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1. Introduction

The first part of this report (De Castro & Von Zuben, 1999) is intended to present the basic theory

and concepts necessary for the development of immune-based systems. It brings an instructive

introduction to the mammal immune system and depicts its most relevant aspects from the

viewpoint of engineering. Mechanisms like the clonal selection theory, the immune response along

with its affinity maturation process and the immune network hypothesis are emphasized. A few

computational algorithms were developed and applied to several different types of problems in

order to demonstrate how principles gleaned from the immune system can and must be used in the

design of engineering tools for solving complex tasks. In addition, it is introduced an emerging area

of research, called immune engineering. The artificial immune systems are comprised of several

strategies, such as immune engineering algorithms, immune-based systems, immunogenetic

approaches, and is supposed to include any technique developed using ideas from immunology.

In this second part of the report, it will be assumed that the reader is familiar with the immune

system, so that no description about the basic immunological phenomena will be presented. If it is

the case, the first part of the report might be consulted. In this text, we are going to make a brief

description of several applications that used immune metaphors, or mechanisms, to solve problems

which are usually dealt with artificial intelligence (AI) techniques. Artificial intelligence strategies

were developed aiming at finding solutions to a broad class of problems, named complex problems,

which could not be resolved by traditional methods, like linear, non-linear, multi-objective and

dynamic programming, search trees, graph theory etc. As will be seen, some of the methods

presented in this text constitute hybrid approaches, where AI techniques, like neural networks, fuzzy

systems and most influentially evolutionary strategies, were combined with immune phenomena

and/or metaphor leading to the emergence of new computational paradigms.
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Our goal is to bring together many works involving the immune system as far as to list and

detach the main characteristics and potential applicability of each of the methods presented. Very

few details about the applications themselves and their results are given, instead a brief description,

focusing on the coding schemes, evaluation functions and how the methods are viewed under an

immune perspective are the contents of this text.

The methods are distributed by subject and/or application, but even if some of them might

belong to more than one class, it will be put into a single category. The illustrations were taken or

adapted from the original works presented in the listed literature, and some explanations might

simplify the original ones in order to make this report a comprehensive survey. At last, to keep the

original terminology and lists of symbols used by each author, we did not follow any standard in

our descriptions.

1.1 A Pioneer Work

The paper by Farmer et al. (1986) is considered the pioneer work relating the immune system to

other artificial intelligence approaches. They described a dynamical model for the immune system

based upon the immune network hypothesis. This model consisted of a set of differential equations,

together with a threshold to remove useless antibody types, and genetic operators to introduce new

ones. They showed that the equations of motion for the immune system and a proposed learning

classifier system assume the same form, illustrating that these equations can have a broad utility for

learning.

In fact, they were right with relation to the application of their model for solving engineering

problems. As will be seen along this text, their “artificial immune system” served as a source of

inspiration for several other immune-based strategies.

The immune cell and molecules were represented as binary strings of various lengths. An

antibody molecule was represented by its epitope and paratope, concatenated in a single string.

To model the fact that two molecules may react in more than one way, strings are allowed to

match complementarily in any possible alignment. Equation (1) specifies the matrix of matching

specificities mij

∑ ∑ 





+−∧+=

k n
jiij snpkneGm ,1)()( (1)

where G(x) = x for x > 0 and G(x) = 0 otherwise, ei(n) is the n-th bit of the i-th epitope, pj(n) is the

n-th bit of the j-th paratope, ∧ corresponds to the complementary matching rule (XOR operation),
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and s is a matching threshold. If matches occur in more than one alignment, their strengths are

summed.

To model the network dynamics, it is assumed N antibody types with concentrations {x1,...,xN}

and n antigens with concentrations {y1,...,yn}. The set of differential equations

,2
1 1

1
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where the first term represents the stimulation of the paratope of an antibody type i by the epitope of

an antibody j. The second term represents the suppression of antibody of type i when its epitope is

recognized by the paratope of type j. The parameter c is a rate constant that depends on the number

of collisions per unit time and the rate of antibody production stimulated by a collision. Constant k1

represents a possible inequality between stimulation and suppression. The third term models the

antigen concentrations and the last term models the tendency of cells to die (natural death rate, k2).

Genetic operators, like crossover, point mutations and inversion were used to generate new

antibody types.

2. Robotics

Robots can be defined as programmable, multifunctional manipulators designed to move material,

parts, tools, or specialized devices through various programmed motions for the performance of a

variety of tasks. Nowadays, one of the most difficult tasks in robotics is the so-called autonomous

navigation problem, where a robot, or a set of robots, has to perform certain tasks without any

external guidance. In this section, we will describe how immune principles are being applied to the

autonomous navigation problem.

2.1 Behavior Arbitration Mechanisms

The main works of Ishiguro et al. (1996, 1997) and Watanabe et al. (1998, 1999) focused on the

development of a dynamic decentralized consensus-making mechanism based on the immune

network theory. In their approach, “intelligence” was expected to emerge from mutual interactions

among agents (called competence modules) and between a robot and its environment. The open

questions they tried to solve were the construction of a mechanism that realizes appropriate

arbitration (decision) among multiple modules and how to prepare these modules. Their method

was evaluated on a garbage-collecting problem taking into account self-sufficiency (autonomy), i.e.

a robot had to collect a set of garbage and put it inside a garbage can without running out of energy

(battery level). Figure 1(a) illustrates the problem.
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The robot, called immunoid, was assumed to consume energy at every time step, when loaded

with garbage and when it collided with obstacles. The antigens were responsible for informing the

existence of garbage (direction), obstacle (direction) and home base (direction and distance), and

also the current internal energy level. A pair of desirable condition/action rules was assigned to the

paratope of each antibody, and the ID-number of the interacting antibodies was assigned to their

idiotopes (see Figure 1(b)). The desirable condition is the same as the antigen. The antibody

concentration level allowed the selection of the antibodies for a given antigen. Such a scheme made

the antibodies responsible for the correct acting of the robot. Their model included the concepts of

dynamics, responsible for the variation of the concentration level of antibodies, and metadynamics,

which maintained the appropriate repertoire of antibodies by incorporating new types and removing

useless ones. The concentration of the i-th antibody (ai) was given by Equation (3):

,
))1(5.0exp(1

1
)1(

,)(�.)(.
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where N is the number of antibodies, α and β are positive constants, mji and mi denote affinities

between Ab j and Ab i and between the detected antigens and Ab i, respectively. The first and

second terms indicate stimulation and suppression from other antibodies, while the third term

represents stimulation from the antigen. The fourth term corresponds to the natural death rate. The

equation in the bottom is a squashing function aiming at ensuring the stability of the concentration.

Garbage

Robot

Garbage can Battery charger

Far

Middle

Near

Desirable Interacting antibodies
condition           and degree of interaction

Action

Paratope Idiotope

(a) (b)

Figure 1: (a) Environment for testing the consensus-making algorithm based on immune networks.
(b) Definition of an antibody.
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2.2 Emergence of Collective Behavior

For a collective behavior to emerge, a set of agents must communicate with each other and with

their environment. The objective of the system proposed by Jun et al. (1999) and Lee et al. (1999)

was that a set of robots (agents) found and carried out tasks spread along a given environment. They

used the clonal selection principle, together with the immune network theory and B-T-cell

interactions to cooperatively control and select a group of behavior strategies for Distributed

Autonomous Robotic Systems (DARS). The executing process of their method had to be robust

enough to overcome dynamic changes in environmental conditions. The behavior of each robot had

to be stimulated and/or suppressed by other robots.

In the DARS system, the robots have to individually understand the objective of the system, the

environment, the behavior of other robots etc., and decide their own behavior autonomously to

cooperate with other agents aiming at establishing and maintaining the order of the whole system.

No central control is supposed to exist. The clonal selection algorithm was used for transmitting

high quality strategies among robots, while the immune network of antibodies controlled the

interactions among individual robots and the B-T-cell interactions regulated the adaptability of the

agents to the changing environment. Table 1 summarizes the relationship between DARS and the

immune system.

To improve the adaptability of their system, the authors proposed a modified set of immune

network equations that took into account the functions of a helper T cell and a suppressor T cell:

Table 1: Relationship between DARS and the immune system.

DARS Immune System

Environment Antigen

Strategy of Action Antibody

Robot B-cell

Control Parameter T-cell

Adequate Stimulus

Inadequate Suppression

Excellent Robot Plasma cell

Inferior Robot Inactivated cell
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where Si is the stimulus for antibody i, si is the concentration of antibodies, mij is the mutual

stimulus coefficient, gi is the affinity of Ab i with the antigen, α, β and η are positive constants and

k is the natural death rate. ci is the concentration of T-cells that control the concentration of

antibodies. Depending upon gi and Si, ci will take the role of a helper or suppressor T-cell.

3. Control

In modern control engineering a lot of effort is put into designing robust control algorithms that can

meet the steadily increasing demands for high performance. The immune system learning

mechanisms, like clonal selection and affinity maturation, together with its network dynamics,

suggest successful applications of these metaphors to the control theory.

3.1 Identification, Synthesis and Adaptive Control

Krishnakumar et al. (1995) and Krishnakumar & Neidhoefer (1997a,b, 1999) defined the

Immunized Computational Systems (ICS) that used the immune system metaphor along with

computational (both hard and soft computing) techniques to attempt to reproduce the robustness and

adaptability of a biological immune system. The strategy was tested on an autonomous aircraft

control problem.

Their system constituted a hybrid structure whose building blocks, mimicking the immune

building blocks, were composed of artificial neural networks, fuzzy systems and evolutionary

algorithms. Their immune metaphor focused on the clonal selection principle, together with the

affinity maturation of the immune response. Table 2 depicts their viewpoint of the trade-off

between the immune system and the intelligent control theory. Figure 2 depicts the basic structure

of their immunized computational system.

They used messy strings to form a population of CCS (changeable computational systems),

which represented the Ag and Ab equivalents. Figure 3 exemplifies a few types of information that

could be inserted in the strings that represented the immune molecules. A collection of building

blocks was assembled together in order to generate a population of computational systems, which

were subject to evolution through genetic operators and selection.
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Table 2: Trade-off between the immune system and the intelligent control strategy.

Immune Response Intelligent Control

Antigen is present in the system Disturbance is present in the system

Innate immunity is the first line of defense Robust feedback control (non-adaptive)

Ag presentation (by macrophages) cause T-
cell response (adaptation)

A utility function translates the disturbances
into an error function and presents it to the
critic which starts the adaptation process

T-cells activate B-cell response (adaptation)
to counteract antigen

The adaptive critics modify the controller
parameters to counteract disturbances

For certain types of Ag, the B-cells are
triggered without the help of T-cells but still
with the help of some APC’s

For certain classes of disturbances, the
controller is adapted directly based on a
utility measure

Learning
System

Computational
Building
Blocks

Exploratory
System

Uncertain
System

BCS

CCS

Figure 2: Immunized computational system structure. BCS corresponds to the base-line computational
system (representing an average behavior of the uncertain system), and CCS corresponds to the changeable
computational system (representing the variable region of the antibody and epitope equivalents).

