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Abstract- This paper explores the use of an artificial
immune system (AIS) for network intrusion detection.
As one significant component for a complete AIS, static
clonal selection with a negative selection operator is
developed and the system is described in detail. Two
important factors, the detector sample size and the
antigen sample size, are investigated in order to
generate an appropriate mixture of general and
specific detectors for learning non-self antigen
patterns. By investigating the results of series of
experiments, this paper suggests how to choose
appropriate detector and antigen sample sizes. These
ideal sizes allow the AIS to achieve a good non-self
antigen detection rate with a very low rate of self
antigen detection. Furthermore, this paper concludes
that the embedded negative selection operator plays an
important role in the AIS by helping it to maintain a
low false positive detection rate.

1 Introduction

The biological immune system is successful at protecting
the human body against a vast variety of foreign
pathogens (Tizard, 1995). A growing number of computer
scientists have carefully studied the success of this
competent natural mechanism and proposed computer
immune models for solving various problems including
fault diagnosis, virus detection, and mortgage fraud
detection (Dasgupta, 1998).

Among these various areas, intrusion detection is a
vigorous research area where the employment of an
artificial immune system (AIS) has been examined
(Dasgupta, 1998; Somayaji, et al, 1997). The main goal of
intrusion detection is to detect unauthorised use, misuse
and abuse of computer systems by both system insiders
and external intruders. Currently many network-based
intrusion detection systems (IDS’s) have been developed
using diverse approaches (Mykerjee et al, 1994).
Nevertheless, there still remain unresolved problems to
build an effective network-based IDS (Kim and Bentley,
1999a). As one approach of providing the solutions of

these problems, previous work (Kim and Bentley, 1999a)
identified a set of general requirements for a successful
network-based IDS and three design goals to satisfy these
requirements: being distributed, self-organising and
lightweight. In addition, Kim and Bentley (1999a)
introduced a number of remarkable features of human
immune systems that satisfy these three design goals. It is
anticipated that the adoption of these features should help
the construction of an effective network-based IDS.

An overall artificial immune model for network
intrusion detection presented in (Kim and Bentley, 1999b)
consists of three different evolutionary stages: negative
selection, clonal selection, and gene library evolution.
This model can be differentiated from the previous work
performed by Hofmeyr and Forrest (2000), which also
developed the AIS for network intrusion detection. While
their AIS mainly relies on negative selection to generate
immature detectors, Kim and Bentley’s model emphasises
the integration of three significant components1. The
previous work (Kim and Bentley, 2000) showed severe
scaling problems to cope with a vast amount of network
traffic data when only negative selection is applied to a
network intrusion detection problem. Although Hofmeyr
obtained promising results from the adoption of negative
selection for network intrusion detection, Kim and Bentley
(2000) argued that his promising results were gained only
when the negative selection was employed to a small
subset of network traffic data. The random search feature
of negative selection led it to fail in the detection of
various network intrusions which require the scrutinisation
of immense amounts of network traffic data. Thus this
approach is only able to detect a limited number of
network intrusions.

This paper investigates the use of the niching strategy
                                                       
1 Hofmeyr and Forrest’s final system employs some other
extensions to support the operation of AIS under a real network
environment. Even though it may conform to human immune
systems more closely, this approach requires excessive
computation time to generate the immature detector set, with no
guarantee that the initial detectors are useful when they are
distributed to other hosts.



provided by a clonal selection algorithm within an AIS. In
order to solve the scaling problem of an independent
negative selection algorithm, the artificial immune system
described in this paper adopts a clonal selection algorithm
which embeds a negative selection operator within it. The
paper is organised as follows: section 2 briefly describes
the AIS for network intrusion detection proposed by Kim
and Bentley (1999b) and outlines anomaly detectors and
misuse detector which are two important components of
IDS’s. Section 3 introduces a clonal selection algorithm
with a negative selection operator and shows how this is
employed for network intrusion detection. Then, in section
4, detailed implementation points including genotypes,
phenotypes, genetic operators and fitness functions are
provided. Section 5 describes two series of experiments
performed for this work and an analysis of the results.
Finally, this paper draws conclusions from this work.

2 Artificial Immune Systems for Network
Intrusion Detection

While various artificial immune models have been
suggested for diverse purposes (Dasgupta, 1998), previous
work (Kim and Bentley, 1999a) introduced the salient
functions of the human immune system with respect to
network intrusion detection. In this work, we view the
normal activities of monitored networks as self and their
abnormal activities as non-self and design an AIS for
distinguishing normal network activities from abnormal
network activities.
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Figure 1 Architecture of the AIS for network intrusion detection.

