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Abstract

There is currently need for an up-to-date and thorough survey of the research in
the field of computer and network intrusion detection. This paper presents such
a survey, with a taxonomy of intrusion detection system features, and a classi-
fication of the surveyed systems according to the taxonomy. The conclusion is
reached that current research interest should lie in the study of the effectiveness
of intrusion detection and how to handle attacks against the intrusion detection
system itself.
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Chapter 1

Intrusion detection,
introduction and survey

1.1 Introduction

This paper is a survey of the research in the field of computer and network
intrusion detection. Some of the previous surveys of the field are [13,40,43,45].
Most of these are somewhat dated,! and/or superficial, and the growing num-
ber of people taking interest in the field calls for an up-to-date and thorough
survey. This survey is indeed intended to be thorough, with the surveyed sys-
tems described in some detail and classified according to a number of interesting
features.

There are several ideas in the literature about how to perform intrusion de-
tection, such as [5,16,27,44] to name a few. These have not been covered since
the emphasis here is on intrusion detection systems. We wish to survey substan-
tial research efforts that have generated a prototype that can be studied, both
quantitatively, and qualitatively. No slight towards the systems not covered, or
its authors, intended. That said, the line drawn between surveyed systems, and
those that were excluded, is somewhat arbitrary, since the distinction can be
difficult to make.

1.1.1 Introduction to intrusion detection

To introduce the concept of intrusion detection we draw the analogy to the
common “burglar alarm,” 2 to instrument a computer system or network in
such a way as to enable it to detect possible violations of a security policy, and
raise an alarm to notify the proper authority. (This authority is henceforth
referred to as the SSO, short for Site Security Officer). Some of the same
problems, “false alarms” and circumvention of the alarm system, are common
to both types of intrusion detection systems.

1 A proposed taxonomy of intrusion detection systems that recifies many of these shortcom-
mings was published after the conclusion of this survey [8]. 2 Unfortunately, there is a clash
in terminology, in that the scientific term for “burglar alarm/intrusion alarm” is the same as
in our case—intrusion detection system. We will use the latter term when referring to the
computer systems version, to avoid confusion. My apologies to those in the security field at
large who might feel slighted by the term “burglar alarm.”



However, the analogy unfortunately breaks down quickly after the above
similarities are noted. In comparison, even the most sophisticated “burglar
alarms” operate under a much simpler security policy. Typically, no normal
activity is performed on the premises while the monitoring is enabled, and thus
any (human) activity can be construed as suspicious. If this were true of the
computer system and network intrusion detection, the problem could be more
readily disposed of. Unfortunately, we demand that intrusion detection systems
operate in an environment where (often considerable) normal activities take
place (whatever they may consist of), and the problem becomes one of being
able to sort out the few rotten apples from a (substantial) barrel full.

1.1.2 Intrusion detection in a wider context

Several methods are available to protect a computer system or network from
attack, a strong perimeter defence being only one of them. A good introduction
to many such methods is [20], which this section borrows heavily from. The
paper lists six general, non-exclusive approaches to anti intrusion techniques
(Figure 1.1 depicts the various approaches):

System perimiter
Preemption —

External Internal
prevention prevention

Counter

measures
DETECTION

1
1
1
1
System
I resources
1 h— >

Intrusion attempts
External Internal " .. "
d deterrence Deflection Honey pot

eterrence ‘/

Figure 1.1: Summary of anti-intrusion techniques (from [20])

1. Prevention To preclude or severely handicap the likelihood of a particular
intrusion’s success. One can for instance elect to not be connected to
the Internet if one is afraid of being attacked via it. Unfortunately, this
can be an expensive and awkward approach, since it is easy to “throw
the baby out with the bath water” in one’s attempts to prevent attacks.
Internal prevention is under the control of the system owner, while external
prevention takes place in the environment surrounding the system, such
as a larger organization, or society as a whole.

2. Preemption To strike against the threat before it has had a chance to
mount its attack.? In a civilian setting, this is a dangerous (and probably
illegal) approach, where innocent* bystanders may be harmed.

3. Deterrence Persuade an attacker to hold off his attack, or to break off an
ongoing attack. Typically accomplished by increasing the perceived risk

3 Popularly, and in jest, referred to as “Do unto others, before they do unto you.” 4 And
not so innocent. ..



of negative consequences for the attacker. Of course, if the value of the
protected resource is great, the determined attacker may not “scare off”
easily. Internal deterrence could take the form of login banners warning
potential internal, and external attackers of dire consequences should they
proceed. External deterrence could be effected by the legal system, making
laws against computer crime, and the strinct enforcement of same.

4. Deflection Lure an intruder into thinking that he has succeeded when, in
fact, he has been shunted off, or tricked away, from where he could do real
damage. The main problem is that of managing to fool an experienced
attacker, at least for a sufficient period of time....

5. Detection This is where the subject under discussion fits into the greater
scheme of things. Detection aims to find intrusion attempts, so that the
the proper response can be evoked. This is most often a notification to
the proper authority. Problems include the obvious; difficulty of defending
against a hit-and-run attack, and problems with false alarms, or failing to
sound the alarm when someone surreptitiously gains, or attempts to gain,
access.

6. Countermeasures To actively and autonomously counter an intrusion as it
is being attempted. This can be done without the need for detection, since
the countermeasure does not have to® discriminate between legitimate
users that perform a mistake, and an intruder that sets off a predetermined
response (a “booby trap” if you wish).

In light of the above taxonomy, it is straightforward to put intrusion det-
ection into perspective. Current intrusion detection systems fall (almost) ex-
clusively in the category of detection, although recently more interest has been
shown in the question of how to provide an automated response to the detected
intrusion. However, the discussion is then focused around the quality of the
detection (or rather, lack thereof), and the perceived risk of having the intru-
sion detection system mistakenly striking down on benign activity. This being
somewhat in contrast with the definition of “countermeasures” above.

1.1.3 Early research in intrusion detection systems

The field of intrusion detection is currently some eighteen years old. The seminal
paper that is most often cited is James P. Anderson’s technical report [3], where
he divides the possible attackers of a computer system into the four groups:

External penetrator The ezternal penetrator has gained access to a com-
puter that he is not a legitimate user of. Anderson uses this definition
to include users that are, e.g. employees of some organisation, where they
have physical access to the building that houses the computing resource,
even though they are not authorised to use it.

Masquerader The masquerader is a user who, having gained access to the
system—the masquerader can be both an external penetrator, and an-
other authorised user of the system—attempts to use the authentication
information of another user, in effect becoming him, as far as the computer

5 Although it is preferable if it does. ..



system is concerned. This is an interesting case, since there is no direct
way of differentiating between the legitimate user and the masquerader.

Misfeasor The the legitimate user can operate as a misfeasor, that is, although
he® has legitimate access to privileged information, he abuses this privilege
to violate the security policy of the installation.

Clandestine user The clandestine user operates at a level below the normal
auditing mechanisms, perhaps by accessing the machine with supervisory
privileges. Since there is little, if any, evidence of this type of intrusive
activity, this class of perpetrator can be difficult to detect.

While this problematisation in itself does not open the field of intrusion
detection, Anderson goes on to state in reference to the masquerader class that:

Masquerade is interesting in that it is by definition extra use of the
system by the unauthorised user. As such it should be possible to detect
instances of such use by analysis of audit trail records to determine:

a. Use outside of normal time

b. Abnormal frequency of use

c. Abnormal volume of data reference

d. Abnormal patterns of reference to programs or data

As will be discussed in the subsequent section, the operative word is
“abnormal” which implies that there is some notion of what “normal”
is for a given user.

This statement is the first in literature that presents the idea of (semi)-
automatic intrusion detection in computer systems, in terms of of anomalies
encountered. Furthermore, later in the paper the author expands the idea to
also include the detection of outright violations of some security policy.

The paper that really opened the field was published some seven years later.
Dorothy Denning [10] presented the idea that intrusions in computer systems
could be detected by assuming that users of a computer system would behave in
a manner that would lend itself to automatic profiling, i.e. that some model of
the behaviour of a particular user could be constructed by the intrusion detec-
tion system, and that subsequent behaviour of a presumed user could be verified
against that user’s model, with the intention that behaviour that deviated suf-
ficiently from the norm would be flagged as anomalous, and hence indicative of
a possible intrusion. Denning mentioned several such models, based on the use
of statistics, Markov chains, time-series, etc. Denning stressed that the work
presented gives the basis for performing these functions in real-time, or near
real-time. This paper has its base in the earliest prototype of IDES, on which
Peter Neumann worked with Denning [9].

Another early system, that was influenced by the work of Denning and Neu-
mann, was MIDAS [50]. The design of MIDAS centered around an expert system
with rules concerning anomalous behaviour, but also, predetermined rules codi-
fying the security policy of the installation. This is one of the earliest instances

6 While the present author does not wish to stereotype, it feels appropriate to refer to the
computer criminal with the third person masculine pronoun, since the overwhelming majority
of computer criminals (as is true of most other criminals in society), belong to that gender.



of the idea to process audit data for manifestations of already known intrusive
behaviour.

About the same time it was suggested [19,40] that the two complimen-
tary approaches of seeking anomalous activity based on some historic data, and
searching for signatures of already known intrusions, should be employed in the
same intrusion detection system, to better complement the relative strengths
and weaknesses of the two approaches. One of the papers ([19]) also suggested
that this system be autonomous enough to be trusted to respond unsupervised
to detected intrusions. Although the author of that paper recognised that much
research was yet to be done before this goal could be attained.

In summary: early research concerned itself with the question of whether
profiles of normal subject behaviour could be constructed, and used for intru-
sion detection purposes. A split occurred with the advent of the principle of
specifying known intrusion signatures so that audit data could be efficiently
scanned for these signatures, and later the two ideas were combined into the
hybrid approach.

1.1.4 Summary of early findings—anomaly versus signa-
ture detection

The early research uncovered several features of the two major approaches,
anomaly based and signature based intrusion detection. The problems and ad-
vantages of the approaches can be summarised as:

Anomaly detection

Advantages The operator need not configure the system, it automati-
cally learns the behaviour of a large number of subjects, and can be
left to run unattended. Since it contains no knowledge, some would
say prejudice, about how an intrusion would manifest itself, it has
the possibility of catching novel intrusions, as well as variations of
known intrusions.

Disadvantages By definition it only flags unusual behaviour, not neces-
sarily illicit behaviour per se. This can be a problem when the two
types of behaviour do not overlap. A system that learns to accept
dangerous behaviour as “normal” for a particular user, that slowly
changes his behaviour over time, will not find anything out of the
ordinary when that user finally mounts his attack. The updating of
the subject’s profiles, and the correlation of current behaviour with
those profiles is typically a computationally intensive task, that can
tax the available computing resources hard.

Signature detection

Advantages The system “knows” for a fact, either suspect behaviour, or
how normal behaviour should manifest itself. This leads to simple
and efficient processing of the audit data. The rate of false positives
(benign activity classed as an intrusion) can also be kept low.

Disadvantages Specifying the detection signatures is a highly qualified,
and time consuming task. It is not something that “ordinary” op-
erators of the system would do. Depending on how these signatures



are specified, subtle variations of the intrusion scenarios can lead to
them going undetected. Of course, the method has limited predictive
powers. It cannot detect intrusions that are novel to it, especially not
those of a fundamentally new class of intrusions.

As previously stated is was hoped that by combining these approaches into
a hybrid approach, the best of both worlds could be attained.

1.2 A generic architechtural model of an intru-
sion detection system

Since the publishing of the early papers, several intrusion-detection systems have
seen the light of day. Thus, today there exists a sufficient number of systems in
the field for one to be able to form some sort of notion of a “typical” intrusion
detection system, and its constituent parts. Figure 1.2 depicts such a system.
Please note that not all possible data/control flows have been included in the
figure, but rather the most important ones.

Audit Audit
collection storage

Figure 1.2: Organisation of a generalised intrusion detection system

The generalised model of an intrusion detection system would contain at
least the following elements:

Audit collection Audit data from which to make intrusion detection decisions
must be collected. Many different parts of the monitored system can be
used as sources of data, keyboard input, command based logs, application
based logs etc. However, typically, network activity, or host based security
logs (or both) are used.

Audit storage Typically, the audit data is stored somewhere, either indefi-
nitely” for later reference, or temporarily awaiting processing. The vol-

7 Or at least for a long time—perhaps several months/years—compared to the processing
turn around time.



ume of data is often exceedingly large® i.e., this is a crucial element in any
intrusion detection system, and this has led some researchers in the field
to view intrusion detection as a problem in audit data reduction [14].

Processing The processing block is the heart of the intrusion detection system.
It is here that one or many algorithms are executed to find evidence (with
some degree of certainty) of suspicious behaviour, in the audit trail.

Research has to date uncovered three principles of performing intrusion
detection:

1. Anomaly based intrusion detection. The system reacts to deviations
from normal behaviour. “Normal” is defined in relation to previ-
ously observed subject behaviour, and is typically updated as new
knowledge about subject behaviour becomes known. This update is
periodic and automatic in nature, the machine “learns” new behavi-
our profiles.

Note that “subject” is to be interpreted loosely. Not only user be-
haviour, but also host parameters, network parameters, etc. can be
monitored for deviations from the set norm.

2. Signature based intrusion detection. The system tries to find evidence
in the data that matches known signatures of intrusive or suspect
behaviour. These signatures are constructed off line, manually, as
new types of intrusions becomes known to the security community.
Note that even though these signatures can encode behaviour that is
only “suspicious” in nature, and not prima facie evidence of known
intrusive activity, it is still not anomaly detection as above, since the
self learning component is missing in the system.

3. Specification based intrusion detection. A special case of signature
based intrusion detection, where the system is fed with signatures
not of intrusive behaviour, but instead of benign behaviour. Every
action that deviates from the set norm is then flagged as indicative
of an intrusion attempt.

We reduce the above classification into two classes:

1. Anomaly based detection As per the definition above.

2. Policy based detection Where the detection is based on some security
policy external to the system. In the case this policy is specified
in a default permit manner, the detection principle becomes that of
signature based detection. In the case the policy is of the default
deny variant, the detection principle is clearly specification based.

Configuration data This is the state that affects the operation of the intru-
sion detection system as such. How and where to collect audit data, how
to respond to intrusions etc. etc. This is thus the SSO’s main means of
controlling the intrusion detection system. This data can grow surpris-
ingly large, and complex for a real world intrusion detection installation.
It is furthermore quite sensitive, since access to this data would give the

8 The problem of collecting enough, but not too much audit data has somewhat humorously
been described as; “You either die of thirst, or you’re allowed a drink from a fire hose...”



competent intruder information about which avenues of attack are likely
to go undetected.

Reference data The reference data storage stores information about known
intrusion signatures and/or profiles of normal behaviour. In the later case
the processing element updates the profiles as new knowledge about the
observed behaviour becomes available. This update is often performed at
regular intervalls, in a batch oriented fashion.

Stored intrusion signatures are most often updated by the SSO, as and
when new intrusion signatures becomes known. The analysis of novel
intrusions is a highly qualified task. More often than not, the only realistic
mode of operation of the intrusion detection system is one where the SSO
subscribes to some outside source of intrusion signatures. These are then
proprietary, it is difficult, if not impossible, to make intrusion detection
systems operate with signatures from an alternate source.

Active/Processing data The processing element frequently must store inter-
mediate results, e.g information about partially fulfilled intrusion signa-
tures. The space needed to store these active data can grow quite large.

Alarm This part of the system handles all output from the system, whether
that be an automated response to the suspicious activity, or which is most
common, the notification of some site security officer.

In a hybrid system—containing both anomaly and policy based detection
elements—there will be two processing elements, and two sets of configuration
and active data storage. The alarm module must then make a decision based
on outputs from both (or more) detection modules, either a simple and/or type
decision, or a more complex one, weighing other factors into the equation.

Of the parts described in figure 1.2, to date, the processing part has been
most thoroughly studied. Other parts are less well studied, for example little
emphasis has been placed on data collection (e.g. what data to collect to be
able to ascertain that an intrusion has taken place, how to perform this ef-
ficiently)?, how to store that data efficiently. Another question that remains
largely unadressed is that of how to handle the intrusion, especially the inter-
action between the alarm component, and the SSO.

1.3 A simple taxonomy of intrusion detection
systems

The surveyed intrusion detection systems can be classified according to many
different features. The most obvious is the classification according to the det-
ection principles previously mentioned:

Anomaly detection The system reacts to anomalous behaviour, as defined
by some history of the monitored subjects previous behaviour, or by some
previously defined profile of that subject. (Note that subject could mean
user, host, network, etc.) In order to differentiate anomaly detection from

9 We have published one paper that concerns itself with such a study [4].



policy based detection, the present author requires that the system auto-
matically learns from past example. If a human operator where to draw
the same conclusions from past data, and codify this knowledge into rules
for an expert system, for example, then we would call that system policy
based instead.

Policy based detection The system reacts when some policy is violated. This
policy can be specified either in a default permit, or a default deny'® fash-
ion. Le. the SSO either specifies some kind of signature that describes
illicit behaviour, or he specifies, the normal, security benign, operation
of the system, deviations from the set norm are viewed as an attempted
intrusion by the intrusion detection system.

Hybrid As previously stated, most researchers believe that both approaches
above should be combined when designing intrusion detection systems, to
reap the benefits of both, avoid the weaknesses, and accomplish synergistic
effects.

Having drawn a major line between groups of systems, based on their ap-
proach of detecting an intrusion in audit data, a closer study brings forth the
following (albeit sometimes weak) dichotomies:

Time of detection Two major groups can be identified, those that attempt
to detect intrusions in real-time, or near real-time, and those that process
audit data with some delay (non-real-time). The latter approach would in
turn delay the time of detection. Without any real exceptions the surveyed
systems that fall into the real-time category, can also be run, off-line, on
historic audit data. This is most likely for reasons of being able to simplify
the verification process, as the system is being developed, but of course, it
can sometimes be valuable to run an otherwise real-time capable system
on previous saved data to establish past security critical events.

Granularity of data-processing This cathegory contrasts systems that pro-
cess data continuously, with those that process data in batches, at some
regular interval. This category is linked with the Time of detection cat-
egory above, but note that they do not overlap, since a system could
process data continuously with (perhaps) considerable delay, or process
data in (small) batches in “real-time”.

Source of audit data The two major sources of audit data in the surveyed
systems are network data, typically data read directly off of some multicast
network (Ethernet), and host based security logs. The host based logs can
include operating system kernel logs, application program logs, network
equipment (e.g. routers, and firewalls) logs, etc. etc.

Response to detected intrusions Passive versus active. Passive systems re-
spond by notifying the proper authority, they do not in themselves try to
mitigate the damage done, or actively seek to harm or hamper the at-
tacker. Active systems could be further subdivided into two classes:

10 Named specification based intrusion detection by its authors [29].



1. Those that exercise control over the attacked system, i.e. they modify
the state of the attacked system to thwart or mitigate the effects of
the attack. Such control could be in the form of terminating network
connections, increase the security logging, kill errant processes etc.

2. Those that exercise control over the attacking system, i.e they in
turn attack the attacker to try and remove his platform of operation.
Since this approach is difficult to defend in court, we do not envision
much interest in this approach outside of military/law enforcement
circles.

Of the systems surveyed one sewers network connections in response to
suspected attacks, and one blocks suspect system calls, terminating the
process if that option fails. This mode of defence is generally difficult to
field, in that it opens up the system to obvious denial of service attacks.

Locus of data-processing The audit data can either be processed in a central
location, irrespective of whether the data originates from one—possibly
the same—site, or is collected and collated from many different sources in
a distributed fashion.

Locus of data-collection Audit data for the processor/detector can be col-
lected from many different sources, i.e. in a distributed fashion, or from a
single point, the centralised approach.

Security The ability to withstand hostile attack against the intrusion detection
system itself. This is a little studied area. The classification would naively
be on a high—low scale. The surveyed systems, with one exception, all
fall in the latter category.