 Variable       Relashionship  Variable  ‘From’ Unit    Weight Value     ‘To’ Unit

Fuzzy Building Block Neural Net Building Block

Figure 3: Encoding scheme for the case of a Fuzzy and a Neural Network building block. The parameter
‘variable’ can assume any linguistic value (altitude, speed, etc.), and ‘relationship’ represents any logical
antecedent (AND, OR, etc.) or consequent (THEN). The neural net building block is responsible for
describing the network architecture and weight values.

3.2 Sequential Control

Finding a proper execution sequence for a set of actuators such that the system achieves a desired

state from a known initial state is the main goal of a sequential control approach. Ootsuki &

Sekiguchi (1999) proposed a method for determining control sequences of a sequential control plant

based on the immune system. They used the Petri Nets formalism and the immune network theory to

develop their model.
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The discrete dynamic behavior of the components of a sequential control plant was modeled as

state machines structured as Petri nets. Hence, the determination of control sequences became

equivalent to the determination of firing sequences for the Petri net models, which were

decomposed into several sub-problems. The objective function of each sub-problem was set to

satisfy constraints and minimize the objective function of a distributed (immune) network. The

dynamics of the system was controlled by a set of differential equations, which described the

interactions among the network elements. Their approach was compared to a conventional one, and

its performance was superior for larger models with distributed characteristics and high degree of

freedom in its components.

4. Optimization

Optimization is the task of finding the absolutely best set of admissible conditions to achieve a

certain objective, formulated in mathematical terms. Problems in optimization arise in a broad area

of applications. This section will present immune-based systems specially designed to solve

constrained, multi-modal and combinatorial optimization problems.

4.1 Constrained Optimization

Hajela & Lee (1996), Hajela et al. (1997) and Hajela & Yoo (1999), described the implementation

of a constrained genetic search to simulate the mechanics of a biological immune system. The

authors argued that the immune system capabilities of performing schema (pattern) recognition and

adaptation could be used advantageously to improve the performance of genetic algorithms in

structural optimization problems. Their work focused on two aspects: using the immune system

capabilities to enhance the convergence of a GA approach, and handling the design of constraints in

the GA based optimization. Their approach was applied to the problem of optimally designing a 10-

bar truss structure for minimum weight and with pre-defined allowable constraints on maximum

stresses of tension and compression in the bar elements (see Figure 4(a) for an illustration).

Like the majority of GA applications, they used a binary encoding for the strings representing

the immune components (antigens and antibodies). The fitness of an individual was determined by

its ability to recognize either a specific or a broad group of antigens, given by a function that

measured the number of matching bits between a pair of strings: Z = ∑ ti, where ti = 1 if there was a

match in the i-th location of the two strings, and 0 otherwise. The process of handling constraints in

their algorithm is depicted in Figure 4(b).
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100K      100K

d  d

      

Outer Loop of a GA
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. . . . . . .
1 0 1 1 0 1 0 1 1 1

0 1 1 1 0 1 0 1 0 0
1 0 1 0 1 0 0 1 1 1

. . . . . . .

1 1 0 0 0 1 0 1 0 1
1 0 1 1 0 1 0 1 1 0

. . . . . . .

Z = ∑ ti

Antigens
(feasible designs)

Unfeasible designs

Antibodies
(Constraint conditioned designs)

(a) (b)

Figure 4: (a) Example of structural optimization problem studied. (b) Constraint elimination using immune
principles.

The chromosomal makeup of the feasible designs was selected as the antigens to which the

antibodies had to be evolved. There was a co-adaptation of the unfeasible design representations to

the structure of feasible designs, reducing constraint violations in the population. In this process,

GA simulations were performed using unconstrained scalar functions to define the fitness.

4.2 Multi-Modal Optimization

Fukuda et al. (1999) proposed an immune algorithm that modeled mathematically the immune

diversity, network theory and clonal selection as a multi-modal function optimization problem. The

index of diversity and multiple solution vectors introduced were kept as memory of the system. The

parallel between the immune system and algorithm is depicted in Table 3.

The algorithm could be realized in six steps according to Figure 5. The authors pointed out as

the main characteristics of their method the diversity among the many candidate solutions and an

efficient parallel search. Equations (5) and (6) determine affinities ayv,w and axv between two

antibodies v and w, and an antibody v and an antigen, respectively

H
ay wv +

=
1

1
, , (5)

vv optax = , (6)

where optv corresponds to the evaluated value to show the connectedness between antigen and

antibody v. Hj(N) is a parameter related to the informative entropy of locus j in the lymphocyte

population
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Table 3: Comparison between the immune algorithm and the immune system.

Immune System Immune Algorithm

Antigen Problem to be solved

Antibody Best solution vector

Recognition of antigen Identification of the problem

Production of antibody from memory cells Recalling a past successful solution

Lymphocyte differentiation Maintenance of good solutions (memory)

T-cell suppression Elimination of surplus candidate solutions

Proliferation of antibody Use of genetic operators to create new antibodies

Recognition of problem

Production of candidate
solutions

Function and diversity
evaluation

Production of new
variables (GA)

Selection of variables

Storage of local-optima
as memory cells

Figure 5: Flow chart of the immune algorithm.
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where N is the size of the antibodies, S the variety of allele and pi,j the probability that locus j is

allele i.

De Castro & Von Zuben (2000a) presented a clonal selection algorithm, which took into

account the affinity maturation of the immune response, in order to solve complex problems, like

learning and multi-modal optimization. Their algorithm constitutes an implementation of the

biological processes and does not account for any mathematical sophistication to enhance its

performance in particular tasks.
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(1) Generate a set (P) of candidate solutions, composed of the subset of
memory cells (M) added to the remaining (Pr) population (P = Pr + M);

(2) Determine (Select) the n best individuals of the population (Pn), based
on an affinity measure;

(3) Reproduce (Clone) these n best individuals of the population, giving
rise to a temporary population of clones (C). The clone size is an
increasing function  of their affinity;

(4) Submit the population of clones to a hypermutation scheme, where
the hypermutation is proportional to their affinity. A maturated
antibody population is generated (C*);

(5) Re-select the improved individuals from C* to compose the memory
set M. Some members of P can be replaced by other improved
members of C*;

(6) Replace d antibodies by novel ones (diversity introduction). The lower
affinity cells have higher probabilities of being replaced.

(a) (b)

Figure 6: The clonal selection algorithm. (a) Block diagram. (b) Step-by-step procedure.

The main features of the clonal selection theory they modeled were:

• generation of new random genetic changes, subsequently expressed as diverse antibody

patterns by a form of accelerated somatic mutation;

• phenotypic restriction and retention of one pattern to one differentiated cell (clone);

• proliferation and differentiation on contact of cells with antigens.

Their algorithm runs in six steps, according to Figure 6(a) and (b). This strategy was applied to

a simple instance of the travelling salesman problem, a binary character recognition task and a

multi-modal function optimization problem.

4.3 Combinatorial Optimization (n-TSP Problem)

The travelling salesman problem (TSP) is one of the most known and studied combinatorial

optimization problems. Simply stated, the travelling salesman must visit every city in his territory

exactly once and then return to the starting city. The question is: given the cost of travel between all

cities, which is the tour with smallest cost? For sake of simplicity, the reader must consider as cost,

basically the length of the itinerary traveled by the salesman. The n-th agents TSP (n-TSP) is an

extension of the traditional TSP problem, where n salesmen are available for finding the minimal

tour. The salesmen might perform independent routes and start from the same base city. Figure 7(a)

depicts the relationship between the traditional TSP and the n-TSP problem.
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Endo et al. (1998) and Toma et al. (1999) proposed an adaptive optimization algorithm based

on the immune network model and MHC peptide presentation. In this model, immune network

principles were used to produce adaptive behaviors of agents and MHC was used to induce

competitive behaviors among agents. The agents possessed a sensor, mimicking MHC peptide

presentation by macrophages, the T-cells were used to control the behavior of agents and the B-cells

were used to produce behaviors. Table 4 summarizes the relationship between the n-TSP problem

and the immune system. The algorithm was specially designed to solve the n-TSP problem, and its

relation with it is illustrated in Figure 7(b).

Table 4: Immune cells and molecules and their roles in the n-TSP problem solving.

Immune System Role in the n-TSP problem

Antigen Contains information about the cities and salesmen

Macrophage Selects the city number that the salesman agent must visit

T-cells Help the activation of B-cell

B-cells Produce antibodies

Antibody Perform the behavior of an agent

Traditional TSP

Salesman 1
Salesman 2

Salesman 3

n-TSP

  

IA

Definition of problem
parameters such as the

cities and salesmen

Initialization of each
immune cell set

Deletion and addition of
immune cell sets on

each salesman agent

Selection of next cities
by salesman agents

n-TSP

Problem presentation
Define the information
of salesmen and cities

Making initial salesman
The salesmen are made at
random or using a memory

of previous results

Making behaviors
Candidate behaviors
are made at random

Evaluation of a behavior
If the salesman has the applicable

behavior, then it can act. If the target
city has already been visited by other

salesman, then each action is
defined by the MHC

(a) (b)

Figure 7: (a) n-TSP agents. (b) Proposed immune algorithm (IA) for solving the n-TSP problem. Each
immune cell set is composed of three kinds of cells, called a macrophage, a B and a T-cell.
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The system operated as follows: first macrophages acquired a city number at random and presented

it to the T and B-cells. If a T-cell recognized this number, it tried to help B-cells. If T and B-cells

recognized the same number, the B-cell produced an antibody and traveled. Then MHC was

changed.

5. Neural Network Approaches

Artificial Neural Networks (ANN) are computational tools originally designed to model the human

brain aiming at producing an “intelligent behavior”. Several similarities and differences between the

nervous system and the immune network theory have been identified, suggesting that one field of

research might have much to gain from one another. This section will start depicting the points in

common and disagreements between the two approaches. A few neural network and hybrid models

will also be presented.

5.1 Similarities and Differences

The nervous system is commonly decomposed into sensory and motor parts. An analogous

separation into recognition and effector functions can be made in the immune system, where

effector mechanisms lead to the elimination of the antigens. In neural systems, assimilation of

memories appears to be achieved by alteration of the strengths of connections between neurons,

rather than changes within the neurons themselves. Further, the brain allows memories to be

addressable by content, so that the frequent death of individual neurons does not drastically affect

the performance of the brain as a whole. The immune system possess a cross-reactive memory that

is observed when an individual develops a memory to one antigen and is challenged with a related,

but different one (Hoffmann, 1986; Ada & Nossal, 1987; Smith et al., 1997). The cross-reactive

memory, clonal expansion and programmed cell death rates allow the immune system to

dynamically allocate resources as needed in a distributed environment (Dasgupta, 1999a).