Based on this view, we proposed a novel AIS for network
intrusion detection (Kim and Bentley, 1999b), see figure
1. The AIS for network intrusion detection consists of a
primary IDS and secondary IDS’s. For the AIS, the
primary IDS, which we view as being equivalent to the
bone marrow and thymus within the human body,
generates numerous detector sets. Each individual detector
set describes abnormal patterns of network traffic packets
and common patterns of network traffic packets when
network intrusion occurs. This unique detector set is

transferred to a monitored single local host. We view local
hosts as secondary lymph nodes, detectors as antibodies
and network intrusions as antigens. At the local hosts
(secondary IDS’s), detectors are background processes
which monitor whether non-self network traffic patterns
are observed from network traffic patterns profiled at the
monitored local host. The primary IDS and each
secondary IDS have communicators to allow the transfer
of information between each other, see figure 1.

For the proposed AIS, several sophisticated
mechanisms of the human immune system are embedded
in three evolutionary stages: gene library evolution,
negative selection and clonal selection. These processes
allow the AIS to satisfy the identified the main goals for
designing effective network-based IDS’s  (Kim and
Bentley, 1999a). This paper focuses on two of these
stages: clonal selection and negative selection.

2.1 Anomaly Detection VS Misuse Detection
An IDS is usually comprised of two main components: an
anomaly detector and a misuse detector (Mykerjee et al,
1994). The anomaly detector establishes the profiles of
normal activities of users, systems, system resources,
network traffic and/or services and detects intrusions by
identifying significant deviations from the normal
behaviour patterns observed from profiles. The misuse
detector defines suspicious misuse signatures based on
known system vulnerabilities and a security policy. This
component probes whether these misuse signatures are
present or not in the auditing trails.

One difficulty in developing an effective misuse
detector is the creation and update of intrusion signature
rules. The work performed in this paper therefore
investigates the use of a clonal selection algorithm to
provide a more efficient way to build a misuse detector.
Clonal selection allows the antibodies of human immune
systems to evolve toward existing antigens. This feature is
suitable for creating and updating the intrusion signature
rules of a misuse detector in an easier way.

3 Related Work

There are many AIS’s that have been applied to various
fields. Among them, the clonal selection algorithm with
negative selection developed for this work is especially
motivated by the work performed by Forrest et al (1993)
and Smith et al (1993).

Forrest et al (1994; 1997) proposed and used a negative
selection algorithm for various anomaly detection
problems. This algorithm defines ‘self’ by building normal
behaviour patterns of a monitored system. It generates a
number of random patterns that are compared to each self
pattern defined. If any randomly generated pattern
matches a self pattern, this pattern fails to become a
detector and thus it is removed. Otherwise, it becomes a



‘detector’ pattern and monitors subsequent profiled
patterns of the monitored system. During the monitoring
stage, if a ‘detector’ pattern matches any newly profiled
pattern, it is then considered that new anomaly must have
occurred in the monitored system.

In contrast, Forrest et al (1993) presented the niching
strategy of their AIS which follows the analogy of the
clonal selection of human immune systems. They explored
whether it is able to i) detect common patterns of
randomly presented antigens and ii) to discern and
maintain the diverse antigen population. In this model,
they created one population of antibodies and one
population of antigens randomly. They used the GA to
evolve the antibody population under a constant antigen
population. Conforming to the niching strategy of the
human immune system, for each generation, their
modified GA selects a random sample of arbitrary size
from the antibody population and a single random antigen
from the antigen population. After each antibody in the
sample is matched against a selected antigen, the fitness
score of only one antibody showing the highest match
score is increased while the fitness scores of the others
remain the same.

Using this algorithm, Forrest et al (1993) showed
antibodies evolved to be generalists that match most
antigens to some extent. Their analysis of this result
showed that antibodies evolved towards finding common
schemata that are shared among many antigens. Through
various experiments, they observed that this algorithm
could sustain multiple different antibody patterns, which
appear as multiple peaks in a search space, and the
similarity among antigens does not affect this capability.
Moreover, they compared this niching strategy of the
artificial immune system with the fitness sharing
algorithm (Smith et al, 1993). From this comparison, they
reported that as the result of the antibody sampling
mechanism, the niching strategy of the AIS controls its
generality via the antibody sample size. To be more
precise, when the sample size decreases, the selective
pressures are moved towards generating a population of
more general antibodies. Recent work used this algorithm
successfully for scheduling (Hart, 1999).

