Towards a Taxonomy of Intrusion-Detection
Systems

Hervé Debar, Marc Dacier and Andreas Wespi

IBM Research Division, Zurich Research Laboratory,
Sdumerstrasse 4, CH-8803 Rischlikon, Switzerland
{deb,dac,anw} @zurich.ibm.com

Abstract

Intrusion-detection systems aim at detecting attacks against computer systems and
networks, or against information systems in general, as it is difficult to provide
provably secure information systems and maintain them in such a secure state for
their entire lifetime and for every utilization. Sometimes, legacy or operational con-
straints do not even allow a fully secure information system to be realized at all.
Therefore, the task of intrusion-detection systems is to monitor the usage of such
systems and to detect the apparition of insecure states. They detect attempts and
active misuse by legitimate users of the information systems or external parties to
abuse their privileges or exploit security vulnerabilities. In this paper, we introduce
a taxonomy of intrusion-detection systems that highlights the various aspects of
this area. This taxonomy defines families of intrusion-detection systems according
to their properties. It is illustrated by numerous examples from past and current
projects.

Key words: Security, Taxonomy, Intrusion-detection.

1 Introduction

Since the seminal work by Denning in 1981 [10], many intrusion-detection
prototypes have been created. Sobirey maintains a partial list of 59 of them
[58]. Intrusion-detection systems have emerged in the field of computer security
because of the difficulty of ensuring that an information system will be free
of security flaws. Indeed, a taxonomy of security flaws by Landwehr et al. [36]
shows that computer systems suffer from security vulnerabilities regardless of
their purpose, manufacturer, or origin, and that it is both technically difficult
and economically costly to build and maintain computer systems and networks
that are not susceptible to attacks.

Preprint submitted to Elsevier Preprint 28 October 1998

This paper introduces a taxonomy of intrusion-detection systems at a time
when commercial tools are increasingly becoming available. Our taxonomy
draws examples from research prototypes as well as commercial products to
illustrate the most prominent features of intrusion-detection systems. The pa-
per focuses on the TCPIP/UNIX world, for which the largest number of pro-
totypes and tools have been developed. However, many of these products are
now also available for Windows NT, which has been more widely deployed
in organizations and has been subjected to enhanced scrutiny by the secu-
rity and underground communities. An additional consideration is that the
intrusion-detection commercial market has experienced considerable activity
since WheelGroup corporation was acquired by Cisco Systems, followed by
the cascade acquisition of Haystack Labs, Secure Networks and Trusted Infor-
mation Systems by Network Associates.

This paper does not purport to be an exhaustive survey of intrusion-detection
tools, techniques, projects, and products. Several surveys have already been
published [2,13,18,37,39,40,42], but the growth of the intrusion-detection field
has been such that many new projects have appeared in the meantime. There-
fore, we shall present an updated image of the intrusion-detection field, orga-
nized in a proposed taxonomy for intrusion-detection systems, and illustrated
with examples from past and current tools.

The paper is organized as follows: Section 2 describes the architecture of a
generic intrusion-detection system, Section 3 presents the taxonomy we use
to describe and classify intrusion-detection systems and examples of tech-
niques and information sources, Section 4 illustrates the concepts described
with a summary of existing tools and prototypes, and Section 5 describes the
reusability issue of intrusion-detection systems and components.

2 Description of a generic intrusion-detection system

2.1 Terminology

The term system (a.k.a. target system) is used here to denote an information
system being monitored by an intrusion-detection system. It can be a work-
station, a network element, a server, a mainframe, a firewall, a web server, an
enterprise network, etc.

The term audit denotes information provided by a system concerning its inner
workings and behavior. Examples of audits include but are not limited to C2
audit trail, accounting, and syslog in the UNIX world, Syslog in the MVS
world, the event log in Windows NT, and incident tickets in X25 networks. A

description of some of these audits is given in Section 3.3.

