An Immunogenetic Technique to Detect Anomalies in Network Traffic

Fabio A. Gonzalez* and Dipankar Dasgupta
Intelligent Security Systems Research Lab, Computer Science Division
The University of Memphis
Memphis, TN 38152
*and Universidad Nacional de Colombia
Bogoté4, Colombia
{fgonzalz, ddasgupt }@memphis.edu

Abstract

The paper describes an immunogenetic ap-
proach which can detect a wide variety of in-
trusive activities on networked computers. In
particular, this technique is inspired by the
negative selection mechanism of the immune
system that can detect foreign patterns in the
complement (non-self) space. The novel pat-
tern detectors (in the complement space) are
evolved using a genetic search, which could
differentiate varying degrees of abnormality
in network traffic. The paper demonstrates
the usefulness of such a technique in intru-
sion/anomaly detection. A number of exper-
iments are performed using intrusion detec-
tion data sets (DARPA IDS evaluation pro-
gram) and tested for validation. Some re-
sults are reported along with their analysis
and concluding remarks.

1 INTRODUCTION

There are many approaches to anomaly detection, and
most of them work on building a model or profile of
the system that reflects its normal behavior. A simple
approach is to define thresholds (upper and lower) for
each monitored parameter of the system, and if a pa-
rameter exceeds this range, it is considered an abnor-
mality. The most common approach uses a statistical
model (Denning, 1986; Eskin, 2000) to calculate the
probability of occurrence of a given value, lesser the
probability, higher is the possibility of an anomaly. In
general, statistical approaches model individually the
different variables that represent the state of the sys-
tem, which could make it difficult to detect complex
multivariable temporal patterns.

Other approaches also build models to predict the fu-

ture behavior of systems or processes based on the
present and past states (Crosbie and Spafford, 1995;
Dagupta and Gonzalez, 2001). Accordingly, if the ac-
tual state of the system differs considerably from the
predicted state, an anomaly alarm is raised. These
approaches are more successful in capturing tempo-
ral and multiple variable correlations. However, more
time is needed for training the model, and in some
cases its application can be infeasible because of the
size of data sets involved (generally, this is the case
with network security).

Therefore, the challenge is to build an anomaly de-
tection system that can capture multi-variable corre-
lations, and is capable of dealing with large amounts
of data generated in a computer network environment.
Data mining techniques have been applied with some
success to this problem (Lane, 200; Lee and Stolfo,
1998). This approach has the advantages of dealing
with large data sets and being able to get useful knowl-
edge (generally expressed in terms of rules). For these
techniques, it is important that the data have some de-
gree of structure. In several works, the network traffic
data (packet level) is processed to get connection infor-
mation (type, duration, number of bytes transmitted,
etc). In some cases, it is necessary to have the infor-
mation regarding whether a connection is normal or it
is an attack.

This paper proposes an approach that does not rely
on structured representation of the data and uses only
normal data to build a profile of the system. Although,
it is applied to perform anomaly detection for network
security, it is a general approach that can be applied
to different anomaly detection problems.

The technique is inspired by artificial immune systems
ideas, and it attempts to extend Forrest’s (self/non-
self) (Forrest et al., 1994) two-class approach to mul-
tiple classes. Specifically, the non-self space will be
further classified in multiple sub-classes to determine

the level of abnormality. The core of the technique is
a genetic algorithm that evolves rules to cover the ab-
normal space (non-self). Experiments are performed
and the results are compared with the ones produced
by a positive characterization technique.

2 BACKGROUND AND PREVIOUS
WORKS

The idea of using immunological principles in com-
puter security (Dasgupta, 1999; Hofmeyr and Forrest,
2000; Kephart, 1994) started since 1994. Stephanie
Forrest and her group at the University of New Mex-
ico have been working on a research project with a
long-term goal to build an artificial immune system for
computers. In their approach, the problem of protect-
ing computer systems from harmful viruses was viewed
as an instance of the more general problem of distin-
guishing self (legitimate users, uncorrupted data, etc.)
from the dangerous other (unauthorized users, viruses,
and other malicious agents). This method (called the
negative-selection algorithm (Forrest et al., 1994)) was
used to detect changes in the protected data and pro-
gram files. In another work, they applied the algo-
rithm to monitor UNIX processes where the purpose
is to detect harmful intrusions in a computer system.
Kephart (Kephart, 1994) suggested another immuno-
logically inspired approach (decoy program) for virus
detection. In this approach, known viruses are de-
tected by their computer-code sequences (signatures)
and unknown viruses by their unusual behavior within
the computer system.

