
An Introduction to Intrusion Detection
by Aurobindo Sundaram

Introduction

In the last three years, the networking revolution has finally come of age. More than ever before, we see
that the Internet is changing computing as we know it. The possibilities and opportunities are limitless;
unfortunately, so too are the risks and chances of malicious intrusions.

It is very important that the security mechanisms of a system are designed so as to prevent unauthorized
access to system resources and data. However, completely preventing breaches of security appear, at
present, unrealistic. We can, however, try to detect these intrusion attempts so that action may be taken
to repair the damage later. This field of research is called Intrusion Detection.

Anderson, while introducing the concept of intrusion detection in 1980 [1], defined an intrusion
attempt or a threat to be the potential possibility of a deliberate unauthorized attempt to

access information, 
manipulate information, or 
render a system unreliable or unusable. 

Since then, several techniques for detecting intrusions have been studied. This paper discusses why
intrusion detection systems are needed, the main techniques, present research in the field, and possible
future directions of research.

The need for Intrusion Detection Systems

A computer system should provide confidentiality, integrity and assurance against denial of service.
However, due to increased connectivity (especially on the Internet), and the vast spectrum of financial
possibilities that are opening up, more and more systems are subject to attack by intruders. These
subversion attempts try to exploit flaws in the operating system as well as in application programs and
have resulted in spectacular incidents like the Internet Worm incident of 1988 [12].

There are two ways to handle subversion attempts. One way is to prevent subversion itself by building a
completely secure system. We could, for example, require all users to identify and authenticate
themselves; we could protect data by various cryptographic methods and very tight access control
mechanisms. However this is not really feasible because:

1. In practice, it is not possible to build a completely secure system. Miller [10] gives a compelling
report on bugs in popular programs and operating systems that seems to indicate that (a) bug free
software is still a dream and (b) no-one seems to want to make the effort to try to develop such
software. Apart from the fact that we do not seem to be getting our money’s worth when we buy
software, there are also security implications when our E-mail software, for example, can be
attacked. Designing and implementing a totally secure system is thus an extremely difficult task. 

2. The vast installed base of systems worldwide guarantees that any transition to a secure system, (if



it is ever developed) will be long in coming. 
3. Cryptographic methods have their own problems. Passwords can be cracked, users can lose their

passwords, and entire crypto-systems can be broken. 
4. Even a truly secure system is vulnerable to abuse by insiders who abuse their privileges. 
5. It has been seen that that the relationship between the level of access control and user efficiency is

an inverse one, which means that the stricter the mechanisms, the lower the efficiency becomes. 

We thus see that we are stuck with systems that have vulnerabilities for a while to come. If there are
attacks on a system, we would like to detect them as soon as possible (preferably in real-time) and take
appropriate action. This is essentially what an Intrusion Detection System (IDS) does. An IDS does not
usually take preventive measures when an attack is detected; it is a reactive rather than pro-active agent.
It plays the role of an informant rather than a police officer.

The most popular way to detect intrusions has been by using the audit data generated by the operating
system. An audit trail is a record of activities on a system that are logged to a file in chronologically
sorted order. Since almost all activities are logged on a system, it is possible that a manual inspection of
these logs would allow intrusions to be detected. However, the incredibly large sizes of audit data
generated (on the order of 100 Megabytes a day) make manual analysis impossible. IDSs automate the
drudgery of wading through the audit data jungle. Audit trails are particularly useful because they can be
used to establish guilt of attackers, and they are often the only way to detect unauthorized but subversive
user activity.

Many times, even after an attack has occurred, it is important to analyze the audit data so that the extent
of damage can be determined, the tracking down of the attackers is facilitated, and steps may be taken to
prevent such attacks in future. An IDS can also be used to analyze audit data for such insights. This
makes IDSs valuable as real-time as well as post-mortem analysis tools.

Spafford [13] reports:

Information theft is up over 250% in the last 5 years. 
99% of all major companies report at least one major incident. 
Telecom and computer fraud totaled $10 billion in the US alone. 

It is thus more important than ever before that since it seems obvious that we cannot prevent subversion,
we should at least try to detect it and prevent similar attacks in future.