4 A Clonal Selection Algorithm with a
Negative Selection Operator

As described in the previous section, this work aims to
provide an automated way of building a misuse detector.
When network traffic data is gathered under two cases
where intrusions are simulated and not simulated, the AIS
should generate detectors containing non-self patterns
without overlapping self patterns in the data. This is
achieved by the clonal selection algorithm, which lets

detectors evolve towards the non-self patterns hidden in
the collected non-self data.
4.1 Algorithm Description
The AIS for network intrusion detection introduced in this
paper adopts the niching strategy of Smith et al’s (1993)
AIS. Their algorithm used a genetic algorithm to construct
the AIS. This work modifies this algorithm to be more
appropriate for the network intrusion detection problem.
Three major modifications were made to the AIS
developed in this work. The first modification is the use of
different detector genotype and phenotype representations.
Secondly, the fitness and matching functions are altered as
the result of detector representation change. Finally, the
negative selection stage is embedded in the clonal
selection algorithm as an operator. The details of these
modifications will be described in the following sections.
Figure 2 provides an overview of the system developed
during this research.
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Figure 2 Overview of AIS.

4.2 Providing Self and Non-Self Antigens
As shown in figure 2, when the AIS starts, data is fed into
the system. In human immune systems, antigens can be
divided into two groups: self antigens (our own cells) and
non-self antigens (invading pathogens). The clonal
selection performed by human immune systems lets
antibodies evolve to detect the existing non-self antigens
without the detection of any self antigen. The data given
to the AIS in this work needs to be divided into a self and
a non-self set. Since the clonal selection algorithm
employed in this work is used for generating an initial
detector set, we assume that the self or non-self class label
is already assigned to each antigen data item. In the case
when the data has more than two classes, a single class is



predefined as the self and the other classes are regarded as
non-self. The self and non-self antigens are then processed
by a discretiser before they are passed to the clonal
selection module of the AIS.

4.3 Discretiser
The antigen data used in this work consists of a number of
attributes. These attributes have continuous and discrete
values. Specifically, the continuous attribute values often
show a wide range of values. Since the detectors generated
in the AIS employs the binary genotypes, a discretisation
algorithm is needed. The details of detector genotypes will
be discussed in the next section.

There are many discretisation algorithms available and
each algorithm has different features (Dougherty et al,
1995). The AIS uses the recursive minimal entropy
discretisation algorithm developed by Fayyad and Irani
(1993). This algorithm uses the minimal description length
theory to minimise the entropy between recursively
generated intervals. It improved the classification
accuracy of c4.5 and Naive-Bayes algorithms on various
data sets and it has been known as one of the best general
techniques for a supervised discretisation (Witten and
Frank, 2000).

Therefore, the continuous value of an attribute for any
antigen data will have been clustered into a number of
intervals after the discretiser is applied. The range of each
interval and the total number of generated intervals are
controlled by the discretisation algorithm.

4.4 Genotypes and Phenotypes
The clonal selection algorithm evolves detectors and these
detectors exist as a form of classification rules, which
classify non-self from self. A natural expression of
classification rules is as a set of disjunctive normal form
(DNF) rules. The if-part of each rule is a conjunction of
one or more conditions to be tested and the then side of
the rule describes the class label assigned to the rule. In
the context of this research, the single detector generated
will have a conjunctive rule as its phenotype (Fig 3).
Therefore, the universal set of non-self patterns that are
detected by the detectors is a disjunction of these
conjunctive rules.

The AIS uses simple binary genotypes in order to
encode the conjunctive rule detectors. The AIS initialises
a detector population by seeding with random genotypes.
The detector genotypes consist of a number of genes
where each gene represents an attribute of the detector
phenotype. The total number of attributes of the given
antigen data determines the total number of corresponding
genes in the detectors. Each gene is comprised of
nucleotides and the existing attribute values determine the
number of nucleotides. For instance in figure 3, in the case
of Attribute 1, its valid values are tcp, udp and imcp. Each

nucleotide is a binary bit whose value of one represents
the inclusion of the corresponding attribute value in the
condition part of a classification rule and whose value of
zero indicates the omission of the value (see, figure 3).
When all bits are zero, the gene is mapped to a value of
NULL.2 This kind of genotype representation allows a
single attribute of each detector rule to have more than
one value, which are combined by an “OR” operator. In
addition, the existing genes of a detector rule are
combined by an “AND” operator.3