The term component refers to a box inside an intrusion-detection system.
There are many kinds of components, an overview of which is given in Sec-
tion 3.1.

2.2 Description

An intrusion-detection system dynamically monitors the actions taken in a
given environment, and decides whether these actions are symptomatic of
an attack or constitute a legitimate use of the environment. Therefore, with
respect to this definition, we do not consider well-known tools such as Cops
or Satan to be intrusion-detection systems; we consider them configuration
analyzers, even though some of their functionalities can be used to detect

intrusions.
-
DATABASE

1

|

r- """ —"—"="="=-"=-"=-"=-"=--]

1 1

1

Y ¥

e ALARMS
CONFIGURATION DETECTOR COUNTERMEASURE
! i A
I ! 1
R D N A '
| AUDITS ! ACTIONS

(SYSTEM }

! The arrow thickness represents the amount of information flowing from one component to the other.

Fig. 1. Very simple intrusion-detection system.

An intrusion-detection system can be described at a very macroscopic level as
a detector that processes information coming from the system that is to be
protected (Fig. 1). This detector uses three kinds of information: long-term
information related to the technique used to detect intrusions (a knowledge
base of attacks, for example), configuration information about the current
state of the system, and audit information describing the events that occur on
the system. The role of the detector is to eliminate unnecessary information
from the audit trail and present a synthetic view of the security-related actions
taken by users. A decision is then made to evaluate the probability that these
actions can be considered symptoms of an intrusion.

2.8 Effictency of intruston-detection systems

The following three measures to evaluate the efficiency of an intrusion-detection
system have been highlighted in [48]:

Accuracy. Inaccuracy occurs when an intrusion-detection system flags as
anomalous or intrusive a legitimate action in the environment.

Performance. The performance of an intrusion-detection system is the rate
at which audit events are processed. If the performance of the intrusion-
detection system is poor, then real-time detection is not possible.

Completeness. Incompleteness occurs when the intrusion-detection system
fails to detect an attack. This measure is much more difficult to evaluate
than the others, because it is impossible to have a global knowledge about
attacks or abuses of privileges.

In addition, we introduce two additional properties:

Fault tolerance. An intrusion-detection system should itself be resistant to
attacks, particularly denial of service, and should be designed with this goal
in mind. This is particularly important because most intrusion-detection
systems run on top of commercially available operating systems or hardware,
which are known to be vulnerable to attacks.

Timeliness. An intrusion-detection system has to perform and propagate its
analysis as quickly as possible to enable the security officer to react before
much damage has been done, and also to prevent the attacker from subvert-
ing the audit source or the intrusion-detection system itself. This implies
more than the measure of performance, because it not only encompasses
the intrinsic processing speed of the intrusion-detection system, but also
the time required to propagate the information and react to it.

3 Taxonomy elements

There are a number of concepts we use to classify intrusion-detection systems,
presented in Fig. 2.

The detection method describes the characteristics of the analyzer. When
the intrusion-detection system uses information about the normal behavior
of the system it monitors, we qualify it as behavior-based. When the intrusion-
detection system uses information about the attacks, we qualify it as knowledge-

based.

Behavior on detection describes the response of the intrusion-detection system

BEHAVIOR
DETECTION | BASED
METHOD
™~ |[KNOWLEDGE
BASED o
st
ASSIVE E 5
P
BEHAVIOR | —| ye
ON E]J e
DETECTION | ~[scTivE GE
INTRUSION <=
DETECTION 9)
SYSTEM HOST LOG
AUDIT |_—|FILES
SOURCE
LOCATION [~ [NETWORK
PACKETS o
@)
= O
CONTINUOUS % Z
USAGE |_—" | MONITORING : 5
FREQUENCY Q
Q |~~~ [PERIODIC % %’
ANALYSIS 4z
A B

Fig. 2. Characteristics of intrusion-detection systems.

to attacks. When it actively reacts to the attack by taking either corrective
(closing holes) or proactive (logging out possible attackers, closing down ser-
vices) actions, then the intrusion-detection system is said to be active. If the
intrusion-detection system merely generates alarms (including paging, etc.),
it is said to be passive.