Some important common features, as basic cognitive mechanisms, shared by the neural

networks and the immune system, are of great interest, and can be described as follows

(Jerne, 1974; Hoffmann, 1986; Hoffman et al., 1986; Vertosick & Kelly, 1989, 1991; Dasgupta,

1997, 1999a):

• both systems consist of an enormous number and diversity of cells. In humans, the immune

system consists of roughly 1012 lymphocytes (B and T cells), and the central nervous system

consists of about 1010 neurons.
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• the individual cells are highly specialized in their functions and present great diversity of

receptors.

• the immune system recognizes and responds to complementary shapes of a great variety of

large molecules. The nervous system recognizes and responds to different kinds of patterns,

like visual, auditory and sensory stimuli.

• the synaptic strengths between neurons can be excitatory (stimulating) or inhibitory

(depressing), giving rise to many different activity patterns. The inter-lymphocyte

interactions via cell-cell contact, or via chemical mediators have varying strengths which

can be helping or suppressing.

• both systems exhibit memory, early impressions leave a particularly deep and lasting

imprint into the network. Patterns of synaptic strengths constitute a memory that is auto-

associative and non-hereditary. Some activated lymphocytes become special memory cells

that are content-addressable, and non-hereditary.

• in the nervous system, a combination of global/local learning rules occurs, while changes in

lymphocyte concentration constitute the mechanisms for learning within the immune

system.

• definite recognition can be achieved with a threshold affinity. The immune and nervous

systems share this property.

5.2 A Growing Boolean Competitive Network

De Castro & Von Zuben (2000b) developed a growing Boolean competitive network based on the

clonal selection principle and some cognitive characteristics of the immune system. The main

features of the proposed algorithm are: competitive learning, automatic generation of the network

architecture and binary representation of the connection strengths (weights).

Figure 8(a) depicts the overall steps of their algorithm. The main loop of the competitive

strategy can be summarized as follows:

1. choose an antigen (input pattern) Ag according to its probability density distribution P(Ag).

2. determine the highest affinity cell k, according to Equation (8).

3. update the weight vector wk of the most stimulated cell.

4. increment the concentration level τj for the selected cell (j = k).

5. label the cell k with highest affinity with input Aga, and attribute va = k.

kkk AbAg −= maxarg . (8)
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Figure 8: ABNET. (a) Main steps of the learning algorithm. (b) Weights updating procedure.

The weights updating is a guided search, such that the weights become a more perfect complement

of the antigens, and is similar to a multi-point mutation usually employed in evolutionary search

algorithms (see Figure 8(b)). α is called the hypermutation rate and is directly related to the

capability of performing the affinity maturation of a given antibody.

This network was successfully applied to several problems, such as binary character

recognition, major logic decision and pattern classification.

5.3 Associative Memory

An associative memory can be seen as an irregular hypersurface in a space containing valleys,

corresponding to memorized patterns. The local minima of the function that describe this surface

are called attractors, which represent the stored patterns.

Abbattista et al. (1996) presented an associative memory model for storing and retrieving noisy

patterns based on the immune network theory. They tried to increase the memory capacity and

retrieval performance, of a variation of the discrete Hopfield network (Hopfield, 1984) by exploring

the recruitment mechanism of the immune network. This mechanism was used to define a

population of points on an L-dimensional space representing a hypersurface. The best points of this

population were taken as the attractors. Like in the discrete Hopfield network case, this algorithm is

composed of a learning (storing) phase and a recall phase.

Their algorithm was applied to a bipolar dataset in which the affinities were measured via the

Hamming distance between individuals. Some results were presented with relation to the storage

capacity of their model, and its performance compared to the Hopfield network for a single

example, demonstrating a superior error-correction capability of their model.
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5.4 An Unorthodox Neural Network

Hoffmann (1986) and Hoffmann et al. (1986) used the analogy between the immune system network

theory and the central nervous system network to formulate an unorthodox neural network model.

The immune system was viewed, in their network theory, as an N-dimensional system

containing a very large number of singular points representing attractors. Learning in this system

corresponded to transitions to stable steady states with higher “survival” values. The strength of

interaction between any two clones remained fixed. This was in contrast to the traditional view of

learning in the central nervous system, according to which the process involves changes in the

strengths of synaptic connections between neurons. This led to the denomination “unorthodox

neural network”. Figure 9 illustrates the basic features of their network learning algorithm. Table 5

summarizes the relationship between their neural network model and the biological immune system

properties.

No

Yes No

Yes Yes

Generate:
Wij

Stimulus vectors
Response vectors

Set stimulus strength
to a base value

Generate a random
sequence for the

application of the stimuli

Increase stimulus
strength S

Select next stimulusSleep, apply
stimulus

Correct
response

Is S > δ

Is sequence
complete

Apply same stimulus

No

Figure 9: Basic features of the network supervised learning algorithm without changing the synaptic
connection strengths (W ij). When a set of stimuli has been learnt, the system remains in the cycle shown in
double line arrows. δ is a predefined threshold.
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Table 5: Relationship between the biological immune system and the proposed neural network model.

Immune System Neural Network Model

Clone Neuron

Size of a clone Rate of firing a neuron

Number of clones Number of neurons

Stimulation/suppression of a clone Stimulation/suppression of a neuron

Stable steady states (long-term immunity) Singular points (attractors)

5.5 A Multi-Epitope Approach

The works of Vertosick & Kelly (1989, 1991) conjectured that the immune system might represent

an alternative paradigm in which to search for neural network architectures. Based on the Parallel

Distributed Processing (PDP) theory (Rumelhart et al., 1986), they tried to map the immune

network theory into a PDP immune network.

It was argued that B lymphocytes (or lymphocyte clones), could act as the units that compose a

PDP network, in the sense that they receive inputs (from APCs, antigens and/or cytokines), generate

output (antibody), remember antigenic specificity and convert inputs (antigenic stimulation) into

output (antibody secretion) in a quantitative fashion. The PDP immune network architecture could

be multi-layered, where lymphocytes would correspond to input units, plasma cells would be output

units, and lymphocytes producing anti-idiotypic antibodies would serve as examples of hidden

units. The definition of the connection weights within the immune network would depend upon the

definition of the units. The connection weights between two lymphocytes could be defined in terms

of the affinities between their immune receptors. However, if the units were defined as clones, then

both the affinity and the relative sizes of two clones would have to be considered in the definition of

the weight between them. No learning rule was explicitly presented, though the authors strongly

suggested that the learning behavior of the immune system uses an unsupervised, local learning

rule.

Their model also included cytokines, which were responsible for the clonal expansion of the

populations and subsequent alteration of the connection strengths of a PDP composed of clonal

units. Another possible role of cytokines was related to the network temperature. The simulated

annealing of a PDP network was used to find the lowest energy configuration of the network, by

altering the shape of the activation functions of the units.
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6. Anomaly Detection

The normal behavior of a system is often characterized by a series of observations over time. The

problem of detecting novelties, or anomalies, can be viewed as finding deviations of a characteristic

property in the system.

6.1 Computer Security

The problem of protecting computers from viruses, unauthorized users, etc., constitutes a rich field

of research for anomaly (or change) detection systems. Forrest et al. (1994) compared the problem

of protecting computer systems to that of learning to distinguish between self and non-self. They

described a change-detection strategy based upon the thymic negative selection intrinsic to our

immune system.

Their algorithm runs in two phases. In the first phase, a set of detectors is generated according

to Figure 10(a) and, in the second phase, the protected data is monitored by comparing them with

the generated detectors (see Figure 10(b)). If the number of contiguous bits in common between two

strings is greater than or equal to r, then the strings are said to match each other. The authors also

presented equations estimating the probability that a match occurred at at least r-contiguous

positions between two random strings and the change-detection probability for different

configurations of the system.

The main observations about this algorithm were:

1. its tunable with relation to the probability of detection;

2. the size of the detector does not necessarily grow with the number of strings being

protected;

3. the probability of detection increases exponentially with the number of independent

detection algorithms;

4. detection is symmetric; and

5. there is an exponential cost of generating detectors with relation to the size of the self set.

In order to overcome the main drawback of the above-mentioned strategy (item 5), D’haeseleer et

al. (1996) proposed two novel detector-generating algorithms which run in linear time with respect

to the size of the input. They also discussed how to set parameters for the algorithms, like repertoire

sizes, probabilities of match and failure in detection, practical issues and rules of thumb for r-

contiguous bit matching rules. The algorithms run in two phases and are based on dynamic

programming. In the first algorithm a counting recurrence problem for the number of unmatched

strings in S was solved.
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Figure 10: Anomaly detection algorithm. (a) Generation of valid detector set (censoring). (b) Monitoring of
protected data.

The second phase was responsible for the generation of strings unmatched by S. The second

algorithm possessed the same second phase as the first one, with the difference that it tried to select

the detectors placing them as far apart as possible, aiming at achieving a better coverage of the

string space with the same number of detectors.

6.2 DNA-Based Negative Selection

DNA computation is based upon hydrogen bonding based matchings, called hybridizations,

between Watson-Crick complementary pairs, A-T (Adenine-Thymine) or C-G (Cytosine-Guanine).

A single strand (an oligonucleotide) will bind other oligonucleotides that match most closely its

sequence under the operation of Watson-Crick complementation.

Deaton et al. (1997) reduced the change detection algorithm of Forrest et al. (1994) (briefly

discussed in the previous section), to the problem of detecting changes in strings. In their DNA

implementation, template matching hybridization reactions between DNA oligos were used to

detect change.

The censoring and monitoring algorithms presented in Figure 10 were studied with techniques

from molecular biology. Figure 11 depicts the DNA based negative selection algorithm. For details

concerning DNA computation, refer to Adleman (1994).
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Figure 11: DNA implementation. (a) Censoring. (b) Monitoring.

6.3 Virus Detection and Elimination

In the system developed by Kephart (1994), a set of antibodies to previously not encountered

computer viruses or worms (agents) was generated so as to promote a faster and stronger response

to future infecting agents. He was also concerned about minimizing the risk of an autoimmune

response, in which the computer immune system would mistakenly identify legitimate software as

being undesirable.

A particular virus was recognized via an exact or fuzzy match to a relatively short sequence of

bytes occurring in the virus (called a “signature”). The process by which the proposed computer

immune system established whether new software contained a virus had several stages. Integrity

monitors, which used checksums to check for any changes to programs and data files, had a notion

of self that was: any differences between the original and current versions of any file were flagged,

as were any new program. However, evidence of a non-self entity was not by itself enough to

trigger a computer immune response. Mechanisms that employed the complementary strategy of

“knowing the enemies” were also brought into play.