Detector Genotype

Detector Phenotype

Gene 1

Gene 1 cluster table

IF OR AND( Attribute1 = TCP UDP )  
    ( Attribute2 = [min..10) )  
    ( Attribute3 = ANY VALUE )  
    ( Attribute n = NULL )

AND
AND

Gene 2 cluster table Gene 3 cluster table Gene n cluster table

Gene 2 Gene 3 Gene n

0 1

1 1 11
ID ID IDID

2 2 22
3 33

4

1 0 0 1 0 0 0 1 0 1 0 00 0

Gene value Gene value Gene valueGene value
TCP [min..324) TRUE[min..10)
UDP [324..max] FALSE[10..17)
TMCP UNKNOWN[17..20)

[20..max]

THEN     Detector detects NON-SELF

Figure 3 Detector Genotype and Phenotype.

4.5 The Matching Function
Phenotypes mapped from evolved genotypes are
represented in the form of detector patterns. As shown in
figure 3, an attribute of a detector phenotype is
represented by an interval having a lower bound and a
higher bound while an attribute of an antigen phenotype is
described by one specific value.

Hence, the first step of checking whether a given
antigen and a detector match is the comparison of their
corresponding attributes. When an antigen attribute value
is not within any of the corresponding intervals of a
detector phenotype, these two attributes are not matched.
For an attribute of nominal type, two genes match when an
antigen attribute value is identical to one of the detector
phenotype values of its corresponding gene. In order for a
given antigen and a detector to match, all the existing
genes of the antigen and the detector should match.

                                                       
2 The first bit of each gene has a special meaning: when it has a
value of one, the genotype to phenotype mapping treats the
genotype gene as if it is all ones. If it is zero, the remaining bits
are used as described. Note that this aspect of the representation
was only partially active during tests for vote data, described
later, possibly resulting in a slightly degraded TP rate and FP
rate. The overall trends were unaffected.
3 This kind of genotype representation was proposed by De Jong
et al (1993) to use the GA for concept learning.



4.6 Fitness Scoring
While the generation of detectors and application of
genetic operators are performed at the genotype level, the
evaluation of evolved detectors operates at the phenotype
level. This is another difference between most work using
a negative selection algorithm and clonal selection
algorithm (Forrest, et al, 1997; Dasgupta, 1998). Such
work usually performed this evaluation procedure on a
genotype level using a simple r-contiguous bit matching
rule. In contrast, here phenotypes mapped from evolved
genotypes are represented in a form of detector rules.
These detector phenotypes are evaluated by the following
fitness scoring procedure. For a non-self antigen set and its
corresponding detector set:

1. D detector rules have their fitness values initialised
with zeroes.

2. A sample of D detector rules is randomly selected from
the generated initial P detector rules.

3. A sample of A non-self antigens are randomly selected
from the non-self antigen set.

4. Each detector in the sample is mapped to its phenotype.
5. Each detector phenotype is compared to the selected

non-self antigens and the number of matching non-self
antigens is counted. This number is defined as a match
count for each selected detector.

6. The fitness value of the single detector from the sample
that shows the largest match count is increased by the
value of the match count. The fitness values of other
detectors remain the same. If more than one detector
has the largest match count, the fitness value is divided
by the number of these tied detectors and their fitness
values are increased by the divided fitness value.

7. The processes 2-5 are repeated (for typically three
times the number of detectors (Smith et al, 1993) ).

As seen in section 3.4, this fitness scoring procedure
provides the niching strategy for the AIS. It controls the
generality of each detector according to a detector sample
size.

4.7 Reproduction and a Negative Selection Operator
After the evaluation of detectors in the detector
population, the AIS selects parent detectors for the
reproduction of detector offspring. The AIS uses
population overlapping where the worst W% detectors are
replaced by the best B% detectors from the newly
generated offspring. In addition, a negative selection
operator is applied to assure the validity of offspring. This
whole reproduction process is described in figure 4.