The audit source location distinguishes among intrusion-detection systems
based on the kind of input information they analyze. This input information
can be audit trails, system logs or network packets.

Usage frequency is an orthogonal concept. Certain intrusion-detection systems
have real-time continuous monitoring capabilities, whereas others must be run
periodically.

The three first axes are grouped in the category “functional characteristics”
because they refer to the internal workings of the intrusion-detection engine,
namely its input information, its reasoning mechanism, and its interaction
with the information system. The fourth characteristic distinguishes RTID
(Real-Time Intrusion Detection) from scanners used for security assessment.
These scanners are sometimes attached to the intrusion-detection area, and we
must differentiate discriminate between them and “real” intrusion-detection
systems.

3.1 Knowledge-based versus behavior-based intrusion detection

There are two complementary trends in intrusion detection, (1) the search
for evidence of attacks based on knowledge accumulated from known attacks,
and (2) the search for deviations from a model of unusual behavior based on
obsevations of a system during a known normal state. The first trend is often
referred to as misuse detection [30,35] or detection by appearance [59]. The
second trend is referred to as anomaly detection [30] or detection by behavior
[59]. In this paper, we use the term knowledge-based intrusion detection for
the first trend, which we feel describes more precisely the technique being
used. The second trend is characterized by the term behavior-based intrusion
detection. Both terms are defined more precisely in the following subsections.

3.1.1 Knowledge-based intrusion detection

Knowledge-based intrusion-detection techniques apply the knowledge accumu-
lated about specific attacks and system vulnerabilities. The intrusion-detection
system contains information about these vulnerabilities and looks for attempts
to exploit them. When such an attempt is detected, an alarm is triggered.
In other words, any action that is not explicitly recognized as an attack is
considered acceptable. Therefore, the accuracy of knowledge-based intrusion-
detection systems is considered good. However, their completeness requires
that their knowledge of attacks be updated regularly.

Advantages of the knowledge-based approaches are that they have the poten-
tial for very low false alarm rates, and that the contextual analysis proposed
by the intrusion-detection system is detailed, which makes it easier for the
security officer using this intrusion-detection system to take preventive or cor-
rective action.

Drawbacks include the difficulty of gathering the required information on
the known attacks and keeping it abreast with new vulnerabilities and en-
vironments. Maintenance of the knowledge base of the intrusion-detection
system requires careful analysis of each vulnerability and is therefore a time-
consuming task.! Knowledge-based approaches also have to face the gener-
alization issue. Knowledge about attacks is very focused on the operating
system, version, platform, and application. The resulting intrusion-detection
tool is therefore closely tied to a given environment. Also, detection of insider
attacks involving an abuse of privileges is deemed more difficult because no
vulnerability is actually exploited by the attacker.

1 For internal use, we maintain a vulnerability database to which we add five or six
new vulnerabilities and multiple attacks weekly!

Expert systems Expert systems [38] are used primarily by knowledge-
based intrusion-detection techniques. The expert system contains a set of rules
that describe attacks. Audit events are then translated into facts carrying their
semantic signification in the expert system, and the inference engine draws
conclusions using these rules and facts. This method increases the abstraction
level of the audit data by attaching a semantic to it.

Rule-based languages [21] are a natural tool for modeling the knowledge that
experts have collected about attacks. This approach allows a systematic brows-
ing of the audit trail in search of evidence of attempts to exploit known vulner-
abilities. They are also used for verifying the proper application of the security
policy of an organization.

Also using expert systems but having additional properties, model-based rea-
soning has been introduced by Garvey and Lunt [20]. Knowledge about the
behavior of an attacker includes the attacker’s goals, the actions required to
reach these goals, and whether his usage of the system reveals a certain level
of paranoia. The tool then scans the audits for evidence of these actions and
transitions.