Degree of interoperability The degree to which the system can operate in
conjunction with other intrusion detection systems, accept audit data from
other sources etc, etc. This is not the same as the number of different
platform the intrusion detection system itself runs on.

In fairness it should be said that not all of the above categories are di-
chotomies in the true sense of the word. However, the author believes that
many of the surveyed systems display sufficient difference that it is meaningful
to speak of a dichotomy.

1.4 A classification of the surveyed systems

When applying the above taxonomy to the surveyed systems the classification
in table 1.1 is arrived at.
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1.5 Trends and constants in intrusion detection
research

When studying the historical development of a field of research, both in terms of
the research done, and the research prototypes that has resulted, it is interesting
to note trends, and also what has been constant over the years. A closer study
of the classification in section 1.4—the surveyed systems spanning nearly fifteen
years of research—and the references describing said systems, the following few
trends and constants come to light.

1.5.1 Trends

From host to network

A shift from host-based intrusion detection to network based detection. This
correlates with the shift from single multi-user systems to networks of worksta-
tions. However, recent network technology (switching networks, faster network
communication speeds) has made it more difficult to monitor the network for
audit data. Furthermore, the problem of what to do with encrypted data on
the network has presented a problem, that yet remains to be solved. The lat-
ter question it is starting to be addressed, mainly by considering the hybrid
approach, see [47].

From centralised to distributed

Another shift that correlates with the shift from multi-user systems to networks
of workstations is the shift from centralised intrusion detection to distributed
intrusion detection.

We see the trend most clearly in the case of data collection. Host based
security logging must by it’s very nature be distributed in order to operate in a
network of workstations scenario. In the case of network data, it is conceiavable
that one could monitor a network of workstations from a central network tap,
and indeed the two purely network monitoring systems surveyed, has taken this
approach, however, others that also monitor host based security logs have also
distributed the network monitoring taps, there is thus no absolute concencus on
the matter.

In the case of data processing, the trend towards distribution seems to lag
behind, which is only natural when one considers the general difficulties of
distributed data processing. However, since it is probably the only solution to
the problem of how to make intrusion detection systems scale, there is a clear
interest in the matter, and recent attempts have been made. It is interesting to
note that even though as the processing is distributed, the reliance of a central
SSO to receive and act on the alarms is often maintained.

Towards interoperability

While most of the early systems were closely linked to one specific platform, a
recent trend is to move towards more and more open and interoperable intrusion
detection systems. The perceived benefits are to be able to leverage different
methods from different suppliers, capitalizing on their respective strengths and
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weaknesses, and to be able to operate an intrusion detection system in a het-
erogeneous environment.

One effort in the line with the former argument is [27], another in line with
the later is [47]. The latter authors claim that the thorough specification of
a framework in which several smaller agents can cooperate, allows them to do
one well defined task efficiently and effectively, and leads to an architectural
integrity that is paramount in a system that is envisioned to be very large,
covering, and protecting infra structure scale investments.

More resistant to attack

Resistance to attack against the intrusion detection system itself is also an
active topic, which previous research did not actively address. The trend is
clearly towards systems that can withstand attack against themselves, as well
as the monitored system. One recent system that attempts to address this issue
is Bro [46].

However, there is still very little study of the nature of the attacks an intru-
sion detection system could realistically be able to withstand. One recent paper,
that addresses some issues regarding evasion of detection is [49], but others still
remain unaddressed.

1.5.2 Constants

The following issues seem to have remained largely constant over the period
covered by the survey.

The hybrid between anomaly and policy

There seems to still be general agreement that in order to make an effective
intrusion detection system, one must employ both anomaly and policy based
intrusion detection methods, even though this is one of the original results.

It is interesting to note the relative shift—trend if you will—in concentration
of the research where newer research often stress policy based detection, at
the expense of anomaly based detection. There are probably practical reasons
for this, in that it is more difficult to perform experiments that say anything
conclusively about the coverage of anomaly based techniques, even though it
must be said, that the discussion of coverage is somewhat lacking in other work
based on policy detection techniques, as well.

Real-time detection

Early research systems performed non-real time detection, it was realised that
this was an imperfection of the systems, neccesitated by then current technology
limitations. Of the more recent systems, only one claim non-real time perfor-
mance from a more philosophical standpoint.

While it is clear that real-time detection has desirable properties, the present
author would not rule out the usefulness of non-real time detection altogether.
There are many cases where after the fact assessment of the situation, to be able
to accurately depict events as they transpired, is perhaps more desirable than
being given an immediate warning that something may be amiss, and nothing
more.
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Such situations arise in cases where law enforcement is involved, where the
accuracy, and traceability of events are more important than real-time perfor-
mance. Another similar case is when the security policy of an organization states
accountability, rather than preemptive control, such as in medical emergencies.
Medical personnel need unrestricted access to possibly sensitive data quickly,
the security repercussions of which can be dealt with later.

As previously mentioned there are links between the time of detection cathe-
gory and the granularity of data processing, and it is clear from studying table 1.1
that real-time detection correlates well with continous data processing, and that
non real-time detection correlates well with batch data processing. There are a
few exptions to this rule, however, so the overlap is not perfect.

Few active responses

There is some discussion whether to allow systems to respond more actively, for
instance by terminating the connections that appear to be causing the attack.
The opinion is clearly in favour of more active systems, but research is, perhaps
not surprising, still immature in this field. Difficult questions regarding the
accuracy of the detection, the possibility of opening the system to a denial-
of-service attack, and liability, remain to be solved before intrusion detection
system can be trusted to respond on their own.

The consumption of resources

As computers and networks get faster, we can process more audit data per
unit time, but that same computer or network unfortunately produce (some)
audit data at a much higher rate as well.!! Hence, the total ratio of consumed
resources to available resources is, if not constant, at least not decreasing at
a sufficiently fast pace, that the performance of the intrusion detection system
becomes a non-issue. Quite the contrary, network communication speeds for
instance, seems to be one of those obstacles that the research community seems
to never be able to quite clear.

There is also little study into the question of how to collect, store, and prune,
these vast amounts of audit data, even though the present author feels that this
area hides contains some interesting problems to be researched.

Little study of coverage

There is still a lack of study in the field of coverage,'? of the intrusions the

system can realistically be thought to handle.'® The problems are both that of
incorrectly classifying benign activity as intrusive, a so called false positive,'4
and that of classifying intrusive activity as non-intrusive, a false negative. These
mis-classifications lead to different problems. The term coverage, borrowed from
the field of dependability, could in our field be defined as the ratio of correctly

11 This cathegory has not been tabulated, even though it is conceivably a feature of the
surveyed intrusion detection systems. The reason is mainly that few authors make solid
claims in this area, and especially in relation to some usability scenario, i.e. as a percentage of
how much a system owner would be willing to let intrusion detection cost him. 12 Since the
first version of this paper, there has been some activity in this area, most notably [12, 39, 57].

13 This cathegory has not been tabulated as it is not a feature of the surveyed systems. It
becomes clear when studying the surveyed references however. !4 “False alarm,” if you
will.

14



classified intrusions (true positives) to the number of intrusions incorrectly clas-
sified as non-intrusive, (false negatives) plus the number of true positives, i.e. the
fraction of intrusions that can be detected.!® Even though the term would be
a useful measure on the effectiveness of a proposed intrusion detection system,
there are few references to it in the published literature.

The nature of computer security intrusions, from an intrusion detec-
tion perspective

Closely linked to the study of coverage is the lack of study of the nature of the
intrusions the system should be able to classify, and the nature of the intrusions
the intrusion detection system itself should be able to withstand.!® Papers
that do address the question of the nature of the computer security intrusion
are [36,37], and more specifically [38], and [32]. A paper that concerns itself with
the nature of attacks against intrusion detection systems themselves, is [49].

The role, and capabilities of the SSO

The reliance on some SSO to handle the final arbitration, and response to the
intrusion.!” The specific role of the SSO has not been well studied, how results
should be reported to him, how many results he can realistically be expected to
handle, his abilities to respond etc. Of course, if one fails to address the issue of
the number of false positives, for instance, both in relative terms, i.e. not more
than 0.5% false alarms, and in absolute terms—0.5% could well mean 5000
alarms—then the difficulty of putting the function of the SSO in perspective
follows.

1.6 Open research questions

In summary then, the most obvious shortcomings in the research performed to
date, is that it fails to thoroughly address the following questions:

e What is the nature of the intrusions that the system is trusted to detect,

e to what degree can the system correctly classify these intrusions, and can
the system correctly classify intrusion to such a degree that it can be
trusted to respond actively to them? The reason we ask these questions is
that we would like our intrusion detection system to be able to respond as
accurately, quickly, and hence, with as little human intervention as possi-
ble. The use of active response also raises questions about the possibility
of a denial-of-service attack, which compounds the problem.

e What audit data do we need to make a sound decision from an intrusion
detection perspective? How do we collect, store, prune, and transmit this
audit data, efficiently and effectively?

15 Mathematically: True positives/(False negatives + True positives). This is often the most
convenient way of calculating P(Intrusion indicated|Intrusion existing). 16 This cathegory
has not been tabulated as it is not a feature of the surveyed systems. It becomes clear when
studying the surveyed references however. 7 This cathegory has not been tabulated as it is
not a feature of the surveyed systems. It becomes clear when studying the surveyed references
however.
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We also need to have more knowledge about the nature of the intrusions to
be able to draw sound conclusions when it comes to the issue of coverage;
have we found all possible types of intrusions, can we find all possible
types, have we found all possible intrusions of this particular type? etc.
etc.

What is the nature of the attacks against the intrusion detection system
itself,

to what degree can it be trusted to continue correct operation in the face
of opposition, and

when it can no longer correctly perform its duties, how can graceful degra-
dation of service be ensured? Can the system fail in such a way that
security is not compromised and what charaterises such a failure?

Since there is more and more commercial interest in intrusion detection,
we will likely see more and more attackers become aware of the threat
that intrusion detection poses. It is probably prudent to assume that
those attackers that are motivated enough, will seek ways to attack the
intrusion detection system itself, in order to avoid detection. This raises
the questions above as well as others.

e What of the run-time efficiency of the intrusion detection systems? One
criticism that is often raised is that intrusion detection systems consume
too many resources to be fielded effectively. To date, very little has been
done to study the execution efficiency of intrusion detection systems.

These are fundamental, interesting, and difficult, questions, and while we
have started to address them [4,36-38,49], much work still needs to be done
before any sort of major conclusion can be reached. This is especially true of the
latter questions regarding attacks against the intrusion detection system itself,
where research to date has been scant.

1.7 Remaining contents of this survey
The remaining paper consists of a detailed overview of each of the surveyed sys-

tems. The systems are presented in roughly chronological order. Each presented
system is followed by the surveyor’s opinion of the work presented.
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Chapter 2

Details of the surveyed
systems

As previously mentioned, this chapter consists of a detailed overview of each
of the surveyed systems. The systems are presented in roughly chronological
order. Each presented system is followed by the surveyor’s opinion of the work
presented. In the following the term “authors” is to be taken to mean the
authors of the work currently being surveyed, while we will refer to ourselves as
the “present author.”

2.1 Haystack

2.1.1 Introduction

The Haystack prototype [51] was developed for the detection of intrusions in a
multi-user Air Force computer system, then mainly a Unisys (Sperry) 1100/60
mainframe running the 0S/1100 operating system. This was the standard Air
Force computing platform at the time.

Haystack was primarily designed to detect six different types of intrusions
(more or less verbatim from [51]):

1. Attempted break-ins: When an unauthorised user tries to gain access to
the computing system.

2. Masquerade attacks: When an authorised user makes an unauthorised
attempt to assume the identity of another authorised user.

3. Penetration of the security control system: Where a user attempts to
modify the security characteristics of the system.

4. Leakage: Moving potentially sensitive data from the system.

5. Denial of service: Denying other users the use of system resources, making
the resources unavailable to the other users.

6. Malicious use: Miscellaneous attacks such as deletion of files, resource
hogging, etc. etc.
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In order to detect these six types of intrusions the system employs two
methods of detection: anomaly detection, and signature based detection. The
anomaly detection is organised around two concepts; a per user model of how
that user has behaved in the past, and pre-specified generic user group models,
that specify generic acceptable behavior for a particular group of users. The
combination of these two methods solves many of the problems associated with
the application of any one of them in intrusion detection systems.

The authors explain that even though the US Air Force has well defined
security policies—that may be lacking in the civilian sector—there are still many
problems associated with the application of these policies in intrusion detection
systems. e.g. there is no consensus on formal specifications for security policies,
there is a lack of understanding of how intrusions are made, etc.

2.1.2 System organisation and operation

The system was divided into two platforms. The Unisys (Sperry) operating
system was responsible for the audit data collection. The Unisys part of Hay-
stack then converted this audit trail into a unified audit trail, the so called
Canonical Audit Trail format (CAT for short), and parsed it with respect to
the abstract elements that constituted a generalised audit trail event, possibly
selecting records pertaining to certain users, etc. as per the SSO’s instructions.
This canonical format audit trail was then written to (then) standard 9 track
ANSI tape.

The CAT audit trail was then processed on a Zenith Z-248 80286 PC-
AT clone, with at least 4 MB main memory. This platform ran the MS-DOS
operating system. The PC part of the Haystack system constituted most of the
code of the system. The PC would read the 9 track tape, detect and log obvious
breaches of security, according to the policy based part of the intrusion system,
aggregate several audit records for each user together into a session record for
that user. This session record would then be inserted into the session record
database, a commercial DBMS, using the standard SQL command set.

All security relevant events are listed separately for the benefit of the SSO,
these typically account for less than 0.5% of the total number of audited events,
and can thus be perused manually by the SSO. The event horizon, i.e. the
amount of previous audit records that the processing mechanism has to con-
sider when processing the current audit record, is set to one, i.e. the processing
mechanism only considers the current audit record when searching for intru-
sions/anomalies in this phase of the processing. This design decision limits the
amount of processing done in this step significantly.

The intrusion detection system then processes the new session records that
comprise the database, using both statistical and pattern-based techniques look-
ing for evidence of predefined “bad” behavior, and atypical or suspicious be-
havior. The pattern-based techniques assess multivariate characteristics of the
sessions compared against expected characteristics of particular types of intru-
sions.

Should the SSO decide to look for evidence of a user that attempts to “learn”
the anomaly based part of the system—that his, in fact, suspicious behavior,
is actually normal, and nothing out of the ordinary—the SSO can choose to
process past user sessions to look for trends that could indicate this. This also
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handles the case where a user gains savvy in operating the system, and thus
deviates from his “normal” behavior.

2.1.3 Future research

The authors identify a number of areas for future research, among them:

e How do we test an intrusion detection system, and measure it’s effective-
ness?

e Could we implement a real-time intrusion detection system with sufficient
security and reliability to be entrusted with the ability to shut down an
offending user or even the entire system?

e What visual metaphors are most effective for presenting computer security
information to the SSO? Is there a security metaphor that is analogous to
the spreadsheet for financial analysis?

e What are the relevant privacy and legal issues? What are the effects
on employee morale? Could heavy handed auditing reduce the perceived
usefulness of the target computer system for exploratory or research work?

2.1.4 Survey conclusions

The questions identified under future research are of course still valid today,
despite the fact that the research presented is more than ten years old. More
recent research (see section 2.7) indicate that the assumption that all users would
interpret auditing as something negative could perhaps be overly pessimistic.

It is interesting to note that one important question above—how to present
the information to the SSO—has not really been addressed since the paper was
published, excepting perhaps the cursory treatment in [56].

2.2 MIDAS—Expert systems in intrusion det-
ection: A case study

2.2.1 Introduction

MIDAS [50] was developed by the National Computer Security Centre, in co-
operation with the Computer Science Laboratory, SRI International, to provide
intrusion detection for the NCSC’s networked mainframe, Dockmaster, a Honey-
well DPS-8/70. This computer was primarily used for electronic communication
within the employee community at NCSC, and affiliated agencies. The authors
acknowledge previous work by Denning et. al., and work at Sytek, as their main
source of inspiration.

2.2.2 Expert knowledge in intrusion detection

MIDAS is built around the concept of heuristic intrusion detection. The authors
make the example with the human site security officer, and how he would go
about analysing audit logs manually, to find evidence of intrusive behaviour. He
could for instance reason that most intrusions probably occur late at night/early
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morning, when the system is unattended. That would narrow the search some-
what. He could go on to hypothesise that most intruders, in an attempt to cover
their tracks, would vary their points of attack from different locations on the
network. Combining these two criteria he could well have narrowed the search
to the point of him being able to peruse log records for individual user sessions.
The seasoned security officer, could well find cause for suspicion simply by look-
ing at the records for a particular session, that wouldn’t “feel” right, and close
that account, pending further investigation.

From this (imagined) process, the authors identify that successful (manual)
intrusion detection, involve knowledge, and symbolic reasoning, with a measure
of uncertainty. This leads to the conclusion that a rule-based expert system
could be employed as a means of performing intrusion detection.

The authors note that the requirement that the expert system provide the
knowledge of an “expert” security officer, is a minimum requirement, considering
how abysmally small rate of success human security experts have when trying
to find evidence of intrusive behaviour by manually examining audit records,
that may either be too numerous to examine, or too sparse to contain enough
information to draw the correct conclusions from.!

2.2.3 Application of the expert system

MIDAS applies the Production Based Expert System Toolset (P-BEST) for
intrusion detection. P-BEST is a forward chaining expert system shell, in which
the introduction of a new fact in its fact base, triggers the reevaluation of the
rule base. This in turn can introduce new facts into the fact base, and processing
stops with the conclusions drawn when no new rules fire.2 P-BEST is written
in Lisp, and produces Lisp code, that can be compiled and run on a dedicated
Symbolics Lisp machine. The compilation of the expert system code into object
code, provides for efficient execution of the expert system shell.

In MIDAS, P-BEST’s rule-base is populated with rules in three distinct
categories:

Immediate Attack The immediate attack heuristics, operate without any
knowledge of the (statistical) history of the system, on a very narrow
time-window of audit records, typically only one. Furthermore, the imme-
diate attack heuristics are static, they do not change to reflect new trends
in input data, other than as a direct result of site security officer action.
The idea behind the immediate attack heuristic is that they would be able
to find activity that is exceptional in and of itself, in effect searching for
already known indications of intrusions.

User anomaly The user anomaly class of rules make use of statistical profiles
of previous user behaviour to be able to detect sufficient deviations from
those statistics. Two levels of user profiles are kept, statistics pertaining
to the current session (session profile), and statistics pertaining to a longer
period of time concerning the user in question (user profile). The session

1 However, the present author feels that it is perhaps not in the field of reasoning, but rather
in the department of sheer force of labour that the human SSO falls behind his computerised
counterpart. 2 Contrast this with a backward chaining expert system, in which inference
is triggered by the posing of some question, such as: “Is X true, for some statement X ?” The
system then evaluates the rules until all (necessary) facts have been processed.
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profile is updated at time of login, from the user profile, which in turn
is updated by the session profile, at time of logout. The updating of the
profiles thus form a cycle.

System state The system state heuristics maintain knowledge about the stat-
istics of the system as a whole, without concern for individual users. For
example, the total number of failed login attempts, for a given period of
time, as opposed to the number of failed login attempts for a particular
user.

The structure of the rule base is two tiered. The first, lowest, layer, handles
the immediate deduction about certain types of events, such as “number of bad
logins” and asserts a fact to the effect that some threshold of suspicion has been
reached when they fire. These suspicions are then processed by second layer
rules, that decide whether to actually raise an alarm based on the suspicion
facts asserted by the lower level rules, e.g. “This user is a masquerader because,
he has made 40 command errors in this session, and he has tried the invalid
commands suid, and priv, and he is logged in at an unusual time.” This put
together would be a strong indication that something is amiss, and the second
level rule—representing a masquerader—would trigger, alerting the site security
officer.

2.2.4 Threat model

The authors adapt the threat model from Denning [10], by collapsing some
of her categories into one. The threat categories remaining, and how MIDAS
attempts to counter them can be summarised as:

Attempted break-ins Countered by immediate attack heuristic, the rules
that deal with this situation is mainly, but not exclusively, concerned
with login failures.

