tolerance. Memory cells provide
quicker and more efficient non-self antigen detection. The
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limited life spans of immune cells improve both self-
tolerance and non-self antigen detection by maintaining
immune cells that reflect currently existing antigens.

III DYNAMIC ANOMALY DETECTION BY AIS

Hofmeyr (1999) extended a negative selection algorithm in
order to allow it to adapt to a continuously changing
environment. Hofmeyr’s extended AIS (Hofmeyr, 1999)
generates detectors using negative selection with a currently
obtained self antigen set. In contrast to other AIS’s
producing detectors by monitoring a static antigen set, his
extended AIS creates new detectors every day after the
system experiences new network traffic which has not been
presented before. The replacement of detectors is achieved by
introducing new parameters to determine the usefulness of
detectors in order to detect current non-self antigens.

In his system, Hofmeyr follows the life cycle of T-cells to
implement dynamic network-based IDS. Each T-cell goes
through various tests at different stages and it gains diverse
features that are necessary to draw a complete immune
response when it passes each test. Therefore, the success of
this system greatly depends on the tests introduced in the
system. These can be characterised by the following
questions: how long an immature detector has to be tested by
negative selection, how long a mature detector can stay alive
before it binds to a sufficient number of anomalies, what is a
sufficient number of anomaly matches for a mature detector,
etc. He also proposed interesting components that allow his
system to provide answers to these questions. These
components are tolerisation period, activation threshold, life
span, decay rate, costimulation, sensitisation, distributed
tolerisation, dynamic detectors and memory detector death
rates.

IV DYNAMIC CLONAL SELECTION (DynamiCS)
ALGORITHM

The new AIS introduced in this paper follows the basic
concept of the AIS proposed by Hofmeyr (1999). The
adaptability of Hofmeyr’s AIS was achieved via co-ordinated
dynamics of three different detector populations: immature,
mature, and memory detector populations. In order to fully
comprehend the co-ordinated dynamics of these three
detector populations in terms of AIS adaptability, we
introduce an artificial immune algorithm, called the dynamic
clonal selection algorithm (DynamiCS). Although Hofmeyr
proposed various new features in order to effect great
adaptability and distributed detection, DynamiCS attempts to



distill only the crucial components that yield adaptability to
the system (and reduce the number of system parameters to
ensure the algorithm is usable). The following pseudo code
provides an overview of DynamiCS.

Initialise Dynamic Clonal Selection Algorithm
Create an initial immature detector population with random detectors;

Generation Number = 1;
Do

If (Generation Number = N)
Select a new antigen cluster.

Select 80% of self and non-self antigens from a chosen antigen cluster;

Reset Parameters
Generation Number++;
Memory Detector Age++;
Mature Detector Aget++;
Immature Detector Age++;

Monitor Antigens

Monitor Antigens by Memory Detectors
Check whether any memory detector detects any non-self antigen;
Check whether any memory detector detects any self antigen;

Monitor Antigens by Mature Detectors
Check whether any mature detector detects any non-self antigen;
Check whether any mature detector detects any self antigen;
Create new memory detectors;
Old mature detectors are killed;

Monitor Antigens by Immature Detectors
Check whether any immature detector detects any self antigen;
Delete any immature detector matching any self antigen;
Create new mature detectors;

}

If (immature detector population size + mature detector population size
< non-memory detector pop size)
{
Do
{
Generate a random detector;
Add a random detector to an immature detector population;
} Until (immature detector population size +
mature detector population size =
non-memory detector pop size);

} While (generation Number < max Generation)

DynamiCS Overview

DynamiCS starts by seeding initial immature detectors with
random genotypes. DynamiCS then employs negative
selection by comparing immature detectors to the given
antigen set. As the result, immature detectors that bind to any
antigens are deleted from the immature detector population
and new immature detectors are generated until the number
of immature detectors becomes the maximum size of the non-
memory detector population. These same processes continue
for the tolerisation period (7) number of generations. When
the total number of generations reaches 7, those immature
detectors whose age reaches T (born at generation 1), become
mature detectors.

At generation 7 + 1, a new antigen set is presented to the
mature detectors to be monitored. Whenever a mature
detector matches an antigen, the match count of a mature
detector increases by one. After all the given antigens have
been compared to all the existing mature detectors, the
system checks: i) whether the match counts of mature
detectors are larger than a pre-defined activation threshold
(A) and ii) whether the ages of mature detectors meet a pre-
defined life span (L). If there is a mature detector with a
match count that is larger than A, this mature detector
becomes a memory detector only if it indeed detects an
intrusion. When a human security officer acknowledges that
this detector detects any intrusion signature (costimulation),
the detector activates and eventually becomes a memory
detector. In addition, if the ages of mature detectors meet L,
those mature detectors are deleted from the mature detector
population.