In (Kim and Bentley, 2001), the negative-selection al-
gorithm is evaluated as a mechanism to perform net-
work intrusion detection. The conclusion is that the
algorithm presents “severe scaling problems for han-
dling real traffic data”, and it is suggested to use it
only as a filter for invalid detectors. In the present
work, we show that it is possible to overcome these
issues and generate effective detectors by changing the
representation scheme.

3 ANOMALY DETECTION
PROBLEM DEFINITION

The purpose of anomaly detection is to identify which
states of a system are normal and which are abnormal.
The states of a system can be represented by a set of
features. Accordingly,

Definition 1. System states space. A state of the
system is represented by a vector of features, x* =

(z¢,...,x1) € [0.0,1.0]". The space of states is
represented by the set S C [0.0,1.0]™. It includes
the feature vectors corresponding to all possible
states of the system.

The features can represent current and past values of
system variables. The actual values of the variables
could be scaled or normalized to fit a defined range
[0.0,1.0].

Definition 2. Normal subspace (crisp characteri-
zation). A set of feature vectors, Self C S repre-
sents the normal states of the system. Its com-
plement is called Non_ Self and is defined as
Non_Self = S — Self. In many cases, we will
define the Self (or Non_Self) set using its char-
acteristic function xser : [0.0,1.0]" — {0,1}

_ [1 if ? € Self
Xsetf (T) = { 0 if @ € Non_Self

The terms self and non-self are motivated by the nat-
ural immune system. In general, there is no sharp
distinction between the normal and abnormal states,
instead there is a degree of normalcy (or conversely,
abnormality). The following definition tries to reflect
this:

Definition 3. Normal subspace (non-crisp charac-
terization). The characteristic function of the nor-
mal (or abnormal) subspace is extended to take
any value within the interval [0.0,1.0] : pgey :
[0.0,1.0]™ — [0.0,1.0]. In this case, the value rep-
resent the degree of normalcy: 1 indicates nor-
mal, 0 indicates abnormal, and intermediate val-
ues represent elements with some degree of abnor-
mality?.

The non-crisp characterization allows a more flexible
distinction between normalcy and abnormality. How-
ever, in a real system it is necessary to decide when
to raise an alarm. In this case, the problem becomes
again a binary decision problem. It is easy to go from
the non-crisp characterization to the crisp one by es-
tablishing a threshold:

_ 1 if Msel f (?) >t
Hself,t(?) - { 0 if /Jlself(?) <t

!This definition is basically a fuzzy set specification. In
fact, the function pser¢ is @ membership function. However,
we chose not to refer it directly, because of the different
emphasis of this work.

Definition 4. Anomaly detection problem.
Given a set of normal samples Sel f C Sel f, build
a good estimate of the normal space characteris-
tic function Xsery (Or psers in the non-crisp case).
This function should be able to decide whether
the observe state of the system is anomalous or
not.

4 PROPOSED APPROACH

The original negative selection algorithm proposed
by Forrest (Forrest et al., 1994) used binary encod-
ing for representing self/non-self strings. In a pre-
vious work (Dasgupta and Gonzalez, 2002), a real-
valued representation to characterize the descriptor
space (self/non-self space) was proposed. A genetic
algorithm with sequential niching scheme was used to
evolve detectors on the complement (non-self) space
(as shown on Figure 1). The present work proposes an-
other niching technique (deterministic crowding (Mah-
foud, 1992)) to evolve the non-self-covering detectors,
which appears to perform better in covering the com-
plement space.