Masquerade The assumption made by the authors is that this is a straightfor-
ward category of intruders to detect, by nature of their actions deviating
from established statistical use by the authorised user. Anomaly heuristics
are used.

Penetration The direct violation of system security policy. This type of attack
is handled by all three heuristics, targeted towards access, or attempted
access, of system sensitive programs or data.

Misuse Misuse of computer resource by an authorised user, detected using
both anomaly, and system heuristics. The direction of printer output to
some unusual location can be detected, for instance.

Trojan horse/virus Anomaly and system heuristics are applied to this area of
concern. The authors do not differentiate between these two areas since
they have not been able to separate the two using the available audit
data. The key factors to consider are access violations on system sensitive
objects, and execution statistics that violate norms established for given
commands.
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2.2.5 System organisation, performance, and conclusions

MIDAS itself runs on a symbolics list station, that receives it’s audit data via the
network from the Dockmaster mainframe, having been preprocessed to massage
the audit data into a common format, and having had some simplistic reductions
applied. The mainframe sends both operating system provided audit logs, and
command logs from a specialised MIDAS module that runs on Dockmaster.
The Symbolics Lisp machine maintains a rule-base, a fact-base that reflects the
converted audit data, and a database of user and system statistics. MIDAS is
provided with a graphical user interface, where the site security officer can view
results from the processing, as well as parameters pertaining to the speed of
processing itself, in real-time.

MIDAS was tested on a subset of the users, the data was feed via tape, in
simulated real-time, and was found to execute more efficiently than the authors
had previously expected. It managed to keep up with full scale operation of the
system, some 1200 users, in real-time. The authors state as problems that even
though MIDAS seems to detect, at least naive, simulated intrusion attempts,
it gave too many false alarms. As a question for future research the authors
mention the employment of other algorithms for the detection of anomalies,
Markovian analysis being one such technique. The authors state further that
some means of validating performance of the rule base should be developed. Fur-
thermore, the authors hope to employ results in (then) ongoing expert system
research, to validate the rule base itself, for completeness, and consistency.

2.2.6 Survey conclusions

Aside from the fact that the system presented is “seminal”’—MIDAS was the
first published system to employ signature based detection—it is interesting in
that the authors clearly defines what type of problems MIDAS was designed to
handle, and how MIDAS would handle them. Furthermore, the performance of
the system was tested, and results published. While this is interesting data to
obtain, more recent research often fails in this respect.

Also, the authors have begun by studying the situation of a senior SSO, and
even though the demands on him made by the system is not clearly stated, that
he is part of the system, other than as an ill defined recipient of the output of
the system, is of course interesting.

2.3 IDES—A real-time intrusion-detection ex-
pert system

2.3.1 Introduction

IDES is one of the classic intrusion detection systems [41,42], and to date one
of the best documented. It is difficult to write about one IDES system however,
since the IDES project went on for a number of years, continuing into the
Next-Generation Intrusion Detection Expert System, or NIDES, after the IDES
project was officially finished. Thus, there is really no one IDES system of which
to speak, since the system underwent (sometimes) fundamental change as the
research project progressed. This survey will focus on the earlier stages of the
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project, around 1988, and describe differences between the systems presented
in the earlier, and later stages of the project, where appropriate.

The basic motivation behind IDES is that users behave in a consistent man-
ner from time to time, when performing their activities on the computer system,
and that the manner in which they behave can be summarised by calculating
various statistics for the user’s behaviour. Current activity on the system can
then be correlated with the calculated profile, and deviations flagged as (possi-
bly) intrusive behaviour.

IDES intended to detect intrusions in all of Anderson’s categories, even the
misfeasor category (i.e. a user that is authorised to access both the system, and
its data, but who abuses this privilege.) IDES performs this detection by con-
structing a profile for a group of users, who should behave in the same manner,
by virtue of their organisational status, and attempt to correlate behaviour for
a particular user, not only with past behaviour for that user, but also with the
behaviour that is recorded as “normal” for that group.

2.3.2 The prototype

The 1988 prototype of IDES differed from the original prototype in many re-
spects. It runs on two Sun-3 workstations, one Sun-3/260 that maintains the
audit database and the profiles, and one Sun-3/60 that manages the SSO user
interface. The audit database is implemented using a COTS Oracle DBMS.
The monitored system is a DEC-2065 that runs a local version of the TOPS-20
operating system. The audit data is transmitted (securely) to IDES via the
network, one record at a time, and processed to provide a real-time response.

Later in the project IDES was run on faster hardware, and monitored a
network of workstations. The Oracle database was discontinued, in favour of a
locally developed audit database, while it was felt that the feature set of Oracle
was not well suited to the access patterns of IDES. A signature based detection
(sub)system based on the P-BEST expert system shell was also incorporated,
since it was felt that signature based detection was necessary to provide a com-
plete set of detection capabilities.

2.3.3 Profile data

IDES monitors three types of subjects; users, remote hosts, and target systems.
Some, in total, 36 different parameters, called measures by the authors, are
monitored for the subjects, 25 for users, 6 for hosts, and 5 for target systems.
These measures fall into two categories:

Categorical measure A measure that is discrete in nature, and the values
of which are members of a finite set, e.g. the commands that a user has
invoked during a session is a categorical measure, with the set of possible
values being the set of all possible commands, that that user can issue to
the system.

Continuous measure A measure that is a real valued function of some pa-
rameter, say for instance, the number of lines printed for this session, or
the length of a user session.
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The prototype under discussion measures these measures during each user
session, defined as the time from login to the system, to the time the user exits
the system, either normally or abnormally, as the result of a systems malfunction
for example.

Some of the measures that the system monitors for a user are:

CPU usage The number of CPU seconds consumed during this session, con-
tinuous measure.

Command usage Categorical measure, that records the commands used. Ex-
amples of other related measures are “Mailer usage”, “Editor usage”, and
“Compiler usage,” where by IDES keeps track of particular classes of com-
mands.

Command usage (binary) A categorical measure that records whether a
particular command was used during this session. The value is restricted
to “true” or “false,” respectively.

Network activity A continuous measure that keeps track of the number of
“network activity” audit records received during a session. There are
several other measures related to network activity as well.

These measures are kept in a real valued vector as summarised statistics
for the session, the categorical measures having been converted to continuous
measures first. Other data such as the standard deviation etc. is also kept in
different vectors for a particular subject.

These statistical profiles are typically updated to reflect new user behaviour
once a day, after the original profile has been “aged.” This aging process ensures
that newer behaviour plays a larger part in the detection of anomalies, than older
behaviour. The rational being that subjects behaviour slowly change over time.
The “half-life” (i.e. after this amount of time, the data contributes only half
as much to the profile values as the new data) of the profile is approximately
50 days in the early prototype, 30 days in the later. The nature of the stored
anomaly profiles, and what data to store, changed between the different versions
of IDES.

2.3.4 Anomaly detection

IDES process each new audit record as it enters the system, and verifies it
against the known profile for both the subject, and the group of the subject,
should it belong to one. IDES also verifies each session against known profiles,
when the session completes. In order to further differentiate between different
but authorised behaviour, the prototype was extended to handle two sets of
profiles for monitored subjects depending on whether the activity took place
on an “on” or “off” day. The site security officer defines which days are (in
effect) “normal” workdays for a particular subject, mostly users, and which are
not. This further helps to increase the true detection rate since a finer notion
of what is “normal” for a particular subject, based on real-world heuristics can
be developed.

In order to detect anomalous behaviour during the session, when all session
statistics are not yet present, IDES extrapolates the current session statistics
and compares this extrapolation with the profile for the subject, otherwise, all
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subjects would report an abnormality until roughly half-way through the session,
since some (continuous) measures would not yet have reached even their mean
value for a session.

In the case the user is a new user, and not yet known to the system, IDES
uses a default profile, to start off the monitoring of that user.

When an anomaly is detected IDES reports what measures that contributed
the most to the classification, so that the site security officer can make his own
judgement as to the validity of the reported anomaly.

2.3.5 User interface

IDES has a well thought out user interaction model, which defines three differ-
ent classes of users. Each of these has his own user interface, tailored to their
specific needs. The interfaces are graphical in nature, and provide the site secu-
rity officer(s) with both; plots of anomaly data, as well as text based interaction,
explaining why IDES found an activity anomalous. From the user interface, the
user can also control many aspects of IDES behaviour, for instance, IDES has
a feature where by which the site security officer can “roll-back” an updated
profile, when he suspects that that session may be “tainted” by intrusive beha-
viour, that should not have been learnt as “normal” for that subject. He can
also enable/disable monitoring for individual subjects etc.

2.3.6 Future work

The papers list several future enhancements, many of which where addressed in
the later versions of IDES, and NIDES.

2.3.7 Survey conclusions

As previously stated, IDES falls in the category of “seminal” systems. It was
the first that utilised anomaly based detection, and the rational for, and im-
plementation of the statistical methods, and what parameters are used, is very
well documented. Which makes it relatively easy to follow the thoughts, and
work, of the authors, which is important since research continues in the field.

It is interesting to note that the session statistics in themselves do not ad-
equately handle multi-modal distributions of data, but that some (somewhat
crude) effort has been made—the introduction of “on” and “off” days—to sim-
ulate such a capability. This problem would come to be redressed in NIDES,
where the statistical routines were altered to accommodate multi-modal distri-
butions. See section 2.14 on page 56 for a survey of NIDES.

2.4 Wisdom & Sense—Detection of anomalous
computer session activity

2.4.1 Introduction

W&S [54] is another seminal anomaly detection system. Development started
as early as 1984, with the first publication in 1989. It is interesting to note
that W&S was at first not intended for the computer security application but
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“a related problem in nuclear materials control and accountability.”? W&S
is unique in its approach to anomaly detection. W&S studies historic audit
data and produces a forest of rules describing “normal” behaviour, this is the
“wisdom” part of W&S. These rules are then fed to an expert system, that
evaluates recent audit data for violations of the rules, and alerts the SSO when
the rules indicate anomalous behaviour, the “sense” part of W&S.

The design criteria was for W&S to:*

Reduce audit data to more usable forms.

e Build its own rule base without human guidance.

e Store and use very large, instantiated rule bases efficiently.

e Tolerate conflicting rules.

e Deal with uncertain and erroneous knowledge.

e Continue to learn from experience, and adapt to transient conditions.

e Accept human modifications to its rule base, but not be overly dependent
on scarce human expertise.

o Make real-time, graded decisions regarding anomalous behaviour.

e Provide human-readable feedback on anomalies to aid in anomaly resolu-
tion.

e Create minimal interference with the real functions of its host system.
e Be portable to different applications, operating systems, and hardware.

The authors claim that most of these design criteria have been met, but
that they would need more experience with operating environments, and simu-
lated intrusions, to design additional evaluation tools, and to fine tune W&S to
increase the precision of its classifications.

2.4.2 System operation

W&S reads historic audit records from a file. The authors state that more is
better when it comes to the creation of rules from previous audit records, up to
about 10000 records per user. A figure of around 500-1000 audit records per
user is a good target to aim for according to the authors. The audit records
that are used, typically record one event for each process execution, at the end
of execution of that process.

The natural unit of processing for W&S is the audit record. However, to
make an observation on the statistics of an occurrence some sort of aggregation
has to be made. W&S creates a thread class for each aggregation of audit
records. This thread is defined in terms of specific data values of the audit
records. The authors give the example of a user/terminal thread, where each
audit record that pertains to user “bob” on terminal TTA1 are grouped together

3 The authors were at Los Alamos National Laboratory, and Oak Ridge National Laboratory
at the time of publication. These facilities have strong ties with the US nuclear weapons
program. 4 Verbatim from [54].
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in one thread, which is a member of the class. Each thread class has a number of
functions associated with it that typically compute statistics, or perform other
actions for the thread as each new record is added to the thread.

The authors note that the rule generation mechanism generates everything
from very general rules, “the valid terminals are T1, T2, etc.” to very spe-
cific ones, such as “on Tuesdays between 6:00 am and 7:00 am, when the user
has system operator privileges, and is using terminal T3, only commands that
generate little direct disk activity are used.”

The “sense” part of the system reads audit records, evaluate the thread class
that they are part of against the rule base, and triggers an alarm if enough of
the rules report enough of a discrepancy—a high enough score—with the profile.
The score of the thread (named Figure-of-merit, FOM by the authors) is a time-
decayed sum of the FOM’s for that thread’s audit records. Thus several events,
across several sessions, that are slightly anomalous, will eventually accumulate
to an anomaly for that thread.

2.4.3 Rule generation

The rule base is generated in form of a tree, where each branch of the tree
contains more specific rules pertaining to the same measured behaviour, closer
to the leaf. The rules themselves contain a right-hand-side (RHS), and left-
hand-side (LHS). The RHS, named “restriction” by the authors, describes the
conditions under with the rule applies. The RHS specification can take one of
three basic forms:

1. A list of acceptable categorical values for a particular audit record field.
2. A list of acceptable ranges for a continuous, metric audit record field.

3. A list of user-defined functions to be executed until either, one of them
returns true, or the list is exhausted.

There are two types of nodes in the tree. The first type designates data fields
in the audit record, and can have a maximum of 32 branches. The other type
designates acceptable field values, and can have at most 255 branches. Together
these two types compose a rule base “level.” The tree is typically pruned to a
maximum of 4-5 levels. The rules themselves are condensed into an average of
6-8 bytes of storage each® and a typical rule base can contain between 10* and
105 rules. This enables W&S to store the entire rule-base in memory, which
leads to efficient evaluation of the rule base by the “sense” part of the system.

W&S views data mainly as categorical, and generates rules by first sorting
continuous data into variable size bins with approximately the same number of
points in each bin, by an ad-hoc method—this in effect clusters the data—and
then including more and more bins into the rule, until a target ratio of “normal”
data has been reached. The remaining data values are then regarded as “abnor-
mal” by the rule. The authors claim that this clustering reaches good results
with data that is binomially, normally, and multi-normally distributed. Purely
categorical data are clustered in the same manner until a target percentage is
reached.

5 This is accomplished by using a data dictionary, that the rules can reference. This dictionary
typically ends up around the the 10 KB-mark.
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The rule base is then combined, where similar rules are condensed into one,
and other rules, because they are not deemed significant, or because of concerns
about tree size, are pruned from the tree.

Each rule is then assigned a grade measuring the “seriousness” of the rule.
This grade is composed of two parts. The first part takes the historical accuracy
of the rule into consideration, and the second part favours the rule with the
longer RHS, i.e. the more specific the rule is, the more weight it is assigned by
the grade measuring algorithm.

The rule base is not automatically updated, since the authors feel that this
is a process that should run under the supervision of a trained SSO, perhaps
once every 1-4 weeks.

2.4.4 Anomaly detection

The “sense” part of W&S then reads the rule-base, dictionary, and new audit
records, either in batch, or as they become available. The inference engine
then processes each audit record, finding the rules that apply, and computes
a transaction score for that audit record. In doing so, the inference engine
basically sums all contributions from the different failed rules—remember that
we are searching for anomalies—and that the rules describe “normal” behaviour,
taking the thread that the audit record is a part of into account. The thread
score is updated, and aged by the previous process. W&S then reports an
anomaly whenever the thread score, or individual audit record score, surpasses
an operator defined threshold.

W&S aids the SSO in the task of anomaly resolution, it can help the SSO
identify which data in the audit record was considered anomalous, it can list
the rules that triggered the anomaly detection, provide a thread history, and
suggest what data specific fields would have avoided the anomaly determination.

2.4.5 Results and future work

The process of detecting anomalous activity is quite fast. The authors report
that W&S hhandles rule-bases of up to 500,000 rules averaging 6.0-9.0 bytes
per rule, and 20,000-40,000 rule firings per second. Firing approximately 1%
of the rules for a more ordinary rule-base of 100,000 instantiated rules, this
gives a performance of between 20-40 transactions (audit records) per second.
Searching the rule base can be done in under 0.05 seconds. These performance
figures are for an IBM RT Model 6151-125, with an advanced floating point
accelerator. The operating system is IBM’s AIX version 2.1.

The authors recognise that even though they have performed sufficient tests,
both in vitro, and using staged intrusion attempts, to ascertain the usefulness of
the methods W&S use, more research into the nature of the computer security
threat is needed.

The authors further state that W&S could probably be applied to other ar-
eas, both pertaining to security, and other fields, where the detection of anoma-
lous data is of interest.
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2.4.6 Survey conclusions

W&S is an interesting system in that it is one of the earliest systems, useful
on a wide range of problems—not only in computer security—utilises anomaly
detection, and does this using a novel approach to the subject. This approach
would probably make for time efficient use of the detection resources, even
though it is difficult to determine how effective the detection would be. (This
is of course still an open question in the field of intrusion detection.)

The fact that the ideas behind W&S originated when studying security prob-
lems in another domain, that of nuclear materials control, makes W&S both
unique, and interesting, and it supports the claims of the authors that W&S
could probably be applied to many other fields of security—as well as other
fields, that are not directly security related—such as the supervision of biologi-
cal systems, for example.

2.5 The ComputerWatch data reduction tool

The ComputerWatch [11] data reduction tool was developed as a commercial
venture by the Secure Systems Department at AT&T Bell Laboratories, as an
add on package for use with the AT&T System V/MLS. System V/MLS is a B1
evaluated version of System V UNIX that provides multi-level security features
that comply with the NCSC orange book B1 security criteria.

2.5.1 Introduction

The Computer Watch tool operates on the host audit trail to provide the system
security officer with a summary of system activity, from which he can decide
whether to take further action, i.e. investigate particular anomalous looking
statistics further. The tool then provides the SSO (Site Security Officer) with
the necessary mechanisms for making specific inquiries about particular users,
and their activities, based on the audit trail.

The B1 certification requires that the operating system provides the SSO
with an audit trail that incorporates all security relevant events that have taken
place on the system. Since the mere collection of this potentially voluminous
amount of data can significantly affect system operation, the System V/MLS
operating system has gone to some length to optimise the process of collecting
audit data. The processing overhead of collecting data is less than 4%, this has
been achieved by clever use of buffering to optimise disk traffic, and the use of
a binary audit format, that reduces the individual records to an average length
of 16 bytes. The latter minimises both disk traffic, and processing time. A
problem with buffering of audit data, is of course potential loss of audit data in
the event of a system crash, whether benign or malign. Another problem is that
the binary format has to be translated to the database format before processing

ComputerWatch would normally be used by the SSO, with some periodicity,
in an attempt to establish an overview of the type of system activity that has
occurred. The tool provides the SSO with a summary report of this activity.
This report can be perused as is, or certain entries can be automatically high-
lighted by the system according to a set of predefined rules, to provide a form
of threshold highlighting capacity. The SSO then decides what type of activity,
if any, merits further study, and can then make specific enquiries about users,
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and their activity to the audit trail database. Figure 2.1 provides an overview of
the ComputerWatch system organisation, and the data-flow between the com-
ponents.

Dynamic Set of
DB Schemas Intrusion-Detectior)
Rules
Formatter/Filter L oade’ /
Audit Trall Audit Trail
Audit Trail (raw) > (8Tables6 > (DBMS)
Warnings File)
Y Y y
Report Generator Built-In Custc_)m
Intrusion-Detection Queries
i Queries
System Activity
Summar_y _Report Different Views
(w/ suspicious of User Activity

activity highlighted)

Figure 2.1: Dataflow diagram of ComputerWatch components (from [11])

2.5.2 DBMS

The database manager was especially designed for the task at hand. It is simple,
small, and supports a very reduced set of SQL like operations, such as project,
select etc. It contains no commands for data modification, since this could affect
the integrity of the data negatively.