The capture of a virus sample by decoy programs (kept at different strategic areas in memory)

was somewhat analogous to the ingestion of antigen by antigen presenting cells. In the computer

immune system, the infected decoys were then processed by another component of the immune

system, called a signature extractor, so as to develop a recognizer for the virus.
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Figure 12: Main components of the computer immune system and their relationship.

The computer immune system had an additional task that was not shared by its biological analog: it

had to attempt to extract from the decoys information about how the virus attached to its host, so

that infected hosts could be repaired (if possible). Hence, the system automatically developed both a

recognizer and a repair algorithm appropriate to the virus.

Viral self-replication was dealt with self-replication, in the sense that, detection of a virus by a

single computer could trigger a wave of kill signals that propagated along the path taken by the

virus, destroying the virus in its wake. Figure 12 depicts the main components and their respective

function within the immune system discussed in the present section.

Other sources of reference from the same author concerning computer virus detection and

elimination can be found in Kephart et al. (1997, 1999).

6.4 Image Inspection System

Aisu & Muzutani (1996) proposed an immunological learning system aiming at integrating the

distributed search of new agents and constraint relaxation among them. Their work was based on

those of Farmer et al. (1986), Forrest et al. (1994) and D’haeseleer et al. (1996). They applied

immune network dynamics, based upon a dynamic equation, to study the interactions among

antibodies and between antibodies and antigens. The dynamic equation took into account the

stimulation and suppression among antibodies, their stimulation by antigens and a natural death rate

(see Equation (9)).
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Figure 13: (a) Genetic encoding for the detectors. (b) Suppression of detector C that (partially) covers the
same portion of the pattern space. A new detector D is created.

Their system consisted of distributed antibodies, named detectors, which reacted to non-self

patterns. Each detector was an independent agent doing checks in parallel, with the limited role of

detecting their assigned non-self patterns. They used a Hamming shape-space to study cell-cell

interactions, but their detectors (antibodies) contained the affinity threshold embodied in the last

position (allele) of the string. The combination of a diversity generation mechanism and suppression

resulted in redundancy avoidance among the coverage of each detector. Figure 13(a) depicts their

encoding scheme and Figure 13(b) represents how the suppression term of Equation (9) can assist in

the problem of eliminating detectors that cover the same portion of the pattern (antigen) space.

The algorithm works as follows:

• generate an initial set of detectors;

• generate a new detector randomly or by using mutation and add it to the detectors set;

• evaluate the detectors, eliminating those self-recognizing ones;

• renew the concentration of detectors using the dynamic equation given by (9);

• delete detectors with concentration level bellow a given threshold.
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The first term represents the stimulation of antibody i by other antibodies, the second term

represents the suppression of antibody i when it is recognized by other antibodies. The third term

corresponds to the antigenic stimulation of Ab i, and the fourth term is the natural death rate.

6.5 Image Segmentation

The pattern recognition task performed by the immune system has much in common with the aerial

image segmentation problem. This was studied by McCoy & Devarajan (1997), who used a
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negative selection algorithm to construct a set of detectors that weeds out everything but the desired

class.

Their algorithm assumed a discrete feature space represented by an L-digit bit string generated

from images extracted from single band infrared-sensors of road pixels. A string m = <0...010...0>

contains a digit 1 (in position k) indicating the region of feature space for the target pattern. The

detectors were produced according to the rule: generate random binary strings, if position k is 0, add

the string to the population. If the logical OR of the population constitutes the exact complement of

m, stop. This procedure generates the non-self detectors set, and if none of the population has any

bit in common with the test string, then it belongs to the target class.

The authors compared the results achieved by their artificial immune system and those obtained

by genetic programming, concluding that both methods are suitable for parallel implementation but

the new one is expected to adapt more readily to changes in its sample data, being dynamically

adjustable. They also argued that finding a population of detectors that covers non-self features is

easier than finding a single optimal detector, since there are many ways to arrive at an acceptable

solution.

6.6 Novelty Detection in Time Series Data

Dasgupta & Forrest (1996) proposed a novelty detection algorithm for time series data, based on the

previously discussed negative-selection algorithm introduced by Forrest et al. (1994) and

D’haeseleer et al. (1996).

Their algorithm can be summarized as follows:

• collect sufficient time series data to exhibit the normal behavior of a system;

• determine the range of variation of data and perform a binary encoding according to the

desired precision;

• select a suitable window (concatenation of a fixed number of data points) size which

captures the regularities of interest;

• slide the window along the time series, in non-overlapping steps, and store the encoded

string for each window as self, from which detectors will be generated;

• generate a set of detectors that do not match any of the self strings;

• once a unique set of detectors is generated from the normal database of patterns, it can

probabilistically detect any change (or abnormality) in patterns of unseen data;

• while monitoring the system, use the same encoding scheme for the new data patterns. If a

detector is activated, a change in behavior has occurred and an alarm might signal.
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The authors reported results for two data sets: a simulated cutting dynamics of a milling

operation and a synthetic signal. They observed that the number of r-contiguous bits chosen by the

matching function was responsible for tuning the reliability of detection against the risk of false

positives. In a later work (Dasgupta & Forrest, 1999), the authors presented a more detailed

discussion about the same artificial immune system.

7. Agent-Based Approaches

An agent is anything that can be viewed as perceiving its environment through sensors and acting

upon that environment through effectors. The immune system is composed of an enormous set of

cells, molecules and organs, which can be viewed as immune agents distributed all over our bodies.

7.1 Network Security

Forrest et al. (1997) and Hofmeyr & Forrest (1999, 2000) have been pursuing the problem of

developing an artificial immune system that is distributed, robust, dynamic, diverse and adaptive,

with applications to computer network security.

In their system, the several immune system cells and molecules were simplified by the

definition of a basic type of detector that combined useful properties from these elements. The

detector cell had several different possible states, roughly corresponding to thymocytes, naive B-

lymphocytes and memory B-lymphocytes. The detectors were represented by bit strings of a given

length, and a small amount of state, as depicted in Figure 14(a). Detection was performed by a

string match process that took into account the number of r-contiguous bits between two strings.

The definition of self (tolerization period) was performed by the negative selection algorithm

described in Forrest et al. (1994). The maturation of naive detectors into memory detectors, together

with the negative selection, were responsible for the learning part of the system (see Figure 14(b)).

The authors used permutation masks to achieve diversity of detectors.

The authors reported results of a computer network intrusion-detection application, but

suggested that this artificial immune system can be successfully applied to other classes of

networks, including social nets, organizations, networks of markets and neurological or ecological

networks.

Based on these works and those described in Section 7.1, Kim & Bentley (1999a,b) are

working on the development of a network intrusion detection system inspired in the immune

system.
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Figure 14: (a) Architecture of the AIS for computer network security. (b) Life cycle of a detector.

In Kim & Bentley (1999a), the authors reviewed and assessed the analogy between the human

immune system and network intrusion detection systems. They aimed at unraveling the significant

features of the IS that would be successfully applied to the task of detecting intrusions in computer

networks. Upon their analysis, they identified three fundamental requirements for the derivation of

the design goals for network-based intrusion detection, named distribution, self-organization and

being lightweight. Table 6 describes the immune system components and functions that satisfy the

three requirements listed.
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Table 6: Components of the immune system that satisfy the requirements for
the development of an efficient intrusion detection system (IDS).

Characteristic of an IDS Immune System

Immune network
Distribution

Unique antibody sets

Gene library evolution

Negative selectionSelf-Organization

Clonal selection

Approximate binding

Memory cellsLightweight

Gene expression

Table 7: Relationship between the network intrusion detection system and the immune system.

Network Environment Immune System

Primary IDS Bone marrow and thymus

Local hosts Secondary lymph nodes

Detectors Antibodies

Network intrusions Antigens

Normal activities Self

Abnormal activities Non-Self

In a further work (Kim & Bentley, 1999b), the authors proposed a Negative Selection Algorithm

(NSA) with niching for network intrusion detection. They also suggested that an overall artificial

immune model for network intrusion detection would be comprised by three distinct evolutionary

stages: 1) negative selection, 2) clonal selection and 3) gene library evolution. Table 7 shows how

they related the immune system with their network environment, and Figure 15 presents the

physical architecture of their system (IDS corresponds to Intrusion Detection System).

The negative selection algorithm with niching simply replaces the random generation of

detectors by the evolution of detectors towards non-self. In phase 1), the modified NSA was used to

build self profiles, which were encoded in an appropriate data representation. In phase 2), the NSA

with niching started generating detectors. After that, new self profiles were built by parsing newly

captured network packets. In the third phase, the detector patterns in each detector set were

compared to the patterns in each corresponding new self profiles. If the similarity between any

detector pattern and new self pattern is above a pre-defined threshold, an alarm signal is given.
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Figure 15: Physical architecture of an artificial immune system for network intrusion detection.

In a recent work, Dasgupta (1999b) proposed an agent-based system for intrusion/anomaly

detection and response in networked computers. In his approach, the immunity-based agents

roamed around the nodes and routers monitoring the situation of the network. The most appealing

properties of this system were: mobility, adaptability and collaboration. The immune agents were

able to interact freely and dynamically with the environment and each other.

Figure 16 depicts the types of agents employed and their hierarchical coordination. The

decision/action agents could assume the forms of helper, killer or suppressor agents, like in the case

of T-cells. The communicating agents corresponded to lymphokines, secreted by T-cells to regulate

the immune response. Some of the monitoring agents worked in the complement space for

monitoring changes (non-self), while others had the knowledge of known intrusions.

Monitoring
agents

Monitoring
agents

Network Environment

Communicating agents Communicating agents

Action
Agents

Action
Agents

ResponsesResponses

Figure 16: Conceptual view of the proposed multi-agent intrusion detection system.
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7.2 Computer Virus Detection and Elimination

Okamoto & Ishida (1999a,b) proposed a distributed approach to computer virus detection and

neutralization by autonomous and heterogeneous agents. This system detected viruses by matching

a self information (like the first few bytes of the head of a file, the file size and path, etc.) against

the current host files. Viruses were neutralized by overwriting the self information on the infected

files and the recovering was attained by copying the same file from other uninfected hosts through

computer network. Figure 17 depicts the whole anti-virus system and the virus neutralization

mechanism.

Their system was composed of the following types of agents:

• detection/neutralization agents, named antibody agents;

• killer agents (mimicking killer T-cells) responsible for removing the altered files that were

neutralized by antibody agents;

• copy agents that sent and received requests for copying uninfected files over the computer

network; and

• control agents (mimicking helper T-cells) responsible for controlling the process of the anti-

virus system.
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Figure 17: (a) Diagram of the anti-virus system. (b) Virus neutralization by antibody agent.
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According to the authors, the main drawbacks of their approach were the critical determination of

the size of the head part to be used by the antibody agent (a too long head could be very memory

consuming, while a too small one could be ineffective), and the recovery through the network, that

could cause deadlock or secondary infection.

7.3 Intelligent Buildings

The principle of building an automation system is to regard each device of this system as an

information processing unit, and to execute control actions by transmitting messages among them.

