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Abstract- This paper describes the research
towards the use of an artificial immune system (AlS)
for network intrusion detection. Specifically, we focus
on one significant component of a complete AIS,
gtatic clonal selection with a negative selection
operator, describing this system in detail. Three
different data sets from the UCI repository for
machine learning are used in the experiments. Two
important factors, the detector sample size and the
antigen sample size, are invesigated in order to
generate an appropriate mixture of general and
specific detectors for learning non-self antigen
patterns. The results of series of experiments suggest
how to choose appropriate detector and antigen
sample sizes. These ideal sizes allow the AIS to
achieve a good non-self antigen detection rate with a
very low rate of self antigen detection. We conclude
that the embedded negative selection operator plays
an important rolein the AlS by helping it to maintain
a low false positive detection rate.

1 Introduction

The biological immune system is successful at
protecting the human body against a vast variety of
foreign pathogens (Tizard, 1995). A growing number of
computer scientists have carefully studied the success of
this competent natural mechanism and proposed
computer immune models for solving various problems
including fault diagnosis, virus detection, and mortgage
fraud detection (Dasgupta, 1998).

Among these various areas, intrusion detection is a
vigorous research area where the employment of an
artificial immune system (AlS) has been examined
(Dasgupta, 1998; Somayaji, et al, 1997). The main goal
of intruson detection is to detect unauthorised use,
misuse and abuse of computer systems by both system
insiders and external intruders. Currently many network-
based intrusion detection systems (IDS's) have been
developed using diverse approaches (Mykerjee et a,
1994). Nevertheless, there «ill remain unresolved
problems to build an effective network-based IDS (Kim
and Bentley, 1999a). As one approach of providing the
solutions of these problems, previous work (Kim and
Bentley, 1999a) identified a set of general requirements
for a successful network-based IDS and three design

goals to satisfy these requirements. being distributed,
self-organising and lightweight. In addition, Kim and
Bentley (1999a) introduced a number of remarkable
features of human immune systems that satisfy these
three design goals. It is anticipated that the adoption of
these features should help the construction of an
effective network-based IDS.

An overal artificial immune model for network
intrusion detection presented in (Kim and Bentley,
1999b) consists of three different evolutionary stages:
negative selection, clonal selection, and gene library
evolution. This model can be differentiated from the
previous work performed by Hofmeyr and Forrest
(2000), which also developed the AIS for network
intrusion detection. While their AIS mainly relies on
negative selection to generate immature detectors, Kim
and Bentley’'s model emphasises the integration of three
significant components’. The previous work (Kim and
Bentley, 2000) showed severe scaling problems to cope
with a vast amount of network traffic data when only
negative selection is applied to a network intrusion
detection problem. Although Hofmeyr obtained
promising results from the adoption of negative
selection for network intruson detection, Kim and
Bentley (2000) argued that his promising results were
gained only when the negative selection was employed
to a small subset of network traffic data. The random
search feature of negative selection led it to fail in the
detection of various network intrusions which require
the scrutinisation of immense amounts of network traffic
data. Thus this approach is only able to detect a limited
number of network intrusions.

This paper investigates the use of the niching strategy
provided by a clonal selection algorithm within an AIS.
In order to solve the scaling problem of an independent
negative selection algorithm, the artificial immune
system described in this paper adopts a clonal selection
algorithm which embeds a negative selection operator

! Hofmeyr and Forrest’s fina system employs some other
extensions to support the operation of AIS under areal network
environment. Even though it may conform to human immune
systems more closely, this approach requires excessive
computation time to generate the immature detector set, with
no guarantee that the initial detectors are useful when they are
distributed to other hosts.



within it. While our previous work applied real network
traffic data to investigate the feasibility of negative
selection, this paper uses three different data sets from
the UCI repository for machine learning algorithm. The
paper is organised as follows: section 2 briefly describes
the AIS for network intrusion detection proposed by
Kim and Bentley (1999b) and outlines anomaly
detectors and misuse detector which are two important
components of IDS's. Section 3 introduces a clonal
selection algorithm with a negative selection operator
and shows how this is employed for network intrusion
detection. Then, in section 4, detailed implementation
points including genotypes, phenotypes, genetic
operators and fitness functions are provided. Section 5
describes two series of experiments performed for this
work and an analysis of the results. Finally, conclusions
are drawn from this work.

