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Abstract - The AIRS classifier, based on metaphors from the
field of artificial immune systems, has shown itself to be an
effective general purpose classifier across a broad spectrum of
classification problems.  This research examines the new
classifier empirically, replacing one of the two likely sources of
its classification power with alternative modifications.  The
results are slightly less effective, but not statistically significantly
so.  We conclude that the modifications, which are
computationally somewhat more efficient, provide fast test
versions of AIRS for users to experiment with.  We also
conclude that the chief source of classification power of AIRS
must lie in its replacement and maintenance of its memory cell
population.

INTRODUCTION

Late in 2001, a new classifier was introduced, based on
principles from the discipline of Artificial Immune Systems.
The classifier was AIRS (Artificial Immune Recognition
System), and it was interesting not only because it showed
that Artificial Immune Systems could be used for
classification but also because it was surprisingly successful
as a general purpose classifier.

This paper empirically explores the possible sources of
classification power of this new classifier.  We believe such
an exploration is important for the following reasons:

a) AIRS is effective in a broad array of different
classification problems, including problems with
large dimensioned feature space, problems with many
classes, and problems with real-valued and discrete
features.

b) Some general purpose classifiers perform poorly until
an appropriate architecture for the classifier is
determined by the researcher, and the search for the
appropriate architecture may require substantial
effort.  For the majority of problems to which it has
been applied, using the default parameters with which
AIRS is delivered produces results which are within a
couple of percentage points of the best results that
AIRS obtains.  And the best results that AIRS obtains

are usually highly competitive.
c) AIRS is self-adjusting for the feature of its

architecture that is most descriptive of the problem
space.  In fact, when another classifier, Kohonen’s
LVQ, was instructed to use the same number of cells
that AIRS determined to be a good characterization of
the problem space, the classification accuracy of
LVQ  improved [1]

d) Although we have experience with an array of
general-purpose classifiers, none in our experience
has performed as consistently strongly as AIRS
across the same gamut of classification types.

AIRS was originally conceived in an attempt to
demonstrate that Artificial Immune Systems were amenable
to the task of classification.  The AIRS algorithm was
motivated in particular by resource limited Artificial Immune
Systems [2][3].  Although the motivation was initially simply
to show that classification was possible using this paradigm,
the algorithm was tested a broad range of publicly-available
classification tasks, and proved to be highly effective. It has
been tested on problems with up to 279features and on
problems with up to 12 classes. [1][4][5][6][7].

[1] and [5] both investigated multiple-class problems in
which the number of classes in the problem space was fairly
large, and each encountered a widely-studied publicly
available classification problem for which AIRS appears to
be the most successful single general-purpose classifier for
the problem.

This paper explores possible sources of the power of the
AIRS algorithm.  First, we briefly describe the basic
classification algorithm, particularly the memory cell pool
which is used for the actual classification task after training,
and the “training” algorithm that derives this memory cell
pool.  Since this memory cell pool is in a sense the AIRS
algorithm’s depiction of the important parts of the problem
space, we compare the characteristics of the members of the
memory cell pool with the “antigens” - the training instances
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- from the data for a variety of the classification problems.
We then explore the effect of replacing the memory cell
derivation algorithm of the original AIRS with a variety of
plausible alternatives, observing any resulting changes in
effectiveness in the overall AIRS classification performance.
Finally, we apply our observations to the goal of deducing the
source of power of the AIRS algorithm when applied to the
problem of classification.

THE AIRS CLASSIFIER

As mentioned in the introduction, the initial intent in
developing AIRS was to demonstrate that a classifier built on
the principles of artificial immune systems could be an
effective general purpose classifier suitable for a broad
variety of classification tasks.

Artificial Immune Systems had already been applied
successfully in other domains:  in particular, Artificial
Immune Systems are an appealing metaphor for applications
in Computer Security.  The ability to distinguish between Self
and Non-self has considerable attraction in that field, and the
immune system concept of negative selection of maturing
recognizers based on response to Self has been successfully
applied to systems whose purpose is to determine whether the
integrity of data has been violated [8][9]. There is also
considerable research into the application of such evolved
recognizers in the field of Intrusion Detection, especially as
applied to the question of whether traces of operating system
calls correspond to normal behavior or not [10][11][12].

One previous system, [13], had been designed for the
purpose of classification.  However, it was devised by a
medical professional, was highly complex, and was not
sufficiently described to replicate.  Work by Timmis and
others on clustering using Artificial Immune Systems
[3][14][15] was appealing, and the further development of
that work using the concept of resource limitation [16]
became the inspiration for AIRS.