As shown in figure 4, the offspring detectors are
generated by applying crossover and mutations to two
parents randomly selected from the fittest B% detector
rules. The generated offspring are compared to given self
antigens. When the offspring matches any self antigen,

this offspring is discarded. This kind of invalid offspring
can be created because either the parent detectors
originally contain some invalid genes or the mutations
distort the valid genes of parent detectors. It is not ideal
for the AIS to ignore the important and valid genetic
information of parents unless it is certain that this kind of
bad effect originates from the poor genes of parents.
Therefore, when an invalid offspring is produced, the AIS
attempts to generate a new offspring by applying the
genetic operators to the same pair of parents until the
number of failures to generate valid offspring is less than a
predefined negative selection threshold, Nt. When the
number of failures to generate valid offspring is more than
Nt, the AIS selects a new pair of detector parents and
produces new offspring. Offspring generation with
negative selection continues until it fills up the empty
space of the detector population after the worst W%
detectors are deleted.

best parent
detectors

parent detector 1

offspring

pass?

population full?

finished reproduction

# failures
>

threshold?

yes

yes

no

no

yes

no

self
antigens

genetic operators

negative selection

add new offspring
to detection population

parent detector 2

Figure 4 Reproduction and Negative Selection

4.8 Genetic Operators

The clonal selection algorithm presented in this work
applies two genetic operators: crossover and mutation.
Since a fixed number of nuclotides represents a genotype,
a simple one-point crossover is applied by selecting a
random crossover point between genes or nucleotides.
Furthermore, the following five different types of
mutations are introduced:

• Classic mutation: this mutation is a conventional gene
flip mutation.

• Generalisation mutation: designed to increase the
generality of detectors, it increases the detector
generality by causing a new disjunct to be added next to
an existing one in the detector phenotype.



• Specialisation mutation: this mutation specialises
detectors. This is achieved by causing a random
disjunct to be dropped from detector phenotypes.

• Shift Mutation: this shifts all the bits of all the genes to
the left or the right direction. The direction to shift is
randomly determined.

• Delete Mutation: this mutation flips the first bit of the
attribute, changing its corresponding attribute value to
‘ANY VALUE’ when ‘1’, and back to normal when ‘0’.

These new mutations are mainly introduced to generalise
and specialise detectors. This is because the degree of
pattern detection of DNF rules is mainly controlled by
doing so.4

5 Experiments

This section describes a series of experiments performed
to investigate the effects of different detector and antigen
sample sizes on the detection rates of the AIS.

5.1 Objective
As introduced in section 3, the detector sample size
controls the generality of detectors generated by the clonal
selection algorithm. The appropriate mixture of general
detectors and specific detectors is critical in order to
develop a competent network-based IDS. Detectors should
have the maximum level of generality, detecting as many
non-self antigen patterns as possible without detecting any
self antigen patterns. Furthermore, an ideal detector set
should contain detectors showing high specificity that will
detect specific antigen patterns found only in a small
number of antigens. For these reasons, an ideal detector
set should have an appropriate mixture of general
detectors and specific detectors. It has been known that the
generality of generated detectors is controlled by the
detector sample size and the antigen sample size (Forrest
et al, 1993; Smith et al, 1993). With these features of AIS
in mind, our experiments were performed to understand
how best to choose good detector and antigen sample
sizes.

5.2 Data and Parameter Setting
This work aims to understand the nature of clonal
selection with a negative selection operator. The
experiments performed in this paper did not use real
network traffic data sets because such sets are typically
vast and are not practically suitable for this type of
benchmarking work. Instead three different data sets from
the UCI repository for machine learning algorithm
benchmark work were used (ftp://ftp.ics.uci.edu/pub/

                                                       
4 These mutations are similar to De Jong’s adding and dropping
mutations (De Jong et al, 1993).

machine-learning-databases).
The first data set was Wisconsin breast cancer data. It

consists of 699 examples with two classes: ‘Malignant’
and ‘Benign’. 241 examples belong to ‘Malignant’ and the
rest 458 examples belong to ‘Benign’. We defined
‘Benign’ as a self class and ‘Malignant’ as a non-self
class. The detectors generated by the AIS detected
‘Malignant’ and any data which was not detected by the
detectors was regarded as ‘Benign’. This set had ten
continuous attributes and total 16 missing values. The
missing values were filled with random values.

The second data set was the ‘vote’ data set. This data
set is a collection of voting records and each voting record
is classified by one of two parties: ‘Republican’ and
‘Democrat’. It consists of 267 democrat and 168
republican examples. Each vote record has 16 voting
issues as its attributes and each voting issue has one of
three values: yes, no, abstain.

The iris data was used as the final set. It is the most
popular data set used in the literature as a pattern
recognition test set. It has total of 150 examples with three
classes: ‘setosa’, ‘virginia’ and ‘versicolour’. Each class
has 50 examples and every example has four continuous
attributes. We prepared three different data sets from this
original data set by taking one set as a self set and the rest
as a non-self set.