2.5.3 Report generator

The report generator generates a statistical summary of the system’s activity
since the last time the report generator was run. These statistics include items
such as; number of failed logins, number of file accesses, whether these where
reads or writes, successful or not, superuser activity, file declassification etc, etc.
The report generator module can operate in one of two modes, detection
on,” or “off.” In the detection “on” mode, the report generator applies a
set of predefined, modifiable set of simple threshold type rules that may fire
when applied to a certain statistic generated by the report generator. e.g. “The
number of failed logins (58%) is too HIGH.” In the other mode, this simple kind
of detection is turned off. This saves processing time, and enables the SSO to
study the statistics generated.
The authors claim that although there is some controversy over whether
viewing statistics at a system level can help detect intrusions, they have found
that such statistics can be useful in determining what kind of activity does not
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merit further investigation. i.e. if little or no file declassification is evident, this
type of operation does not merit further investigation.

2.5.4 Queries Module

The queries module was designed to help detect “simple” breaches of security.
These consist of a predefined set of possible queries that can be made to the
audit database, either per user, or about the whole system. The set of predefined
rules can be augmented with specific queries tailored to the situation at hand.
The predefined queries are simple threshold like queries, they are designed to
reflect the same kind of statistics that is evident in the system wide report,
but at a user level. The SSO defined queries are made in the special SQL like
query language of the DBMS. These can be made more complex than the simple
predefined queries.

2.5.5 Rules Module

The SSO has the ability to augment and modify the rules applied to the system
level statistics reported by the report generator. These rules can be of a simple
set of predefined types, e.g. value > threshold, valuel — value2 >= threshold
etc. It is possible for the SSO to specify preconditions, i.e. other rules that must
have fired for the equation of this rule to be considered. Error checking logic
prevents the creation of rules with a preconditions list that would result in a
loop.

2.5.6 Survey conclusions

ComputerWatch is one of a precious few systems that put the SSO in the focus
of activity. ComputerWatch as a tool tries to visualise, and present data to the
SSO, in a manner that enables him to operate more efficiently, and effectively
in his role as monitor (guard if you will) of the system. This line of research has
largely been ignored since this work was presented. (But, see [56], for a recent,
cursory stab at the problem.)

Otherwise ComputerWatch feels slightly dated. Its merit would be that it
is a very simple system, which would lend itself to efficient implementation.
However, it is doubtful whether such a simple system could be effective today.

2.6 NSM—Network security monitor

2.6.1 Introduction

This section describes the latest published version of NSM [21,45]. NSM is
the first system to use network traffic directly as the source of audit data.
NSM listens passively to all network traffic that passes through a broadcast
LAN, and deducts intrusive behaviour from this input. This approach stems
from the observation that even though several other intrusion detection systems
try to ameliorate the problems of having several different forms of audit trails
available from different platforms, the network traffic between these systems
typically take place on broadcast networks, utilising standard protocols, such as
TCP/IP, telnet, ftp, etc. Thus NSM can monitor a network of heterogenous

31



hosts without having to convert a multitude of audit trail formats into some
canonical format.
The authors identify several other benefits from using this approach:

1. The broadcast nature of these networks make the audit data almost in-
stantaneously available to NSM. This in contrast with some host based
audit trails that can delay the writing of audit records by several min-
utes, according to the authors. Furthermore, there is no need to transfer
the logs to a separate computer for analysis, since they will already be
available at the analysing computer.

2. The passive listening nature of NSM makes it impervious to (direct) at-
tack, there is no possibility of an intruder corrupting the logs.%

3. Since NSM does not consume any resources on the monitored host, its
performance will not degrade as a result of auditing, or analysis of audit
trails. Furthermore, there will not be any loss of network bandwidth as
audit trails are transmitted via the network to a centralised analysis ma-
chine, and the effectiveness of the intrusion detection is not affected by
the administrative corroboration of the monitored hosts. I.e. the admin-
istrator of those hosts does not have to cooperate.

4. Finally, the authors are of the opinion that most of the serious intrusions
involve the use of a network at some time, many attackers attack the
system from a remote location, via a network for instance. The authors
recognise however, that if the attack targets the host without accessing
the network, NSM can do little to detect the intrusion.

2.6.2 System organisation

NSM follows a layered approach, called the Interconnected Computing Environ-
ment Model (ICEM). There are six layers in the ICEM:

1. The packet layer. This layers takes a bit stream from a broadcast LAN; i.e.
an Ethernet, and divides it into proper Ethernet packets. These packets
are timestamped and forwarded to the next layer.

2. The thread layer takes the packets from the packet layer, and correlates
them into unidirectional data streams. These streams represent the data—
sans packet headers—that are transmitted from one host to another, using
a particular protocol and a particular set of ports. This stream is called
a thread, and is passed as a set of thread vectors to the next layer.

3. The connection layer takes the tread vectors from the thread layer and
attempts to pair them to form a bidirectional communication channel
between sets of hosts. These connections are condensed into a connection
vector, with some of the data gained from the lower layers pruned, and
the reduced vector is sent on to the next layer.

6 This is a moot point, see[49] for a detailed account of how an intruder could go about to
avoid detection, or attack the IDS, in this scenario.
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4. The data from the connection layer is accepted as input by the host layer,
that condense several connection vectors belonging to a particular host
together, to form a host vector, that represents the state of network activity
of that host.

5. The host vectors are then combined—in the connected-network layer—into
a graph, G, by treating the host-to-host information of the host vectors
as an adjacency list. This layer can also build the sub-graphs of this
graph, and compare those sub-graphs against historical connected sub-
graphs. Furthermore, the user can ask questions about the graph to this
layer. The authors make the example where a user (SSO) asks if there is a
connection between two hosts—via any number of intermediate hosts—by
a specific set of protocols. The graphs are passed on to the final layer as
a set of connected-network vectors.

6. The final layer, the system layer, condenses the connected-network vectors
into a single vector, the system vector, that describes the state of the entire
system.

In the system described, only the host vectors, and the connection vectors
are used as input to a simple expert system that analyses the data for intrusive
behaviour. The expert system takes several other inputs, such as the profiles of
expected traffic behaviour. These profiles consist of expected data-paths, which
systems are expected to communicate with which systems, using what protocols.
Another type of profile is constructed for each kind higher-level protocol, e.g.
what does a typical telnet session look like.

Other types of input is the knowledge about the various capabilities of the
protocols—e.g. telnet is a powerful protocol that enables the user to perform
a variety of tasks—and knowledge about how well these protocols authenti-
cate their requests. Telnet authenticates its requests, while sendmail requests
identification, but does not authenticate this identification.

Furthermore NSM requests the level of security, as defined by the SSO,
for each host, this figure could come from running a security analysis tool on
the host. Finally, the last type of input that NSM requires is a collection of
signatures of past attacks.

The data from these sources is combined to make a decision about the like-
lihood that a particular connection represents intrusive behaviour, based on
anomaly reasoning. This is combined into a concept of the security state of the
connection. This security state consists of four different factors:

Abnormality The abnormality of the connection is a function of the proba-
bility of the connection occurring, and the nature of the connection. This
is based on the knowledge of the relative occurrence of the type of con-
nection, for that pair of hosts, at that particular time, and the profile of
the protocols involved, e.g. is it an ftp session with an unusual number
of bytes transmitted or received?

Security level The security level of the connection is based on information
about the capabilities of the protocol, and the authentication it requires.
For instance, tftp, a very capable protocol, with no authentication, would
rate high on the security level scale.
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Connection sensitivity level Or rather the direction of the connection sen-
sitivity level, i.e. which host in the pair initiated the connection, and what
are the hosts’ respective sensitivity levels.

Signatures of attack To what degree does the data transmitted over the con-
nection match signatures of known attacks. These signatures are stored
as simple strings, and a simple string match is made against the data
transmitted.

The default presentation of the data to the SSO, is in the form of a sorted
list, where each row in the list consist of a connection vector, and the computed
suspicion level. The results are also stored in a database, whereby the SSO can
make queries, about specific events he would like to take a closer look at.

2.6.3 Results

The authors report that the prototype system was deployed at UC Davis,
Lawrence Livermore National Laboratory, and other DOE (Department of En-
ergy), and US Air Force sites. In one two month period, NSM monitored more
than 111,000 connections at UC Davis, and it correctly identified more than
300 of these as indicative of intrusive behaviour. These incidents spanned more
than 40 different computers, four hardware platforms, and six different operating
systems. Only about one percent of these attacks, (intrusions, and attempted
intrusions) were detected by the system administrators of these systems. The
system administrators operated in parallel with the evaluation, and without the
benefit of utilising NSM.

2.6.4 Survey conclusions

The system presented is interesting in that it was the first to utilise network
data directly, as a source of input. While not all the presented benefits of such a
decision still hold true today—mnetwork technology has changed since the work
presented was performed—many of them are still valid. The basic idea has
still merit today, but paradoxically, more secure network technology, such as
encryption, may thwart the effectiveness of this approach. How the switch to
more secure network technology should be handled by intrusion detection system
is a hot research topic today, but no real results have yet been presented. The
authors also present some performance data, which is something that is all to
often overlooked in recent research.

2.7 NADIR—AnN automated system for detect-
ing network intrusion and misuse

2.7.1 Introduction

NADIR |22, 25] was developed at the Los Alamos National Laboratory, for use
by the Laboratory to aid in its internal computer security effort.” As such
NADIR was conceived with the problems and organisational needs of the Los

7 Tt is not known what influence W&S (see section 2.4) had on the development of NADIR.
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Alamos National Laboratory in mind. NADIR was designed to counter four
different types of intrusive behaviour:

Disclosure Where someone (legitimate or an intruder) discloses information
in violation of the security policy.

Integrity violation Where data or programs are subjected to unauthorised
modification.

Denial of service Where the computer system is rendered temporarily or per-
manently unusable.

Unauthorised access Even though none of the above criteria are met, some-
one may use the computer system without authorisation. The authors
note that many outsider attacks of course take their origin in this type of
attack, where the intruder has not yet had time to perform an action that
could be classified in the first three categories.

The authors stress that the first defence against any such violation is the
“institution of formality of operations” and that such actions includes promoting
safeguards, accountability, user training, and physical security measures.® The
authors then go on to declare that intrusion detection has a place as a second
line of defence, whereby intrusive behaviour can be detected and the proper
authorities be notified. The authors have solid experience with manual audit
review, and recognises that this practice has no real merit.

2.7.2 Overview of the computer installation

Since NADIR is closely tied to the computer installation it is put to protect, a
discussion of said installation is not out of place.

The target system is the Integrated Computing Network (ICN) that is (was)
Los Alamos main computer network, serving nearly 9000 users, and including
six Cray-class supercomputers, many smaller computers, file servers, terminals
etc. The ICN is divided into four partitions, each of which processes data at one
defined security level, according to the US “military” security classification. All
access to the ICN is through “ports” each of which connects to one partition. A
computer that has connected to a partition through a port, can access computers
in that partition, and partitions with lower security classification levels.

The system contains ICN service nodes that administrate the system. These
service nodes store files, authenticate users, enforce access controls, schedule
jobs, move files between partitions, provide hard copy output etc. These nodes
also enforce the network partitioning, by, for instance, blocking access to clas-
sified files by unclassified users etc.

The service nodes can be divided into three classes:

Network security controller (NSM) This service node provides authenti-
cation and access control service to the ICN.

Common file system (CFS) Stores data that is to be made available to the
ICN. It stores data from different partitions separately, and prevent access
from lower-partition machines, to higher-partition data.

8 It is difficult to over-stress the importance of this statement.
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Security assurance machine (SAM) The SAM is responsible for all down
classing of files in the ICN. It authenticates and records all attempts to
perform this operation.

2.7.3 NADIR System organisation

NADIR is implemented on a Sun SPARCstation II, using the Sybase relational
database management system. NADIR collects audit information from the three
different kinds of service nodes discussed above. The audit data is collected
and subjected to extensive processing before being entered into the relational
database as audit information. The audit data consists of audit data pertaining
to the different kinds of service nodes, and the network traffic that they generate
and receive.

Each audit record entered into NADIR pertains to a specific event. The
information for the event is logged; whether the corresponding action succeeded
or not, and contains a unique ID for the ICN user, the date and time, an
accounting parameter, and an error code. The rest of the record describes the
event itself. This description varies depending on what kind of service node it
originates from.

The data that is kept in the database of NADIR is treated as sensitive by the
operators of the system and NADIR itself is part of the security hierarchy that
Los Alamos operates under, to ascertain that NADIR itself does not become a
security liability, instead of a security asset.

NADIR calculates an individual user profile on a weekly basis, where each
record summarises the user’s behaviour. The profile contains static information
about the user, historic information about the user, such as; the number and
a list of the different source machines from which the user has attempted to
login to the ICN; blacklist—the number of times and the date upon which a
user was last blacklisted.’, and so on. The user activity field contains account
statistics for different types of activity during the week for the three classes of
service nodes, such as; source—eight counters that tally all attempted logins
from source machines in each of the four partitions etc.

Furthermore, a composite user profile is constructed. This profile describes
the system as a whole; the number of valid and invalid logins onto the NSC for
each hour, for example.

These profiles are then compared against a set of expert system rules. These
rules were derived from a number of different sources. First, and foremost,
security experts where interviewed, and the security policy of the laboratory
was encoded as a set of expert system rules. Second, statistical analysis of the
audit records from the system was performed, and the results from this analysis
was hard coded into the system as rules in the expert system.

NADIR generates weekly hardcopy reports in the form of activity summaries
for each node, and various graphs plotted for user activity for that node. These
graphs enable the SSO, or rather the SSO team in this case, to quickly grasp any
abnormalities in the profiles. When the SSO decides to further investigate any of
these reports, he can generate other reports on the spot, from either historical,
or near real-time data. This helps in the investigation of both past intrusion

9 Blacklisted individuals lose their ICN privileges under certain circumstances of unauthorised
behaviour.
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attempts, and ongoing suspicious activity. The raw audit data is also made
available to authorised personnel for other statistical analysis, for example.

2.7.4 Results

The authors found that users responded very positively to the application of
NADIR. The authors attribute this to three identified benefits beyond increased
security:

Error detection The application of NADIR uncovered errors both in the au-
diting mechanisms, and in the audited systems, thus helping system man-
agers to improve their systems.

Systems management The profiles produced by NADIR helped understand-
ing how the system operated. In several instances the authors identified
operation of the system that was not what was expected, or even specified.

User education The authors often identified non-malicious but undesirable!®
user behaviour, such as severe programming errors. In such cases the
authors worked with the users to help them avoid such errors in the fu-
ture. This the authors identify as having helped increase user support for
NADIR.

The authors recognise that the evaluation of intrusion detection systems is
difficult, because the frequency of positives (i.e. the actual number of intrusion
attempts) is unknown. The number of false positives, i.e. legitimate use that is
misclassified as intrusive is more straightforward to handle. NADIR has quite
a high number of false positives according to its authors. However, since they
envisioned NADIR as a highly interactive tool, they do not see this as major
problem. Furthermore, they note that since the list of false positives is short
enough to permit quick review, that also makes the problem tolerable.

The authors state that NADIR has not failed to detect an intrusion attempt
that was subsequently discovered by other means. Also, NADIR has managed to
detect intrusion attempts that were staged by security officers, as well as many
real intrusion attempts such as: automated logins, misuse of special-use user
numbers, attempted (unsuccessful) logins using another person’s user number,
attempted logins from terminals in partitions to which the user had no access,
and attempted logins to computers in partitions to which the user did not have
access.

For the future, the authors envision a system that would operate under
near real-time constraints, the requirement mentioned is detection in under 30
seconds from the intrusion attempt, and to complement NADIR with a true
anomaly detection component that learns the behaviour of the users of the
system.

2.7.5 Survey conclusions

The work presented is interesting in that it is based on solid experience in the
handling and nature of security incidents, in an organisation that takes these
incidents seriously enough to have instigated manual computer security audit

10 «Never attribute to malice that which can be adequately explained by stupid-
ity”—Unknown.
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review. This enables the authors to discuss issues relating to how the system
can aid a site security officer in his task of monitoring the system, utilising audit
data visualisation, and how an intrusion detection system can be fielded in such
a manner as to gain the support of the users of the system.

This close ties with the organisation that NADIR operates in is perhaps a
source of weakness as well. It is difficult to determine whether the experiences
from the system would transfer to another environment, NADIR is perhaps too
closely tied to the ICN at Los Alamos National Laboratories.

Furthermore, the authors clearly discuss the nature of the security violations
they wish to detect, and to what degree they were able to do so.

2.8 Hyperview—A neural network component
for intrusion detection

2.8.1 Introduction

Hyperview [7] is a system with two major components. The first component is an
“ordinary” expert system that monitors audit trails for signs of intrusions known
to the security community, the other is a neural network based component that
adaptively learns the behaviour of a user and raises an alarm when the audit
trail deviates from this already “learned” behaviour.

The designers of the system notes that the audit trail could emanate from
a number of different sources, with different levels of detail. For instance; the
keyboard level—the system observes every keystroke made by the user, the
command level—the system records every command issued by a user, the session
level—the system aggregates several commands issued from the time of login to
the system to the time of logout, and finally, group level—where several users
are grouped together and treated as a class of known users.

The authors then note that the more detailed—*“raw” if you will—data made
available to the intrusion detection system, the better the chance of the system
being able to correctly raise an alarm. However, the more data presented to
the system the more problematic storage and processing becomes. The most
aggregated level of data will not put such a strain on the intrusion detection
system. For the purpose of Hyperview, the authors decided to provide the
system with an audit trail on the command level.

2.8.2 Underlying hypotheses about user behaviour and
the audit trail

The decision to attempt to employ a neural network for the statistical anomaly
detection function of the system stems from a number of hypotheses about what
the audit trail will contain. The fundamental hypothesis is that the audit trail
constitutes a multivariate time series, where the user constitutes a dynamic
process that emits a sequentially ordered series of events. The audit record
that represent such an event consists of variables of two types; one, the values
of which can be chosen from a finite set of values—for instance the name of
the terminal the command was issued on—the other, a continuous value, for
instance CPU usage or some such.
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The more detailed hypotheses that follow from the fundamental hypothesis
are:

1. The user submits commands to accomplish a given task. These commands
will be consistent over time, as the user acquires preferences vis-a-vis which
way the task should be performed. Between tasks the actions of the user
will be less predictable, or even unpredictable. Thus, we will observe pat-
terns of usage in the audit trail, as quasi-stationary sequences, interspersed
with periods of non-stationary activity.

2. The preferred behaviour of the user follows a stochastic law, the audit
trail belonging to which, is a projection of this law onto the variables of
the audit record in question. The audit trail can thus be viewed as a set
of samples of the quasi stationary process. The authors note that it is
difficult to express a law from a set of samples, even when the underlying
process is quasi-stationary. This law will instead be treated as a black box,
and it will be approximated by the neural network, without ever having
been made explicit.

3. There are correlations between the various measures contained in the au-
dit record. This is a common sense hypothesis, since there would for
instance—almost by necessity—be an effect on, for instance, cache hit
ratio, with increased CPU usage. Since the authors do not make the pa-
rameters of the user model explicit they cannot express these correlations.
The proposed neural network component must be able to take advantage
of these correlations during the learning process.

2.8.3 The neural network component

The authors proposed a then untested approach of mapping the time series to
the inputs of the neural network. At the time, the researched approach was
to map N inputs to a window of time series data, shifting the window by one
between evaluations of the network. The authors acknowledged that this would
make for a simple model, easiiy trained. However, there would be a number of
problems with this approach:

e N is completely static, if the value of N were to change, a complete re-
training of the network would be required.

e If N was not adequately chosen the performance of the system would be
dramatically reduced. Too low a value of IV, and the prediction would lack
accuracy because of a lack of older relevant information, too high a value
of N and the prediction would be perturbed by irrelevant information.

e During the quasi stationary periods of the usage, a large value of N would
be preferred, to encompass this quasi-stationary process. During the tran-
sition periods, on the other hand, where the older data has no meaning,
we would like as small a value of N as possible, to eliminate this irrelevant
data quickly.

The authors then go on to state that the correlations between input patterns
are not taken into account with this model, since these type of networks learn to
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recognise fixed patterns in the input and nothing else. Other disadvantages are
that they are slow to converge and the adaptability is low since partial retraining
can lead to a network that forgets everything it has learned before.