A set of microprocessors is used to transform the devices into information processing units. The

term intelligent buildings, or smart buildings, is being used to describe automated buildings, where

technology is used to realize rather complex functions, like water, gas and energy management,

security, remote control, transportation and communication (within the building and with the

outside world).

Dilger (1996) proposed an agent-based security system for intelligent home technology aiming

at improving the technical facilities of a home. The security system was modeled similarly to the

natural immune system in two ways: it was self-organized and capable of producing a flexible

reaction according to the degree of danger. The sensors and actuators of the house were regarded as

stationary agents simply defined based on states and rules. An interesting point of this security

system was the fact that not only the presence of a burglar was detected by the sensors, but also

outside events, like thunderstorms, etc.

The agents were defined according to the following syntactical scheme:

• device <name of the device type, e.g. motion detector, alarm, etc.>

• type <class of device>

• parameters <list of parameters that could be manipulated by the device>

• constants <list of constants>

• variables <list of local variables>

• state1,…,staten

A state had the following form:

• status <value of the state>

• list of rules

In a later work, Dilger (1997) proposed the use of an evolutionary process to optimize the behavior

of the system, i.e. to tune its relevant parameters. In addition, he pointed out several aspects of

immune-based systems that were contained in the intelligent home, like self-definition and
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maintenance. He regarded the situations (presence of burglars, weather, etc) as antigens, and the

specifications of situations in the rules as antibodies, activated by certain antigens (situations). The

Jerne immune network idea was brought up by the interconnection scheme of the agents composing

the security system.

7.4 Adaptive Noise Neutralization

Based upon the immune properties of diversity, self-tolerance and memory of non-self, Ishida

(1996c) developed an agent-based immune algorithm with possible applications to noise

neutralization, group task achievement, model adjustment and decision making.

The author detached as one of the most striking characteristics of his algorithm its super

adaptability, not only to a changing environment but also to a changing self (own system). The

algorithm worked in three steps:

• generation of diversity;

• establishment of self-tolerance;

• memory of non-self.

Figure 18(a) presents a general outline of the algorithm. Figure 18(b) depicts a schematic

diagram of the immune algorithm for an agent-based architecture. The author suggested an

encoding scheme as those used by the traditional applications of a genetic algorithm.
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(driving parameter changes)

2. Establishment of self-tolerance
(driving structural changes)

SYSTEM
(self)
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Figure 18: (a) Schematic diagram of the immune algorithm. (b) Immune algorithm for an agent-based
architecture.
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8. Learning

Learning is usually addressed to the processes of acquiring knowledge from experience and

abstracting this knowledge to solve new, previously unseen problems. The process of immunizing

(through vaccination, for example) is a clear example of an immune learning mechanism. Similar

strategies can be used to solve problems like pattern recognition, concept learning, etc.

8.1 Pattern Recognition

Hunt & Cooke (1996) proposed a formal architecture for an artificial immune system (AIS) that

was evaluated in pattern recognition problems. The key features of the immune system they

explored were the genetic mechanisms used to construct antibodies, the clonal selection and affinity

maturation of the immune response, the immune content addressable memory, the matching

mechanisms of the immune system and its network self-organizing properties.

They used an object-oriented approach such that their algorithm was composed of a set of

intercommunicating objects, like a bone marrow object, a network of B-cell objects and an antigen

population. There was a main algorithm as illustrated in Figure 19(a). The most complex concept in

their AIS was the B-cell object (see Figure 19(b)). The antibodies possessed a paratope representing

the antigenic pattern they match and the antigens had a single epitope. The stimulation level of a B-

cell object, given by Equation (10), took into account the strength of the match between an antibody

and its neighbors (first term), its enmity for its neighbors (second term), the Ag-Ab affinity (third

term), and the natural death rate (fourth term). ki (i = 1,...,3) are constant values corresponding to

possible inequalities between stimulation and suppression.  A somatic hypermutation was used to

increase the affinity between the B-cell objects and the antigens. The stimulation level and somatic

hypermutation were determined based on a variation of the model proposed by Farmer et al. (1986).
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As conclusions, the authors suggested that the proposed AIS has great potential for being

applied to areas like classification, prediction, diagnosis and data mining.

The limitations and problems identified in this version of the ISYS system, led to the design of

the JISYS system (Hunt et al., 1999), which is a Java-based implementation of the ISYS system.
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Randomly initialize initial B cell population
Load antigen population
Until termination condition is not met, do

Randomly select an antigen from the antigen population
Randomly select a point in the B cell network to insert the antigen
Select a percentage of the B cells local to the insertion point
For each B cell selected

Present the antigen to each B cell and request immune response
Order these B cells by stimulation level
Remove worst 5% of the B cell population
Generate n new B cells (n = 25% of the population)
Select m B cells to join the immune network (m = 5% of the population)

Link to other B
cells in the

network

TAGC           X

Gene Sequence

mRNA

Antibody

Stimulation level

(a) (b)

Figure 19: (a) The immune system object algorithm. (b) Structure of a B-cell object.

Table 8: Comparison of machine learning approaches. SO: Self-Organizing, U:
Unsupervised, NTE: Negative Training Examples, OS/IN: One Shot/Incremental, SY:
Symbolic, NT: Noise Tolerant, XOR: XOR problem.

Approach SO U NTE OS/IN SY NT XOR

AIS ♦ ♦ ♦ O/I ♦ ♦

ANN ♦ O/I ♦ ♦

LCS ♦ I ♦ ♦

MI ♦ O ♦ ♦

CBR ♦ ♦ O ♦ ♦

8.2 Concept Learning

Potter & De Jong (1998) used the self/non-self discrimination mechanism of the immune system as

a source of inspiration for the development of a co-evolutionary genetic algorithm that differentiates

examples from counter-examples of a given concept. Their model was limited to the interactions

between B-cells and antigens, and was applied to concept learning from pre-classified positive and

negative examples by equating them to foreign and self molecules, respectively. In the case of noise

free examples, the system was evolved to a point where all the foreign and none of the self-

molecules were recognized.
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Figure 20: B-cell genotype to phenotypic mapping.

In this model, a B-cell consisted of an antibody type and a real-valued activation threshold that

represented the binding strength required to initiate an immune response. The representation

employed was based on the work of Forrest et al. (1993), where a binary schema represented an

antibody and simple binary strings represented antigens. The matching function returned the

percentage of matching bits between Ag-Ab, which was used to compute the binding strength.

Figure 20 illustrates the genotype to phenotype mapping of B-cells. The antibody schema was

produced from binary patterns and mask genes. A mask bit of ‘0’ produced a “don’t-care” schema

value. The real-valued activation threshold was generated from an 8-bit threshold gene. A co-

evolutionary genetic algorithm was used to evolve the B-cells such that individuals from multiple

non-interbreeding species collaborated to solve a target problem. Each species (collection of B-cells

having similar antibodies) represented only a partial solution. The fitness of a B-cell was

determined by adding it to a “serum” composed of the current best B-cells. Foreign and self-

molecules were then presented to the serum. If the Ag-Ab binding strength exceeded its activation

threshold, then the antibody successfully recognized the antigen. The fitness of the B-cell was

defined as the number of foreign molecules recognized by all the antibodies in the serum, minus the

number of self-molecules flagged as foreign. The final solution consisted of the best B-cell from

each species.

The results of this approach were compared to a sophisticated symbolic inductive learning

system, called AQ, applied to a congressional voting record data set. The authors suggested that

their strategy was capable of producing a more concise description of the concepts than the AQ

method, with similar predictive accuracy, and argued that it happens due to the more flexible

strategy employed by the co-evolutionary immune model.
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8.3 The Baldwin Effect

The Baldwin effect proposes that learning or acquiring useful characteristics during a lifetime

would cause succeeding generations to have higher probabilities of acquiring this same

characteristics, even though the characteristics themselves are not genetically propagated.

Hightower et al. (1996) used a binary model of the immune system, together with the clonal

selection principle and affinity maturation of the immune response to study the influence of

learning in the evolution of the genetic representation of antibodies. Antibodies and antigens were

simply represented as binary strings of same length and the match score given by the XOR

operation (Hamming distance) taken between the two strings, i.e. the number of complementary

bits. The binding value was a non-linear (sigmoidal) function of the match score (see Figure 21 for

an illustration).

By varying the learning rate (somatic mutation rate), they showed the presence of the Baldwin

effect, in the sense that learning accelerates evolution by allowing it to discover which individuals

are nearest to the threshold of success. The authors suggested that the Baldwin effect disappeared

when the non-linear binding function was replaced by a linear one.
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Figure 21: Non-linear relation between binding value and match score for a bit string of length L = 7 and
affinity threshold ε = 2. 

8.4 Generation of Emergent Properties

In order to study the generation of complexity shown in higher living organisms, Nagano &

Yonezawa (1999) proposed a generative physical model constructed on complex systems based on

a primitive immuno-defense system. The authors suggested that the origin of self-organization and

ordered complexity are equivalent to the establishment of a “self system”, and hence can be
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achieved by the generation of a self-recognition (self/non-self discrimination) mechanism and a

punctuated equilibrium hypotheses.

The individuals of a non-self set were composed of DNA sequences and matched against an

initial self-set of DNA sequences. Then, they were subjected to a genetic algorithm in order to

observe the generation of complexity and the correlation among the DNA sequences and the

self/non-self discrimination problem.

According to the authors, the most relevant results taken from their experiments were:

• the self/non-self recognition mechanism generated complexity and adaptability;

• due to the recognition mechanism, the self system was maintained regardless environmental

fluctuations;

• each self system and population had properties of punctuated complexity and correlation;

and

• each self system showed an adaptive behavior.

9. Inductive Problem Solving

Inductive learning, or inductive problem solving, is essentially a search problem. Slavov &

Nikolaev (1998) and Nikolaev et al. (1999) introduced enhanced evolutionary strategies based on

this new approach.

9.1 Finite-State Automaton

Slavov & Nikolaev (1998) proposed an evolutionary search algorithm based on a discrete version of

a model of the immune network dynamics. The algorithm alternates continuously in cycles of three

search phases, from oscillatory through asymptotic to chaotic, and the system self-regulates.

The authors applied their immune algorithm to solve an instance of the intractable finite-state

automata induction problem (see Figure 22 for an illustration of a finite-state automaton subject of

learning). Individual automata were associated with lymphocyte clones, the examples were assumed

to be the antigens, and the fitness of the automaton was given by its concentration. The proliferation

of an automaton (clone) was function of two factors: the degree of recognized examples (antigens),

and the interactions among the automata (clones). Table 9 presents the trade-off between their

immune algorithm and the biological immune system.

The fitness function, responsible for controlling the immune algorithm, took into account the

fitness of the automaton at each generation, the antigen score, the automaton turnover, the network

excitation and a proliferation function.
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Figure 22: Deterministic finite-state automaton subject of learning.