2 Artificial Immune Systemsfor Network
Intrusion Detection

While various artificial immune models have been
suggested for diverse purposes (Dasgupta, 1998),
previous work (Kim and Bentley, 1999a) introduced the
salient functions of the human immune system with
respect to network intrusion detection. In this work, we
view the normal activities of monitored networks as self
and their abnormal activities as non-self and design an
AIS for distinguishing normal network activities from
abnormal network activities.
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Figure 1 Architecture of the AlS for network intrusion
detection.

Based on this view, we proposed a novel AIS for
network intrusion detection (Kim and Bentley, 1999b),
see figure 1. The AIS for network intrusion detection
consists of a primary IDS and secondary IDS's. For the
AlS, the primary IDS, which we view as being
equivalent to the bone marrow and thymus within the
human body, generates numerous detector sets. Each
individual detector set describes abnormal patterns of
network traffic packets and common patterns of network
traffic packets when network intrusion occurs. This
unique detector set is transferred to a monitored single
local host. We view local hosts as secondary lymph
nodes, detectors as antibodies and network intrusions as

antigens. At the local hosts (secondary IDS's), detectors
are background processes which monitor whether non-
self network traffic patterns are observed from network
traffic patterns profiled at the monitored local host. The
primary IDS and each secondary IDS have
communicators to alow the transfer of information
between each other, see figure 1.

For the proposed AIS, several sophisticated
mechanisms of the human immune system are
embedded in three evolutionary stages. gene library
evolution, negative selection and clonal selection. These
processes allow the AlS to satisfy the identified the main
goals for designing effective network-based IDS's (Kim
and Bentley, 19994). This paper focuses on two of these
stages. clonal selection and negative selection.

2.1 Anomaly Detection VS Misuse Detection

An IDS is usually comprised of two main components:
an anomaly detector and a misuse detector (Mykerjee et
al, 1994). The anomaly detector establishes the profiles
of normal activities of users, systems, system resources,
network traffic and/or services and detects intrusions by
identifying significant deviations from the normal
behaviour patterns observed from profiles. The misuse
detector defines suspicious misuse signatures based on
known system vulnerabilities and a security policy. This
component probes whether these misuse signatures are
present or not in the auditing trails.

One difficulty in developing an effective misuse
detector is the creation and update of intrusion signature
rules. The work performed in this paper therefore
investigates the use of a clonal selection agorithm to
provide a more efficient way to build a misuse detector.
Clonal selection allows the antibodies of human immune
systems to evolve toward existing antigens. This feature
is suitable for creating and updating the intrusion
signature rules of a misuse detector in an easier way.

3 Related Work

There are many AlS's that have been applied to various
fields. Among them, the clonal selection algorithm with
negative selection developed for this work is especialy
motivated by the work performed by Forrest et al (1993)
and Smith et al (1993).

Forrest et al (1994; 1997) proposed and used a
negative selection algorithm for various anomaly
detection problems. This algorithm defines ‘self’ by
building normal behaviour patterns of a monitored
system. It generates a number of random patterns that
are compared to each self pattern defined. If any
randomly generated pattern matches a self pattern, this
pattern fails to become a detector and thus it is removed.
Otherwise, it becomes a ‘detector’ pattern and monitors
subsequent profiled patterns of the monitored system.
During the monitoring stage, if a ‘detector’ pattern
matches any newly profiled pattern, it is then considered
that new anomaly must have occurred in the monitored
system.



In contrast, Forrest et al (1993) presented the niching
strategy of their AIS which follows the analogy of the
clonal selection of human immune systems. They
explored whether it is able to i) detect common patterns
of randomly presented antigens and ii) to discern and
maintain the diverse antigen population. In this model,
they created one population of antibodies and one
population of antigens randomly. They used the GA to
evolve the antibody population under a constant antigen
population. Conforming to the niching strategy of the
human immune system, for each generation, their
modified GA selects a random sample of arbitrary size
from the antibody population and a single random
antigen from the antigen population. After each antibody
in the sasmple is matched against a selected antigen, the
fitness score of only one antibody showing the highest
match score is increased while the fitness scores of the
others remain the same.

Using this algorithm, Forrest et a (1993) showed
antibodies evolved to be generalists that match most
antigens to some extent. Their analysis of this result
showed that antibodies evolved towards finding
common schemata that are shared among many
antigens. Through various experiments, they observed
that this algorithm could sustain multiple different
antibody patterns, which appear as multiple peaks in a
search space, and the similarity among antigens does not
affect this capability. Moreover, they compared this
niching strategy of the artificial immune system with the
fitness sharing algorithm (Smith et a, 1993). From this
comparison, they reported that as the result of the
antibody sampling mechanism, the niching strategy of
the AIS controls its generality via the antibody sample
size. To be more precise, when the sample size
decreases, the selective pressures are moved towards
generating a population of more general antibodies.
Recent work used this algorithm successfully for
scheduling (Hart, 1999) and Potter and De Jong (1998)
employed clonal selection for a concept learning
problem.