At generation 7 + 2, when memory detectors match any
antigen, confirmation is sought immediately from a human
security officer. In this case, if the detected antigen patterns
are confirmed as intrusion signatures, the detected antigen
patterns are instantly deleted from the antigen set. After
monitoring of new antigens by memory detectors, the
remaining antigens are shown to mature detectors (if there
are any). After the antigens have been monitored by the
mature detectors, they are passed to immature detectors to
perform negative selection. From generation 7+ 3 onwards,
the same monitoring procedures that operated at generation T
+ 2 continue in order to monitor constantly changing antigen
sets until the system terminates.

V DYNAMIC CLONAL SELECTION
EXPERIMENTS

Objective

As introduced above, there are several parameters that will
control the performance of DynamiCS. Among them, three
parameters, tolerisation period (7), activation threshold (4)
and life span (L) are newly introduced in order to provide the
adaptability of the AIS with a constantly changing antigen
set. Although these parameters were introduced from
previous work (Hofmeyr, 1999), the behaviours of the AIS
directed by the various values of these parameters were not
thoroughly analysed. The following experiments focus on
understanding system behaviours under different values of
these three parameters. The experimental results are
investigated primarily in terms of how each parameter affects
the adaptability of the AIS.

Data and Parameter Setting

The experiments performed for this paper used the Wisconsin
breast cancer data set that was employed for the study of the
static clonal selection algorithm in (Kim and Bentley, 2001b).
The cancer data has two classes, ‘Malignant’ and ‘Benign’.
‘Malignant” has 240 examples and ‘Benign’ has 460
examples. The system treated ‘Malignant’ as non-self and
‘Benign’ as self.

Since the main benchmarking measure for the new
experiments was the adaptability of the new algorithm, one



criterion for the provision of antigen data to the AIS was that
antigen data sets given in each generation should have varied
distributions.  Furthermore, in order to comprehend the
systems’ new behaviours, it was necessary to understand the
degree of differences between various distributions of antigen
sets in advance. Therefore, we adopted a following method
for providing antigen data to DynamiCS.

In order to be sure of providing antigens of novel
distributions, self and non-self antigen data was clustered into
several groups and antigen data randomly selected from one
cluster was presented for N generations. The Expectation
Maximization (EM) clustering algorithm (Mitchell, 1997)
was applied to cluster antigen data into three groups. As the
result of clustering, 240 ‘Malignant’ examples were divided
into three clusters of 45, 117 and 78 examples. Similarly,
460 ‘Benign’ examples were grouped into three clusters 42,
355 and 63 examples.

80% of the self and non-self antigen data belonging to each
cluster were randomly selected for N generations. N, the
number of generations that each cluster was used for
selecting antigen data, was pre-defined. Therefore,
DynamiCS was provided with different antigen data at each
generation and the distributions of these data changed at
every N generations. In addition, the antigen clusters used
for providing antigen data were selected in a regular cyclical
order, with the first cluster re-used after 3 * N generations. In
addition, the costimulation mechanism involving a security
officer was implemented by simply increasing the match
count only when a detector detects non-self antigens.

All experiments were run for 2000 generations and
repeated five times. A non-memory detector population size
of 240 was used. Experiments were run by taking various
values of the three parameters: tolerisation period of an
immature detector (7), activation threshold of a mature
detector (4) and the life span of a mature detector.

Experiment Design

Two series of experiments were performed by varying the
distributions of the provided antigen data. The first series of
experiments was carried out by providing DynamiCS with
antigen data of a different distribution at every generation
(i.e., the value of N was 1, ensuring that the system was able
to experience the complete antigen data set). In contrast, the
values of N employed for the second series of experiments
ranged from 5 to 50. As N increases, the system will overfit
the distribution of only one antigen cluster more. Thus, the
significant question for investigation in the second set of
experiments is how quickly the system is able to learn the
distribution of a new antigen cluster, when an antigen cluster
is replaced.

VI EXPERIMENT RESULTS 1: EXAMINATION OF
COMPLETE ANTIGEN DATA

Effect of the Tolerisation Period

Figure 1 illustrates the results of the first set of experiments,
where tolerisation period (7) was varied from 5 to 10, 20 and
50 with activation threshold (4) equal to 100 and life span (L)
equal to 10. The X-axes of these graphs represent the number

of generations and the Y-axes indicate detection rates. Each
graph has two lines, one displaying a True Positive (TP) rate
and another showing a False Positive (FP) rate. TP was the
“non-self” detection rate and FP was the rate at which “self”
was mistakenly detected by a generated detector set. .