Table 9: Mapping between the automata approach and the biological immune system.

Automata Identification Immune System

Finite-state automata Lymphocyte clone

Fitness of the automata Concentration of a clone

Recognizing capacity of the automaton Binding capability of the clone

Complementarity in the automata’s behavior Interaction between lymphocytes

Example Antigen

Power of an example Antigen concentration

All automata in the population Immune network

The authors suggested that their algorithm supports more variety in the population than the standard

genetic algorithm, due to a greater number of Ag-Ab complexes in the repertoire, i.e. more

individuals with different qualities.

9.2 Genetic Programming

Nikolaev et al. (1999), introduced an immune version of Genetic Programming (GP). In this

immune GP version (iGP), the progressive search was controlled by a dynamic fitness function,

based on an analogy with a model of the immune network dynamics. The programs were reinforced

with rewards for matched important examples and stimulated to match different examples. The

fitness function consisted of two dynamic models that exerted influence on each other: a model for

propagating programs that recognized more important examples, and a model for changing the

importance of examples with relation to the number of programs that recognize it. The analogy

between the genetic programming and the biological immune system is presented in Table 10.

The authors applied their method to a machine-learning task and a time series prediction

problem. The machine-learning considered the computational induction as a problem of finding a

function f from a given set of examples {(x1,y1),…, (xN,yN)}, and the time series prediction was

regarded as the inductive problem of identifying regularities among a given series of points:
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Table 10: Analogy between the genetic programming and the biological immune system.

Genetic Programming Immune System

Program Lymphocyte clone

Fitness of the program Concentration of a clone

Fitness proportional selection Clonal selection process

Complementarity in the recognition potential of two programs Interaction between two antigens

Example Antigen

Importance of an example Antigen concentration

All programs in the population Immune network

…,xt, xt+1,… sampled at discrete time intervals. The performance of the proposed algorithm was

compared with a traditional GP system that uses multivariate trees representation models. The only

difference between the two methods is that the iGP uses a dynamic fitness measure inspired in a

model of the immune network dynamics.

The results presented demonstrated that the immune version attained fitter programs

maintaining higher population variety (diversity) on the machine-learning and time series prediction

problems tested.

10. Pattern Recognition

Pattern recognition is the research area that studies the operation and design of systems that

recognize patterns in data. It encloses sub-disciplines like discriminant analysis, feature extraction,

error estimation, cluster analysis, grammatical inference and parsing (sometimes called syntactical

pattern recognition). Important application areas are image analysis, character recognition, speech

analysis, man and machine diagnosis, person identification and industrial inspection.

10.1 A General Approach

A binary immune system model was used by Forrest & Perelson (1992) and Forrest et al. (1993) in

order to study the pattern recognition and learning that takes place at the individual and species

level in the immune system. A genetic algorithm was used to study the maintenance of diversity and

generalization capability of this bit string model of the immune system, where generalization means

the detection of common schemas that are shared among many antigens.

The authors used a simple binary encoding for the molecules (Ag and Ab) and the match

function performed the sum of complementary bits between the strings. One interesting aspect of
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this work was the use of a don’t care (*) character in the definition of the antigen molecules, i.e., the

strings were constructed over the alphabet {0,1,*}. This way, it was possible to study the GA’s

ability to detect common patterns (schemas) in the antigen population without at the same time

requiring the model to differentiate between multiple incompatible antigen types.

The results presented showed that the GA could evolve an antibody type that matched multiple

antigens through the identification of a common schema.  In addition, by matching an antigen with

multiple antibodies and then giving the fitness score to the best matched antibody, it was shown that

a population could be evolved and maintained that contained representatives of different antibodies.

Thus multiple peaks could be discovered and maintained in this population with this matching and

scoring schemes. The mathematical results were presented in Smith et al. (1993).

10.2 Spectra Recognition

A general form of a chemical reaction maps a set of reactants (R) into a set of products (P). By

using a binary representation, Dasgupta et al. (1999) described each of the reactants and products

for spectra recognition. Each bit in the string corresponded to a peak occurrence within an equal

length of wavenumbers.

The relationship between their immunological terminology and the developed spectra

recognition algorithm is described in Table 11. Equation (11) represents the match function between

two bit strings.
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where bi is the i-th bit value of the n-th bit in the string; T is the pre-defined threshold; Wi(hi,ci) is

the weight of the i-th bit as a function of the presence of a peak hi and a characteristic property ci.

Table 11: Immunogenetic spectra recognition.

Immune system Spectra Recognition

Self Set of starting reactants R before chemical or photochemical reactions

Non-self Set of products due to reaction

Antigen Any of the products P

Antibody Any evolved population which uniquely recognized a single product

Matching A match occurs if the Ag-Ab similarity exceeds a certain threshold T

Matching function Measures how well two spectra match, according to Equation (11)
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Randomly generate a
population of strings
of same length as Pk

Use Pk as an antigen
to evolve a population
of antibodies for Pk

Evaluate F. Keep those
strings with F ≥ T1 and
use a GA on the others
untill a no. of Ab for Pk
is determined

Keep the
good Ab

Apply
genetic
operators
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Represent reactant R
and product P spectra
as binary strings

Remove those Ab
whose F < T2 with R
or other P

Keep only those Ab
left (specialists for Pk)

Put the specialists into
an antibody library

Repeat and find Ab
for the next product
Pk+1

Good   Bad

        

Algorithm for Recognition

0: Input new string S
1: Expose S to the specialist library L
2: Find all Ab whose binding exceeds T2

3: Check for the existence of unassigned peaks
3.1 If Yes, name it unknown (U), evolve a
      population of Ab for this unknown and
      add these Ab to L

4: Return Ab and U

(a) (b)

Figure 23: Spectra recognition. (a) Evolving specialists. (b) Algorithm for recognition.

A typical genetic algorithm was used to create a library of specialists to perform the central

administration of spectrum recognition. Figure 23(a) illustrates the proposed immunogenetic

approach for evolving specialists, and Figure 23(b) describes the algorithm used for recognition.

11. Computer Models

The first models of immunological phenomena were mathematical in nature. They involved the

definition of a set of differential equations that governed the behavior of the system. For good

surveys on mathematical models, see Mohler et al. (1980) and Perelson & Weisbuch (1997).

Actually, many computational-based models are being developed, among which we can detach

cellular automata and agent-based approaches.

11.1 Cellular Automaton Model

A cellular automaton is a dynamic system whose evolution is completely described by local

interactions, and is discrete in both space and time. Celada & Seiden (1992, 1996) and Seiden &

Celada (1992) constructed a cellular automaton model of the immune system focusing on the

clonotypic cell types and their interactions among each other, antigens and antibodies.
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1. They consist of a discrete lattice of sites
2. They evolve in discrete time steps
3. Each site takes on a finite set of possible values
4. The value of each site evolves according to a probabilistic rule
5. The rules for the evolution of a site depend only on the site

itself
6. Entities move from site to site. At the end of each time step the

entities are allowed to diffuse to adjacent sites

  

Start time step

Inject antigens

Let T cells stimulate APCs and B cells

Delete overage cells

Let antibody bind antigen and antibody
Let B cell bind antigen and antibody
Let APC bind antigen and antibody/antigen complexes

Anergize B cells

Delete antigens, antibodies and complexes

Create new cells and age cells

Differentiate multiplied B cells into plasma and memory cells

Create antibodies

Move cells and molecules

End time step

(a) (b)

Figure 24: (a) Rules for the proposed cellular automaton model. (b) Steps in the simulation.

Their model included B and T-cells, each of which possessing a receptor represented as a binary

string of L bits with a fixed, directional reading frame. A T-cell possessed a single L-bit receptor,

while a B-cell had an L-bit receptor plus an L-bit MHC molecule. Non-specific antigen presenting

cells were also added, with the same MHC’s as the B-cells. Antigens were represented by a number

of L-bit segments corresponding to the epitopes and peptides. Epitopes were defined as the portion

of an antigen that is recognized by a B-cell receptor and peptides the portion of the antigen that can

be bound by an MHC molecule and recognized by an appropriate T-cell. Antibodies were taken to

have the same form as antigens, and had a paratope that was identical to the receptor of the B-cell

that secreted them. There were two types of interaction between system elements. The first type was

governed by specificity and the second one was non-specific, and took place between an APC cell

and antigens or antigen-antibody complexes. The main rules for their cellular automaton model are

depicted in Figure 24(a) and the steps in the simulation are shown in Figure 24(b). Figure 24(b)

gives a more general idea of all the types of features embodied in their model.

This model was further extended to include infectious virus and cytotoxic T lymphocytes, i.e., a

cellular response (Bezzi et al., 1997). Bernaschi et al. (1998) presented a parallel implementation of

the Celada-Seiden automaton discussed above.

11.2 Multi-Agent Model

Ballet et al. (1997) simulated a human secondary humoral response with a multi-agent system

to study the kinetics of the antibody proliferation with several types of antigenic substances, like

death antigens, poorly recognizable antigenic substances, proliferative antigens and antigenic

substances directed against one of the immune system agents.
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Figure 25: Multi-agent system model.

A multi-agent system was chosen because of the following reasons:

• it can describe different cells through their behavior and interaction;

• it is easy to integrate improvements and new knowledge in the model; and

• the simulations allow the study of collective phenomena without forgetting the concept of

entity.

Their model embodied five different kinds of cells: macrophage (M), antigen presenting cell

(APC), T CD4 cell (T4), B cell (B) and plasmocyte (P). In addition, four interleukines were used:

IL2, IL4, IL5 and IL6. At last, an environment (E) that released chemotactic substances (CS) had to

be defined. The relationship among the various agents composing the system is depicted in Figure

25, where index ‘a’ indicates an activated cell.

11.3 Disease Processes

Epstein & Axtell (1996) used a simpler agent-based model than the previous one, but their goal was

studying how intra- and interagent infection dynamics could affect other social processes such as

migration and trade.

In this model, every agent was born with a distinct immune system (IS), capable of adapting to

a ward of diseases. The approach was based on a Hamming shape-space, where the immune

systems were described by binary strings of a given length, and the diseases were of different length

always shorter than the immune systems. If any substring of the immune system perfectly matched

(non-complementary match) the disease, it was considered immune (or tolerant) to the disease. An

immune response was simply the process whereby the immune system attempted to modify its

structure locally in order to match each disease it encountered. At each time step one single bit of
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the infected immune system was changed in order to reduce its Hamming distance from the

infection, a process called “learning”.

An interesting aspect of this work was that the agents infected could pass the diseases to some

of their neighbors, and also the diseases were able of “stealing” metabolic capacity of their hosts, a

behavior like that of biological parasites. This would cause different behaviors in the “sick” agents.

Two types of rules controlled the system.

1. Agent immune response rules:

• if the disease is a substring of the IS then end, else go to the following step;

• the substring in the agent IS having the smallest Hamming distance from the disease is

selected and the first different bit switched.