4 A Clonal Selection Algorithm with a
Negative Selection Operator

As described in the previous section, this work aims to
provide an automated way of building a misuse detector.
When network traffic data is gathered under two cases
where intrusions are simulated and not simulated, the
AlS should generate detectors containing non-self
patterns without overlapping self patterns in the data
This is achieved by the clonal selection agorithm,
which lets detectors evolve towards the non-self patterns
hidden in the collected non-self data.

4.1 Algorithm Description

The AIS for network intrusion detection introduced in
this paper adopts the niching strategy of Smith et a’s
(1993) AIS. Their algorithm used a genetic algorithm to
congtruct the AIS. This work modifies this algorithm to

be more appropriate for the network intrusion detection
problem. Three major modifications were made to the
AIS developed in thiswork. The first modification is the
use of different detector genotype and phenotype
representations. Secondly, the fitness and matching
functions are atered as the result of detector
representation change. Finally, the negative selection
stage is embedded in the clonal selection algorithm as an
operator. The details of these modifications will be
described in the following sections. Figure 2 provides an
overview of the system developed during this research.
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Figure 2 Overview of AIS.

4.2 Providing Self and Non-Self Antigens

As shown in figure 2, when the AIS starts, data is fed
into the system. In human immune systems, antigens can
be divided into two groups:. self antigens (our own cells)
and non-self antigens (invading pathogens). The clonal
selection performed by human immune systems lets
antibodies evolve to detect the existing non-self antigens
without the detection of any self antigen. The data given
to the AIS in this work needs to be divided into a self
and a non-self set. Since the clonal selection algorithm
employed in this work is used for generating an initial
detector set, we assume that the self or non-self class
label is already assigned to each antigen data item. In
the case when the data has more than two classes, a
single classis predefined as the self and the other classes
are regarded as non-self. The self and non-self antigens
are then processed by a discretiser before they are
passed to the clonal selection module of the AlS.

4.3 Discretiser

The antigen data used in this work consists of a number
of attributes. These attributes have continuous and
discrete values. Specifically, the continuous attribute
values often show a wide range of values. Since the
detectors generated in the AIS employs the binary
genotypes, a discretisation algorithm is needed. The
details of detector genotypes will be discussed in the



next section.

There are many discretisation algorithms available
and each algorithm has different features (Dougherty et
al, 1995). The AIS uses the recursive minimal entropy
discretisation algorithm developed by Fayyad and Irani
(1993). This algorithm uses the minima description
length theory to minimise the entropy between
recursively generated intervals. It improved the
classification accuracy of c4.5 and Naive-Bayes
algorithms on various data sets and it has been known as
one of the best general techniques for a supervised
discretisation (Witten and Frank, 2000).

Therefore, the continuous value of an attribute for
any antigen data will have been clustered into a number
of intervals after the discretiser is applied. The range of
each interval and the total number of generated intervals
are controlled by the discretisation algorithm.

4.4 Genotypes and Phenotypes

The clonal selection algorithm evolves detectors and
these detectors exist as a form of classification rules,
which classify non-self from self. A natural expression
of classification rules is as a set of digunctive normal
form (DNF) rules. The if-part of each rule is a
conjunction of one or more conditions to be tested and
the then side of the rule describes the class label
assigned to the rule. In the context of this research, the
single detector generated will have a conjunctive rule as
its phenotype (Fig 3). Therefore, the universal set of
non-self patterns that are detected by the detectors is a
digunction of these conjunctive rules.

The AIS uses simple binary genotypes in order to
encode the conjunctive rule detectors. The AIS
initialises a detector population by seeding with random
genotypes. The detector genotypes consist of a number
of genes where each gene represents an attribute of the
detector phenotype. The total number of attributes of the
given antigen data determines the total number of
corresponding genes in the detectors. Each gene is
comprised of nucleotides and the existing attribute
values determine the number of nucleotides. For
instance in figure 3, in the case of Attribute 1, its valid
values are tcp, udp and imcp. Each nucleotide is a
binary bit whose value of one represents the inclusion of
the corresponding attribute value in the condition part of
a classification rule and whose value of zero indicates
the omission of the value (see, figure 3). When all bits
are zero, the gene is mapped to a value of NULL.? This
kind of genotype representation allows a single attribute
of each detector rule to have more than one value, which
are combined by an “OR” operator. In addition, the