In the following sections, we use definitions from the pioneering work in intrusion detection[1]

Risk : Accidental or unpredictable exposure of information, or violation of operations integrity
due to the malfunction of hardware or incomplete or incorrect software design. 
Vulnerability : A known or suspected flaw in the hardware or software or operation of a system
that exposes the system to penetration or its information to accidental disclosure. 
Attack : A specific formulation or execution of a plan to carry out a threat. 
Penetration : A successful attack -- the ability to obtain unauthorized (undetected) access to files
and programs or the control state of a computer system.

Anderson also classified intruders into two types, the external intruders who are unauthorized users of
the machines they attack, and internal intruders, who have permission to access the system, but not



some portions of it. He further divided internal intruders into intruders who masquerade as another user,
those with legitimate access to sensitive data, and the most dangerous type, the clandestine intruders
who have the power to turn off audit control for themselves.

Classification of Intrusion Detection Systems

Intrusions can be divided into 6 main types [11]

1. Attempted break-ins, which are detected by atypical behavior profiles or violations of security
constraints. 

2. Masquerade attacks, which are detected by atypical behavior profiles or violations of security
constraints. 

3. Penetration of the security control system, which are detected by monitoring for specific patterns
of activity. 

4. Leakage, which is detected by atypical use of system resources. 
5. Denial of service, which is detected by atypical use of system resources. 
6. Malicious use, which is detected by atypical behavior profiles, violations of security constraints, or

use of special privileges. 

However, we can divide the techniques of intrusion detection into two main types. 

Anomaly Detection : Anomaly detection techniques assume that all intrusive activities are necessarily
anomalous. This means that if we could establish a "normal activity profile" for a system, we could, in
theory, flag all system states varying from the established profile by statistically significant amounts as
intrusion attempts. However, if we consider that the set of intrusive activities only intersects the set of
anomalous activities instead of being exactly the same, we find a couple of interesting possibilities: (1)
Anomalous activities that are not intrusive are flagged as intrusive. (2) Intrusive activities that are not
anomalous result in false negatives (events are not flagged intrusive, though they actually are). This is a
dangerous problem, and is far more serious than the problem of false positives. 

The main issues in anomaly detection systems thus become the selection of threshold levels so that
neither of the above 2 problems is unreasonably magnified, and the selection of features to monitor.
Anomaly detection systems are also computationally expensive because of the overhead of keeping
track of, and possibly updating several system profile metrics. Some systems based on this technique are
discussed in Section 4 while a block diagram of a typical anomaly detection system is shown in Figure
1. 

 

Misuse Detection: The concept behind misuse detection schemes is that there are ways to represent



attacks in the form of a pattern or a signature so that even variations of the same attack can be detected.
This means that these systems are not unlike virus detection systems -- they can detect many or all
known attack patterns, but they are of little use for as yet unknown attack methods. An interesting point
to note is that anomaly detection systems try to detect the complement of "bad" behavior. Misuse
detection systems try to recognize known "bad" behavior. The main issues in misuse detection systems
are how to write a signature that encompasses all possible variations of the pertinent attack, and how to
write signatures that do not also match non-intrusive activity. Several methods of misuse detection,
including a new pattern matching model are discussed later. A block diagram of a typical misuse
detection system is shown in Figure 2 below.

Anomaly Detection Systems

There have been a few major approaches to anomaly intrusion detection systems, some of which are
described below.

Statistical approaches: In this method, initially, behavior profiles for subjects are generated. As the
system continues running, the anomaly detector constantly generates the variance of the present profile
from the original one. We note that, in this case, there may be several measures that affect the behavior
profile, like activity measures, CPU time used, number of network connections in a time period, etc. In
some systems, the current profile and the previous profile are merged at intervals, but in some other
systems profile generation is a one time activity. The main advantage to statistical systems is that they
adaptively learn the behavior of users; they are thus potentially more sensitivte than human experts.
However there are a few problems with statistical approaches: they can gradually be trained by intruders
so that eventually, intrusive events are considered normal, false positives and false negatives are
generated depending on whether the threshold is set too low or too high, and relationships between
events are missed because of the insensitivity of statistical measures to the order of events. 

An open issue with statistical approaches in particular, and anomaly detection systems in general, is the
selection of measures to monitor. It is not known exactly what the subset of all possible measures that
accurately predicts intrusive activities is. Static methods of determining these measures are sometimes
misleading because of the unique features of a particular system. Thus, it seems that a combination of
static and dynamic determination of the set of measures should be done. Some problems associated with
this technique have been remedied by other methods, including the method involving Predictive Pattern
Generation, which takes past events into account when analyzing the data.