Instead the designers of Hyperview choose to employ a recurrent network,
where part of the output network is connected to the input network, as input
for the next stage. This creates an internal memory in the network. Between
evaluations the time series data is fed to the network one datum at a time,
instead of as a shifting time window, the object of the latter being the same,
namely to provide the network with a perception of the past. It is interesting
to note that the recurrent network has long term memory about the parameters
of the process in the form of the weights of the connections in the network, and
short term memory about the sequence under study, in form of the activation
of the neurons. These kinds of networks were at the time of the design much
less studied than non-recurring ones.

2.8.4 System implementation

The design of the system as a whole is a complex and interesting one. The
authors choose to connect the artificial neural network to two expert systems.
One monitors the operation, the training of the network—to prevent the network
from learning anomalous behaviour for instance—and evaluates the output of
it. The other expert system scans the audit trail for known patterns of abuse,
and together with the output from the first expert system (and hence from the
artificial neural network) forms an opinion about whether to raise an alarm or
not. The decision expert system also provides the artificial neural network with
“situation awareness” data—data that the audit trail itself does not contain—
from the simple “current time and date,” to the complex “state of alert, or state
of danger for the system,” defined by the site security officer. See figure 2.2.

It becomes clear from the system graph, that the artificial neural network
component of the system could be viewed as a filter that filters the audit record
stream before it is presented to the decision expert system. This is perhaps not
surprising, since artificial neural networks are often put to this use. The division
of labour presented here has—according to the authors—the advantage that the
numeric evaluation of the artificial neural network is an efficient process, that
does not consume a lot of resources in terms of processing power, while the more
intensive data processing done by the decision expert system is concentrated on
a much reduced set of the audit trail. This could lead to the detection of
intrusions in real time.

2.8.5 Experimental results

The designers put the neural network component of the system—the only part
that was fully functional at the time of publication—to the test by feeding it
an audit trail submitted by an anonymous user on a SUN3 UNIX work station.
They used the accounting files as the source of the audit data, where each record
contains the name of the command, the amount of CPU and core memory used,
and the number of input/output performed. The beginning, and end, of each
session was discernible from the audit trail.

The first experiment considered the input as an endless continuous sequential
stream of events. The artificial neural network was given each audit record
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Figure 2.2: Block diagram of the Hyperview system (from [7])

sequentially, and asked to predict the next command in the sequence. When the
next one was presented the network was retrained to reflect the new discovery.
The commands, of which there where 60 different given in the audit trail, where
mapped onto one output neuron each, the optimal result being 1 neuron with
a numeric value of 1.0, and the other 59 neurons with a value of 0.0. Three
important parameters define the success of the network’s performance:

Confidence The maximum activation is numerically large, and there exists a
convincing difference to the second highest activation. If the prediction is
correct, this is an ideal state of affairs, and very troublesome one if the
prediction is, in fact, false. Then the network is overconfident in its ability
to predict the correct user behaviour.

Uncertainty The largest activation is very low. The output of the neurons are
in the same range, the network cannot discriminate from what it knows,
to propose the next command. This is either from a lack of example, i.e.
this time series has not been seen before, or from an overabundance of
choices the time series could mean one of possibly many things.

Conflict The largest activation is somewhere in the middle, and the difference
to the second largest is too small. That means that either of the commands
could be considered likely candidates, and the output of the network is
only an indication of which is the more likely.

The researchers observed a sequence of 6550 commands, trained the network
on half of that sequence, and then fed the network with the entire sequence. The
results looked quite promising. Correctly predicted commands had a high degree
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of confidence and the farther away from the correct prediction the output of the
artificial neural network was, the lower the confidence.

When looking closer at the results it became evident that some types of
commands were often predicted in error, for instance the date command, that
displays the current time and date. The network had learned however to classify
this as an irrelevant command, not worth considering for inclusion in the user
profile. Such commands could be characterised as noise in the deterministic
sequence.

Other commands, such as those issued when dealing with a prototype of a
database system (that crashed often, and at random intervals), where marked as
very indicative of the usage of that particular user. The network also managed
to automatically associate commands with similar actions, such as sh, and csh,
often predicting a sh for a csh or vice versa. The authors left it to the neural
network control expert system to decide that “errors” like these were in fact not
indicative of a security violation, but instead of a more benign kind.

2.8.6 Conclusions

There were at the time publication of the system several problems with the use
of artificial neural networks. There were, and to a certain extent, still are, few
theoretical results on recurrent neural networks. The authors found it difficult
to determine the correct size for the network, and the parameters would often
have to be determined by trial and error thus leading to a time consuming design
process.

Furthermore, since recurrent artificial neural networks are an example of
systems with feedback there would be stability concerns. The researchers saw
unstable configurations, that they could not, at the time, fully understand.

2.8.7 Survey conclusions

The paper clearly demonstrates that artificial neural networks could have a place
in the detection of anomalous computer system activity. The present author
feels that current interest in ANNs probably lie elsewhere, further research in
intrusion detection has not employed ANNs to any significant degree. One could
of course envision the use of ANNs for policy based detection as well, but the
present author knows of no such approach.

The work presented is furthermore valuable in that it discusses the effective-
ness of the approach, when subjected to test data.

2.9 DIDS—Distributed intrusion detection pro-

totype
DIDS [52], is a distributed intrusion detection system, that incorporates Hay-

stack (see section 2.1, on page 17), and NSM (see section 2.6, on page 31), in
its framework.
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2.9.1 Introduction

DIDS tries to correlate information about the individual monitored users, via
a NID (Network Identifier) concept, where each user is tracked as he “moves”
across the network, and in doing so, assuming different identities. Another
strong point of DIDS is that it attempts to solve the problem of how to handle
hosts on the network which do not participate in the host logging mechanism.
DIDS attempts to keep track of actions performed by these hosts via the LAN
manager, since each action such a host takes, eventually will manifest itself
on the network level, if that host is to communicate via that network with the
outside world. DIDS is specifically designed to deal with C2 compliant hosts in a
heterogenous environment. In the prototype implementation the hosts typically
run SunOS 4.1.1, with the BSM (Basic Security Module) installed, although the
authors report on developing parts of DIDS to run on VMS.

DIDS is made of up of three major components. On each host, a host
monitor, performs local intrusion detection, and summarises results, and parts
of the audit trail for communication with the DIDS director. Furthermore each
(broadcast) network segment houses its own LAN monitor, that monitors traffic
on the LAN, and reports on it to the DIDS director. Finally, the centralised
DIDS director, analyses material from the host monitors and the LAN monitors,
that report to it, and communicate the results to the SSO.

2.9.2 Host monitor

The host monitor performs the local intrusion detection and reporting. It is
made up of five major components, three of which are responsible for analysis
of the audit data. The audit data is analysed in parallel. The five components
are:

Preprocessor The preprocessor converts the raw audit trail into a canonical
format suitable for further processing. It also filters the audit trail for su-
perfluous audit data, and passes it along to the three processing elements.

Signature analysis The host monitor performs signature analysis, whereby
patterns of known violations of security policies are scanned for.

Notable events The notable events processing analyses the canonical audit
trail event by event (record by record) to determine if an event in and
of itself, is sufficiently interesting to be forwarded to the DIDS director’s
expert system directly. This is always done for such events as logins,
remote logins, etc. to help in the collection of the NID data, but also to
feed the centralised expert system data that it is a priori interested in.

Haystack Each instance of the host monitor runs a copy of Haystack, to build
session profiles of user and system behaviour, and to look for statistical
anomalies in light of these profiles. Each such anomaly is transmitted to
the DIDS director for further analysis.

Host agent The host agent is responsible for correlating the information pro-
duced by the three analysis components. In order to do so, it consults
tables that list the higher level events that the three analysis components
can generate, and which of these to send to the DIDS director’s expert
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system for further analysis. Some of these events that are important for
the system’s construction of the NID:s are always forwarded to the DIDS
director.

2.9.3 The LAN monitor

The LAN monitor is a subset of the NSM, the Network Security Monitor, devel-
oped at UC Davis, California, USA. The LAN monitor analyses every packet on
the network to form a view of significant events on that network segment. This
simple analysis identifies certain types of network behaviour; the use of certain
protocols—telnet, rlogin—traffic that emanates from an unmonitored host,
and therefore is interesting, etc., etc. among other things to identify users as
they move across the network. Furthermore the LAN monitor constructs pro-
files of host behaviour; which hosts are likely to communicate with which hosts,
utilising which protocols etc. The LAN monitor uses simple heuristics to try
and ascertain whether a particular connection represents intrusive behaviour or
not.

2.9.4 The DIDS director

The director is the brain of the DIDS intrusion detection system. The director
contains the user interface by which the SSO can configure the system, and
which he uses to attain knowledge about presumed intrusions etc.

The director consist of two main parts: the communications manager, and
the expert system. The communications manager is responsible for collecting
the data sent to it from the host managers, and LAN managers, respectively,
and communicate this data to the expert system for further processing.

The expert system makes inferences about the security state of the system,
and each individual host, and aggregates the information for presentation to the
SSO. The expert system is an ordinary rule-based (or production based) expert
system. It is implemented in CLIPS, a C language expert system implementa-
tion from NASA.

The low level events reported by the host and LAN monitors are asserted
as facts in the expert system database. The reported facts are independent of
the system of platform, from which they originated. The expert system then
tries to assign a single identifier to each user of the system as a whole, the
NID concept, and each user’s activities are attributed to this NID. Events
are then placed in context. Two major types of contexts exist; spatial and
temporal. For instance, the authors give the example of some behaviour that
would be perfectly innocuous when performed during business hours, but highly
suspect when performed in the middle of the night, as an example of temporal
behaviour. The expert system uses time windows to to correlate events that
occur in temporal proximity.

Spatial events take into account the source of the event, certain events from
one user may be more indicative of intrusive behaviour, than the same event
originating from another user.

The NID-instance of a user, is represented using a four tuple {session_start,
user-id, host-id, timestamp}, where each login to the system creates a new
instance of a NID. DIDS correlate different users identity when they traverse
through an unmonitored host, or where several connections from the outside
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world exist, to try to ascertain if indeed any of these connections could be
another instance of a user already connected to the system. The authors state
that even though they are well on their way to solve the problems with building
the NIDs, there are some areas that remain yet to be addressed.

2.9.5 Results and future development

Preliminary trials with the prototype indicated that the system performed as
expected, it managed to track users as they moved across the network, and cor-
rectly classified simulated intrusions as they occurred, however, no performance
figures are available. Furthermore, the authors planed to develop host monitors
that would monitor specific hosts, such as file servers, and network servers, in
addition to ordinary user workstations.

2.9.6 Survey conclusions

DIDS incorporates two other systems in its design, Haystack, and NSM. DIDS
addresses the question of how to handle distributed, heterogenous systems.
There is precious little work in the field of how to handle heterogenous sys-
tems, some of which may not be willing to participate in intrusion detection.
DIDS itself is not fully distributed, but relies on both distributed and centralised
resources to detect intrusions. It is difficult to determine whether DIDS man-
ages to make the optimal division of labour without any performance figures
neither pertaining to the effectiveness, nor the efficiency of the system.

2.10 ASAX-—Architecture and rule-based lang-
uage for universal audit trail analysis

The paper describing ASAX [18] only describes a (proposed) prototype of the
system, and hence, it cannot be fully surveyed.

2.10.1 Introduction

ASAX is a rule-based intrusion detection system, with a specialised, efficient
language (RUSSEL) for describing the rules. In the views of the authors’, there
are four major problems with the automatic analysis of audit trails:

Disparity of security breeches There are several different types of security
intrusions, and each of these require different methods to detect the in-
trusions. The authors state that the two main principles are; statistical
modelling of normal behaviour, and modelling of experts’ knowledge about
known intrusive behaviour. The authors then go on to claim that: “The
former approaches are appropriate to detect known penetration scenarios
and the latter ones are appropriate to detect unknown intrusions.” The
present author does not know if this statement originates in poor proof-
reading, or if there is something more substantial underlying the reasoning.
The former seems more likely. ..

Amount of audit data The operating systems, in and of themselves, provide
a huge amount of data to be processed, and for storage and efficiency
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reasons this amount of data has to be culled. The authors differentiate
between preselection where by the SSO determines what audit data the
system should collect—being careful to collect enough data to be able to
determine if an intrusion has taken place—and postselection, where the
data is reduced in the later analysis stage. The authors state that it is
probably wise to employ some sort of simple preselection in all cases, to
lessen the burden on the analysis algorithm, freeing it from irrelevant data.

Reusability of the intrusion detection system The authors state that the
intrusion detection system should be reusable, and then go on to define two
different classes of reusable systems; generic, and universal. Characteristic
of the generic system is that it can be instantiated for different types of
audit trails, while the universal intrusion detection system is applicable
to any audit trail, provided this has first been converted into a generic
format. The authors put ASAX into the latter class.

User interface The authors state that: “An auditing system should have a
suitable user interface allowing security officers to converse easily with
the system and to take advantage of all its features.” but then the scope
narrows considerably when they go on to write that: “Practically, the
purpose is to make a compromise between a powerful language allowing
to express complex queries and to update the system knowledge, and an
easy but less powerful language which does not require tedious training.”
While the latter certainly may be true, the present author feels that there
is much more to the issue of SSO interaction, then the authors would have
us believe.

2.10.2 ASAX architecture and operation

ASAX first converts the underlying (UNIX-like) operating system’s audit trail
to a canonical format— named NADF by the authors—and then processes the
resulting audit trail in one pass, by evaluating rules in the RUSSEL language.

The audit trail conversion is aided by the fact that, in the authors words,
NADF is simple and flexible enough to allow all existing audit trails to be
translated in a straightforward way. Furthermore, the system saves information
from the format translator in external files, to preserve the connection between
the raw audit trail, and the translated audit trail, thus enabling later analysis
queries to be stated with reference to the external format.

The RUSSEL language, is a declarative rule-based language, that is specifi-
cally tailored to audit trail analysis. The authors state that: “a general purpose
rule-based language should not necessarily allow encoding of any kind of declar-
ative knowledge or making a general reasoning about that knowledge.” This in
contrast with more general expert systems, such a P-BEST (see sections 2.2, 2.3,
and 2.14), that the authors state is more cumbersome for the SSO to use. Rules
in the RUSSEL language are applied to each audit record sequentially, they en-
capsulate all the relevant knowledge about past results of the analysis in the form
of new rules, and they are active only once, requiring explicit re-instantiation
when they have fired.

The authors claim that this language may still be too opaque for the aver-
age SSO, and hence a higher level language (RUSSELZ2), that will be converted
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to RUSSEL was suggested as a further development. By nature of its simplic-
ity, and straightforwardness, the authors envision an efficient implementation—
more so than for example that of P-BEST—where the expressions in RUSSEL
are converted to an internal code that can be efficiently executed on the target
machine. They also suggest some (trivial) optimisation techniques, that could
be applied.

2.10.3 Survey conclusions

The paper presents work that was somewhat immature, from a systems per-
spective, at the time of its publication. The introductory analysis has merit,
and the system probably would also, had it been available for evaluation, by the
authors at least.

The criticisms of other approaches (notably the P-BEST system) are not well
founded in argument, and in the present author’s opinion lack merit. One cannot
make specific claims about differences in efficiency between an existing system,
and a proposed one, without figures, based on the kind of loose argumentation
presented here.

2.11 USTAT—State transition analysis
2.11.1 Introduction

USTAT [23,24] is a mature prototype implementation of the state transition
analysis approach to intrusion detection. State transition analysis takes the
view that the computer is initially in some secure state, and via a number of
penetrations, modeled as state transitions, the computer ends up in a com-
promised target state. (U)STAT reads specifications of the state transitions
necessary to complete an intrusion, supplied by the SSO, and then evaluates an
audit trail with respect to these specifications.

2.11.2 More about state transitions

Table 2.1 depicts a UNIX intrusion scenario in which an attacker gains adminis-
trative privileges by exploiting a flaw present in the 4.2 BSD UNIX distribution.

Table 2.1: STAT: Penetration scenario (from [24])

Step | Command Comment

1 %hep /bin/csh /usr/spool/mail/root | Assumes no root mail file

2 chmod 4755 /usr/spool/mail/root Make setuid file

3. %touch x Create empty file

4. %mail root < x Mail root empty file

5 %/usr/spool/mail/root Execute setuid to root shell
6 root#

The specific flaw in mail is that it does not reset the setuid-bit when chang-
ing owner of the mail-file, that it has just appended the newly delivered mail
to. The attacker can exploit this by copying a setuid command interpreter to
the mail directory, have mail append essentially nothing to it, and at the same
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time have it change owner of the shell to the user root. The attacker has thus
gained administrative (or root/super-user) privileges.

To model this scenario as a number of state transitions, we first identify the
start and goal states. In order to execute the first step above, root cannot
have a mail file, that is the first assumption that must hold. As we progress
through the steps in the example, we find that also; the intruder must have write
permission to the mail delivery directory, he must be able to execute cp, chmod,
touch (or a variation thereof) and mail. The authors make the observation
that on an ordinary UNIX system the first two assertions almost always hold
true, and they can thus be ignored. Note that the nature of the penetration
in this case is not the execution of the setuid-shell per se. Even if the intruder
chose not to execute the command interpreter, there would still be a violation
in that there now exists an executable setuid-to-root file on the system that the
super-user (root) did not create!

attacker mod_setuid(object)
attacker creates(object) attacker mod_owneruid(object)

1. exists(object)=false 1. owner(object)=attacker

2. attackerzroot 2. setuid(object)=enabled

1. owner(object)=attacker 1. owner(object)=attacker
2. setuid(object)=disabled 2. setuid(object)Zenabled

obj ect=/usr/spool/mail/root

Figure 2.3: USTAT: State transition diagram (from [24])

The intrusion described above leads to the state transition diagram in fig-
ure 2.3. Note how the intrusion scenario above has been stripped of many
assumptions about what the nature of the intrusion is, e.g. the fact that the file
/usr/spool/mail/root is a copy of the command interpreter csh. This infor-
mation is not necessary to detect the violation. The first step, that of creating
/usr/spool/mail/root is paramount in detecting this intrusion however, it is
not of vital importance how this file is created, or what it contains. Thus, the
state transition diagram has abstracted away from the intrusion in such a way as
to allow the diagram to represent variations of the same intrusion scenario, that
a more straightforward, simplistic, signature based intrusion detection system
may fail to detect.
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2.11.3 The prototype system

In order to apply the state transition diagrams presented earlier the authors
make two provisions:

1. The intrusion must have a visible effect on the system state and,

2. That visible effect must be recognisable without knowledge external to the
system, i.e. the attacker’s true identity for example.

Some types of intrusive behaviour, does not fall in the category described above.
For instance, the passive monitoring of broadcast network traffic could be diffi-
cult to detect from outside of the resource employed to perform the monitoring.
Another problematic intruder that is difficult to detect is the masquerader.
However, if that masquerader then goes on to perform any of a number of
intrusion-attempts, to gain greater privileges, state transition will have the op-
portunity of catching him. The C2 audit trail produced by the computer is used
as the source of information about the system’s state transitions.

The USTAT prototype is intended as a real-time expert system for detecting
intrusions in real-time. The prototype runs on SunOS 4.1.1, with the SunOS
BSM (Basic security module) installed. This module provides USTAT with a
“C2” compliant audit trail. USTAT’s design can be divided into four major
modules:

Audit collection/preprocessing The purpose of this module is to collect au-
dit data, and to store that data for future reference. In the prototype this
module reads, filters, and passes the BSM audit records to the inference
engine. The USTAT canonical format identifies the audit record accord-
ing to the triple: {Subject, Action, Object}, where the normal BSM/UNIX
audit record contents are mapped onto these fields.

Knowledge Base The knowledge base consists of two components, the rule-
base, and the fact-base. The fact-base contains information about the
objects in the system, i.e. groups of files or directories (called filesets by
the authors) that share certain characteristics that make them vulnerable
to certain types of attacks. The rule-base contains the state transition
diagrams that describe a particular intrusion scenario. The latter infor-
mation is stored in two files; the state description table, and the signature
action table. The state description table store the state assertions, de-
picted below the circles in figure 2.3, and the signature action table stores
the signature actions, placed above the arcs in figure 2.3.