2. Agent disease transmission rule:

• for each neighbor, a disease that currently afflicts the agent is selected at random and given

to the neighbor.

12. Other Approaches

The approaches presented in this section are all those that did not take part in the previous sections,

but are considered relevant (and were available for the authors) for bringing new insights into the

theory of artificial immune systems.

12.1 Open WebServer Coordination

Open WebServer is an adaptive web server and a framework for building a versatile server, which

reifies various system execution policies in a web server as metaobjects. Each metaobject represents

a policy for concurrency, I/O event dispatching, protocol filtering, connection management,

caching, logging and service redundancy (Suzuki & Yamamoto (2000a,b)).

The works of Suzuki & Yamamoto (2000a,b) focused on the development of a Java-based

framework for building an artificial immune network, called iNet. The iNet was used to design a

policy coordination facility from the immunological point of view, where the system current

conditions represented the antigens, and each quality-of-service (QoS) policy management was

regarded as an antibody.

The structure of an antibody is shown in Figure 26(a), and Figure 26(b) depicts a class diagram

showing the kernel of the iNet. The dynamics of the network was determined by a differential

equation, based on that defined by Farmer et al. (1986) and further extended by Ishiguro et al.

(1996, 1997) (see Section 2.1).
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Figure 26: (a) Structure of an antibody in the iNet. (b) A UML class diagram for a kernel of iNet.

12.2 Scheduling

Hart et al. (1998), proposed an artificial immune system to producing robust schedules for a

dynamic job-shop scheduling problem in which jobs arrive continually, and the environment is

subject to changes. They investigated whether an AIS could be evolved using a GA approach, and

then be used to produce sets of schedules which together cover a range of contingencies, predictable

and unpredictable. Their model included evolution through gene libraries, affinity maturation of the

immune response and the clonal selection principle.

An antigen represented a set of expected arrival dates for each job in the shop and hence each

Ag described the changes that could occur and force a schedule to change. An antibody represented

the schedule itself. Each antibody was produced, by randomly combining components, from an AIS

which consisted of l libraries, each containing c components of s genes (see Figure 27 for an

illustration). An antibody was said to match an antigen if the schedule it represented satisfied each

of the fixed due dates, given the arrival dates defined in the antigen.

A GA was used to evolve an AIS, where each individual of the population represented a single

AIS.
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Expressed antibody

C1    C2    C3    C4

C components per library

l  l
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ra
rie

s

   L11    L12     L13     L14

   L21    L22     L23     L24   L11   L22    L33

   L31    L32     L33     L34

Figure 27: Generating an antibody from a set of l gene libraries composed of c components of length s.

The fitness of each individual (AIS) was calculated by the expression:

• express N antibodies at random and decode them into schedules;

• select K antigens at random, with replacement;

• for each k (k = 1,...,K) calculate its match-score and assign k the best match-score;

• average the K scores to give the overall fitness for the individual.

The authors modeled the affinity maturation of the antibody repertoire in the following way:

after a match-score for an antibody had been calculated, the antibody was mutated at random in M

positions, and the match-score recalculated. If the match-score improved, then the original antibody

was assigned this new match-score. The clonal selection was used to create C clones of the best

individual of the population, which were subjected to a hypermutation mechanism.

They concluded that the fittest schedules were obtained at low mutation rates, and high sizes of

the initial population (N) and number of clones (C).

In a later work, Hart & Ross (1999) proposed a scheduling application of an artificial immune

system, called PRAIS (Pattern Recognising Artificial Immune System). In their system, sudden

changes in the scheduling environment required the rapid production of new schedules. Their model

operated in two phases. A first phase comprising the immune system analogy in conjunction with a

genetic algorithm, in order to detect common patterns amongst scheduling sequences frequently

used by a factory. In phase II, some of the combinatorial features of the natural immune system

were modeled to use the detected patterns to produce new schedules, either from scratch or by

starting from a partially completed schedule.

Their system was based on the works of Forrest et al. (1993) and Smith et al. (1993), with

several additions and modifications. An antigen (Ag) was considered to represent a sequence of

jobs on a particular machine, represented by an integer string of length L1. An antibody (Ab) of

length L2 (L2 < L1) represented a short sequence of jobs that is common to more than one schedule.
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Antigen 1  2  3  4  5  6  7  8  9    Match-score

3  4  6  7  8  *  1
    3  4  6  7  8  *  1

Antibody         3  4  6  7  8  *      10 + 1 = 11
            3  4  6  7  8  *      15 + 1 = 16    Best Score

Figure 28: Integer-valued encoding for the antigen and antibody molecules, together with the matching
function. A match between number corresponds to a score of 5 and a don’t care corresponds to a score of 1.

The Ab could contain don’t care alleles ‘*’, to facilitate incomplete matching, and the fitness

function constituted a modified version of the emergent fitness sharing function, in which the

degree of generalization or specialization exhibited by the evolved antibodies could be controlled

by altering some pre-defined parameters. The Ag-Ab match score took into account the presence of

don’t cares and the string lengths. If the string were of different lengths, the match-score was

calculated for every possible alignment position, and the highest score found returned. Figure 28

illustrates the strings and their match function.

They focused on controlling the evolution of the population aiming at varying both the

diversity of the antibodies produced, and the extent of the coverage of the antigen universe. They

showed that the antibodies evolved could be used to reconstruct the set of original schedules that the

immune system had been exposed to, and also to construct schedules that had not been seen

previously.

12.3 Data Mining

Data mining, or knowledge discovery in databases, is related to the process of identifying novel,

valid and potential patterns in data, where the critical issue is the extraction of knowledge from the

given dataset. Hunt et al. (1995) and Hunt & Fellows (1996) illustrated how the immune system is

inherently case-based and how it relies on its content addressable memory and a general pattern

matcher to help in the identification process of new situations that are similar to past situations.

They constructed a case memory inspired in the immune system and network theory and showed

that its pattern recognition, learning and memory acquisition operations could support a Case-

Based Reasoning (CBR) system.

Figure 29 illustrates the basic architecture of a CBR system (Aamodt & Plaza, 1994). The cases

can contain any kind of information, e.g. the profile of a person, indicating its age, marital status,

income, etc. In the system proposed by Hunt et al. (1995), an immune network represented the

constructed case-base, where similar cases occupied neighboring regions in the network, and the

new cases represented the antigens. Figure 30(a) illustrates the kind of encoding scheme used by the

authors, and Figure 30(b) depicts their matching algorithm. Notice that the matching function took
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into account the total number of matches (for each instance of a case) plus the length of the

matching regions, according to Equation (12)

∑+=
i

l i

T 2score Match (12)

where l is the length of each region i containing more than 1 match. According to the authors, the

main advantage of their method was the emergence of a network-like structure for the case-base,

without the need of a detailed domain analysis to define and maintain the memory organization

(case-base).

In a recent work, Timmis et al. (1999) applied the network-based artificial immune system

described in Section 8.1 to the problem of pattern classification. Their strategy was compared to

Single Linkage Clustering and the Self-Organizing Feature Maps and applied to the Iris data set of

Fischer (1936).
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Figure 29: Case-Based Reasoning architecture.

Age
Sex
Income
Married
Children
Car

25
M
20,000
No
 0
Yes

Antigen: 24  M  20,000  No  1  No

Antibody: 25  M  20,000  No  0  No

Evaluation:  0   1       1 1   0    1 →  4

        Three consecutive matchings

Match value: 4 + 23 = 12

     (a) (b)

Figure 30: (a) Structure of a case (antigen or antibody). (b) The match algorithm (see Equation (12)).
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12.4 Classifier Systems

Forrest & Hofmeyr (1999) pointed out a set of similarities and differences between their artificial

immune system, described in Hofmeyr & Forrest (1999, 2000) and briefly discussed in Section 7.1,

and the classifier systems. Although the authors suggested that the mapping between their AIS and

classifier systems is not 1-1, a tentative comparison was performed according to Table 12.

Table 12: Tentative comparison between the AIS and classifier systems.

Classifier Systems Artificial Immune Systems

Classifier condition Detector

Classifier action Isotypes

1,0,* matching r-contiguous bits

Classifier strength Immature, mature, activated and memory states

Message list Network traffic (datapath triples)

Competition for packets Bidding for messages

More specific match wins More specific match wins

Support Activation threshold

Message intensity Sensitivity level

Bucket brigade Affinity maturation

Genetic algorithm, triggering Random detectors, negative selection

Table 13: Comparison of the major components of a classifier system and an immune system.

Classifier Systems Artificial Immune Systems

Classifier Antibody type

Condition Epitope

Action Paratope

Strength Concentration

Specificity Specificity

Tax Dissipation term

Payoff Antigen reduction

External message Antigen

Message list All paratopes and antigens

Economy Concentration update rule

Performance function Rate of antigen removal
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Farmer et al. (1986) also pointed out a set of similarities between their immune network model and

the classifier systems (see Table 13).

12.5 Sensor-Based Diagnosis

Ishida (1993) proposed an immune network model for the mutual recognition between antigen and

antibody and applied it to the process diagnosis problem. In a later work, Ishida (1996a) used this

same dynamical network architecture based on the idea of a chain of active state propagation found

in immune (idiotypic) networks. The dynamical network model was elaborated as a sensor network

that could diagnose sensor faults by evaluating reliability of data from sensors and process faults by

evaluating reliability of constraints among data. The sensor network dynamically reacted to the on-

line data from sensors. It could self-identify the unreliable sensor and constraint by moving from

one equilibrium state to another, reacting to the change of the relationship among data.

The immune features he tried to use can be summarized as follows:

• recognition is performed by distributed agents which dynamically interact with each other;

• each agent reacts based solely on its own knowledge; and

• memory is realized as stable equilibrium points of the dynamical network.

A state variable ri (and its normalization Ri) was assigned to each agent indicating its reliability.

The agents composing the network were responsible for its evaluation. Figure 31 shows an example

of the evaluation chain among the agents of a hypothetical network. A ‘+’ sign indicates a positive

evaluation (vote) corresponding to a reliable agent, while a ‘−’ sign indicates a negative vote

corresponding to an unreliable agent.

Considering the effect from evaluating and evaluated agents, the behavior of the network can

be described by the following equation
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where Tij represents the evaluation results that can assume the values of −1, +1, −1/+1 or 0, and Ri is

a sigmoid function whose exponential parameter is given by ri(t).

This equation converges to a Liapunov function like in the Hopfield (1984) network case. This

way, the overall state of the system was characterized by an energy function with several local

minima, making the initialization of the reliabilities a critical issue.
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Figure 31: An example of evaluation chain for sensor-based diagnosis.