First of all, it can be seen that TP values oscillate between
two converged minimum and maximum values and these
converged values decrease as 7T increases. The effects are
illustrated in figure 1. Another key result revealed by figure 1
is a dramatic drop in FP when T increases from 5 to 10.
When T = 5, FP steadily increases and reaches 0.6 by the
time the number of generations becomes 2000. By contrast,
when T'= 10, FP is zero from generation one and stays at this
optimal value for the entire 2000 generations. Thus, two
significant changes were effected by varying T: firstly both
TP and FP rates decrease and secondly the drop in FP is
much sharper than the drop in TP.

These results clearly illustrate the role that the tolerisation
period plays in DynamiCS. They demonstrate that the
employment of a tolerisation period directly benefits the
system. Although only a subset of antigens is provided at
each generation, as long as immature detectors have an
opportunity to experience various antigen distributions for a
sufficient period, which is defined by the tolerisation period,
FP can be dramatically reduced to an almost perfect rate.

Moreover, these results confirm that having large value of
T results in a high degree of self tolerisation at the expense of
TP. This outcome can be scrutinised by examining the
proportion of the population made up of non-memory
detectors. Since the maximum number of non-memory
detectors, consisting of immature detectors and mature
detectors, is fixed, one type of detector has to diminish when
another type of detector expands. Since a large value of T
forces detectors to remain immature longer, the average
immature detector population size per generation gets larger
and the average mature detector population size per
generation becomes smaller. This is shown in table 1.

The smaller number of mature detectors implies that a
smaller number of candidate detectors are qualified to
activate. Consequently, this results in a smaller number of
total detector activations. For the same reason, a large value
of T leads the system to produce a smaller number of memory
detectors in total. Since DynamiCS does not employ any
niching mechanism like the one introduced in the static clonal

A=5 Total No. Av. Mature Av. Immature Av. No. of
of Detector Detector Pop. New Mature
Memory Pop. Size Size per Detector per
Detectors per Generation Generation
Generation
T=5 65.5 151.58 88.42 15.21
(13.67) (0.141) (0.141) (0.0014)
T=10 42 122.99 127.01 11.343
(23.33) (0.0024) (0.0024) (0.00001)
T=20 39 76.51 163.49 7.68
(24.66) (0.0006) (0.0006) (0.000002)
T=50 37.25 38.45 201.55 3.87
(40.92) (0.0007) (0.0007) (0.000006)

Table 1 Proportion of Three Different Types of Detectors when T varies
and 4 =5, L =10, N =1. The values in parentheses are variances




selection algorithm, the smaller number of generated mature
and memory detectors directly causes low TP and FP rates.
This is because it is unlikely that any detector will match a
significantly larger number of antigens than any other
detector when all detectors are randomly generated. Random
generation might produce a powerful detector by chance, but
this will not occur consistently. Thus, a more consistently
expected outcome, which is shown from the experiments, is
that more mature detectors produce more frequent antigen
detection.

In addition, the range between maximum and minimum
values of TP rates tends to get larger as T increases. This
difference is more evidently presented when two cases, when
T=5and T= 10, are compared in figure 1. This can also be
explained with the same reason. The smaller number of
mature detectors tends to cover a smaller number of the
niches that could exist in the non-self antigen set. Since three
different distributions of antigen set were given in turn at
each generation, oscillating TP rates indicate differing results
of detection of non-self antigens between the three different
clusters. Therefore, the range of fluctuation in TP rates will
be reduced if detectors which are qualified to perform antigen
detection cover niches in non-self antigen clusters evenly. A
smaller number of detectors will only cover a smaller number
of randomly scattered niches in each non-self antigen cluster.

Effect of Activation Threshold

The second series of experiments were carried out with
tolerisation period (7) equal to 5 and Life Span (L) equal to
10 with four different activation thresholds (4): {5, 10, 20,
50}. The figures 2 show the experimental results, displaying
TP and FP rates obtained from these eight experiments. As
seen in the previous set of experiments, the results gained
from the new series of experiments also exhibit fluctuating
TP and FP values between two converged minimum and
maximum values. Both TP and FP rates tend to decrease as
A increases. These results confirm that the activation
threshold contributes to reduce FP further by making the
system stricter in triggering activation. However, similar
symptoms that were observed from the previous experiments
are also found: lowering FP causes decline of TP.