Non_Self

\

im B

(a) (b)

Figure 1: (a) Self and non-self division of the descrip-
tor space (b) Approximation of the non-self space by
interval rules.

The detectors correspond to hyper-rectangles in a mul-
tidimensional space. These detectors are represented
by rules with the following structure:

RY: If Cond; then non_ self
R™ If Condy, then non_self
where,

e Cond; =z € [low!, highi] and ...and z, €
[low},, hight]

o (z1,...,%,) is a feature vector

. [lowf , highf] specifies the lower and upper values
for the feature x; in the condition part of the rule
RI.

The condition part of each rule defines a hypercube in
the descriptor space ([0.0,1.0]™). Then, a set of these
rules tries to cover the non-self space with hypercubes.
For the case n = 2, the condition part of a rule repre-
sents a rectangle. Figure 1.b illustrates an example of
this kind of coverage for n = 2.

The non-self characteristic function (crisp version)
generated by a set of rules R = {R!,..., R™} is de-
fined as follows:

1 if 3RJ € R such that @ € R?
0 otherwise

Xnon_self,R(?) = {

where @ € RJ means that T satisfies the condition
part of the rule R7.

A rule is considered good if it does not include pos-
itive samples and covers a large area. This criteria
guides the evolution process performed by the genetic
algorithm.

As was discussed previously, a good characterization
of the abnormal (non-self) space should be non-crisp.
Then, the non-self space is further divided into differ-
ent levels of deviation. We can think of these levels as
concentric regions around the self zones. The farther
a level is from the self, the more abnormal it is.

In order to characterize the different levels of abnor-
mality, we considered a variability parameter (called
v) to the set of normal descriptors samples, where v
represents the level of variability that we allow in the
normal (self) space. A higher value of v means more
variability (a larger self space); a lower value of v rep-
resents less variability (a smaller self space). Figure
2 shows two sets of rules that characterize self spaces
with a large and small value of v. Figure 2.a shows a
covering using a small variability parameter v. Figure
2.b shows a covering using a larger value of v. The
variability parameter can be assumed as the radius of
a hyper-sphere around the self samples. Figure 2.c
shows the levels of deviation defined by the two cover-
ings.

In the non-self space, we use a genetic algorithm with
different values of v to generate a set of rules that can
provide complete coverage. In general, a set of rules
has the following structure:

(b) ()

Figure 2: A set of normal samples is represented as
points in 2-D space. The circle around each sample
point represents the allowable deviation. (a) Rectan-
gular rules cover the non-self (abnormal) space using
a small value of v. (b) Rectangular rules cover the
non-self space using a large value of v. (c) Level of de-
viation defined by each v, where level 1 corresponds to
non-self cover in (a) and level 2 corresponds to non-self
cover in (b)

RY: If Cond; then Level 1

then Level 1
then Level 2

Ri: If Cond;
Ri+1: If COTLdi_H

RI: If Cond; then Level 2

The different levels of deviation are organized in a
hierarchical way such that, the level 1 contains the
level 2, the level 2 contains the level 3, and so forth.
This means that a descriptor can be matched by more
than one rule, but the highest level reported will be
assigned. This set of rules generates a non-crisp char-
acteristic function for the non-self space:

,U’non_self(y) = max{l | JR' € R s T € Riand
I = level(R7)} U {0},

where level(R?) represent the deviation level reported
by the rule R7.

4.1 GENETIC ALGORITHM FOR
DETECTOR GENERATION

The purpose of the genetic algorithm is to evolve
‘good’ rules to cover the non-self space. In general,
one rule is not enough, instead, a set of rules that solve
the problem cooperatively is necessary. In our previ-
ous work, we used a genetic algorithm combined with
a sequential niching technique (Beasley et al., 1993).
That approach was useful in evolving good detector
rules. The main drawback of that approach is that the
genetic algorithm must be run multiple times to gener-
ate multiple rules. The approach proposed by this pa-
per, uses a niching technique, deterministic crowding

(Mahfoud, 1992), that allows the generation of multi-
ple rules in a single run.