2 The first bit of each gene has a special meaning: when it has
a value of one, the genotype to phenotype mapping treats the
genotype gene as if it is al ones. If it is zero, the remaining
bits are used as described. Note that this aspect of the
representation was only partially active during tests for vote
data, described later, possibly resulting in a slightly degraded
TP rate and FP rate. The overall trends were unaffected.

exigting genes of a detector rule are combined by an
“AND” operator.’
Detector Genotype

Gene 1 Gene 2 Gene 3 Gene n
[o[1][1]ofo[1]ofo[o[1]0[1] %% [o[o[o]0]

v

Gene 1 cluster table Gene 2 cluster table  Gene 3 cluster table  Gene n cluster table

ID |Gene value ID |Gene value ID |Gene value ID |Gene value

1 |TCP 1 | [min..10) 1 | [min..324) 1 | TRUE

2 |upbP 2 |[10..17) 2 | [324..max] 2 | FALSE

3 | TMCP 3 | [17..20) 3 | UNKNOWN
4 | [20..max]

v

Detector Phenotype

IF ( Attributel = TCP OR UDP ) AND
(Attribute2 = [min..10) ) AND
(Attribute3 = ANY VALUE ) AND
(Attribute n = NULL )

THEN  Detector detects NON-SELF

Figure 3 Detector Genotype and Phenctype.

4.5 The Matching Function

Phenotypes mapped from evolved genotypes are
represented in the form of detector patterns. As shown in
figure 3, an attribute of a detector phenotype is
represented by an interval having a lower bound and a
higher bound while an attribute of an antigen phenotype
is described by one specific value.

Hence, the first step of checking whether a given
antigen and a detector match is the comparison of their
corresponding attributes. When an antigen attribute
value is not within any of the corresponding intervals of
a detector phenotype, these two attributes are not
matched. For an attribute of nominal type, two genes
match when an antigen attribute value is identical to one
of the detector phenotype values of its corresponding
gene. In order for a given antigen and a detector to
match, all the existing genes of the antigen and the
detector should match.

4.6 Fitness Scoring

While the generation of detectors and application of
genetic operators are performed at the genotype level,
the evaluation of evolved detectors operates at the
phenotype level. This is another difference between
most work using a negative selection algorithm and
clonal selection algorithm (Forrest, et al, 1997,
Dasgupta, 1998). Such work usually performed this
evaluation procedure on a genotype level using a smple
r-contiguous bit matching rule. In contrast, here
phenotypes mapped from evolved genotypes are
represented in a form of detector rules. These detector
phenotypes are evaluated by the following fitness
scoring procedure. For a non-self antigen set and its
corresponding detector set:

3 This kind of genotype representation was proposed by De
Jong et a (1993) to use the GA for concept learning.



1. D detector rules have their fitness values initialised
with zeroes.

2. A sample of D detector rules is randomly selected
from the generated initial P detector rules.

3. A sample of A non-self antigens are randomly
selected from the non-self antigen set.

4. Each detector in the sample is mapped to its
phenotype.

5. Each detector phenotype is compared to the selected
non-self antigens and the number of matching non-
self antigens is counted. This number is defined as a
match count for each selected detector.

6. The fitness value of the single detector from the
sample that shows the largest match count is
increased by the value of the match count. The fitness
values of other detectors remain the same. If more
than one detector has the largest match count, the
fitness value is divided by the number of these tied
detectors and their fitness values are increased by the
divided fitness value.

7. The processes 2-5 are repeated (for typically three
times the number of detectors (Smith et al, 1993) ).

As seen in section 3.4, this fitness scoring procedure
provides the niching strategy for the AlS. It controls the
generality of each detector according to a detector
sample size.

4.7 Reproduction and a Negative Selection Oper ator
After the evaluation of detectors in the detector
population, the AIS selects parent detectors for the
reproduction of detector offspring. The AIS uses
population overlapping where the worst Wo% detectors
are replaced by the best B% detectors from the newly
generated offspring. In addition, a negative selection
operator is applied to assure the validity of offspring.
Thiswhole reproduction processis described in figure 4.
As shown in figure 4, the offspring detectors are
generated by applying crossover and mutations to two
parents randomly selected from the fittest B% detector
rules. The generated offspring are compared to given
self antigens. When the offspring matches any self
antigen, this offspring is discarded. This kind of invalid
offspring can be created because either the parent
detectors originally contain some invalid genes or the
mutations distort the valid genes of parent detectors. It is
not ideal for the AIS to ignore the important and valid
genetic information of parents unless it is certain that
this kind of bad effect originates from the poor genes of
parents. Therefore, when an invalid offspring is
produced, the AIS attempts to generate a new offspring
by applying the genetic operators to the same pair of
parents until the number of failures to generate valid
offspring is less than a predefined negative selection
threshold, Nt. When the number of failures to generate
valid offspring is more than Nt, the AIS selects a new
pair of detector parents and produces new offspring.
Offspring generation with negative selection continues

until it fills up the empty space of the detector
population after the worst 2% detectors are del eted.