The explanation of variations in TP and FP rates according
to various values for 4 can be found in table 2. As can be
seen, differing values for 4 do not affect the average mature
and immature detector population sizes per generation.
Unlike 7, a large 4 does not reduce the number of candidate
detectors activated. Instead, large 4 causes the activation of
mature detectors to be much less frequent. Accordingly, a
much smaller number of memory detectors were generated
during the full 2000 generations. As described in the previous
section, when detectors are mainly generated by a negative
selection without a niching mechanism, higher TP rates are
expected when mature detectors can detect diverse niches
existing in a non-self antigen set. Thus, the smaller amount of
antigen detection detects only a subset of non-self antigen
niches randomly scattered and induces lower TP and FP
rates.

Total No. Av. Mature | Av.Immature Av. No. of
of Memory Detector Detector New Mature
Detectors Pop. Size Pop. Size per | Detector per
per gen. generation generation
A=5 63.75 151.59 88.41 15.21
(49.58) (0.26) (0.26) (0.0026)
A=10 37.5 150.03 89.97 15.05
(33.67) (0.119) (0.119) (0.0011)
A=20 22.5 149.30 90.70 14.98
(12.33) (0.013) (0.013) (0.0002)
A=50 14 149.13 90.87 14.96
(6) (0.079) (0.079) (0.001)

Table 2 Proportion of Three Different Types of Detector when A varies
and 7= 5, L = 10, N=1. The values in parentheses are variances.

Effect of Life Span

The third series of experiments were executed by varying the
life span (L) of mature detectors from 5 to 10, 20 and 50,
with the tolerisation period (7) fixed at 5 and the activation
threshold (4) set at 150. Figure 3 exhibits TP and FP rates
gained from four different experiments. As was seen in the
previous experiments, these results also show that TP rates
oscillating between minimum and maximum values had
stabilised after 2000 generations.

Total No.of | Av. Mature Av. Av.No. of | Av.No.of
Memory Detector | Immature | New Mature Mature
Detectors | Pop. Size | Det. Pop. Detectors / Detector

per gen. | Size/ gen. gen. deleted / gen.
L=5 4.75 108.07 131.93 21.65 21.59
(2.92) (0.007) (0.007) (0.0004) (0.0003)
L=10 7 149.14 90.86 14.96 14.88
(3.33) (0.024) (0.024) (0.0003) (0.0002)
L=20 10.75 183.79 56.21 9.24 9.14
(4.25) (0.005) (0.005) (0.00002) (0.00001)
L=50 18.25 213.74 26.27 3.34 4.19
(8.25) (0.006) (0.006) (0.006) (0.0002)

Table 3 Proportion of Three Different Types of Detector when L varies and
T=5,4=150, N=1. The values in parentheses are variances.

As L gets larger, two similar tendencies of TP rate changes
are perceived. Firstly, its minimum and maximum values get
larger and secondly, the oscillating scopes between minimum
and maximum values tend to be narrower. These outcomes
can also be interpreted by examining the proportion of the
population that is made up of non-memory detectors, shown
in table 3. The larger number of mature detectors again
implies that a larger number of candidate detectors were to be
activated. Consequently, the larger number of mature
detectors triggers a higher frequency of detector activation
and this results in higher TP rates. The second effect can also
be interpreted by the same reason discussed in the previous
sections. Large L allows a mature detector to remain longer
and thus lets it to experience more diverse non-self antigen
clusters, more evenly. When each TP rate represents a TP
rate for each non-self antigen cluster, the TP rate differences
among three non-self clusters are not large when L is
sufficiently large. Conversely, the differences become wider
as smaller values of L are given. In summary, a mature
detector that meets more non-self antigens can learn the
distributions of each cluster better and also learn different
distributions more evenly.



Analysis

The above experiments showed clearly that the three
parameters investigated in this paper influence the non-self
antigen detection (TP) and self-tolerance (FP) rates
significantly. A common trait found in the three different
result sets is that TP and FP rates vary depending on the
number of detectors which are qualified to activate. Since
DynamiCS generated its initial immature detectors only
through negative selection, the degree of antigen detection
did not vary greatly between detectors. This was because no
detector had evolved to match existing niches in the given
antigen set. To summarise, the antigen detection capability
of DynamiCS was governed by the total number of detector
activations and this number was directly affected by three
parameters.