The input to the GA is a set of n-dimensional feature
vectors S = {zl,...,2™}, which represents samples of
the normal behavior of the parameter, the number
of different levels of deviation (numLevels), and the
allowed variability for each level {v1, ..., VnumLeves }-
The algorithm is shown as follows:

for i = 1 to numLevels
initialize population with random individuals
for j = 1 to numGenerations
for k£ =1 to population_ size/2
select two individuals with uniform probability
and without replacement
apply crossover to generate a child
mutate the child
if dist(child,parent1) < dist(child,parent2)
and fitness(child) > fitness(parentl)
substitute parentl with child
elseif dist(child,parent1) > dist(child,parent2)
and fitness(child) > fitness(parent2)
substitute parent2 with child
endif
endfor
endfor
extract the best individuals from the population
and add them to the final solution

endfor

Each individual (chromosome) in the genetic algo-
rithm represents the condition part of a rule, since
the consequent part is the same for all the rules (the
descriptor belongs to non-self). However, the levels of
deviation in non-self space are considered by the vari-
ability factor (v;) that is used by the fitness function.

The condition part of the rule is determined by the
low and high limits for each dimension. The chromo-
some that represents these values consists of an array
of floats. The crossover operator used is a uniform
crossover and the mutation operator is Gaussian mu-
tation.

4.1.1 Fitness Evaluation

Given a rule R with condition part (z1 € [low;, high;]
and ...and z, € [low,, highy]), we say that a feature
vector 27 = (z],...,7)) satisfies the rule (represented
for 27 € R) if the hyper-sphere with center 27 and
radius v; intercepts the hyper-rectangle defined by the
points (low;, ...,lowy,) and (higha, ..., highy,).

The fitness of a rule is calculated taking into account
the following two factors:

e The number of elements in the training set S, that
belongs to the subspace represented by the rule:

num_elements(R) = {z* € S|z' € R}

e The volume of the subspace represented by the
rule:

volume(R) = H(highi — low;)

i=1
The fitness is defined as:

fitnessgp = volume(R) — C - num__elements(R)

where, C' is the coefficient of sensitivity. It specifies the
amount of penalization that a rule suffers if it covers
normal samples. The bigger the coefficient, the higher
is the penalty value. The fitness can also take negative
values.

4.1.2 Individual’s Distance Calculation

A good measure of distance between individuals is im-
portant for deterministic crowding niching, since it al-
lows the algorithm to replace individuals with closer
individuals. This allows the algorithm to preserve the
forming niches.

The distance measure used in this work is the follow-
ing:

volume(p) — volume(p N c)

dist(c,p) =

volume(p) ’

where,

e ¢ : child individual

e p : parent individual

Note that the distance measure is not symmetric. The
idea is that we give more importance to the area of

the parent that is not covered. The justification is as
follows: if the child covers a high proportion of the
parent that means that the child is a good generaliza-
tion of it, but if the child covers only a small portion,
then it is not so.

5 EXPERIMENTATION AND
RESULTS

5.1 TESTING DATA

We performed experiments with intrusion data ob-
tained from the MIT-Lincoln Lab (MIT-Lincoln-Labs,
1999). These data represents both normal and ab-
normal information collected in a test network, where
some simulated attacks were performed. The purpose
of the data is to test the performance of intrusion de-
tection systems. The data sets (corresponding to the
year 1999) contain complete weeks with normal data
(not mixed with attacks). This allows us to get enough
samples to build the self profile and generate detectors.

The test data set is composed of network traffic data
(tcpdump, inside and outside network traffic), audit
data (bsm) and file systems data. For our experiments,
we used only the outside tcpdump network data for
a specific computer (e.g., hostname: marx), then we
applied the tool tcpstat to get traffic statistics. We
used the first week’s data for training (attack free),
and the second week’s data for testing, which include
some attacks. Some of these were network attacks the
others were inside attacks. Only the network attacks
are considered for our testing. The attack time line is
shown in Figure 3.