A tenfold cross-validation method was employed to
prepare a training set for the AIS to evolve and a test set to
detect previously unseen non-self patterns. The tenfold
cross-validation method is known as the most robust
method from nfold cross-validations (Witten and Frank,
2000). A detector population size of 300 was used and best
B% detector offspring were selected to replace the worst
W% detectors from parent detectors. 80 was used for both
values of B and W. All mutations occurred with a
probability of 0.001 per gene. Each experiment was run
for a maximum 50 generations unless it satisfied a
termination condition. The termination condition was set
as the non-self pattern detection rate for 100% and the self
pattern detection for 0%. The threshold of the negative
selection operator, Nt, was set as 5.

5.3 Experimental Results
Two series of experiments were performed by varying the
number of detector sample sizes and the number of
antigen sample sizes. Other literature suggests that the
generality of detectors is controlled by these two factors
(Hart, 1999). The experiments investigated whether the
conclusions of the previous work followed our problem:
non-self antigen pattern learning from a collected data set.

5.3.1 Varying Detector Sample Size
Table 1 and Table 2 present the results of the first series of
experiments, where the number of antigen samples was



fixed and the number of detector samples was varied. The
detection rate of the system was described by a True
Positive (TP) rate and a False Positive (FP) rate. TP was
"non-self" detection rate and FP was the rate at which
“self” was mistakenly detected by a generated detector set.
The desired system should have a high TP and a low FP.
The tables show the means and variances of 10
experiments.

For three data sets, the average TP rates generally
showed a good level of accuracy, i.e. more than 93%. For
the iris data set the best TP rate reached 100%. There were
only a couple of cases showing less than a 90% TP rate.
The average FP rate was consistently lower than 10% for
all cases, but this figure decreased to around 5-6% when D
was less than 60 for both the cancer and the vote data sets.
For the iris data set, the worst FP average rate was only
1%.

As table 1 explains, the TP rate increased as the
detector sample size D increased. From three data sets, the
results of the vote data set showed this tendency most
clearly. In order to confirm this result, paired sample t-
tests were performed on the vote data results. To find the
point at which the difference between TP rates becomes
statistically significant, t-tests were performed on the pairs
of results and each pair was made by taking two adjacent
detector sample sizes. The t-test showed that the difference

between the TP rates of D = 1 and D = 5 was statistically
significant with 95% confidence. A two-sided t-test of
means produced a p-value of 4.3216%. The t-tests of the
rest of pairs produced much larger p-values ranging from
14.7285% to 75.385%. In addition, these p-values became
larger as the pair was made from larger sample sizes.
These results of the t-tests imply that the difference
between the average TP rates with varying detector sample
sizes converged as the detector sample size increased.
Even though the difference of the TP-rate for different
sample sizes was very small for the cancer data, the same
kind of tendency was observed. However, for the iris data,
no results for any D showed any significant difference, see
table 2.

 In addition, the FP rate increased as D increased. The
paired sample t-tests were performed on the different pairs
which were made in the same way as previous paired
sample t-tests. The t-tests showed that D = 1 and D = 5
was statistically significant with 94.7% confidence. A
two-sided t-test of the means produced a p-value of
5.2177%. Much larger p-values were produced when the t-
tests were performed on the rest of pairs, ranging from
35.7729% to 98.7759%. These results also show that the
FP rate increased as the detector sample size increased but
that it stabilised to a certain point.

Cancer Data Vote Data
D TP FP TP-FP TP FP TP-FP
1 93.48 (0.17) 5 (0.26) 88.48 (0.20) 79.43 (0.74) 2.35 (0.09) 77.67 (0.50)
5 94.57 (0.16) 5.83 (0.28) 88.73 (0.36) 88.03 (0.42) 5.29 (0.27) 82.74 (0.84)
10 95.65 (0.12) 5.41(0.58) 90.23 (0.66) 92.49 (0.40) 3.57 (0.25) 88.93 (0.39)
20 95.43 (0.15) 8.33 (0.73) 87.10 (0.52) 94.02 (0.31) 5.29 (0.27) 88.72 (0.47)
30 95.65 (0.13) 6.25 (0.20) 89.40 (0.27) 93.26 (0.33) 5.92 (0.23) 87.34 (0.62)
60 95.87 (0.13) 9.17 (0.53) 86.70 (0.55) 94.40 (0.28) 5.96 (0.15) 88.45 (0.39)
90 95.16 (0.22) 6.65 (0.26) 88.61 (0.57)

240 96.52 (0.097) 10 (0.548) 86.52 (0.7) 95.55 (0.3) 7.13 (0.3) 88.41 (1.07)

Table 1 The mean and variance of true positive rates (TP), false positive rates (FP), and TP-FP rates when an antigen sample size = 1 for
various detector sample sizes (D). The mean values are followed by the variances in parentheses.