best parent <
detectors o

parent detector 1

offspring
st o |
antigens
¢ no
# failures
— > —p
no threshold? yes
* yes
add new offspring
to detection population

v

population full?
no
¢ yes

finished reproduction

Figure 4 Reproduction and Negative Selection

parent detector 2

4.8 Genetic Operators

The clonal selection agorithm presented in this work
applies two genetic operators. crossover and mutation.
Since a fixed number of nuclotides represents a
genotype, a simple one-point crossover is applied by
selecting a random crossover point between genes or
nucleotides. Furthermore, the following five different
types of mutations are introduced:

e Classic mutation: this mutation is a conventional gene
flip mutation.

e Generalisation mutation: designed to increase the
generality of detectors, it increases the detector
generality by causing a new digunct to be added next
to an existing one in the detector phenotype.

e Specialisation mutation: this mutation specialises
detectors. This is achieved by causing a random
digunct to be dropped from detector phenotypes.

o Shift Mutation: this shifts all the bits of all the genes
to the left or the right direction. The direction to shift
is randomly determined.

o Delete Mutation: this mutation flips the first bit of the
attribute, changing its corresponding attribute value
to ‘ANY VALUE when ‘1, and back to norma
when ‘0'.

These new mutations are mainly introduced to

generalise and specialise detectors. This is because the

degree of pattern detection of DNF rules is mainly
controlled by doing s0.*

* These mutations are similar to De Jong' s adding and
dropping mutations (De Jong et a, 1993).



Cancer Data Vote Data

D TP FP TP-FP TP FP TP-FP

1 93.48 (0.17) 5(0.26) 88.48 (0.20) 79.43 (0.74) 2.35 (0.09) 77.67 (0.50)

5 94.57 (0.16) 5.83(0.28) 88.73 (0.36) 88.03 (0.42) 5.29 (0.27) 82.74 (0.84)
10 95.65 (0.12) 5.41(0.58) 90.23 (0.66) 92.49 (0.40) 3.57 (0.25) 88.93 (0.39)
20 95.43 (0.15) 8.33(0.73) 87.10 (0.52) 94.02 (0.31) 5.29 (0.27) 88.72 (0.47)
30 95.65 (0.13) 6.25 (0.20) 89.40 (0.27) 93.26 (0.33) 5.92 (0.23) 87.34(0.62)
60 95.87 (0.13) 9.17 (0.53) 86.70 (0.55) 94.40 (0.28) 5.96 (0.15) 88.45 (0.39)
20 95.16 (0.22) 6.65 (0.26) 88.61 (0.57)
240 96.52 (0.097) 10 (0.548) 86.52 (0.7) 95.55 (0.3) 7.13(0.3) 88.41 (1.07)

Table 1 The mean and variance of true positive rates (TP), false positive rates (FP), and TP-FP rates when an antigen sample size=1
for various detector sample sizes (D). The mean values are followed by the variances in parentheses.

IRIS Setosa IRISVersicolor IRISVirginia

D TP FP TP-FP TP FP TP-FP TP FP TP-FP

1 100 (0) 0.6 (0.036) | 99.4(0.036) | 95(0.011) | 4(8.889E-03) 91 (0.0289) 95 (0.011) 1(0.0111) 94 (0.044)

5 100 (0) 0.6 (0.036) | 99.4(0.036) | 95(0.011) 4.8 (0.0196) 90.2 (0.0573) 95.8 (0.0036) | 0.012 (1.44E-04) | 94.8 (0.019)
10 [99.8 (4E-03)| 1.2(0.064) | 98.6(0.063) | 95(0.011) 5(0.0111) 90 (0.0444)  |95.6 (7.11E-03) 1(0.0111) 94.6 (0.0271)
20 100 (0) 0.6 (0.036) | 99.4(0.036) | 95(0.011) 5(0.0111) 90 (0.044) 95.6 (7.11E-03) 1(0.0111) 94.6 (0.027)
30 100 (0) 0(0) 100 (0) 95 (0.011) 5(0.0111) 90 (0.044) 95.6 (7.11E-03) 1(0.0111) 94.6 (0.027)
60 100 (0) 0(0) 100 (0) 95 (0.011) 5(0.0111) 90 (0.044) 95.8 (4E-03) 1(0.0111) 94.8 (0.0196)
240 100 (0) 0.6 (0.036) | 99.4(0.036) | 95(0.011) 4.6 (0.0271) 90.4 (0.0693) |95.4 (9.33E-03) 1(0.0111) 94.4 (0.0338)

Table 2 The mean and variance of TP, FP, TP-FP rates when an antigen sample size = 1 for various detector sample sizes (D). The

mean values are followed by the variances in parentheses. IRIS class |abel in each column indicates the assigned self class.