The results suggest that lowering 4 and increasing L
should be considered together in order to get an optimal
result from DynamiCS. The appropriate decisions about
lowering A or increasing L, or both, will be different
according to the given environment. For instance, if we
know that the distribution of an antigen subset presented at
each generation will appear again in a near future, lowering 4
can be a good idea that can boost TP rates by detecting small
niches. However, if any situation shows that the distribution
of antigen subsets presented over time changes substantially,
lowering A and keeping memory detectors cannot be such a
good idea. Likewise, increasing 7 and L can also be equally
bad for similar reasons. Since larger 7 and L imply keeping a
larger number of immature and mature detectors that are not
qualified to activate yet, increasing 7 and L can be an
impractical idea, although they can reduce FP rate and
generate more general and efficient detectors. The artificial
scenario created for the experiments in this section follows
the former case. We shall see that choosing arbitrarily large
values for T can be a bad idea for the latter case in the next
section.

VII EXPERIMENT RESULTS 2: EXAMINATION OF
INCOMPLETE ANTIGEN DATA

In contrast to the first experiment results, the detectors
generated in the following experiments were presented with
only a subset of antigens for a number of generations so that
generated detectors overfit a certain antigen cluster. This
experimental setting is defined in order to test whether
DynamiCS is able to learn newly emerged behaviours of self
antigens and forget old behaviours that are no longer parts of
the self antigen behaviour.

Varying the Generation Numbers to Provide Antigens from
a Same Cluster

In order to let generated detectors to overfit a specific antigen
cluster, a large value was given for N, the number of
generations that antigens are selected from a same cluster.
The values of N employed for the second series of
experiments ranged from 5 to 30. As N increases, the system
will overfit the distribution of only one antigen cluster for N
generations. Figure 4 shows the results of four different

experiments when four different values, {5, 10, 20, 30} were
given to N. The other three parameters: 7, 4 and L were set to
30, 100 and 10 respectively for these experiments.

However, subtle differences between the results of these
two series of experiments can be found, as the overall TP and
FP increases as N grows. Particularly, the previous results
with a relatively large T value (see figure 1) always show
nearly perfect FP rates of zero. However, the FP rates seen in
figure 4 start increasing when N = 20 and N = 30. These are
not surprising results. This is because although 7 = 30 was
large enough for detectors to activate only when they
experience three antigen clusters evenly (because N = 1), this
is no longer true when N = 20 and 30. For instance, when N =
30, mature detectors were generated by experiencing only
one particular cluster or a maximum of two clusters. Then
these detectors increased their match counts by matching
antigens belonging to a different cluster which was not used
for negative selection. Therefore, new memory detectors,
which were generated as the results of activation, never had
sufficient self-tolerance and easily made errors in detecting
self-antigens, although they can increase TP rates by
detecting small niches in each cluster. Thus, the increase of
TP by new detector activation can cause an increase of FP at
the same time.

VIII CONCLUSIONS

The dynamic clonal selection algorithm (DynamiCS) was
introduced in this paper as a step towards an artificial
immune system that is better able to deal with a real
environment where self behaviours change after a certain
period and only a small subset of self antigens is visible at
one time. The significant features that allow the human
immune system to provide these desired properties were
identified. They are central tolerisation, distributed
tolerisation, costimulation, affinity maturation, life span and
memory detectors. DynamiCS implemented these features
by introducing three important parameters: tolerisation
period, activation threshold and life span.

Two sets of experiments were performed in order to
examine system behaviours under various values of the three
parameters. The first series of experiments tested whether the
system can incrementally learn the globally converged
distributions when only its one subset distribution is given at
each generation. The experimental results showed that the
AIS was able to incrementally learn the globally converged
distributions when only one small subset of antigens was
given at each generation. It was revealed that the system
performance measured by TP and FP rates was primarily
controlled by the number of detector activations in total, and
that this number was directed by values of the three
parameters.

A large tolerisation period directly lowered FP by allowing
more immature detectors to remain and pushing mature
detectors out. It was also found that both lowering the
activation threshold and increasing life span could guide the
system to attain a higher TP rate. From analysis, lowering 4
and increasing L should be considered together in order to
obtain an effective application of DynamiCS. The appropriate



decision about lowering A4 or increasing L, or both, will be
different according to a given environment.

In order to see different effects of parameter values
depending in different scenarios, the second set of
experiments simulated a situation in which converged
behaviours learned in an incremental way are suddenly
altered due to legal self change. The experimental results
showed that large T values that were sufficient to show
perfect FP rates in previous experiments no longer
demonstrated perfect FP rates. This was because memory
detectors had never been exposed to a certain antigen cluster
and thus they could not have perfect self-tolerance. This
reason drives a further extension of DynamiCS, so that it can
handle memory detectors based on their detection results.
The modified dynamic clonal selection algorithm that
employs this idea is currently under investigation.
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