Inference engine The inference engine then evaluates the new audit records,
using information from the rule-base, and the fact-base, and updating the
fact-base with state information. The evaluation is done in a forward
chaining fashion, i.e. new facts (audit records) lead to the evaluation of all
rules that could depend on the newly asserted fact, and the fact-base is
updated accordingly, and/or a possible intrusion is reported. The evalua-
tion of the intrusion scenarios invariably lead to a lot of partial matching,
the state of which has to be stored in the fact-base for possible future
matching against new audit records, that could complete the intrusion
scenario. These facts are stored in a table maintained by the inference
engine.
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Decision engine The decision engine informs the SSO that the inference en-
gine has detected a possible intrusion. In the prototype, the decision
engine reports the detected intrusion to the SSO, informs him whenever
a state of any instance of the scenario has been satisfied, and suggests
possible actions to the SSO to preempt a state transition that can lead
to a compromised state. The authors suggest that a fourth mechanism
could be added to make the decision engine respond actively to thwart
the attack, as it progresses.

2.11.4 Results

The authors put the prototype to two kinds of tests, function as well as per-
formance was evaluated. The prototype was put against a number of possible
intrusion scenarios, and variations thereof, where the attacks were performed by
several attackers in unison, using hard links to files, instead of the original file
names etc. These tests demonstrated that USTAT indeed managed to detect
intrusions under these circumstances.

Performance-wise the prototype was run on a single workstation that also
performed the audit collection, these tests indicated that under light load,
USTAT kept up well with the stream of audit records, but when audit inten-
sive applications such as find were run, USTAT did not fair as well. USTAT
consumed approximately 13% of the CPU, and the bottleneck was identified as
being the disk to which both the audit facility stored audit records, and USTAT
attempted to read those same records from.

2.11.5 Survey conclusions

It is interesting to note that the idea behind the system presented started with
the research into the question of how to represent intrusion scenarios. One
problem the authors mention is that of representing possibly parallel prerequisite
actions to prepare for the intrusion in the scenario. It is interesting to note that
later work (presented in section 2.13 on page 53) has expanded on the model
presented, while incorporating it in the mathematical framework of Petri nets.
(It is not known to the present author whether the later research was specifically
inspired by the approach taken here.) Despite this objection, the approach
appears to have merit, especially since it lends itself to efficient execution.

Otherwise, the work is presented with unusual thoroughness, with perfor-
mance tests and figures.

2.12 DPEM-—Execution monitoring

2.12.1 Introduction

The author(s) make the observation that past efforts in the field of the detection
of the exploitation of previously known intrusions have focused on the patterns
of use that arises from these exploitations [29-31]. Instead the authors proposes
that the opposite approach could be taken, i.e. that the intrusion detection sys-
tem focus on the correct security behaviour of the system, specifically a security
privileged application that runs on the system, as specified. The authors have
designed a prototype, DPEM, that reads security specifications of acceptable
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behaviour of privileged UNIX programs, and checks audit trails for violations of
these security specifications.

There are many different security relevant aspects of program behaviour.
For instance:

Access of system objects The set of objects, typically files in a UNIX envi-
ronment, that a program accesses as it runs. This is a simple, yet im-
portant measure. Many potential attacks can be detected if stringent
demands is made on a program with respect to the files is can access.

Sequencing In some instances, it is not only the access to objects that matters,
but also the sequence in which these objects are accessed. For instance,
the Iogin program should read the user authentication database file, i.e.
/etc/passwd before executing the command interpreter for that user, fail-
ure to do so would be a security concern.

Synchronisation In a distributed system, security failures often result from
improper synchronisation of programs. If, for example, a user changes his
password, while the system administrator is updating the password file,
the file may be left in an inconsistent state.

Race conditions This is a special case of the synchronisation problem. If a
program has a race-condition flaw, an attacker can affect the operation of
the program by performing certain operations during the execution of the
program. This is difficult to monitor.

2.12.2 The specification language

In order to be able to specify these different requirements on the execution of
privileged (UNIX set-UID) programs the authors specified a language, based on
predicate logic, and a method for parsing this language, in which to specify
the correct security benign operation of a program. More formally, the authors
state that a trace policy, that captures the intended behaviour of a program, is
specified by means of a grammar. This grammar defines a formal language (a set
of sentences of that language) whose alphabet consists of program operations.
Monitoring a program amounts to syntax driven parsing of the sequence of
program operations executed by the subject. This sequence of operations (the
trace from the execution of the program) is obtained from audit trails in real
time. An unsuccessful parsing attempt indicates a violation of the trace policy
and triggers remedial responses.

The authors have developed the reasoning about the specification language,
and its grammar substantially during the period from the earliest publication
of their results, to the later ones. An example of a specification for the finger
daemon is in figure 2.4.

The specification in figure 2.4 first states the execution of the fingerd dae-
mon, as user U. The allowed sequence continues with a rule that states that it
is allowed to read file X, if, and only if, file X is world readable, i.e. there are
no read-access restrictions, on it. Fingerd is then allowed to open port 79 for
the reply, write to its log file, and execute the finger program to provide the
remote user with the same output as he would have received, had he run the
finger program locally. One would then have to specify the security policy
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PROGRAM fingerd(U)
read(X) :- worldreadable(X);
bind (79) ;
write("/etc/log");
exec("/usr/ucb/finger") ;
END

Figure 2.4: Finger daemon example (from [30])

for the invocation of the finger program, in order to have a more complete
example.

2.12.3 Design and implementation

The ideas presented have been implemented in a prototype named DPEM—
the Distributed Program Execution Monitor. DPEM, as its name suggests,
monitors programs executed in a distributed system. This is accomplished by
collecting execution traces from the various hosts, and (possibly) distribute them
across the network for processing. DPEM consists of a director, a specification
manager, trace dispatchers, trace collectors, and analysers, that are spread across
the hosts of the network.

More specifically; traces from the various hosts are sent on demand to a
central location where the trace dispatcher combines the various traces to form
one system wide trace, as requested by the then active analysers. Meanwhile
the specification manager consults its database to se if any of the processes
recently started by any and all particular users should be monitored. If this is
found to be the case, the specification manager distributes the process started
by the particular user to be analysed by an analyser. At no time will any
subject/process pair be monitored by more than one analyser. The analyser
then applies the specific trace policy to the trace obtained from executing the
process, and decides if a violation has taken place. If so, the analyser reports a
violation to the site security officer, by configurable means.

2.12.4 Performance of the prototype

The prototype was implemented in C, on top of the Solaris 2.4 operating system,
using the SunBSM audit subsystem, to collect audit data. When run on a Sun
SPARCstation 5 with 32 MB of memory, and activating it with well known
vulnerabilities in rdist, sendmail, and binmail, the system responded quite
quickly, and reported policy violations in under 0.1 seconds in all cases.

2.12.5 Survey conclusions

This is the first, and perhaps only, example of a system that utilises policy
based detection, that is a policy with a default deny stance. Furthermore, the
presented work discusses the nature of the intrusive behaviour that the method
could detect. The discussion on scalability, and how the system distributes is
also thorough. The test cases could be more thorough, but given the current
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state of affairs, one must of course be satisfied with the fact that the authors
make any claims of the effectiveness, and efficiency of the system at all.

2.13 IDIOT—An application of petri-nets to in-
trusion detection

2.13.1 Introduction

IDIOT [6,32-35], is a system developed at COAST, University of Purdue, IN,
USA. The basic idea behind IDIOT is to employ coloured Petri nets for signature
based intrusion detection. The authors suggest that a layered approach be taken
when applying signature (pattern matching) based techniques to the problem
of intrusion detection.

2.13.2 Model

The authors suggest a layered model that divides the intrusion detection effort
into three distinct abstraction layers:

The information layer To isolate any machine/platform dependencies in the
audit data, and provide the upper layers with a low-level data interface.

The signature layer Describes the signatures indicative of intrusive behavi-
our in a system independent fashion, by the use of a virtual machine
model.

The matching engine That matches the signatures in the preceding layer.
This enables the use of any suitable matching technology as, and when, it
becomes available.

The proposed model has as it’s basis the notion of an auditable event. These
events have tags, that hold data about the event. Intrusion signatures are
specified with a “follows” rather than an “immediately follows” semantics, in
terms of the events that the matcher would see. The authors have previously
identified that UNIX attacks could be classified, from a signature perspective
into the following classes [32]:

Existence The mere fact that something ever existed is evidence of an intrusion
in some instances. For example, searching for the presence of a particular
file, with particular permissions could provide enough evidence.

Sequence The fact that several things happened in strict sequence is sufficient
to assert the intrusion.

Partial order Several events are defined in a partial order, i.e. many parallel
or sequential preconditions must exist in order for the later part of the
intrusion specification to hold.

Duration Something happened for not more than, or less than, z seconds.

Interval Events took place an exact (plus or minus some delta) interval apart.
Thus, the specification says that event y took place not, more than ¢;
or less than t, time after event x. The exploitation of a race condition
typically gives rise to such specifications.
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The authors believe that the majority of known intrusions in UNIX systems
fall in the first and second category above.

2.13.3 Applying Petri nets to the proposed IDS model

The authors argue that of the many available techniques of pattern matching,
coloured Petri nets, or CP-nets for short, would be the best technique to apply,
since it does not suffer from a number of shortcomings common to other tech-
niques. These latter techniques do not allow conditional matching of patterns,
do not lend themselves to a graphical representation etc.

The proposed Coloured Petri Automaton (CPA henceforth) differs from
“regular” CPA:s in a number of respects, they lack concurrency for example.
They retain all the features necessary for use in intrusion detection however.
For an introduction to CPAs the authors recommend [26].

For an example of a specification of an intrusion signature using the proposed
Petri nets, see figure 2.5.

& F= true_name(this[OBJ])j
% N Y Intrusion scenario
O " cp bin/sh ust/spool/mail/root

Invariant: same_uid \ & , chmod 4755 /usr/spool/mail/root 3
| touch x !
(/,)Q S5 1 mail root < X !
/)’@ O ! Jusr/spool/mail/root |
sl t s2 t2 s3 17 s7
O—O—T=0O——0O
write chmod exec

this[PID] 1= 0 && this[OBJ] = FILE

true_name(this[OBJ]) =
true_name("/usr/spool/mail/root")
&& FILE = this[OBJ]

true_name(this[PROG]) =
true_name("/usr/ucb/mail") &&
this]ARGS]= ~"\\<root\\>"

Figure 2.5: IDIOT: A Petri-net intrusion signature (from [34])

In 2.5 the start states are s1 and s4, with s7 the final state. The evaluation
begins with the system placing a token in each start state. These tokens!! then
“flow” through the Petri net making the transitions specified by the vertical bars
in the picture, when the event marking the transition occurs. These transitions
may be guarded by boolean expressions that must evaluate to true for the
transition to take place. There is a special operator this that is instantiated to
the most recent event.

Each specification also has a set of preconditions, postconditions, and invari-
ants. These are similar to guards that must be true to be successful. Patterns

11 Each token also has a set of variable associated with it, it is coloured in CP-net terminol-
ogy.
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that have no transitions can be specified using pre-conditions to an empty pat-
tern. The authors state that post-conditions are provided for symmetry, and to
allow recursive invocation of the same pattern. Invariants are provided to allow
the user to specify some condition that should not be true while the matcher is
busy with another pattern. The authors felt that it would unnecessarily clutter
the Petri net to introduce these negative conditions directly.

In order to instantiate this generic model to a specific platform, say UNIX
the user would have to define the primitives supported by the guard expressions,
coding file test operations, system interaction hooks etc., etc.

2.13.4 System overview
IDIOT consists of four major components:

Audit trail Of course technically the audit trail is not a part of IDIOT, even
though IDIOT receives all its information about the system via the audit
trail. The version of IDIOT described uses the Solaris 2.4, BSM (Basic
Security Module) C2'2 audit mechanism as its source of input. However,
IDIOT is designed to be easily portable to any other form of audit trail
format.

showaudit.pl This PERL script converts the audit trail to a canonical format,
to be used by the rest of IDIOT. This division of labour is intended to ease
porting of IDIOT to other platforms, with other forms of audit trails.'®
showaudit.pl can be run either in batch mode, to convert an already
existing audit file, or record-by-record mode, where the script watches the
end of the audit file, and converts each record as it becomes available.

C2_server This is the heart of the intrusion detection system. Implemented
as a C++ class, the C2_server, reads an audit record from showaudit.pl,
steps through the different intrusion detection patterns (implemented by a
pattern matching engine each) that request an event, and lets each pattern
matching engine decide whether to update its state according to the event.
Thus each pattern gets access to each event. The pattern matching engines
can be dynamically added to an already running C2_server.

C2_appl The C2_appl provides the SSO with a user interface, from which to
control IDIOT, he can start and add new pattern matching engines for
example, and learn of the status of IDIOT.

Of the parts described above, only the audit trail, and the showaudit.pl
script needs to be ported when moving IDIOT to a new platform, the C2_engine,
and (where applicable) the patterns can be moved unchanged to the new plat-
form, they are intended to be platform independent.

The patterns play a major role in IDIOT, they are written in an ordinary
textual language, and parsed, resulting in a new pattern matching engine. As
previously mentioned this engine can then be dynamically added to an already
running IDIOT instance, via the user interface. Furthermore, the user can
extend IDIOT, to recognise new audit events, for example.

12 This audit trail generation mechanism is designed to provide an audit trail that meets the
“Orange book” C2 criteria. 13 This is the same approach as taken in NIDES, see section 2.14
on page 56.
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2.13.5 Survey conclusions

The work presented is thorough on the nature of the intrusions that the system
is supposed to detect. It is in fact by far the most thorough presentation in all
the work surveyed. The description of the patterns that describe the intrusions
is based on theoretical foundations, and thus not ad-hoc in nature. The authors
furthermore stress the necessity of testing the effectiveness of intrusion detection,
by building a set of standard test cases. Although the work presented is a few
years old, this has not yet been performed, although at the time of writing such
an effort appears to be underway.

2.14 NIDES—Next generation intrusion detec-
tion system

NIDES [1,2] is the direct continuation of the IDES project (see section 2.3).
Following the tradition of its predecessor it is very well documented, there are
many more references available than the two given here.

2.14.1 Introduction

It is difficult to speak of one NIDES system—a trait it has in common with its
ancestor—there are really four different systems, each built on top of the pre-
vious system. NIDES follows the same general principles as the later versions
of IDES, i.e. it has a strong anomaly detection foundation, complemented with
a signature based expert system component. The latter component is imple-
mented using the P-BEST expert system shell. This is a later version of P-BEST
than that presented in the survey of MIDAS (see section 2.2), implemented in
C, and generating C as output.

2.14.2 The major versions

NIDES development resulted in four major versions of the software, each with
refinements, based on input both from further research at CSL-SRI, and user
input. The four major versions are presented in the following paragraphs.

NIDES Alpha—Feb 1993

This release was really a version of IDES, the same functionality was there,
but the architecture was changed. NIDES is more architecturally sound, it is
modular and built on a client-server architecture.

Furthermore, while the rule-based intrusion detection system remained the
same, the anomaly detection functionality was changed. This change came
about to enable NIDES to deal not only with simpler parameterised distribu-
tions, but also with multi modal distributions, such as could arise from a user
that performs two completely different tasks; he is either developing software,
or he is writing documentation for that software, and on Friday mornings he is
busy using the time reporting software. Usage patterns such as this one requires
a statistical model that takes the different modes the user is in, into account.
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NIDES Alpha patch—Oct 1993

This version was a result of user feedback as to the performance of NIDES.
In order to speed up development, no changes were made to the user interface
proper, all features introduced where to be controlled by setting environment
variables, or writing/changing configuration files.

Three changes were made in an attempt to alleviate what was being experi-
enced as poor performance:

1. The statistical analysis component stores information about file and di-
rectory accesses as lists. It was found that these lists could grow quite
large—thousands of entries—in some circumstances. In order to allevi-
ate this problem, the authors redesigned the analysis algorithm so that
it need not traverse the entire list at the time of audit record processing,
this processing was moved to profile generation stage instead.

Furthermore, it was found that many of the files that where considered in
the previous paragraph was of a temporary nature, and that they would
not be included in the final profile of that user anyway. NIDES was thus
extended to be able to ignore those files, by naming directories such as
/usr/tmp, /tmp, etc. to be excluded from further processing.

2. A feature was added to give the user the choice of having the real-time
NIDES update profiles based on the audit record timestamps instead of
the real time clock, exclusively.

3. A user configurable subject profile cache was added, to speed up processing
in the anomaly detection module.

NIDES Beta—May 1994

This represented a major overhaul of the NIDES system. Several new features
were added along with a new user manual. The features were (the list headings
verbatim from [1]):

e Optimised profile storage structure. NIDES generates two files per subject
for the storage of short term, and long term profiles. Users of NIDES
with many subjects expressed concern that the profile storage consumed
too much space, and by judicious culling of the stored data, as well as
some format changes, the authors were able to reduce the baseline storage
requirements of the two files by as much as 62%.

e Real-time configuration of NIDES analysis, both for real-time detection,
and batch mode detection. The beta release of NIDES introduced exten-
sive possibilities for the SSO to configure almost any aspect of the analysis
components, from how detected intrusions are reported, to the various pa-
rameters that govern the anomaly detection component of NIDES. This
(re)configuration can be performed in real-time, when NIDES is running,.

e Expanded status reporting. The status reporting from the running NIDES
was improved in three major areas:

1. NIDES reports extensively on various measures of throughput, and
state, for analysis and data storage functions.
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2. NIDES reports the status and configuration of each monitored host.

3. When NIDES is analysing audit data in batch mode, the status, and
summaries of alerts are reported periodically.

e Data management facility. This facility enables the SSO to archive and
retrieve audit data, and result data from processing.

e Expanded rule-base. The policy based detection module had its rule-base
expanded from 21, to 39 rules.

NIDES Beta-update—Nov 1994

The is considered the final release by the authors, and it consisted of bug-fixes,
performance improvements and added features.

The main performance improvement improved on the file access statistics
modifications introduced in the NIDES alpha patch release. It was noted that
some users would access on the order of 100,000-300,000 files in a four day pe-
riod, even though temporary files were already not being considered. However,
most of these files would not be included in the user profile for that subject any-
way, due to them being deemed insignificant by the statistical profile generator.
NIDES was thus enhanced to be able to remove these files from the outset, and
thus they would not later come to burden the statistical profile generator. This
enabled NIDES to process these difficult cases in a matter of hours, instead of
aborting processing altogether.

The major new features were:

e Introduction of the Perl script agen. Previously the converter from the
host specific audit trail to the NIDES canonical format was written i C,
somewhat limited, and hard to port. To alleviate these problems a Perl
version was constructed, since Perl is powerful, and available for a number
of different platforms. A number of sample Perl scripts to interface the
auditing mechanisms to NIDES where also provided.

e An agen monitor for promiscuous Ethernet interfaces. To be enable the
detection of the use of “sniffers.”

e Expanded audit record fact template. This was performed to enable the
rule based detection part of NIDES to consider all the available fields in
the audit record for detection. Previously the expert system was only
aware of a smaller subset of the possible fields.

2.14.3 System organisation

The NIDES system is highly modularised, with well defined interfaces between
components, and built on a client-server architecture. The system is centralized
in that the analysis runs on a specific host, named the NIDES host by the
authors, and collects data from various hosts via a computer network. The
target hosts collect audit data, from various host-based logs—there is a provision
to utilise TCP WRAPPER [55] i.e. host-based network traffic logs—converts
them to the canonical NIDES format, and transmits it to the NIDES host. The
SSO interacts with the system through the NIDES host.
The key components of the NIDES system are:
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Persistent storage This component provides the rest of NIDES with storage
management functions, for audit data etc.

Agend The agend process runs on all NIDES target hosts, and is responsible
for starting and stopping the agen audit data converter, when instructed
to do so by the NIDES user interface. It is implanted using the RPC
protocol.