LOOKING FOR THE SOURCE OF CLASSIFICATION POWER

The goal was to show that an Artificial Immune System
could be an effective general purpose classifier; we did not
actually expect it to be quite as effective as it proved to be.
Table 1 on the next page shows the comparative effectiveness
of the original AIRS algorithm [4] in terms of reported
accuracy rates in the literature.  The number reported in the
table for AIRS is its average accuracy over multiple runs of
10-way cross-validation.  The figures for the other classifiers
are derived from [17] and [18] (which are themselves also
normally averages of multiple runs of cross-validation), and
indicate whether the accuracy was greater (positive) or less
(negative) than the average accuracy for AIRS on the same
problem.

In broad terms, training the AIRS classifier involves two
interrelated processes.  In nature, lymphocytes (B-cells and

T-cells) respond to an invading antigen and those B-cells
which match the invader closely enough begin mutating to
generate even closer matches, as part of the process of
attacking the invader.  As a classifier-in-training, for any
presenting antigen (training instance from the training data),
AIRS uses a pool of B-cells, some of which are mutations of
an existing B-cell which most closely resembles the
presenting antigen, and some of which are simply randomly
generated cells. In the current version of AIRS, stimulation is
inversely proportional to distance in feature space: the
smaller the Euclidean distance between antigen and B-cell,
the greater the stimulation. The B-cells which are most highly
stimulated by exposure to the antigen begin cloning and
mutating.  The least stimulated B-cells die out.  The process
continues over multiple generations, with the most-stimulated
B-cells being retained and the least stimulated ones being
eliminated.  Once the average stimulation level of the entire
B-cell population reaches a threshold, which can be
determined by the user, the process stops, and the cell which
is most stimulated by the antigen becomes a candidate for
promotion to a memory cell.

The second training process referred to above is the
selection and maintenance of the set of memory cells.  In
nature, most of the enormous number of lymphocytes
generated in combating an invader die.  But a relatively small
number of the cells remain in the immune system
indefinitely, with the result that any successive invasions by
the same or similar antigens are met with an immediate
response by the immune system.  Although there is
controversy over whether the cells themselves have an
indefinite lifespan or whether the immune system has a
method of replicating the actual cells, the net effect is the
same - there are cells that represent a very long-term memory
of invaders to the system.  In AIRS, when a B-cell becomes a
candidate for inclusion in the long-term memory cell
population, it must first prove to be more stimulated by the
current antigen than any other existing memory cell which
responds to the classification class to which the antigen
belongs.  Provided that this is the case, the candidate cell is
included in the memory cell population.  Additionally, if the
new memory cell is sufficiently similar to the memory cell
which originally was most stimulated by the invading antigen
(where the definition of “sufficiently similar” is controlled by
a parameter which the user can adjust), the new memory cell
actually replaces this other cell.  This mechanism contributes
both to the generalization capabilities of the AIRS classifier
and to the data reduction capabilities of the classifier.
Typically there are fewer than half as many memory cells in a
trained AIRS system as there were training instances, and
only a small fraction of the memory cell population is
identical to the training instances which engendered them.
For more details of the current AIRS algorithm, see [19].



Table 1.

Comparison of classifiers on the five classification tasks.  Except for AIRS data, these results are taken from Duch [17][18].When
Duch’s reported accuracy seems to disagree with Duch’s ranking, both the ranking and the reported accuracy are retained.

Cleveland heart disease Iris Ionosphere Diabetes Sonar

1 IncNet +6.8%
Grobian
(rough)

+3.3% 3-NN + simplex +3.8% Logdisc +3.6% TAP MFT Bayesian +8.3%

2
28-NN, stand, Euclid,
7 features

+2.6 -
+1.6%

SSV +1.3% 3-NN +1.8% IncNet +3.5% Naïve MFT Bayesian +6.4%

3
Fisher discriminant
analysis

+1% C-MLP2LN +1.3% IB3 +1.8% DIPOL92 +3.5% SVM +6.4%

4 LDA +1.3% PVM 2 rules +1.3% MLP + BP +1.1%
Linear Discr.
Anal.

+3.4 -
+3.1%

Best 2-layer MLP +
BP, 12 hidden

+6.4%

5 16-NN, stand, Euclid
+1.4 -
+0.2%

PVM 1 rule +0.6% AIRS 94.9% SMART +2.7% MLP+BP, 12 hidden +0.7%

6
FSM, 82.4-84% on
test only

+0.8% AIRS 96.7% C4.5 0%
GTO DT
(5xCV)