IRIS Setosa IRIS Versicolor IRIS Virginia
D TP FP TP-FP TP FP TP-FP TP FP TP-FP
1 100 (0) 0.6 (0.036) 99.4 (0.036) 95 (0.011) 4 (8.889E-03) 91 (0.0289) 95 (0.011) 1 (0.0111) 94 (0.044)
5 100 (0) 0.6 (0.036) 99.4 (0.036) 95 (0.011) 4.8 (0.0196) 90.2 (0.0573) 95.8 (0.0036) 0.012 (1.44E-04) 94.8 (0.019)
10 99.8 (4E-03) 1.2 (0.064) 98.6 (0.063) 95 (0.011) 5 (0.0111) 90 (0.0444) 95.6 (7.11E-03) 1 (0.0111) 94.6 (0.0271)
20 100 (0) 0.6 (0.036) 99.4 (0.036) 95 (0.011) 5 (0.0111) 90 (0.044) 95.6 (7.11E-03) 1 (0.0111) 94.6 (0.027)
30 100 (0) 0 (0) 100 (0) 95 (0.011) 5 (0.0111) 90 (0.044) 95.6 (7.11E-03) 1 (0.0111) 94.6 (0.027)
60 100 (0) 0 (0) 100 (0) 95 (0.011) 5 (0.0111) 90 (0.044) 95.8 (4E-03) 1 (0.0111) 94.8 (0.0196)

240 100 (0) 0.6 (0.036) 99.4 (0.036) 95 (0.011) 4.6 (0.0271) 90.4 (0.0693) 95.4 (9.33E-03) 1 (0.0111) 94.4 (0.0338)

Table 2 The mean and variance of TP, FP, TP-FP rates when an antigen sample size = 1 for various detector sample sizes (D).
The mean values are followed by the variances in parentheses. IRIS class label in each column indicates the assigned self class.

Cancer Data Vote Data
A TP FP TP-FP TP FP TP-FP
1 95.65 (0.12) 5.42 (0.58) 90.23 (0.66) 92.49 (0.40) 3.57 (0.25) 88.93 (0.39)
5 94.35 (0.18) 3.75 (0.40) 90.6 (0.31) 92.14 (0.44) 3.54 (0.07) 88.59 (0.42)

10 95 (0.16) 5.42 (0.39) 89.58 (0.35) 89.56 (0.39) 2.94 (0.17) 86.62 (0.75)
MAX 93.91 (0.24) 5.42 (0.31) 88.5 (0.24) 85.47 (1.63) 3.57 (0.17) 81.90 (2.17)

Table 1 The mean and variance of TP, FP, TP-FP rates when a detector sample size = 10 for various antigen sample sizes (A).
The mean values are followed by the variances in parentheses.



5.3.2 Analysis
The observed results were expected. When a detector
sample size is one, no niching mechanism can happen.
Since there is no chance for a selected detector to compete
with other detectors to gain a fitness score, each detector
will increase its fitness score by one as long as it matches
a given antigen (when A=1). Thus, the generalist detector,
which detects the largest number of non-self antigens
during the fitness scoring procedure, will have the highest
fitness score (assuming that each detector is selected with
the same probability). Conversely, more specific detectors
will gain much lower fitness scores in the same generation
since they will detect much fewer non-self antigens. Thus,
the generalist detectors will dominate in a detector
population after a certain number of generations.

This kind of phenomenon resulted in rather poor results
for the cancer and vote data when D = 1. However, the
detector sample size did not affect average TP rates for the
iris data at all. This is perhaps because the given problem
of iris data is relatively easier and thus the minimum
sample size is good enough to show a good detection rate.
In other words, fairly general detectors can detect all
existing non-self antigen patterns in the iris data set.

When the detector sample size is more than one, the
selected sample detectors compete with each other. In our
tests, this led the winner detectors from sampled detector
groups to form niches, which match separate peaks of a
fitness landscape. In the extreme case, when the detector
sample size is the largest possible (the detector population
size), every detector participates in a competition to detect
a given antigen. This gives a chance for very specific
detectors to increase their fitness scores because some
specific non-self antigen patterns can only be detected by
these kinds of detectors. Therefore, these specific
detectors will have fitness scores that are large enough not
to be excluded from the parent population through
selection. In other words, both the general detectors and
specific detectors have fair chances to win and thus they
both will remain in the final detector population.