2 o
e & 3
Attack PR s o o

T &7 & T—

Time 0 1000 2000 3000 4000 5000 6000
(minutes)

Figure 3: Network attacks on the second weekend

Three parameters were selected to detect some spe-
cific type of attacks. These parameters were sampled
each minute (using tcpstat), and normalized. Table 1
lists six time series S; and Tj for training and testing,
respectively.

The set S of normal descriptors is generated from a
time series R = {ry, 72, ..., } in an overlapping sliding
window fashion:

S ={(r1,sTw), (T2, ey Tt 1) s ooy (Pn—wtds ooy Tn) I

where w is the window size. In general, from a time
series with n points, a set of n—w+1 of w-dimensional

Table 1: Data sets and parameters used

Name Description Week Type
S1 # of bytes / sec 1 Training
S2 # of packets / sec 1 Training
S3 # of ICMP packets / sec 1 Training
T1 # of bytes / sec 2 Testing
T2 # of packets / sec 2 Testing
T3 # of ICMP packets / sec 2 Testing

descriptors can be generated. In some cases, we used
more than one time series to generate the feature vec-
tors. In those cases, the descriptors are put side-by-
side in order to produce the final feature vector.

5.2 EXPERIMENTAL SETTINGS

We used as the training set the time series S1, S2 and
53, and as the testing set the time series 7'1, T2 and
T3, with a window size of 3. This means that the size
of the feature vectors was 9.

The parameters for the genetic algorithm were: popu-
lation size 200, number of generations 2000, mutation
rate 0.1, and coefficient of sensitivity: 1.0 (high sensi-
tivity).

The genetic algorithm was run with radius equal to
0.05, 0.1, 0.15 and 0.2 respectively. Then the elements
in the testing set are classified using rules generated for
each level (radius). This process is repeated 10 times
and the results reported correspond to the average of
these runs.

In order to evaluate the ability of the proposed ap-
proach to produce a good estimation of the level of
deviation, we implemented a simple (but inefficient)
anomaly detection mechanism. It uses the actual dis-
tance of an element to the nearest neighbor in the Self
set as an estimation of the degree of abnormality. For-
mally, the characteristic function of the non-self set is
defined as:

D(@, Self)
min{d(Z,7): 7 € Self}

Hnon _self (?)

Here, d(z,s) is a Euclidean distance metric (or any
Minkowski metric?). D(@, Self) is the nearest neigh-
bor distance, that is, the distance from x to the closest
point in Self Then, the closer an element 7 is to the
self set, the closer the value of fnon sei #(@) is to 0.

In the section results and discussion, we refer to this
technique as positive characterization (PC) approach,

’In our experiments, we also used the Dy, metric de-
fined by: Deo (@, 7) = max(|z1 — y1], s |Tn — Yn|)

to differentiate it from the proposed approach that we
call negative characterization (NC) approach.

5.3 RESULTS AND DISCUSSION

Table 2: Number of generated rules for each deviation

level
Level Radius Avg. Num. Rules
Seq. Niching Det. Crowding
1 0.05 19.5 7.75
2 0.1 20.7 8.25
3 0.15 26 10
4 0.2 28 10

Table 2 shows the number of rules generated by the
genetic algorithm for the previous technique (NC with
sequential niching) and the new one (NC with deter-
ministic crowding). The new technique produces less
rules. This suggests the possibility that the new tech-
nique is discarding some good rules and therefore ig-
noring some niches. However, the performance of the
two set of rules is the same. The conclusion is that the
new technique is able to find a set of rules that is more
compact but without compromising on performance.
This can be explained by the fact that sequential nich-
ing is more sensitive to the definition of the distance
between individuals than deterministic crowding.

Another notable point is the efficiency of the new tech-
nique. The new technique only needed four runs (one
per level) to generate this set of rules. For the previous
technique, it is necessary to run the GA as many times
as the number of rules we want to generate. This is a
clear improvement on computational time.

2 201
E
2O e L A
] .

o 1000 2000 3000 4000 5000 6000 0 1000 2000 000 4000 5000 6000
Time (minutes)) Time (minutes)

(a) PC output (b) NC output

Figure 4: Detection function pinen seif,t(T) generated
by PC and PC applied to testing set : (a) deviation in
testing set reported by PC (b) deviations in the testing
set detected by evolved rule set.