Predictive pattern generation: This method of intrusion detection tries to predict future events based
on the events that have already occurred [14]. Therefore, we could have a rule



      E1 - E2 --> (E3 = 80%, E4 = 15%, E5 = 5%)

This would mean that given that events E1 and E2 have occurred, with E2 occurring after E1, there is an
80% probability that event E3 will follow, a 15% chance that event E4 will follow and a 5% probability
that event E5 will follow. The problem with this is that some intrusion scenarios that are not described
by the rules will not be flagged intrusive. Thus, if an event sequence A - B - C exists that is intrusive,
but not listed in the rulebase, it will be classified as unrecognized. This problem can be partially solved
by flagging any unknown events as intrusions (increasing the probability of false positives), or by
flagging them as non-intrusive (thus increasing the probability of false negatives). In the normal case,
however, an event is flagged intrusive if the left hand side of a rule is matched, but the right hand side is
statistically very deviant from the prediction. 

There are several advantages to this approach. First, rule based sequential patterns can detect anomalous
activities that were difficult with traditional methods. Second, systems built using this model are highly
adaptive to changes. This is because low quality patterns are continuously eliminated, finally leaving the
higher quality patterns behind. Third, it is easier to detect users who try to train the system during its
learning period. And fourth, anomalous activities can be detected and reported within seconds of
receiving audit events. 

Another approach taken in intrusion detection systems is the use of neural networks. The idea here is to
train the neural network to predict a user’s next action or command, given the window of n previous
actions or commands. The network is trained on a set of representative user commands. After the
training period, the network tries to match actual commands with the actual user profile already present
in the net. Any incorrectly predicted events (events and commands are used interchangeably in this
discussion) actually measure the deviation of the user from the established profile. Some advantages of
using neural networks are: [8] they cope well with noisy data, their success does not depend on any
statistical assumption about the nature of the underlying data, and they are easier to modify for new user
communities. However, they have some problems. First, a small window will result in false positives
while a large window will result in irrelevant data as well as increase the chance of false negatives.
Second, the net topology is only determined after considerable trial and error. And third, the intruder can
train the net during its learning phase. 

Misuse Detection Systems

There has been significant research in misuse detection systems in the recent past, including attempts at
SRI, Purdue University and the University of California-Davis. Some of these systems are explained in
depth in this section.

Expert systems are modeled in such a way as to separate the rule matching phase from the action phase.
The matching is done according to audit trail events. The Next Generation Intrusion Detection Expert
System (NIDES) developed by SRI is an interesting case study for the expert system approach. NIDES
follows a hybrid intrusion detection technique consisting of a misuse detection component as well as an
anomaly detection component. The anomaly detector is based on the statistical approach, and it flags
events as intrusive if they are largely deviant from the expected behavior. To do this, it builds user
profiles based on many different criteria (more than 30 criteria, including CPU and I/O usage,
commands used, local network activity, system errors etc.) [8]. These profiles are updated at periodic
intervals. The expert system misuse detection component encodes known intrusion scenarios and attack
patterns (bugs in old versions of sendmail could be one vulnerability). The rule database can be changed



for different systems. One advantage of the NIDES approach is that it has a statistical component as well
as an expert system component. This means that the chances of one system catching intrusions missed
by the other increase. Another advantage is the problem’s control reasoning is cleanly separated from
the formulation of the solution. 

There are some draw backs to the expert system approach too. For example, the expert system has to be
formulated by a security professional and thus the system is only as strong as the security personnel who
programs it [7]. This means that there is a real chance that expert systems can fail to flag intrusions. It is
for this reason that NIDES has an anomaly as well as a misuse detection component. These two
components are loosely coupled in the sense that they perform their operations independently for the
most part. The NIDES system runs on a machine different from the machine(s) to be monitored, which
could be unreasonable overhead. Furthermore, additions and deletions of rules from the rule-base must
take into account the inter-dependencies between different rules in the rule-base. And there is no
recognition of the sequential ordering of data, because the various conditions that make up a rule are not
recognized to be ordered. 