12.6 The Reflection Pattern in The Immune System

Reflection is a design principle that allows a system to have an explicit representation of itself such

that it makes it easy to adapt the system to a changing environment. The base units of computation

in object-oriented systems are the objects (or baseobjects). The reflection pattern generally

introduces the notion of object/metaobject separation. A metaobject can track and control certain

aspects of baseobjects. A set of metaobjects is called a metalevel, or metaspace, and a set of

baseobjects is called a baselevel. In contrast to reflection, reification is the process that makes

something accessible when it is normally unavailable in the baselevel. Figure 32(a) illustrates a

typical reflective architecture. The reflection design can be used to draw rules of interactions among

objects of any object-oriented approach, including programming languages, leading to a better

comprehension and modeling of great variety of phenomena.

Suzuki & Yamamoto (1998) argued that the antigen recognition and elimination mechanism is

an example of the immune reflective capability. The self/non-self discrimination problem was made

equivalent to that of reflecting self in a mirror and comparing it with a foreign component. Under

this perspective, MHC molecules would play the role of the mirror that T-cells could refer to in

order to recognize intracellular pathogens. In the context of the reflection pattern, MHC molecules

corresponded to metaobjects, while APCs and other lymphocytes were baseobjects because MHC

controls the major immune phenomena including the recognition of intracellular pathogens by T-

cells and activation of B-cells. Figure 32(b) presents a sequence diagram for the reflection pattern

with the example of a simplified intracellular (Peptide/MHC complex) immune recognition.
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 Reification Reflection

Baselevel objects

Metalevel objects

Baselevel

Metalevel

          

1: Search foreign
organisms ()

3: Get Peptide MHC
Complex ()

2: Find Peptide MHC
Complex ()

4: Compare with ()

: T cell : TCR : APC        : MHC

 Baseobjects          Metaobject

(a) (b)

Figure 32: (a) Typical reflective architecture. (b) Sequence diagram for the reflection pattern in the
MHC/peptide complex recognition.

12.7 Evolution of Gene Libraries

Hightower et al. (1995) and Perelson et al. (1996) used a genetic algorithm and a binary model of

the immune system to study the effects of evolution on the genetic encoding for antibody

molecules. One feature of their encoding was that not all genes found in the genotype (total

collection of gene segments) were expressed in the phenotype (expressed antibody molecules).

The genetic material for one antibody molecule is stored in five separate component libraries.

Producing one antibody molecule begins with a random selection of a genetic component from each

of the libraries. In their model, the bit string representing the genotype of an individual was divided

into four equal-size libraries of antibody segments as shown in Figure 33. Within each library there

were eight elements, represented as bit strings of length sixteen, so each individual genome had a

total of 512 bits. The expressed antibodies had a length of 64 bits.

The experiments showed that the GA could optimize complex genetic information, being able

to organize the structure of the antibody libraries. They also showed that selection pressure

operating on the phenotype as a whole could translate to selection pressure acting on individual

genes, even though not all genes were expressed in the phenotype.

Oprea & Forrest (1998) used a similar representation as the one described above to explore

how the survival probability of an individual scales with the size of its germline-encoded antibody

repertoire, and extended this analysis to antibody-pathogen matching rules that might be more

realistic (Oprea & Forrest, 1999).
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One individual genome equals four libraries

Library 1       Library 2 Library 3 Library 4

A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B8 C1 C2 C3 C4 C5 C6 C7 C8 D1 D2 D3 D4 D5 D6 D7 D8

A3 D5C8B2

A3 D5C8B2

A3 B2 C8 D5

= four 16-bit segments

= one 64-bit string

Expressed antibody

Figure 33: Process of constructing/expressing an antibody from genetic libraries.

Their results indicated that the scaling relation between fitness and the size of the evolved antibody

library was only a variant of the scaling relation obtained with random libraries of same size. It was

also argued that the increase in addition of antibodies to the germline-encoded repertoire did not

result in a directly proportional increase in the survival probability of an individual, what could be

an explanation for why the V-region libraries in various species do not seem to number more than

approximately one hundred genes.

12.8 A Self-Identification Process

Ishida (1996b) presented a brief survey of applications of immunologically inspired algorithms and

posed the immune system as a self-identification process.

His immunological design paradigm was stated as:

• agents should be designed so that they can be specified by the self information (program) as

well as environmental conditions. Rather than incorporating all the functions needed, the

program triggered by environmental conditions worked to specify the agent to fit the

condition;

• a field should be designed to drive the addition or the self-reproduction of agents and to

drive the specification process of each agent. It should also restrict the behavior of agents

so that some of them do not disturb the harmony of the others.

12.9 A Simulated Annealing Model of Diversity

De Castro & Von Zuben (2000c) presented a simulated annealing approach aiming at generating a

dedicated pool of candidate solutions that best covered the search-space. Their strategy assumed no

a priori knowledge about the problem and produced a fixed-size set of potential candidates based

only on the representation of the task. The algorithm induced diversity in a population by
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maximizing an energy function that takes into account the Hamming distance between binary

strings. Its potential to machine-learning applications and extension to Euclidean spaces were also

discussed.

They considered a Hamming shape-space, where molecules were represented by binary strings

of various lengths and the Ag-Ab interactions were measured by the Hamming distance between

these molecules. The cost (energy) function proposed for the SA model allowed the detection of

self-recognizing individuals and also the maximization of the Hamming distance among them:
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D(i,j) is a square, symmetric matrix responsible for the self/nonself discrimination, and xi,

i = 1,...,N, represents the members of the antibody population. It is composed of ones or zeros only,

where a 0 indicates self-recognizing individuals and a 1 represents unique members (see Equation

(14)). Matrix F(i,j) is also a square, symmetric matrix that contains the Hamming Distance (HD)

among all individuals in the population (see Equation (15)). Equation (16) is the percentile energy

of the whole Ab repertoire, and is equal to 100% when there are no self-recognizing individuals in

the population and their distance is maximal.

13. Web Sites on Artificial Immune Systems and Their Applications

In this section we are going to list some Web Sites (mostly personal Home Pages) in which to

search for material on the artificial immune system and their applications. Most of these sites

contain references available for download. They are ordered aplphabeticlly and a brief description

of the research area of each site is given.

Derek J. Smith:
• Immune Response to Virus
• Cross-Reactivity
• Associative Memory
http://www.cs.unm.edu/~dsmith/
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Dipankar Dasgupta:
• Immune System Survey
• Novelty Detection (Negative Selection)
• Book on Artificial Immune Systems and Their Applications
http://www.msci.memphis.edu/~dasgupta

Emmah Hart:
• Scheduling
http://www.dai.ed.ac.uk/daidb/people/homes/emmah/research.html

Immune System Modelling and Simulation Group
• Immune System Modelling and Simulation
http://www.cs.princeton.edu/~stevenk/
http://www.zpr.Uni-Koeln.DE/~filippo/

ISYS project:
• Formal Artificial Immune System
• Immune Network Theory
• Application to Fraud Detection
http://www.aber.ac.uk/~dcswww/ISYS/
http://www.aber.ac.uk/~jit93/
http://www.aber.ac.uk/~jot/ISYS/
http://www.aber.ac.uk/~jjh/isys/ISYS.html

Jungwon Kim:
• Negative Selection
• Intrusion Detection
http://www.cs.ucl.ac.uk/staff/J.Kim/

Junichi Suzuki:
• iNet for Open WebServer
• Reflection Pattern
URL: http://www.yy.cs.keio.ac.jp/~suzuki/project/immunity/index.html

Leandro de Castro and Fernando J. Von Zuben:
• Hybrid Approaches (neural networks and genetic algorithms)
• Learning & Optimization
• Pattern recognition and classification
http://www.dca.fee.unicamp.br/~lnunes
http://www.dca.fee.unicamp.br/~vonzuben

Mihaela Oprea:
• Immune response dynamics
• Evolution of immune receptor libraries
http://www.santafe.edu/~mihaela/
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Nikolai Nikolaev:
• Inductive problem solving with immune networks
http://www.aubg.bg/faculty/cs/nikolaev/

Pascal Ballet
• Development of multi-agent systems to model immune phenomena
http://www.enib.fr/~ballet/

Patrik D'haeseleer:
• Change Detection (Negative Selection)
• Theoretical Immunology
http://www.cs.unm.edu/~patrik/

Prabhat Hajela
• Structural optimization
http://www.rpi.edu/~hajela

Stephanie Forrest:
• Immune System Modeling
• Computer Immunology
http://www.cs.unm.edu/~forrest/

Steven A. Hofmeyr:
• Computer Immunology
• Network Intrusion Detection
http://www.cs.unm.edu/~steveah/

System Sciences Laboratory (SS)
• Diagnosis
• Noise Control
http://genesis.aist-nara.ac.jp:80/work/papers/1996-e.html

Yoshitero Ishida:
• Agent-based approaches
http://genesis.aist-nara.ac.jp:80/~ishida/bcsE.html

Yuji Watanabe
• Behavior Arbitration Mechanism for Autonomous Mobile Robot
http://www.bioele.nuee.nagoya-u.ac.jp/~yuji
http://www.bioele.nuee.nagoya-u.ac.jp/~kon
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14. Concluding Remarks

It can be seen from the applications presented and models discussed, that the immune system is

particularly interesting for solving problems in distributed and dynamic environments. It was our

main intention to provide the reader with a wide source of potential applications and inspiration for

the immune-based approaches.

Like the Artificial Neural Network field, its noticeable that the Artificial Immune Systems also

lead to the development of different techniques, each one mapping a different mechanism of the

system. As examples we can detach the Clonal Selection Algorithm proposed by De Castro & Von

Zuben (2000a), the Negative Selection Algorithm introduced by Forrest et al. (1994), and the

Artificial Immune Networks as proposed by Farmer et al. (1986). These various mechanisms are

generally used for solving different types of problems. Immune network models are suitable to deal

with dynamic environments, while algorithms based upon the clonal selection principle are

adequate to solve optimization problems, and the negative selection strategies are successfully

applied to anomaly (or intrusion) detection tasks.

A great variety of encoding schemes and match functions was found. There seems to be no

limit for the information to be inserted in the genotype (and/or phenotype) of an individual, the

difficulty residing only in the problem of dealing with this information. The definition of match

functions, encoding schemes and equations for controlling the dynamics of the system are problem

dependent and may usually be defined in many different ways.

It can be perceived that there is no consensus within the scientific community of a unique,

formal artificial immune system. As proposed in the first part of this report (De Castro & Von

Zuben, 2000a), the techniques that are being named immune-based systems, negative selection

algorithms, artificial immune networks, immune engineering, etc. all together lead to the artificial

immune systems.

The references presented show that the last few years were committed by a great amount of

interest and work in the AIS from many different areas of research, from medical to computer

sciences. Characteristics of the immune system like uniqueness, distribution, pathogen recognition,

imperfect detection, reinforcement learning and memory are very suitable for the development of

systems which are dynamic, distributed, self-organized and autonomous. The areas of application

are as wide as the potentialities of the system.
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