Figure 4(a) shows the output of the PC algorithm
when applied to the testing data. The five peaks cor-
respond to the 5 attacks. Figure 4(b) shows a typical

attack profile produced by the application of the ge-
netic generated rules to the testing set. Four of five
attacks are detected.

As was shown in our previous work (Dasgupta and
Gonzalez, 2002), the negative characterization (NC) is
clearly more efficient (in time and space) compared to
the positive characterization (PC). There seems to be
a trade-off between compactness of the rule set repre-
sentation and accuracy. Validity of these arguments
are observed on our results. Figure 5 shows how the
true positives rate changes according to the value of
the threshold ¢. The PC technique has better perfor-
mance than the NC, but only by a small margin. In
general, the NC technique shows detection rates simi-
lar to the more accurate (but more expensive) PC tech-
nique. Table 3 summarizes the best true positive rates
(with a maximum false alarm of 1%) accomplished by
the two techniques.

1

Negative characterization
Positive characterization (Eculidean) -------
Positive characterization (D_inf)

0.8

0.6

Detection rate

Threshold (t)

Figure 5: Comparison of the true positives rate of the
detection function fnon sl f,t(?) generated by posi-
tive characterization (PC) and negative characteriza-
tion (NC) for different values of ¢.

Table 3: Best true positive rates for the different tech-

niques with a maximum false alarm rate of 1%.
Detection Technique True Positive

Rate
Positive Charact. (Euclidean) 96.4%
Positive Charact. (Do) 92.8%
Negative Characterization 87.5%

Our previous work (Dasgupta and Gonzalez, 2002)
shows that the NC technique produces a good estimate
of the level of deviation when this is calculated using
D, distance. Table 4 shows the confusion matrix for
the NC technique using sequential niching and deter-
ministic crowding. For each element in the testing set,
the function finon serf () generated by the NC is ap-
plied to determine the level of deviation. This level of
deviation is compared with the distance range reported
by the PC algorithm (using D, distance). Each row

(and column) corresponds to a range or level of de-
viation. The ranges are specified on square brackets.
A perfect output from the NC algorithm will generate
only values in the diagonal.

Table 4: Confusion matrix for PC and NC reported
deviations. The values of the matrix elements corre-
spond to the number of testing samples in each class.
The diagonal values represent correct classification.

PC output NC output level
level seq. niching
0 1 2 3 4
1: [0.0,0.05] | 5132 0 0 0 0
2: [0.05,0.1] 3 78 02 0 0
3: [0.1,0.15] 0 181 39 0 0
4: [0.15,0.2] 0 0 69 95 06
5: [0.2,..] 0 0 0 1 9
det. crowding
0 1 2 3 0
1: [0.0,0.05] | 5132 0 0 0 0
2: [0.05,0.1] 3 4 4 0 0
3: [0.1,0.15] 0 0 22 0 0
4: [0.15,0.2] 0 0 0 17 0
5: [0.2,..] 0 0 0 0 10

In the two cases, the values are concentrated around
the diagonal. The two techniques produced a good es-
timate of the distance to the self set. However, the
NC approach with deterministic crowding appears to
be more precise. One possible explanation of this per-
formance difference seems to be the fact that the se-
quential niching requires derating the fitness function
for each evolved rule. This arbitrary modification in
the fitness landscape can prevent evolving better rules.