This approach of using rule-based languages has the following limitations:

Knowledge engineering (related to the completeness issue)
It 1s difficult to extract knowledge about attacks. It is even more difficult
to translate this knowledge into production rules using audits as input.
Sometimes the information required is not available in the audits. Also,
there may be many ways to exploit a given vulnerability, which leads to as
many rules.

Processing speed (related to the performance issue)
Use of an expert system shell requires that all audits be imported into the
shell as facts, and only then can reasoning take place. Even though some
expert system tools allow compilation of rules, the overall performance of
the tool often remains poor.

Owing to the processing speed issue, expert system shells are used only in
prototypes, as commercial products have chosen more efficient approaches.

Signature analysis Signature analysis follows exactly the same knowledge-
acquisition approach as expert systems, but the knowledge acquired is ex-
ploited in a different way. The semantic description of the attacks is trans-
formed into information that can be found in the audit trail in a straightfor-
ward way. For example, attack scenarios might be translated into the sequences
of audit events they generate, or into patterns of data that can be sought in
the audit trail generated by the system. This method decreases the semantic

level of the attacks description.

This technique allows a very efficient implementation and is therefore applied
in commercial intrusion-detection products [23,28,66]. The main drawback of
this technique—like all knowledge-based approaches—is the need for frequent
updates to keep up with the stream of new vulnerabilities discovered, this
situation being aggravated by the requirement to represent all possible facets
of the attacks as signatures. This leads to an attack being represented by a
number of signatures, at least one for each operating system to which the
intrusion-detection tool has been ported.

Petri nets To represent signatures of intrusions, IDIOT [35], a knowledge-
based intrusion-detection system developed at Purdue University, uses Colored
Petri Nets (CPN). The advantages of CPNs are their generality, their concep-
tual simplicity, and their graphical representability. System administrators
are assisted in writing their own signatures of attacks and integrating them
in IDIOT. Owing to the generality of CPNs, quite complex signatures can be
written easily. However, matching a complex signature against the audit trail
may become computationally very expensive.

t=T1 t=T2
unsuccessful unsuccessful unsuccessful unsuccessful
(start) login login login (fmal)
S1

T2-T1 <= 60 sec

Fig. 3. Four failed login attempts within one minute.

Figure 3 shows a simple example of a CPN that issues an alarm if the number
of unsuccessful login attempts within one minute exceeds four. The transition,
represented by a vertical bar, from state s1 to s2 can occur if there is a token in
state s1 and an unsuccessful login attempt. The time of the first unsuccessful
login attempt is stored in the token variable T1. The transition from state s4
to state sb can happen if there is a token in s4, an unsuccessful login attempt,
and the time difference between this and the first unsuccessful login attempt
is less than 60 seconds. Reaching the final state s5 corresponds to a matched
signature, and may therefore result in an alarm being issued.

State-transition analysis State-transition analysis, a technique proposed
by Porras and Kemmerer [47], was implemented first in UNIX [27] and later in

other environments. The technique is conceptually identical to model-based
reasoning; it describes the attacks with a set of goals and transitions, but
represents them as state-transition diagrams.

3.1.2 Behavior-based intruston detection

Behavior-based intrusion-detection techniques assume that an intrusion can
be detected by observing a deviation from normal or expected behavior of
the system or the users. The model of normal or valid behavior is extracted
from reference information collected by various means. The intrusion-detection
system later compares this model with the current activity. If a deviation
is observed, an alarm is generated. In other words, anything that does not
correspond to a previously learned behavior is considered intrusive. Therefore,
the intrusion-detection system might be complete, but its accuracy is a difficult
issue.

Advantages of behavior-based approaches are that they can detect attempts
to exploit new and unforeseen vulnerabilities. They can even contribute to
the (partially) automatic discovery of these new attacks. They are less depen-
dent on operating-system-specific mechanisms. They also help detect “abuse of
privileges” types of attacks that do not actually involve exploiting any security
vulnerability.