Keystroke monitoring is a very simple technique that monitors keystrokes for attack patterns.
Unfortunately the system has several defects -- features of shells like bash, ksh, and tcsh in which user
definable aliases are present defeat the technique unless alias expansion and semantic analysis of the
commands is taken up. The method also does not analyze the running of a program, only the keystrokes.
This means that a malicious program cannot be flagged for intrusive activities. Operating systems do not
offer much support for keystroke capturing, so the keystroke monitor should have a hook that analyses
keystrokes before sending them on to their intended receiver. An improvement to this would be to
monitor system calls by application programs as well, so that an analysis of the program’s execution is
possible.

Model Based Intrusion Detection states that certain scenarios are inferred by certain other observable
activities. If these activities are monitored, it is possible to find intrusion attempts by looking at activities
that infer a certain intrusion scenario. The model based scheme consists of three important modules[4].
The anticipator uses the active models and the scenario models to try to predict the next step in the
scenario that is expected to occur. A scenario model is a knowledge base with specifications of intrusion
scenarios. The planner then translates this hypothesis into a format that shows the behavior as it would
occur in the audit trail. It uses the predicted information to plan what to search for next. The interpreter
then searches for this data in the audit trail. The system proceeds this way, accumulating more and more
evidence for an intrusion attempt until a threshold is crossed; at this point, it signals an intrusion attempt.

This is a very clean approach. Because the planner and the interpreter know what they are searching for
at each step, the large amounts of noise present in audit data can be filtered, leading to excellent
performance improvements. In addition, the system can predict the attacker’s next move based on the
intrusion model. These predictions can be used to verify an intrusion hypothesis, to take preventive
measures, or to determine what data to look for next. 

However, there are some critical issues related to this system. First, patterns for intrusion scenarios must
be easily recognized. Second, patterns must always occur in the behavior being looked for. And finally,
patterns must be distinguishing; they must not be associated with any other normal behavior. 



In the State Transition Analysis technique, the monitored system is represented as a state transition
diagram. As data is analyzed, the system makes transitions from one state to another. A transition takes
place on some Boolean condition being true (for example, the user opening a file). The approach
followed in USTAT [5] is to have state transitions from safe to unsafe states based on known attack
patterns. To make this model clearer, we illustrate with an example based almost entirely on an example
in Ilgun’s thesis. 

1. The attacker creates a link starting with "-" (say -x) to root’s setuid shell script containing the
#!/bin/sh mechanism. 

2. The attacker executes -x. 

The point of this attack is that whenever a hard link to a file is created, a new inode with the target’s
original permissions is created. Since invoking a script with the #!/bin/sh mechanism ianvokes a
subshell, and further, if the name of the subshell begins with a dash an interactive shell is created, we see
that the attacker has obtained an interactive shell with root privileges. The state diagram for this is
shown in Figure 3. We see that for the final compromised state to be reached, some conditions have to
be fulfilled. If these guard conditions are true, then there is almost certainly an intrusion attempt going
on. However, if any of these conditions do not hold, the probability of an intrusive action is considerably
decreased. We see that the guard conditions exist to filter the intrusive activities from the non-intrusive
ones. Hence, this can serve as a data pruning mechanism as observed in the model based scheme above.
Some advantages of this approach are: it can detect co-operative attacks, it can detect attacks that span
across multiple user sessions, and it can foresee impending compromise situations based on the present
system state and take pre-emptive measures. 

However there are also a few problems with state transition systems. First, attack patterns can specify
only a sequence of events, rather than more complex forms. Second, there are no general purpose
methods to prune the search except through the assertion primitives described above. And finally, they
cannot detect denial of service attacks, failed logins, variations from normal usage, and passive listening
-- this is because these items are either not recorded by the audit trail mechanism, or they cannot be
represented by state transition diagrams. 



A small point to be noted is that USTAT was never meant to be a stand-alone intrusion detection
system; indeed, it is meant to be used with an anomaly detector so that more intrusion attempts may be
detected by their combination. Some of the weaknesses of state transition systems are remedied by the
Pattern Matching Model, discussed next.

Kumar [6] proposed a new misuse detection system based on Pattern Matching. This model encodes
known intrusion signatures as patterns that are then matched against the audit data. Like the state
transition analysis model, this model attempts to match incoming events to the patterns representing
intrusion scenarios. The implementation makes transitions on certain events, called labels, and Boolean
variables called guards can be placed at each transition. The difference between this and the state
transition model is that the state transition model associates these guards with states, rather than
transitions. The important advantages of this model are:

1. Declarative Specification : It only needs to be specified what patterns need to be matched, not how
to match them. 

2. Multiple event streams can be used together to match against patterns for each stream without the
need to combine streams. This means that streams can be processed independently, and their
results can be analyzed together to give evidence of intrusive activity. 