Agen This is the audit data converter, that converts audit data to the NIDES
canonical format. The converted audit records are then handed to the
arpool process.

Arpool This process collects the audit data from agen and provides it to the
statistical, and rule-based analysis components on demand. Arpool runs
on the NIDES host.

Statistical analysis This module performs the statistical intrusion detection.
In real-time or in batch mode, i.e. non-real time.

Rule-based analysis This module performs the signature based intrusion de-
tection, also in real-time or in batch mode fashion. Both these modules
report their findings to the resolver.

Resolver This component is responsible for evaluating, and acting on the data
received from the statistical and rule-based analysis modules. The authors
state that a user action could well result in tens or hundreds of different
alarms, in order not to drown the SSO in irrelevant alarms, the resolver
aggregates them and makes a compound decision. The SSO also has
the ability to turn off reporting altogether for specified subjects, that for
instance, is performing some known new task etc. that upsets the anomaly
detection.

Archiver The archiver is responsible for storing audit records, analysis re-
sults, and alerts.

Batch analysis The batch analysis component allows the SSO to experiment
with new configurations on old, known audit data, in parallel with running
the production NIDES system.

User interface The user interface is responsible for communicating with the
SSO. This is the place from where the SSO controls all of NIDES, and
NIDES reports suspected violations of security to the SSO, as well as a
wealth of general processing status. Only one instance of the user interface
can be active at one time, and it always runs on the NIDES host. It is
implemented using the MOTIF toolkit under X-Windows.

2.14.4 Experimental results

The authors have made extensive experiments with a version of NIDES modified
to study application behaviour, instead of (typically) user behaviour. For a
detailed account of these experiments the reader is referred to [2]. A short
summary of the findings is that NIDES is indeed capable of detecting these
types of anomalies, and both the false positive rate, and the false negative rate
can be kept at reasonable levels.

59



2.14.5 Future directions

The authors list several possible future enhancements to NIDES, the construc-
tion of a test bed to enable testing of intrusion detection systems etc. However,
one of the more interesting areas mentioned regard the threat against NIDES
itself, and the increased risk to the computer installation that the employment
of an intrusion detection system could result in.

The authors state that they perceive two major areas of risk when it comes
to NIDES; tampering, and reverse engineering. Tampering would seek to render
NIDES ineffective directly, by shutting it down, for example. By reverse engi-
neering the attacker would attempt to learn of NIDES’s rule base, for instance,
and armed with this knowledge he would attempt to devise an attack that would
go undetected by NIDES.'4

The authors state seven security goals for NIDES:

1. Target system integrity. NIDES should not have an adverse effect on the
target systems, and should authenticate all interactions, as well as keep
track of the status of the target systems, to monitor any unscheduled
shutdowns.

2. Audit data security. Since the audit data itself could be very interesting
to an attacker, NIDES must protect the confidentiality, integrity, and
availability of this audit data.

3. NIDES system integrity. NIDES itself must be protected from undue
outside influences.

4. Availability. NIDES must remain available, and not fall to denial-of-
service attacks.

5. Rule-base protection. The major dangers with the rule-base is that of
reverse engineering, and of course undue modification. NIDES must resist
these types of attack.

6. User access. Due to the sensitive nature of the data that NIDES processes,
access to NIDES itself must be restricted to authorised personnel only.

7. User accountability. The authorisation of personnel using NIDES is not
enough in itself, NIDES must itself be monitored for management to be
able to hold users of NIDES accountable, and to detect attempts at misuse,
and intrusions by unauthorised personnel.

The authors further state that with the modular architecture of NIDES, im-
provements to make it more tamper-resistant, and able to withstand reverse en-
gineering could include: separation of roles, interprocess and server authentica-
tion, detection of—and protection against—denials-of-service, improved target
system integrity/availability, arpool target host authentication, smokescreen
detection, logging of NIDES user actions, improvement of NIDES processes
integrity /security, improvement of alert reporting integrity, authentication of
NIDES users, restrictions on TCP/IP services, protection of the rule-base and
software from reverse engineering etc.

14 «Flying under the radar” so to speak.
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2.14.6 Survey conclusions

It is interesting to note the position of NIDES between IDES, and EMERALD
(see section 2.19 on page 72). Many of the components of EMERALD clearly
was incepted in the NIDES project, generalised, and carried over to the EMER-
ALD project.

The “future directions” section in [1] is interesting in that it is one of the
first to recognise the threat against the intrusion detection system itself, as well
as the fact that the employment of an intrusion detection system in itself could
result in an increased risk to the computer installation.

NIDES in itself represents a major research effort, strong in; theory, dis-
cussion of effectiveness, implementation, and last but not least, documentation.
The researchers at the three CSL/SRI projects referred in this survey (IDES,
NIDES, EMERALD) have made available more documentation'® than the other
systems surveyed put together.!® This of course, of great value to the research
community.

2.15 GrIDS—A graph based intrusion detection
system for large networks

2.15.1 Introduction

The authors suggest a method for constructing graphs of the network activity
in large networks, to aid in intrusion detection [53]. The graphs typically codify
hosts on the networks as nodes, and connections between hosts as edges between
these nodes. Which traffic is chosen to represent activity in the form of edges
is decided on the basis of user supplied rule sets. The graph globally, and the
edges locally, have attributes, such as time of connection etc., that are computed
by the user supplied rule sets. The authors suggest that these graphs present
network events in a graphical fashion that enables the viewer to ascertain if
suspicious network activity is taking place.

2.15.2 Design goals

The authors identify some large scale network attacks:

Sweep A sweep occurs when a single host systematically contacts many other
hosts i rapid succession.

Coordinated attacks These attacks are multi-step exploitations using paral-
lel sessions where the distribution of steps between sessions is designed to
obscure the unified nature of the attack, or to allow the attack to proceed
more quickly.

Worms A worm is; “a program that propagates itself across a network using
resources on one machine to attack other machines.”

15 Most of this documentation is available on the web at the time of writing, at:
http: //www.csl.sri.com. 16 The IDIOT project, see section 2.13 on page 53, is also strong in
this respect. See ftp://coast.cs.purdue.edu for more information.
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2.15.3 Paradigm

The construction of the network activity graph is based on the organisational
paradigm of a hierarchy of departments. A department consists of several hosts,
and the department centrally collects audit data and combine it into department
graphs according to the specified rule sets. If network events in the department
involve entities (hosts) outside the department, then the network graph of the
respective departments can be combined, according to rules specified in a rule
set. The new graph consists of nodes that are the two departments, and edges
that represent the network traffic between them. This recombination is done at
the next higher level of departments, that include the two original departments.
This process can be repeated, and a hierarchy of departments is formed.

2.15.4 Graph building

Reporting all network activity in one single graph would be unwieldy. Therefore,
the system allows several rule sets that define one graph each. All the collected
data are considered for inclusion in all the rule sets, and thus two different rule
sets could render the same audit data into two different graphs.

2.15.5 Rule sets

The rule sets serve several purposes, to decide whether to combine graphs into
higher level graph, to control how this combination should take place, how
to compute the attributes of the graphs—both originally, and when they are
combined—and to decide what actions to take, if any, when graphs are con-
structed, or combined. The last point is interesting, because it is in this activity
that the automatic intrusion detection capability of the system lies.

The rule sets can be quite complicated to specify, and especially to specify
correctly. Because of this, GrIDS contains a policy language, with which to spec-
ify policies of acceptable, and unacceptable network behaviour. The prototype
implementation allows the user to specify whether a connection, represented
as an edge in the graph, is allowed or not. The specification is in the form of
a tuple, {action, time, source, destination, protocol, stage, status, ...}, where
action is allow, or deny, time qualifies the rule with respect to a clock or time
interval, source, and destination describe the connection endpoints, and proto-
col describes the connection type. As a connection progresses though its stages,
i.e. start, login, authentication, etc., the stage, and status attributes further
characterise the connection.

2.15.6 Implementation

The GrIDS system consists of a software manager, a graph building engine, a
module controller, and data sources.

All software in the GrIDS system consists of configurable modules with a
standardised interface. The specialised software manager module manages the
state of the hierarchy, and the distributed modules. The data sources are mod-
ules that monitor host, or network, activity and reports this to the rest of
GrIDS. The graph building engine, receives data from the data sources, applies
the different rule sets to build the graphs, and reports summaries of graphs to
higher departments.
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2.15.7 Survey conclusions

The GrIDS system purports to be “graphical” but it is difficult to ascertain just
what the authors intend by that statement. Certainly, it is not meant to display
network information to the SSO in a way that enables him to more easily detect
anomalous behaviour. The work presented is furthermore weak in the areas
of effectiveness, and efficiency. The authors discuss scalability in a convincing
fashion however, and the system probably has merit in this respect.

2.16 CMS—Cooperating security managers

2.16.1 Introduction

The authors of cooperating security managers [58] make the observation that
as networks grow larger, centralised intrusion detection will not scale well with
them. In order to alleviate this problem they suggest that several intrusion
detection agents, one at each computer connected to the network, cooperate
in a distributed fashion, where the computer from which a user first entered
the system is made responsible for all that user’s subsequent actions. This, the
authors claim, result in the load being evenly distributed among the cooperating
entities.
Three main ideas stand behind cooperating security managers:

1. Each computer on the network run a copy of the security manager. This
manager is responsible for detecting intrusions—anomaly and signature
based—on the local system, as well as intrusive behaviour originating
from an original user of the machine. In order to accomplish the latter, the
manager collects information from other computers the user under interest
may be connected to. This results in an assurance that one computer, the
one the user first connects to, will have a complete record of that user’s
activity on the networked computer system.

2. When a user accesses a host from another host, the managers in question
connect to each other, and communicate information about the user, and
the nature of the connection. This helps in tracking the user, but more
importantly, the authors claim, helps in preventing spoofing attacks.

3. Finally, the SSO has the ability to initiate a trace request, where by a
user’s connections across the network are traced. If this results in the user
appearing to connect from two distinct locations, the alarm is raised, since
ordinarily, users are never in more than once place at any one time.

With these features, the managers can cooperate to detect intrusive be-
haviour through out the network, without having to rely on some centralised
resource. The authors does not describe a fully developed system, but a fairly
full featured prototype version.

2.16.2 System overview

The cooperating security managers system is comprised of five separate compo-
nents:
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Local intrusion detection system This is the system that is responsible for
detecting intrusive behaviour local to the computer on which it is running.
The local intrusion detection system uses command based audit logs as
its source of audit data. The authors envision that future enhancements
will include GUI-based command interception, and the ability to include
monitoring of protocols such as http. The system maintains a suspicion
level for each user that it monitors, and one system wide suspicion level.
When either of these suspicion levels exceed a SSO-defined threshold, the
system generates an alarm to that effect.

Distributed intrusion detection system Is responsible for detecting intru-
sive behaviour that originates from this host, by a user who has connected
to another host through the network. This task is accomplished by com-
municating with both the local intrusion detection system, in order to
learn about the user’s activities, and to communicate with the remote
system that the user has entered.

User tracking system Tracks a user as he moves across the network. The
user tracking is integrated with the distributed intrusion detection above,
since in order to be able to receive audit data on the user from the remote
computer, the system has to keep track of him. Information about the
user’s path through the system is also needed for intrusion alarms, since
cooperating security managers report any suspected intrusive behaviour
to all systems that the user has traversed.

Intruder handling Decides what action to take, if any, when possibly intru-
sive behaviour has been detected. The module is able to terminate the
suspect connection if so configured, i.e. this module has active response
capabilities. This termination can be the result of SSO input via the user
interface, but also the result of preset suspicion thresholds being reached,
whereby the intruder handling module can be configured to terminate the
connection automatically.

User interface The user interface component has the responsibility to com-
municate with the SSO, to configure the system, report alarms, to track
users as they move through the network, and to terminate a suspicious
connection.

2.16.3 Prototype test results

The prototype was evaluated by running a variety of prepacked exploit scripts.
These were of two types. The first was designed to test the system’s ability to
detect intrusions being performed locally, and the second type was designed to
test the ability to detect intrusive behaviour on other hosts.

A small number of these simulated intrusions were performed, and the au-
thors report favourable results. Cooperating security managers operated as
specified, the SSO was able to sever connections, and trace users across the net-
work, even when the paths of two such users crossed. Furthermore, each instance
of intrusive behaviour was correctly identified as such, and when thresholds were
exceeded appropriate alarms were generated.
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2.16.4 Survey conclusions

The work presented is (yet) another approach to the solution of the problem of
how to make intrusion detection system scale, when introduced into a network
environment. It fails to address the problem of how to handle scalability of the
SSO in such a situation. The present author knows of no research that has
continued along the line of reasoning presented.

2.17 Janus—A secure environment for untrusted
helper applications

Janus [17] is a security tool inspired by the reference monitor concept, and Janus
was developed at the University of California, Berkeley. While Janus isn’t an
intrusion detection system per se. It has many interesting similarities with spec-
ification based intrusion detection, and it’s high degree of active influence over
the running application makes it an interesting case-in-point, when studying
active response.

2.17.1 Introduction

Janus is a user-space, per application reference monitor that is intended to
supervise the running of potentially harmful web browsing helper applications.
It does this by enclosing the application in a restricted environment, as so called
“sand box.” In the words of its authors, the main idea behind Janus is:

An application can do little harm if its access to the underlying
operating system is appropriately restricted.

From this statement the authors derive the corollary that the application is
thus allowed to perform any action as long as that does not entail the invocation
of a system call to the underlying operating system.

Janus is a policy based tool, where the user specifies a (restrictive) “default
deny” policy on what type of actions the supervised program may perform. If
an action is not explicitly allowed, Janus by default will not permit it.

The authors discuss several other possible solutions to the problem of hin-
dering applications from making malicious system calls—such as modifying the
operating system kernel-—and reject the proposals one-by-one, arriving at the
present solution.

2.17.2 Architecture

Janus is implemented as a set of security modules, connected through a frame-
work. Janus utilises the /proc interface of the Solaris 2.4 operating system—
originally intended as a system call tracing, and debugging facility—to watch
over the monitored application. Since a rogue application has complete control
over its own address space, Janus is implemented in a separate address space,
that communicates with the supervised program via the /proc facility. See [28]
for an introduction to the /proc “processes as files” interface.

The Janus framework first reads a configuration file that defines the secu-
rity policy, and consequently which modules should be loaded. These modules
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then register interest in certain system calls with the operating system, and the
supervised application is started. During the running of the application the
supervised system calls are checked against the current policy in a top down
fashion, where the most general rules are checked first. Latter, more specific
rules may override these.

The security modules (also called policy modules) may also contain special
code that is run just prior to the operating system receiving the system call
parameters, in order to check these parameters for illegal activity.

2.17.3 Security modules

Several policy modules are implemented, each responsible for supervising one
part of the policy. Examples of such modules are:

basic This module supplies defaults for the simple system calls that for instance
are always denied, such as setuid, mount, chdir etc. These calls are
always denied because they would either not be allowed to run by an
unprivileged process in the first place, or they violate the basic “sand
box” that Janus tries to enforce.

putenv The putenv module sanitizes the running application’s environment,
so that dangerous variables such as IFS etc. are removed.

tcpconnect A special module exists that supervises the application’s network
activity. The user may as a matter of policy restrict with whom the
application may communicate, using which ports etc.

path The path module is the most complex module. It supervises all open
requests, and checks the requested pathnames, only allowing access to the
sand box environment, and a small set of carefully chosen system files,
such as shared libraries necessary for the running of the application, and
system wide configuration files. The path module differentiates between
read and write access. While it would for instance allow read access to
the .rhosts file, it would universally disallow write access.

When the framework detects that a policy module would disallow a certain
system call, it aborts the system call with an EINTR error, before it has been
executed. To the supervised program this is indistinguishable from an inter-
rupted system call, and some programs are designed to retry the system call
when this condition becomes true. Janus detects this situation when 100 in-
vocations of the same system call has been denied, and then opts to kill the
application completely. The authors note that they would like to abort the sy-
stem call with a more appropriate error code, perhaps EPERM, signalling that
the process had insufficient privileges for the operations. However the Solaris
/proc interface lacks this facility.

2.17.4 Results

The authors note that since the user community general is more interested in
performance than security, the performance aspects of their implementation
must be studied. In addition, they study the applicability, ease of use, and
security of their prototype.
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When Janus is run on two typical, performance critical applications, ghostview,
and mpeg_play, no significant slowdown is encountered. This the authors at-
tribute to the fact that since only “important” system calls are supervised!'?,
and that system calls are already expensive, the extra overhead of Janus is not
noticeable. The application is free to go about it’s business in the common case.

2.17.5 Conclusions

The authors stress that there are several other possible routes that could be
explored towards the solution of the stated goal of achieving security in the face
of complex helper applications that receive their input from suspect sources.
For example security logging could easily be added to provide after the fact
capabilities. However, they feel confident in having proved their concept a
workable solution to the problems at hand.

The authors list the URL: http://www.cs.berkeley.edu/aw/janus/ as a refer-
ence for more information about the Janus system, and its availability.

2.17.6 Survey conclusions

Janus is an interesting and fresh approach to the problem of intrusion avoid-
ance. While the authors don’t present it as such, it could be argued that their
implementation is an intrusion detection system, with a default deny policy
specification, and strong active response. It is interesting to see that the au-
thors have addressed the problems of ease of use and performance. The paper
shares the weaknesses in the areas pertaining to effectiveness, so common in
intrusion detection research to date.

2.18 JiNao—Scalable intrusion detection for the
emerging network infrastructure

2.18.1 Introduction

The authors have developed a prototype implementation of JiNao [15], a network
intrusion detection system aimed at protecting the network infrastructure itself,
rather than the individual hosts on that network. The threat model assumes
that some routing entities in a network can be compromised, and hence begin to
mis-behave, or stop routing altogether. The prototype assumes that the routers
communicate via the OSPF protocol. The project is eventually envisioned as
detecting both external, and internal, intrusion attempts at the network infras-
tructure, in a comprehensive, and scalable, fashion, interoperating with other
intrusion detection systems.

The intrusion detection in JiNao is operated using, the authors claim, three
different paradigms, misuse based detection, anomaly based detection, and pro-
tocol based (misuse) detection.

17 For example, the read system call is never traced in the example policies.
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2.18.2 System overview

JiNao can be divided into two parts, the local intrusion detection subsystem,
and the remote intrusion detection modules. The intention is that a system
could be built by connecting the various local instances of JiNao running on
various pieces of equipment throughout the system. While the remote element
of the system had yet to be developed at the time of publication, it’s the authors’
intention to have a distributed system, that could be controlled centrally via the
SNMP protocol.

The JiNao system is comprised of quite a few different modules, that imple-
ment different aspects of the local subsystem of the JiNao intrusion detection
system.
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Figure 2.6: Block diagram of the JiNao system (from [15])

Figure 2.6 describes the relationships between the different modules in the
local subsystem. The function of the modules are:

Interception/redirection module

This module intercepts protocol information from the network, time-stamps it,
and hands it over to the prevention layer. When signaled from the prevention
layer, it then releases the packet, for further study by the protocol engine.

The authors discuss the problems associated with encrypted data, something
that may become more common in the future with the advent of IPSEC etc.
There are three principal layers where the network traffic could be intercepted,
IP/IPSEC layer, device driver layer, or in the higher layer protocols. The au-
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thors reason that we would like to intercept the traffic at the IP/IPSEC layer,
but in the case where the higher level protocol is encrypted, we must intercept
it when it has been decrypted. The problem with this is that information that
is interesting from an intrusion detection standpoint, may well have been lost at
this level, for instance, information about on which hardware network interface
the information entered the system, is almost certainly lost by the time the
packet has reached the higher levels of the protocol stack.

Prevention module

The prevention module acts as a first, fast acting, filter, against obvious prede-
fined security violations.

The prevention module is further subdivided into two layers, the prevention
layer, and the extraction layer. The prevention layers first task is to quickly
decide whether to forward the protocol data unit, under study, to the target
protocol engine. The reason the decision is made here is that the target proto-
col engine could observe a considerable delay in seeing the protocol data unit
otherwise.