Cancer Data Vote Data
A TP FP TP-FP TP FP TP-FP
1 95.65 (0.12) 5.42 (0.58) 90.23 (0.66) 92.49 (0.40) 3.57 (0.25) 88.93 (0.39)
5 94.35 (0.18) 3.75 (0.40) 90.6 (0.31) 92.14 (0.44) 3.54(0.07) 88.59 (0.42)
10 95 (0.16) 5.42 (0.39) 89.58 (0.35) 89.56 (0.39) 2.94(0.17) 86.62 (0.75)
MAX 93.91 (0.24) 5.42 (0.31) 88.5 (0.24) 85.47 (1.63) 3.57(0.17) 81.90 (2.17)

Table 3 The mean and variance of TP, FP, TP-FP rates when a detector sample size = 10 for various antigen sample sizes (A). The mean
values are followed by the variances in parentheses.

5 Experiments

This section describes a series of experiments performed
to investigate the effects of different detector and
antigen sample sizes on the detection rates of the AlS.

5.1 Objective

As introduced in section 3, the detector sample size
controls the generality of detectors generated by the
clonal selection algorithm. The appropriate mixture of
general detectors and specific detectors is critical in
order to develop a competent network-based IDS.
Detectors should have the maximum level of generality,
detecting as many non-self antigen patterns as possible
without detecting any self antigen patterns. Furthermore,
an ideal detector set should contain detectors showing
high specificity that will detect specific antigen patterns
found only in a small number of antigens. For these
reasons, an ideal detector set should have an appropriate
mixture of general detectors and specific detectors. It
has been known that the generality of generated
detectors is controlled by the detector sample size and
the antigen sample size (Forrest et a, 1993; Smith et al,
1993). With these features of AIS in mind, our
experiments were performed to understand how best to
choose good detector and antigen sample sizes.

5.2 Data and Parameter Setting
This work aims to understand the nature of clona
selection with a negative selection operator. The

experiments performed in this paper did not use real
network traffic data sets because such sets are typically
vast and are not practically suitable for this type of
benchmarking work. Instead three different data sets
from the UCI repository for machine learning algorithm
benchmark work were used (ftp:/ftp.ics.uci.edu/pub/
machi ne-learning-databases).

The first data set was Wisconsin breast cancer data.
It consists of 699 examples with two classes:
‘Malignant’ and ‘Benign’. 241 examples belong to
‘Malignant’ and the rest 458 examples belong to
‘Benign’. We defined ‘Benign’ as a self class and
‘Malignant’ as a non-self class. The detectors generated
by the AlS detected ‘Malignant’ and any data which was
not detected by the detectors was regarded as ‘Benign’.
This set had ten continuous attributes and total 16
missing values. The missing values were filled with
random values.

The second data set was the ‘vote' data set. This data
set is a collection of voting records and each voting
record is classified by one of two parties: ‘Republican’
and ‘Democrat’. It consists of 267 democrat and 168
republican examples. Each vote record has 16 voting
issues as its attributes and each voting issue has one of
three values: yes, no, abstain.

The iris data was used as the final set. It is the most
popular data set used in the literature as a pattern
recognition test set. It has total of 150 examples with
three classes: ‘setosa’, ‘virginia and ‘versicolour’. Each



class has 50 examples and every example has four
continuous attributes. We prepared three different data
sets from this original data set by taking one set as a self
set and the rest as a non-self set.

A tenfold cross-validation method was employed to
prepare a training set for the AlS to evolve and a test set
to detect previousy unseen non-self patterns. The
tenfold cross-validation method is known as the most
robust method from nfold cross-validations (Witten and
Frank, 2000). A detector population size of 300 was
used and best B% detector offspring were selected to
replace the worst Wo4 detectors from parent detectors.
80 was used for both values of B and W. All mutations
occurred with a probability of 0.001 per gene. Each
experiment was run for a maximum 50 generations
unless it satisfied a termination condition. The
termination condition was set as the non-self pattern
detection rate for 100% and the self pattern detection for
0%. The threshold of the negative selection operator, Nt,
was set as 5. These parameters were chosen after
performing preliminary experiments, although the
system seemed relatively insensitive to the setting of
these parameters.