+2.7% MLP+BP, 24 hidden +0.5%

7 Naïve Bayes
+0.2 -
-0.7%

FuNe-I 0.0% RIAC -0.3% ASI +2.5% 1-NN, Manhatten +0.2%

8 AIRS 83.2% NEFCLASS 0.0% SVM -1.7%
Fischer
discr. anal

+2.4% AIRS 84.0%

9 SNB -0.1% CART -0.7%
Non-linear
perceptron

-2.9% MLP+BP +2.3% MLP+BP, 6 hidden -0.5%

10 LVQ -0.3% FUNN -1.0% FSM + rotation -2.1% LVQ +1.7% FSM - methodology? -0.4%

11 kNN, k=27, Manh
+0.2 - -
1.0%

1-NN -2.8% LFC +1.7% 1-NN Euclidean -1.8%

12 GTO DT (5xCV) -0.7% DB-CART -3.6% RBF +1.6% DB-CART, 10xCV -2.2%

13 kNN, k=19, Euclidean
-0.3 -
-1.9%

Linear perceptron -4.2% NB
+1.4-
-0.3%

CART, 10xCV -16.1%

14
LDA (all vectors, 85%
on train)

-1.4% OC1 DT -5.4%
kNN, k=22,
Manh

+1.4%

15 SVM (5xCV) -1.7% CART -6.0% MML +1.4%
16 kNN (k=1?) -1.7% GTO DT -8.9% SNB +1.3%
… . . .
22 AIRS 74.1%
23 C4.5 -0.9%

others below 16th rank include
MLP with Backprop, CART,
RBF, Gaussian EM, ASR, C4.5,
and a number of WEKA tools,
among others

11 others reported
with lower scores,
including Bayes,
Kohonen, kNN, ID3
…

The experiments described in this paper test the hypothesis
that the power of the AIRS classifier resides in the method of
deriving a candidate memory cell from the B-cells.  An
empirical means of testing that conjecture is to replace that
part of the AIRS algorithm with a function which directly
generates a candidate memory cell drawn from some suitably
constrained probability distribution, rather than filtering one
from the random mutations of a population.  (While the
functions explored are not based on a natural metaphor, there
may be natural justification for not using random mutation,
since it appears that in nature the mutation of lymphocytes in
response to an invader is not a random process.)

Frankly, we expected the performance of AIRS to drop off
sharply when a function was substituted.  When that was not
the case with the first function that we experimented with, an
elliptical probability distribution, we looked at how close in
feature space the regular AIRS candidates for memory cell
status were to the training vectors that caused them to be

generated.  That is, for each training vector presented to
AIRS, a memory candidate cell is evolved.  In general the
feature space is high-dimensional, so it is not possible to look
at a spatial representation of the training vectors and the
resulting memory candidates.  But it is possible to compute
the distance between the training vectors and their respective
candidate cells, and to plot a histogram of how many cells fall
into respective distances from their training vectors.

Figure 1 is one of the resulting histograms.  It shows the
distribution of the distances of the memory cells from their
respective training vectors for ten-way cross-validation,
applying the normal AIRS algorithm (not the functional
replacement) to the Pima Indian Diabetes classification
problem [20].  AIRS normalizes the feature vector space so
that all feature dimensions have the same range and so that
the maximum Euclidean distance between any two vectors is
1.0.  The farthest outliers of this set were slightly more than
one quarter of this distance.



Diabetes data
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Figure 1.  Distance of candidate memory cells from training antigen.
Maximum normalized distance possible is 1.0.  Y axis is number of antigens
out of a total of 6920.

In addition to the Diabetes data set, we also derived
analogous histograms for the Wisconsin Breast Cancer data
set, the balance scale data set, the credit.crx problem, iris,
ionosphere and SPECT data sets, all from the University of
California at Irvine Machine Learning Repository [20], and
for an artificial three-class problem whose feature vectors are
uniformly distributed over a subset of the real plane, with
convoluted boundaries between the non-linearly separable
classes (see [1] for a description of the latter data set).  We
hypothesized that the uniformly distributed nature of the
training instances of the latter, in contrast to the “bursty”
nature of feature vectors from naturally occurring
classification problems, might affect how close the memory
cells would be to their respective training antigens.  However,
the overall shape of the histograms was similar for all the
problems except the balance scale problem, the breast cancer
problem, and the SPECT problem.  The histogram for the
Wisconsin Breast Cancer data is shown in Figure 2.

Both the balance scale data and the Wisconsin Breast
Cancer data produced histograms with no deep “valley”
between the initial spike at zero and the first peak.  They also
both show a noticeable secondary rounded peak in the
distribution.  The histogram for SPECT is quite different
from all other histograms and is shown in Figure 3.  While it
confirms that AIRS behaves differently for different data sets,
it is also the case that AIRS’s accuracy for SPECT is low.
The distribution, which shows most of the memory cell
candidates a distance of between 0.25 and 0.5 in a normalized
space where the maximum distance between two entities is
1.0, may reflect a difficulty in distinguishing between training
vectors on the basis of Euclidean distance in feature space.