However, when a detector sample size is the largest
possible, it can cause an overfitting problem. The specific
non-self antigen pattern may not be representative of the
data as a whole. So a detector evolved to match this
exceptional antigen pattern might not truly distinguish
between “self” and “non-self”, resulting in higher false-
positive rates. This overfitting problem is clearly observed
from our experiment results. For both data, cancer data
and vote data, the FP rate increases as the detector sample
size increases, see table 1.

5.3.3 Varying Antigen Sample Size
We next compared the results when the detector sample
size was fixed but the antigen sample size changed. The
last series of experiments were performed with D = 10 and

various antigen sample sizes. As seen in table 3, no
significant difference between TP’s and FP’s was evident,
except for the case where the antigen sample size was the
maximum.

5.3.4 Analysis
These results are also readily explainable. When the
antigen sample size is small, even a potentially general
detector does not have enough opportunity to detect a
large number of antigens and thus both a general detector
and a specific detector will be compared only for whether
they can detect a given small number of antigens. Thus,
the difference of fitness scores is not large. However, as
the antigen sample size increases, the general detector
starts to have enough chances to beat the specific detector
by detecting a larger number of antigens. Thus, the
general detectors have more chances to be selected as the
parents for the next generation. So larger antigen sample
sizes can also cause domination of general detectors
during evolution.

5.3.5 Performance of Negative Selection Operator
Finally, we observed that the negative selection operator
played an important role which helped to reduce the FP
rate. When evolution terminated at the maximum
generation and the detectors were tested on a training data
set, no case showed any mistake, ie, FP was always 0% on
the training data set. For the test set, the observed FP rate
was up to about 10%.

As discussed before, the FP rate is mainly controlled by
a detector sample size and an antigen sample size.
Therefore, the rather higher FP rates resulted not because
of inappropriate behaviours of the negative selection
operator but because of the improper choices of detector
sample sizes and antigen samples sizes. However, we have
not investigated how the threshold size of negative
selection operator will affect the TP and FP rate. Too small
a threshold size might lead to prevent the generation of
some general detectors because it will eliminate detectors
matching very small number of self antigens. However,
these self antigens can be noise. Similarly, too large a
threshold size can make the AIS to generate the detectors
which are so general that they detect too many self
antigens. Thus, the effect of negtative selection threshold
size should be investgated as the future work.

5.4 Ideal Detector and Antigen Sample Sizes
Since an ideal IDS should show a high TP rate and low FP
rate, we analysed TP-FP rates to take into account these
two rates together. As shown in table 1, for cancer data,
these rates did not show significant differences for any
case.  For the vote data, it stabilised after a detector sample
size reached 10. These results advise that the detector
sample size does not have to be the largest one to get the
most ideal result. Instead, we can set a detector sample size



that is not too small but is large enough to gain the good
TP-FP rate. To be more precise, we suggest that the
detector sample size should be set as the largest size which
is affordable by given system resources. As future work, an
adaptive sample size determined through evolution can
also be investigated.

As long as the detector sample size is properly set, the
antigen sample size is not critical. Since our experiment
results show that the generality of detectors can be
controlled by the detector sample size, the smallest antigen
sample size (A = 1) is recommended. This is because the
minimum antigen size saves computation time.

6 Conclusions

This paper has investigated the use of a static clonal
selection algorithm with a negative selection operator as
one component of the AIS for network intrusion detection.
This component was especially developed for the purpose
of building a misuse detector in a more efficient way. In
order to adapt the available clonal selection algorithm for
a network intrusion detection problem, three major
modifications were made: i) new genotype and phenotype
representations, ii) new matching function and fitness
score function and iii) introduction of a negative selection
operator.

Two series of experiments were performed by varying
a detector sample size and an antigen sample size. These
experiments were performed in order to investigate the
effect of detector and antigen sample sizes on
performance. The first series of experiments proved that
both the TP rate and the FP rate increases as the detector
sample size increases. The second series of experiments
also showed that the significant differences of TP and FP
rates were observed only for the case that the antigen
sample size is the maximum. Furthermore, the negative
selection operator embedded in the clonal selection
algorithm performs well from the two sets of experiments.

As the result of these experiments, this paper suggests
that the largest detector sample size should be selected
from the sample size range affordable by given system
resources. Moreover, the antigen sample size is not critical
as long as the detector sample size is properly set and thus
the smallest size, which is one, will be ideal to save
computation time.
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