3. Portability : Since intrusion signatures are written in a system independent script, they need not be
rewritten for different audit trails. The patterns’ declarative specifications enable them to be
exchanged across different Operating Systems and different audit trails. 

4. It has excellent real-time capabilities. Kumar reports a CPU overhead of 5-6% when scanning for
100 different patterns, which is excellent. 

5. It can detect some attack signatures like the failed logins signature that the state transition model
cannot do. 

One problem with this model it it can only detect attacks based on known vulnerabilities (a problem
with misuse detection systems in general) In addition, pattern matching is not very useful for
representing ill-defined patterns and it is not an easy task to translate known attack scenarios into
patterns that can be used by the model. Also, it cannot detect passive wire-tapping intrusions, nor can in
detect spoofing attacks where a machine pretends to be another machine by using its IP address. 

An interesting fact about Kumar’s IDS is that it is called IDIOT (Intrusion Detection In Our Time), and
we leave it to the reader to ponder the appropriateness of the name for the state of the art in intrusion
detection. 

6 Other Models and Directions in Research

Dorothy Denning [3] introduced a Generic Intrusion Detection Model that was independent of any
particular system, application environment, system vulnerability, or type of intrusion. The basic idea of
the model is to maintain a set of profiles for subjects (usually, but not necessarily users of a system).
When an audit record is generated, the model matches it with the appropriate profile and then makes
decisions on updating the profile, checking for abnormal behavior and reporting anomalies detected. To
do this, it monitors system services such as file accesses, executable programs, and logins. It has no
specific knowledge of the target system’s vulnerabilities, although this knowledge would be extremely
useful in making the model more valuable. In fact, the Intrusion Detection Expert System (IDES)
developed at SRI was based on this model. The basic ideas in this model appear with little modification



in many systems built. However, there are some systems that do not fit easily into this model.

NSM (Network Security Monitor) is an intrusion detection system developed at the University of
California-Davis. NSM is a network-based IDS that differs from all of the IDSs discussed earlier
because it does not use or analyze the host machine(s) audit trails. Rather, it monitors network traffic in
order to detect intrusions [9]. Since network based attacks are expected to be prevalent in the future due
to the mushrooming of the Internet, NSM could prove to be a valuable tool to detect intrusive activity. 

NSM has several perceived advantages. First, the IDS gets instantaneous access to network data.
Second, the IDS is hidden from the intruder because it is passively listening to network traffic.
Therefore, it cannot be shut off or its data compromised. Finally, the IDS can be used with any system,
because it is monitoring network traffic, protocols for which (TCP, UDP etc.) are standardized. There is
no problem with different audit files, for example. 

Researchers at Purdue University are working on several issues in intrusion detection. Crosbie and
Spafford [2] propose to build an IDS using Autonomous Agents. Instead of a single large IDS
defending the system, they propose an approach where several independent, small processes operate
while co-operating in maintaining the system. The advantages claimed for this approach are efficiency,
fault tolerance, resilience to degradation, extensibility and scalability. The foreseen drawbacks include
the overhead of so many processes, long training times, and the fact that if the system is subverted, it
becomes a security liability. An interesting possibility they open up is that of an active defense, that can
respond to intrusions actively instead of passively reporting them (it could kill suspicious connections,
for example).

Conclusion

Intrusion Detection is still a fledgling field of research. However, it is beginning to assume enormous
importance in today’s computing environment. The combination of facts such as the unbridled growth
of the Internet, the vast financial possibilities opening up in electronic trade, and the lack of truly secure
systems make it an important and pertinent field of research. Future research trends seem to be
converging towards a model that is a hybrid of the anomaly and misuse detection models; it is slowly
acknowledged that neither of the models can detect all intrusion attempts on their own. This approach
has been successfully adopted in NIDES, and we can expect more such attempts in the future. Some
schools doing research in this field include The COAST group at Purdue University, The University of
California-Davis, and The University of California-Santa Barbara. The interested reader is encouraged
to browse the provided links for more information.
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