We then experimented with three functions to replace the
part of AIRS which generates candidate memory cells:

Wisconsin Breast Cancer
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Figure 2. Two data sets were somewhat different from the preceding.  Shown
above is the distance of candidate memory cells from training antigen for
Wisconsin Breast Cancer data.

SPECT data
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Figure 3. One distribution was markedly different from all the others.  Above
is the distribution of distances of candidate memory cells from the training
antigens for the SPECT data set.

Function 1 (Mod 1):  This was the initial function that we
had created before looking at the histogram distributions.
Since it had been more successful than expected, we retained
it:  for each antigen in the training set, generate a single cell
mutated from the antigen whose distance from the antigen in
feature space conforms to a hyperbolic (1/x) probability
distribution with a constant multiplier which caused the
distribution to tail off very rapidly.  Consequently, most
candidate memory cells were very close to their originating
antigens.

Function 2 (Mod 2):  The second function was also
hyperbolic, with` a multiplier which allowed more of the
distributional mass to be in a tail, rather like figure 2, but
without the secondary hump.



Function 3 (Mod 3):  The probability distribution was
derived from the actual probability distribution of AIRS’s
memory cells during the solution of a representative problem.
In particular, we created a function by smoothing and
interpolating the probability distribution for the memory
candidate cells produced by AIRS during a ten-way cross-
validation training run on the Ionosphere problem.  This
distribution was almost identical in shape to Figure 1, except
that a thin tail extended out to 0.45, affording an opportunity
for some cells generated by the function to be somewhat
further away from their respective training antigens.

RESULTS

Figures 4, 5, 6, and 7 show results for four of the data sets
which were tested.  Mod 0 refers to the revision of AIRS
described in [19] (the version of AIRS which is being
distributed as of this writing).  Mods 1, 2, and 3 refer to the
modifications of that algorithm that replace candidate
memory cell generation with the three functions described in
the preceding section.  While AIRS can be run pretty much
“as delivered”, it does have a number of user-specifiable
parameters which can be modified to suit a given data set.
The term “Unoptimized” in the figures refers to running the
algorithm using the default values for its parameters.  The
term “Optimized” refers to systematically changing those
parameters and observing whether average performance
improves. The test runs in all cases are averages over three
runs of 10-way validation using the parameters suggested by
the optimization suite of tests.  A number of trends are clear
from examination of the performances of these unoptimized
and “optimized” modifications of AIRS.

AIRS run “as delivered” with default parameters tends to
deliver accuracy only a few percentage points below its
optimum performance.

We note that the scales on Figures 4 and 5 are somewhat
exaggerated.  For the Wisconsin Breast Cancer data, the
functions are marginally less effective than the original
algorithm in both unoptimized and optimized cases, with the
exception of the optimized version of the modification which
used a smoothed function derived from the original AIRS’
own candidate memory cell generation distribution.  For the
iris data, the unoptimized functions were slightly more
accurate than the unoptimized unmodified AIRS, but the
optimized original AIRS was slightly more accurate than the
optimized functions.  Both of these trends were observed in
the remaining four data sets not illustrated in the figures
which follow.
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Figure 4.
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Figure 5.

It also tends to be the case that basing the functional
distribution of the memory cell candidates on a prototypical
distribution from AIRS’s solutions to real-world problems is
less effective than the other functional strategies; that is, the
performance of mod 3 on the Iris data is more reflective of its
general competitiveness than its performance on the
Wisconsin Breast Cancer problem.

CONCLUSION

If we remove mod 3 from consideration, the differences
between the functional modifications and normal AIRS,
though observable, are not statistically significant.  Hence we
conclude that replacing the memory cell candidate generation
portion of the AIRS algorithm has not changed the
performance significantly.  This leads us to hypothesize that
the power of this classifier is in its approach to adding and
replacing memory cells in the memory cell population. We
are in the process of testing this conjecture.



credit.crx
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Figure 6.
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Figure 7.  Comparison of the different modifications of AIRS on an
artificially generated set of classes in the real plane R2. The classes have
convoluted boundaries and fill the subplane, and their instances are
approximately uniformly distributed in the subspace.

We also note that the functional modifications to AIRS
described in this paper are fast.  In our experience they are
not much faster than standard AIRS for most of the problems
we have experimented with - one run of standard AIRS using
five-way cross-validation takes less than five minutes on a
500MHz laptop for most of the datasets mentioned.
However, we have encountered datasets for which certain
combinations of user-set parameters caused AIRS to train for
long periods before the population of B-cells reached the
user-prescribed stimulation threshold, which allowed it to
stop training.  The function-based variations on AIRS are
guaranteed not to have such problems, and do allow a user to
get a reasonable estimate of how well AIRS works on the
user’s classification problem.
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