5.3 Experimental Results

Two series of experiments were performed by varying
the number of detector sasmple sizes and the number of
antigen sample sizes. Other literature suggests that the
generality of detectors is controlled by these two factors
(Hart, 1999). The experiments investigated whether the
conclusions of the previous work followed our problem:
non-self antigen pattern learning from a collected data
Set.

5.3.1 Varying Detector Sample Size

Table 1 and Table 2 present the results of the first series
of experiments, where the number of antigen samples
was fixed and the number of detector samples was
varied. The detection rate of the system was described by
a True Positive (TP) rate and a False Positive (FP) rate.
TP was "non-sdf" detection rate and FP was the rate at
which “sdf” was mistakenly detected by a generated
detector set. The desired system should have a high TP
and a low FP. The tables show the means and variances
of 10 experiments.

For three data sets, the average TP rates generaly
showed a good level of accuracy, i.e. more than 93%. For
the iris data set the best TP rate reached 100%. There
were only a couple of cases showing less than a 90% TP
rate. The average FP rate was consistently lower than
10% for all cases, but this figure decreased to around 5-
6% when D was less than 60 for both the cancer and the
vote data sets. For the iris data set, the worst FP average
rate was only 1%.

As table 1 explains, the TP rate increased as the
detector sample size D increased. From three data sets,
the results of the vote data set showed this tendency most
clearly. In order to confirm this result, paired sample t-

tests were performed on the vote data results. To find the
point at which the difference between TP rates becomes
gatigtically significant, t-tests were performed on the
pairs of results and each pair was made by taking two
adjacent detector sample sizes. Thet-test showed that the
difference between the TP ratesof D = 1 and D = 5 was
datigtically significant with 95% confidence. A two-
sided t-test of means produced a p-value of 4.3216%.
The t-tests of the rest of pairs produced much larger p-
values ranging from 14.7285% to 75.385%. In addition,
these p-values became larger as the pair was made from
larger sample sizes. These results of the t-testsimply that
the difference between the average TP rates with varying
detector sample sizes converged as the detector sample
size increased. Even though the difference of the TP-rate
for different sample sizes was very small for the cancer
data, the same kind of tendency was observed. However,
for the iris data, no results for any D showed any
significant difference, seetable 2.

In addition, the FP rate increased as D increased.
The paired sample t-tests were performed on the
different pairs which were made in the same way as
previous paired sample t-tests. The t-tests showed that D
=1 and D = 5 was datistically significant with 94.7%
confidence. A two-sided t-test of the means produced a
p-value of 5.2177%. Much larger p-values were
produced when the t-tests were performed on the rest of
pairs, ranging from 35.7729% to 98.7759%. These
results also show that the FP rate increased as the
detector sample size increased but that it stabilised to a
certain point.

532 Analysis

The observed results were expected. When a detector
sample size is one, no niching mechanism can happen.
Since there is no chance for a selected detector to
compete with other detectors to gain a fitness score,
each detector will increase its fithess score by one as
long as it matches a given antigen (when A=1). Thus,
the generalist detector, which detects the largest number
of non-self antigens during the fitness scoring procedure,
will have the highest fitness score (assuming that each
detector is selected with the same probability).
Conversely, more specific detectors will gain much
lower fitness scores in the same generation since they
will detect much fewer non-self antigens. Thus, the
generalist detectors will dominate in a detector
population after a certain number of generations.

This kind of phenomenon resulted in rather poor
results for the cancer and vote data when D = 1.
However, the detector ssmple size did not affect average
TP rates for the iris data at all. This is perhaps because
the given problem of iris data is reatively easier and
thus the minimum sample size is good enough to show a
good detection rate. In other words, fairly general
detectors can detect all existing non-sdlf antigen patterns
in theiris data set.



When the detector sample size is more than one, the
selected sample detectors compete with each other. In
our tests, this led the winner detectors from sampled
detector groups to form niches, which match separate
peaks of a fithess landscape. In the extreme case, when
the detector sample size is the largest possible (the
detector population size), every detector participatesin a
competition to detect a given antigen. This gives a
chance for very specific detectors to increase their
fitness scores because some specific non-self antigen
patterns can only be detected by these kinds of detectors.
Therefore, these specific detectors will have fitness
scores that are large enough not to be excluded from the
parent population through selection. In other words, both
the general detectors and specific detectors have fair
chances to win and thus they both will remain in the
final detector population.