6 CONCLUSIONS

In this paper, we investigated a technique to character-
ize and identify different intrusive activities by analyz-
ing network traffic. The technique is based on artificial
immune systems ideas and uses a genetic algorithm to
generate good anomaly detectors rules. We used a
real world data set (MIT-Lincoln lab) that has been
used by other researchers for testing. The following
are some preliminary observations:

e Our approach measures the anomaly of a system
as the distance of a descriptor vector to a normal
profile represented by descriptors collected during
the normal operation. This approach appears to
be very useful, since it was able to detect attacks
in real test data set.

e The immunogenetic algorithm was able to pro-
duce good detectors that give a good estimation
of the amount of deviation from the normal. This
shows that it is possible to apply the negative se-
lection algorithm to detect anomalies on real net-
work traffic data. The real representation of the
detectors was very useful in this work.

e The proposed algorithm is efficient; it was able
to detect four of the five attacks detected by the
positive characterization (with a detection rate of
87.5% and a maximum false alarms rate of 1%),
while only using a fraction of the space (when
compared to positive characterization).

e The use of deterministic crowding as niching tech-
nique improved the results obtained using sequen-
tial niching. While keeping the performance in
terms of a high detection rate, the new algorithm
generated a smaller set of rules that estimated
in a more precise way the amount of deviation.
The new technique is also more efficient in terms
of computational power since it is able to evolve
multiple rules for each individual run of the GA.

As part of our ongoing research we are exploring dif-
ferent covering strategies of the non-self space (for
instance, using hyper-spheres), developing new algo-
rithms to generate non-self covering rules and experi-
menting with other intrusion detection data sets.

Acknowledgments

This work was funded by the Defense Advanced Re-
search Projects Agency (contract no. F30602-00-2-
0514) and National Science Foundation (grant no. IIS-
0104251).

References

Beasley, D., Bull, D. R., and Martin, R. R. (1993). A
sequential niche technique for multimodal func-
tion optimization. FEvolutionary Computation,
1(2):101-125.

Crosbie, M. and Spafford, E. (1995). Applying genetic
programming to intrusion detection. In Siegel,
E. V. and Koza, J. R., editors, Working Notes for
the AAAI Symposium on Genetic Programming,
pages 1-8, MIT, Cambridge, MA, USA. AAAL

Dagupta, D. and Gonzalez, F. (2001). Information
Assuarance in Computer Networks, chapter An
intelligent decision support system for intrusion

detection and response, pages 1-14. Lecture Notes
in Computer Science. Springer-Verlag.

Dasgupta, D. (1999). Artificial Immune Systems and
Their Applications. Springer-Verlag, New York.

Dasgupta, D. and Gonzalez, F. (2002). An immunity-
based technique to characterize intrusions in com-
puter networks. To appear in IEEE Transactions
on Evolutionary Computation, 6(2).

Denning, D. (1986). An intrusion-detection model. In
IEEE Computer Society Symposium on Research
in Security and Privacy, pages 118-31.

Eskin, E. (2000). Anomaly detection over noisy data
using learned probability distributions. In Proc.
17th International Conf. on Machine Learning,
pages 255-262. Morgan Kaufmann, San Fran-
cisco, CA.

Forrest, S., Perelson, A., Allen, L., and Cherukuri, R.
(1994). Self-nonself discrimination in a computer.
In Proc. IEEE Symp. on Research in Security and
Privacy.

Hofmeyr, S. and Forrest, S. (2000). Architecture for
an artificial immune system. FEwvolutionary Com-
putation, 8(4):443-473.

Kephart, J. (1994). A biologically inspired immune
system for computers. In Proceedings of Artificial
Life, pages 130-139, Cambridge, MA.

Kim, J. and Bentley, P. J. (2001). An evaluation of
negative selection in an artificial immune system
for network intrusion detection. In Proceedings of
the Genetic and Evolutionary Computation Con-
ference (GECCO-2001), pages 1330-1337, San
Francisco, California, USA. Morgan Kaufmann.

Lane, T. (200). Machine Learning Techniques For The
Computer Security. PhD thesis, Purdue Univer-
sity.

Lee, W. and Stolfo, S. (1998). Data mining approaches
for intrusion detection. In Proceedings of the Tth
USENIX Security Symposium, San Antonio, TX.

Mahfoud, S. W. (1992). Crowding and preselection
revisited. In Manner, R. and Manderick, B., edi-
tors, Parallel problem solving from nature 2, pages
27-36, Amsterdam. North-Holland.

MIT-Lincoln-Labs (1999). Darpa
intrusion detection evaluation.
http://www.ll.mit.edu/IST /ideval /index.html.