The high false alarm rate is generally cited as the main drawback of behavior-
based techniques because the entire scope of the behavior of an information
system may not be covered during the learning phase. Also, behavior can
change over time, introducing the need for periodic on-line retraining of the
behavior profile, resulting either in the unavailability of the intrusion-detection
system or in additional false alarms. The information system can undergo at-
tacks at the same time the intrusion-detection system is learning what is ac-
ceptable behavior. As a result, the behavior profile contains intrusive behavior,
which is then not detected as anomalous.

Statistics The most widely used tool to build behavior-based intrusion-
detection systems is statistics [25,26,32]. The user or system behavior is mea-
sured by a number of variables sampled over time. Examples of these variables
include the login and logout time of each session, the resource duration, and
the amount of processor-memory-disk resources consumed during the session.
The time sampling period ranges from very short (a few minutes) to long
(~ one month).

The original model keeps averages of all these variables and detects whether
thresholds are exceeded based on the standard deviation of the variable. This

model is too simple to represent the data faithfully. Even comparing the vari-
ables of individual users with aggregated group statistics does not yield much
improvement. Therefore, a more complex model has been developed [31,32],
which compares profiles of long-term and short-term user activities. The pro-
files are regularly updated as the behavior of users evolves. This statistical
model is now used in a number of intrusion-detection tools and prototypes.

Expert systems Expert systems have also been used for behavior-based
intrusion detection. The following are two examples of approaches that have
been taken in this area.

e Wisdom & Sense [64] is an intrusion-detection tool that detects statistical
anomalies in the behavior of users. The tool first builds a set of rules that
statistically describe the behavior of the users based on recordings of their
activities over a given period of time. Current activity is then matched
against these rules to detect inconsistent behavior. The rule base is rebuilt
regularly to accommodate new usage patterns.

o AT&T’s ComputerWatch [12] is a tool delivered with AT&T’s UNIX/MLS
multilevel security operating system. This tool checks the actions of users
according to a set of rules that describe proper usage policy, and flags any
action that does not fit the acceptable patterns.

This approach is useful for policy-based usage profiles, but is less efficient than
the statistical approach for processing large amounts of audit information.

Neural networks Neural networks are algorithms that learn about the re-
lationship between input—-output vectors and “generalize” them to obtain new
input—output vectors in a reasonable way. Neural networks could theoretically
be used in knowledge-based intrusion-detection tools to learn attack traces
and seek them in the audit stream. However, as there is currently no reliable
way to understand what triggered the association, the neural network cannot
propose a reasoning or an explanation of the attack.

Therefore, the main use of neural networks for intrusion detection is to learn
the behavior of actors in the system (e.g. users, daemons). Some equivalence
between neural network models and statistics has been demonstrated [19,54].
Therefore, the advantage of using neural networks over statistics resides in
having a simple way to express nonlinear relationships between variables, and
in learning/retraining the neural network automatically. Experiments have
been performed that use a neural network to predict the behavior of users
[7]. These experiments have shown that the behavior of UNIX root users is
extremely predictable (owing to the very regular activity generated by auto-
matic system actions, daemons, etc.), that the behavior of most users is also

10

predictable, and that there is a very small fraction of users whose behavior is
unpredictable. Neural networks are still a computationally intensive technique,
and are not widely used in the intrusion-detection community.

User Intention Identification User Intention Identification [60] is a tech-
nique developed during the SECURENET project [59]. This technique models
the normal behavior of users by the set of high-level tasks they have to per-
form on the system. These tasks are then refined into actions, which in turn
are related to the audit events observed on the system. The analyzer keeps a
set of tasks that each user can perform. Whenever an action occurs that does
not fit the task pattern, an alarm is issued. To our knowledge, this technique

has only been used in the SECURENET project.