The extraction layer on the other hand has the duty to format any, and
all, different network dependent data formats into a JiNao protocol data unit
(packet) to simplify further processing. It may be necessary to aggregate in-
formation from several network packets, or sources, into a single JiNao packet.
This would be the case for instance, when we would like to know the identity
of the hardware network interface on which the information entered the local
system, as well as the data itself.

Detection module

Consists of two sub modules, the statistical analysis module, and the proto-
col analysis module. The statistical analysis module determines if the observed
behaviour is within the historically established parameters for the observed sub-
ject. The protocol analysis module analyses, via the use of state machines, the
OSPF, and eventually PNNI, routing protocols, and the SNMP network man-
agement protocols, triggering whenever the protocol enters a suspect state.

Statistical analysis module The statistical analysis module draws heavily
from the work done by SRI on the NIDES system (see section 2.14 on page 56).
JiNao uses NIDES’s statistical algorithm with some small modifications. The
idea is that the subject under study should exhibit short term behaviour that
is consistent with its long term behaviour, in terms of the measured quantities,
certain log entries, number of packets sent, etc., etc. In general, when the short
term behaviour varies sufficiently from the established long term behaviour, a
warning flag is raised.

However, there will always be some variation in the short term behaviour,
since this behaviour is comprised of only one activity of the subject, while the
long term behaviour is comprised of all the activity performed by the subject. In
order to adjust for this effect, JiNao should, according to the authors, account
for the amount of deviation that it sees between short, and long term behaviour,
and only flag as anomalous, short term behaviour, that is very unlikely long term
behaviour, relative to the amount of deviation between these types of activities
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that it has seen in the past. JiNao’s view of what long term behaviour is, i.e.
the profile for the subject, is updated once a day.

Protocol analysis module The protocol analysis module, on the other hand,
uses information about the specific protocol, and the traffic that is generated
by these protocols to ascertain if some suspicious activity is taking place. The
protocol analysis module maintains a number of different state machines that
codify the known behaviour of the protocols that JiNao knows about. The state-
machines, are not pure state machines, in the sense that JiNao state machines
have been expanded with a counter feature, since counters are unwieldy to
handle in normal finite state machines.

The state machines are quite specific, for example, there is one state machine
for each adjacent router, codifying the correct behaviour of each and every one,
despite the fact that much of the information would be the same.

The authors had two specific goals, when specifying the state machine mech-
anism:

1. The protocol analysis module should be reconfigurable at run time, as new
intrusions become a concern, and others cease to be.

2. Adding a new state machine should not require recompilation of the pro-
tocol analysis module.

The authors identify several other means of optimising the execution of the
state machines, in future versions of the software, but have not had time to
apply any of them in the prototype.

Local decision module

The local decision module handles two tasks, it coordinates the information
from the detection and prevention modules, and it issues commands to update,
and/or activate rules in prevention module. The local decision modules also has
the responsibility to report suspected intrusions to the site security officer.

Functionally the local decision module interfaces with the detection mod-
ules, the local management information base, and the protocol engine. The
interface with the local detection modules is required to evaluate the possibil-
ity of an intrusion on the basis of local information, from network neighbours
etc., the interface with the management information base is to gain access to
remote, network wide data, to be able to take part in detection of network wide
events, and to gain knowledge of network wide events that could affect the local
detection system.

In the last instance, say that a part of the network has suffered a power
failure, this could lead to both the detection modules to report that a router in
that segment of the network was under attack, or faulty. If the local decision
module where to learn about the power failure via the management information
base, it could rightly conclude that the router outage was a result of the power
failure, and not indicative of either router failure, or the sign of an intrusion.

The fact that the local decision module uses both local, and network wide
information to reach a decision, the authors claim, leads to a scalable intrusion
detection architecture.
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Information abstraction module

Effects the communication between the local JiNao subsystem, and the remote
JiNao modules, as well as other network management systems.

The information abstraction module, performs its task by collecting data,
and intrusion indications from the local decision module, aggregating it, reduc-
ing it, converting it to management information base format, and compressing
it.

JiNao management information base

Handles a collection of parameters etc. for the local intrusion detection system,
that are of interest to other, remote parts of the system.

The management information base acts as a standard abstraction interface
between the JiNao agent and the management applications that are interested in
utilising the intrusion detection services provided by JiNao. The management
applications primarily use SNMP to communicate with the various manage-
ment information bases throughout the system. (It is the underlying paradigm
of SNMP, to set and read various parameters in the managed systems, that
probably prompts the authors to name this component the management in-
formation base.) The various services that can be performed remotely by the
management information base are:

Rule/FSM configuration The rules and finite state machines used in detec-
tion can be configured, deleted, or updated.

Local detection results The result of the processing made by the local de-
cision module can be made remotely available through the management
information base.

Detection notifications Remote management applications can register inter-
est in a certain event, and automatically receive notification when that
event has taken place. This significantly decrease the time spent search-
ing for a certain type of intrusion, when this intrusion is suspected to take
place. For instance, if a remote management application suspected that a
router had been compromised it could instruct a neighbour to route traf-
fic through the suspected router, and then instruct another router, down
stream from the suspected one, to trap, and immediately report the events
that we would expect from a fully operational router. If these events failed
to manifest themselves at the trapping router, we could conclude that the
interlying, suspected, router, is indeed showing signs of suspect behaviour.

Security control Allows a system administrator to directly control the local
intrusion system, instead of the indirect control afforded by the setting of
parameters in the management information base proper.

Log access the prevention module logs certain interesting transactions, the
management information base provides access to a search engine, that
can access the logged data, the authors write that apparently it would be
unrealistic to gain access to each individual log record, via the management
information base.
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The authors note that even though the current release of the SNMP protocol
does not afford enough security measures to be realistically used in this context,
versions of the protocol due in the near future, at the time of their writing the
paper, does seem to provide such features.

2.18.3 Survey conclusions

It is difficult to have an opinion on the system as an intrusion detection system,
since the authors make few claims in that area. As a distributed, and scalable
system for collecting, and processing network information it probably has merit.
The main failing of the work presented is thus, that it does not to any significant
degree discuss the nature of the intrusions that it is supposed to detect, or how
this detection should be performed.

2.19 EMERALD—Event monitoring enabling re-
sponses to anomalous live disturbances

2.19.1 Introduction

EMERALD [47,48], is intended as a framework for scalable, distributed, in-
teroperable computer and network intrusion detection. The authors begin by
describing a situation in where large, organic, computing, and network resources
provide critical and costly service to its operator, yet have little in the way of
specific security policies, or organisational support for the specification of such
policies. These resource typically contain COTS (Commercial-off-the-shelf), as
well as non-COTS components, and legacy systems, integrated with current
technology. These infrastructures clearly need to be protected, and yet, there is
little in the way of widely available robust tools to detect, and track, intruders
moving across such infrastructures. EMERALD will also contain components
to enable the system to respond actively to the threats posed. The main threat
that EMERALD proposes to meet is a penetrator external to the organisation,
at least, external on some level. However, the proposed architecture does not
preclude the detection of internal attackers.

2.19.2 Organisational model

The authors envision a distributed system (EMERALD) that operate on three
different levels in an large enterprise network, made up of administratively more
or less separate domains. These domains trust one and other to a greater or
smaller extent—two domains could operate in a peer-to-peer relationship, while
another could trust virtually no-one else, only allowing out bound connections.
The enterprise network would typically be made up of thousands of entities.
EMERALD would operate on three different levels within the domain:

Service analysis level The most local level, where distributed instances of
EMERALD would operate locally, on its own target.

Domain-wide level Where the locally distributed instances of EMERALD
would operate in concert, sharing information to detect domain wide in-
trusion attempts. Picture for instance, a network file server monitor, that
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receives notification of some anomalous DNS event, and with that infor-
mation could deduce that, indeed the requests to the file server would be
highly suspicious in the light of the information received.

Enterprise-wide level Where the results of the domain-wide level analysis
would propagate upwards in the organisation, and infrastructure-wide
information-warfare style, attacks could be detected.

2.19.3 The EMERALD monitor

The architecture of EMERALD hinges around the local EMERALD monitor.
This is the smallest complete instance of EMERALD. The service monitor is
dynamically employed through out the system, to monitor points of interest.
It communicates with other instances of the monitor, distributed throughout
the network, via a push/pull mechanism, whereby a monitor can subscribe to
notifications of interest from its peers. It’s the view of the authors that this en-
ables EMERALD to communicate efficiently the information that is needed, to
where it’s needed, without the overhead associated with other plausible means
of communication. The interface to the module is well specified, to enable inter-
operation with other network intrusion detection resources, and it can receive
configuration information across the same interface.
The monitor consists architecturally of the following modules:

Resource object Theresource object is the heart (though not the brain) of the
EMERALD monitor. The resource object handles all target specific issues,
and provides interfaces to deal with these issues. Furthermore, it contains
configuration parameters for the various fielded analysis engines, both for
accessing and processing the local audit event format. The resource object
contains the resolver’s, and the resolver’s decision units configuration as
well, including valid response methods to detected violations, and when
to invoke them. Last but not least, the resource object maintains the
subscription list, for communication with its peers.

Profiler engine The profiler engine, of which there may be several, performs
some anomaly based detection on the audit data. The authors have gener-
alised the concepts from NIDES—see section 2.14—to totally separate the
calculation, and analysis of the statistics for the audit event stream, from
any target specific considerations. The profiler engine also subscribes to
information of interest from other instances of EMERALD monitors, via
the resolver.

Signature engine The signature engine provides a signature based intrusion
detection capability. However, the authors point out that in many respects
the signature engine departs from traditional signature analysis engines,
in that it is envisioned to operate with a small set of rules, and on a
reduced audit data stream, and hence with much less noise to filter out.
It’s the intention of the authors that this will enable efficient, and effective
signature based intrusion detection.

Universal resolver The resolver is the “brain” of the EMERALD monitor, if
you will. It handles correlation between the result of the local modules,
decide whether an intrusion is taking place, decides whether to invoke
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a response, communication with the peer monitors, at higher and lower
levels, with the resulting authentication etc. The resolver is at heart an
expert system that receives the intrusion and suspicion reports from the
profiler and signature engines, and based on these reports, and reports
from other peer monitors, decides what response to invoke, and how to
invoke it. As previously mentioned, it maintains state, important for the
configuration of the monitor as a whole, in the resource object. One of
the most critical aspects of the operation of the resolver is to handle the
interface with the site security officer himself. In the view of the resolver
however, he is just another EMERALD monitor.

When the EMERALD module operates at different levels in the intrusion
detection framework, the various internal modules operate along different di-
rections, say for instance, a signature analysis module will search for different
signatures when it operates in a service analysis module, than when it operates
in an enterprise-wide analysis module.

2.19.4 Interoperability

EMERALD specifies well defined interfaces on many levels, both internal to
the EMERALD monitor, and external to it, to enable other existing intru-
sion detection components to interoperate with it. These components could
be plugged in as an internal module in the monitor, or partake in the intru-
sion detection effort via the network interface. In order to resolve these two
situations EMERALD defines a two layered, subscription based, message pass-
ing, communication system, and interface. The idea is that this will enable a
completely implementation neutral path of communication—both internally in
the EMERALD monitor, and externally—between monitors, in the distributed
EMERALD system.

2.19.5 Putting it all together

The various monitors that make up the EMERALD system is envisioned to
operate on the three different levels previously mentioned, by communicating
intrusion detection results both between themselves, within the layer, and up-
ward, to notify higher layers of the ongoing intrusion detection activity. This
latter builds a hierarchy of EMERALD monitors, that can detect larger, and
larger, scale attacks against the enterprise wide network, and to let higher level
entities dynamically decide what entities to monitor, and how to perform this
monitoring.

2.19.6 Survey conclusions

The papers about EMERALD of course is very general in its approach. The
structure of the proposed system is discussed in detail, and appears sound.
Furthermore, the proposed architecture is not intended by the authors to exist
in a vacuum, the work discusses a proposed organisational structure, and the
problems that structure could have, from an intrusion detection standpoint,
and how the EMERALD framework would solve these problems. Substantial
thought has obviously gone into how to make the system scalable, extendable,
and resistant to outside influence.
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It is interesting to follow the research from IDES, via NIDES, to EMERALD.
In the present author’s opinion the fact that the research group is on their third
generation of intrusion detection system clearly shows.

2.20 Bro

2.20.1 Introduction

Bro [46] is in the words of its author “A standalone system for detecting network
intruders in real-time by passively monitoring a network link over which the
intruder’s traffic transits.” The designers envisioned that their tool would meet
the following design goals and requirements (from [46]:

1. It would make high-speed, large volume monitoring of network traffic pos-
sible.

2. It would not drop packets, i.e. it would be able to process incoming packets
at a sufficient rate, not to have to discard input packets before they had
been processed.

3. Bro would provide the site security officer with real-time notification of
ongoing, or attempted, attacks.

4. Bro would be careful to separate mechanism from policy, so that it would
be simple to specify new security policies, and aid in the realisation of
both simplicity and flexibility in the system.

5. The system would be extensible, foremost, it would be easy to add knowl-
edge of new types of attack.

6. It would facilitate the user in avoiding making simple mistakes in the
specification of the security policy.

The system would have to operate in an environment in which it itself would
come under attack. Since this is a little studied field, how to build survivable
security systems, the designers made the simplifying assumption that only one
of two systems communicating would be subverted. The author note that this
assumption would cost virtually nothing, since if the intruder had both systems
under his control, he could then proceed to establish intricate covert channels
between them.

It should be pointed out the the security environment in which Bro was
designed to operate is one where security concerns aren’t the highest priority.
Rather the consequences of an intrusion would be mostly limited to securing
the compromised machines, and perhaps a tarnished public image.

2.20.2 System overview

The Bro system is divided into three distinct layers, each layer reduces the traffic
to be analysed, by making decisions on successively higher levels of abstraction,
see figure 2.7. Each layer processes the traffic generated by the immediately
lower one, and responds by generating traffic to the next higher level, as well as
generating events to control the lower layer.
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Figure 2.7: Bro: layering and dataflow (from [46])

2.20.3 libpcap

Bro uses the freely available packet capture library libpcap, on which the
popular tcpdump package is built, among others. Libpcap has the advantage
to isolate the particulars about raw network packet capture from the rest of
Bro, and also the capability to download packet filters into the kernel of the
operating system that Bro runs on, if the operating system is equipped with
such a feature. This enables 1ibpcap to discard uninteresting packets early in
the processing, and thus consume much less resources in the filtering of packets.

2.20.4 Event engine

The filtered packet stream that results from 1ibpcap is handed over to the event
engine. The event engine first performs checks to ascertain that the header of the
TCP/IP packet is well formed, if it is not, an event to that effect is generated,
and the packet is discarded. Otherwise, the event engine looks up the connection
state associated with the packet, or records one, if none is already recorded. The
packet is then handed over to a special handler corresponding to the connection.
The connection handler among other things, indicates whether Bro should log
the entire packet, just the header, or nothing at all, to the master tcpdump log
file that it keeps.

The protocol analysers for TCP, and UDP traffic, performs basic integrity
checks to see that the traffic is well formed. This can in turn generate new
events that are inserted into the event queue.

2.20.5 Policy script interpreter

More specialised handlers can be formulated in the Bro scripting language. The
language is specifically tailored to the processing of TCP/IP traffic, with special
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data-types, and operators, to handle IP-addresses, lists of such etc. One inter-
esting design feature of the language is that it lacks any operator to facilitate
iteration, or recursion. This is to make it likely that the upper bound on any
processing of a Bro function would be low, and simple to calculate. This is
important, since there is limited amounts of CPU time to be spent in executing
the parts of the system implemented in the Bro language.

In any case, after the event engine has finished processing a packet it checks
to see if the processing generated any events, if this was the case, the specialised
event handler written in the Bro scripting language can be invoked. This handler
can generate new events, perform real time notification, record data or log
notifications to disk, and record internal state for access by subsequent event
handlers, or by the event engine itself. Timers can also be set, coupled with
some action to be performed when they expire. This is important to provide
the policy writer with the ability to remove internal state from Bro, lest Bro
consumes all available memory, with state variables that are no longer deemed
interesting.

That Bro is careful to distinguish between the generation of an event, and
what to do in response to that event, the author claims, facilitates the separation
of mechanism from policy that was one of the designs goals. Furthermore,
extensibility is increased. In order to extend the system, the user typically adds
new protocol analysers to the event engine, and a handler to respond to the
events generated by the protocol analyser.

2.20.6 Implementation issues

At the time the reference was written Bro consisted of some 22,000 lines of
C++ code, with another couple of thousand lines of Bro policy scripts. Spe-
cial handlers had been written for the finger, ftp, portmapper, and telnet
protocols, with more to be added. The author identified several parts of the
system that could be improved, mainly in the construction of a compiler and
optimiser for the Bro language, instead of the interpreter of the original system.
Furthermore, issues related to check-pointing, managing of timers, especially
the addition of timers to the Bro scripting language, and off-line analysis.

2.20.7 Possible attacks on the network monitor

The paper presenting Bro is interesting in that it is the first system that ad-
dresses the problem of what kinds of attacks the monitor must be capable of
withstanding. Previous work in this field has not specifically addressed the re-
sistance of the intrusion detection mechanism against malicious attacks, other
than in theory.

The author classifies network attacks into three categories for the purpose
of discussing how well Bro is able to withstand an attack in each category.

Overload attacks

The goal of the attack is to overload the monitor with data, to the point where
it fails to keep up with the stream of data with which it has to deal. The attacks
aims to first overload the monitor to the point where it will fail to later detect
an attack, which it would detect under normal circumstance, had it not been
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overloaded. Bro averts this attack by the nature of its design; being able to
handle a high load, and by logging with regular intervals, how many packets it
has missed, and processed, which can alert the site security officer to the fact
that the traffic volume itself is suspect.

Crash attacks

The purpose of these attacks is to make the network monitor stop working al-
together. This could perhaps be done by finding programming errors in the
monitor, and exploiting these, or by making the monitor consume some criti-
cal resource, to the point of exhaustion. Bro resists these types of attacks by
providing a watchdog timer, that fires if Bro has been found to fail to process
the packet it was processing several seconds ago. The watchdog system then
stops Bro, logs this fact, and makes post mortem examination of the system
possible. It then starts a straight forward tcpdump logging of the traffic on the
net, with the intent that the network traffic be logged for later analysis—any
evidence of malicious network traffic will at least be logged. There exists a win-
dow of opportunity between the time Bro stops functioning, and the time that
the tcpdump logging is started, but at least, all is not lost, with the malfunction
of the Bro monitor.

Subterfuge attacks

The attacker attempts to mislead the monitor as to the meaning of the traffic
it analyses. The key principle is to find a pattern of traffic that is interpreted
differently by the monitor and the receiving end point. These attacks are the
most sophisticated, and most difficult to guard against. The author claims that,
at each stage of the development of Bro the underlying explicit and implicit
assumptions made by the system, and how violating them would enable an
attack to go undetected, was carefully examined. The author lists several such
attacks, and how Bro defends against them, but of course Bro makes no claim
that every such attack has been identified and dealt with.

2.20.8 Conclusion

Bro has run as a part of the security system of the author’s site since April
1996, and is available in source code form, an undocumented alpha release, at
the time of writing. Release information is available via the world wide web
from: http://www-nrg.ee.Ibl.gov/bro-info.html.

2.20.9 Survey conclusions

The work presented is strong on the subject of how to make the intrusion de-
tection system resistant to attack against itself. It is the only recent paper
that discusses the nature of the attacks that the system could be subjected to,
what assumptions have to be made about these attacks, and how the system
counteracts them. (A similar paper [49], about the nature of network attacks
against intrusion detection, was made available just after Bro was published.
That treatment is more thorough than that surveyed here.)
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Furthermore the presentation is strong when it presents the rather solid
experiences the author have from running the system in a real-world hostile
environment. The approach appears to have merit.
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