However, when a detector sample size is the largest
possible, it can cause an overfitting problem. The
specific non-self antigen pattern may not be
representative of the data as a whole. So a detector
evolved to match this exceptional antigen pattern might
not truly distinguish between “sdf” and “non-sdf”,
resulting in higher false-positive rates. This overfitting
problem is clearly observed from our experiment results.
For both data, cancer data and vote data, the FP rate
increases as the detector sample size increases, see table
1

5.3.3 Varying Antigen Sample Size

We next compared the results when the detector sample
size was fixed but the antigen sample size changed. The
last series of experiments were performed with D = 10
and various antigen sample sizes. As seen in table 3, no
significant difference between TP's and FP's was
evident, except for the case where the antigen sample
size was the maximum.

534 Analysis

These results are also readily explainable. When the
antigen sample size is small, even a potentially general
detector does not have enough opportunity to detect a
large number of antigens and thus both a general
detector and a specific detector will be compared only
for whether they can detect a given small number of
antigens. Thus, the difference of fithess scores is not
large. However, as the antigen sample size increases, the
general detector starts to have enough chances to beat
the specific detector by detecting a larger number of
antigens. Thus, the general detectors have more chances
to be selected as the parents for the next generation. So
larger antigen sample sizes can also cause domination of
general detectors during evolution.

5.3.5 Performance of Negative Selection Operator

Finally, we observed that the negative selection operator
played an important role which helped to reduce the FP
rate. When evolution terminated at the maximum
generation and the detectors were tested on a training

data set, no case showed any mistake, ie, FP was always
0% on the training data set. For the test set, the observed
FP rate was up to about 10%.

As discussed before, the FP rate is mainly controlled
by a detector sample size and an antigen sample size.
Therefore, the rather higher FP rates resulted not
because of inappropriate behaviours of the negative
selection operator but because of the improper choices of
detector sample sizes and antigen samples sizes.
However, we have not investigated how the threshold
size of negative selection operator will affect the TP and
FP rate. Too small a threshold size might lead to prevent
the generation of some general detectors because it will
eliminate detectors matching very small number of sdlf
antigens. However, these sdf antigens can be noise.
Similarly, too large a threshold size can make the AIS to
generate the detectors which are so general that they
detect too many sef antigens. Thus, the effect of
negtative selection threshold size should be investgated
as the future work.

5.4 Ideal Detector and Antigen Sample Sizes
Since an ideal IDS should show a high TP rate and low
FP rate, we analysed TP-FP rates to take into account
these two rates together. As shown in table 1, for cancer
data, these rates did not show significant differences for
any case. For the vote data, it stabilised after a detector
sample size reached 10. These results advise that the
detector sample size does not have to be the largest one
to get the most ideal result. Instead, we can set a detector
sample size that is not too small but is large enough to
gain the good TP-FP rate. To be more precise, we
suggest that the detector sample size should be set as the
largest size which is affordable by given system
resources. As future work, an adaptive sample size
determined through evol ution can also be investigated.
As long as the detector sample size is properly set,
the antigen sample size is not critical. Since our
experiment results show that the generality of detectors
can be controlled by the detector sample size, the
smallest antigen sample size (A = 1) is recommended.
This is because the minimum antigen size saves
computation time.

6 Conclusions

This paper has investigated the use of a static clona
selection algorithm with a negative selection operator as
one component of the AIS for network intrusion
detection. This component was especially developed for
the purpose of building a misuse detector in a more
efficient way. In order to adapt the available clonal
selection algorithm for a network intrusion detection
problem, three major modifications were made: i) new
genotype and phenotype representations, ii) new
matching function and fitness score function and iii)
introduction of a negative selection operator.



Three different data sets from the UCI repository for
machine learning were used in the series of experiments.
These experiments were performed by varying a
detector sample size and an antigen sample size. These
aimed to investigate their effects on performance. The
first series of experiments proved that both the TP rate
and the FP rate increases as the detector sample size
increases. The second series of experiments also showed
that the significant differences of TP and FP rates were
observed only for the case that the antigen sample size is
the maximum. Furthermore, the negative selection
operator embedded in the clonal selection algorithm
performs well from the two sets of experiments.

As the result of these experiments, this paper
suggests that the largest detector sample size should be
selected from the sample size range affordable by given
system resources. Moreover, the antigen sample size is
not critical as long as the detector sample size is
properly set and thus the smallest size, which is one, will
be ideal to save computation time.
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