Computer Immunology Computer immunology has been described by
Forrest et al. [17]. This technique builds a model of normal behavior of the
UNIX network services, rather than that of users. This model consists of short
sequences of system calls made by the processes. Attacks that exploit flaws in
the code are likely to take unusual execution paths. The tool first collects a set
of reference audits, which represents the appropriate behavior of the service,
and extracts a reference table containing all the known “good” sequences of
system calls. These patterns are then used for live monitoring to check whether
the sequences generated are listed in the table; if not, the intrusion-detection
system generates an alarm.

This technique has a potentially very low false alarm rate if the reference ta-
ble is exhaustive enough. Extensions to reach that goal are currently being
developed [8,9]. One drawback, however, is that this technique does not pro-
tect against configuration errors in a service, i.e. when attacks use legitimate
actions of the service to gain unauthorized access.

3.2 Passive versus active intrusion detection

Most intrusion-detection tools are passive, meaning that when an attack is
detected, an alarm is generated, but no countermeasure is actively applied to
thwart the attack. This made sense in a research context, where such tools
might possibly generate a large number of false alarms, having a negative
impact on the availability of the system. We are aware of only one tool with
early countermeasure capability, NetProbe [52], which monitors a network for
undesired connections and terminates them on the spot.

A number of intrusion-detection tools based on periodic analysis have had

11

some active capability added if a security issue was detected in the configu-
ration of the system. These tools generate scripts both to suppress the vul-
nerability (by changing the permissions on a file system, for example) and to
restore the system to its previous state. Hence the application of a counter-
measure is made safer by the capability of reverting quickly to a former state
in the event of an abnormality. An example of this category of tools is Secure

Network’s Ballista[55]. ?

With the arrival of intrusion-detection products, the countermeasure element
has become increasingly preeminent. Tools such as RealSecure [28], NetRanger
[66], and WebStalker [23] now include the capability of cutting connections
that carry attacks, blocking traffic from the hosts from which attacks originate,
or reconfiguring other equipment such as firewalls or routers. Such proactive
security strategies are gaining momentum as intrusion-detection products are
becoming more reliable.

3.8 Host-based versus network-based intrusion detection

Host-based intrusion detection is the first area to have been explored in in-
trusion detection. When the first intrusion-detection tools were designed, the
target environment was a mainframe computer, and all users were local to
the system considered. This simplified greatly the intrusion-detection task,
as interaction from outside was rare. The intrusion-detection tool analyzed
the audit information provided by the mainframe, either locally [41] or on a
separate machine [56], and reported security-suspicious events.

As the focus of computing shifted from mainframe environments to distributed
networks of workstations, several prototypes of intrusion-detection systems
were developed to accommodate network issues. The first research in this area
was to get host-based intrusion-detection systems to communicate [30]. In
a distributed environment, users hop from one machine to another, possibly
changing identities during their moves and launching their attacks on several
systems. Therefore, the local intrusion-detection system on the workstation
has to exchange information with its peers. This exchange of information takes
place at several levels, either by exchanging a raw audit trail over the network
a la Stalker [23], or by issuing alarms that come from a local analysis [57].
Both solutions incur costs; transferring audits has a potentially huge impact on
network bandwidth, whereas processing them locally affects the workstation’s
performance.

2 Ballista is not an intrusion-detection system, but a vulnerability search tool sim-
ilar to Satan. It analyzes the network to detect vulnerabilities in its configuration,
but does not perform real-time monitoring.

12

With the widespread use of the Internet, intrusion-detection systems have be-
come focused on attacks to the network itself. Network attacks (DNS spoofing,
TCP hijacking, port scanning, ping of death, etc.) cannot be detected by ex-
amining the host audit trail, at least not easily. Therefore, specific tools have
been developed that sniff network packets in real time, searching for these
network attacks. In addition, a number of classical attacks against servers
can also be detected by parsing the payload of the packet and looking for
suspicious commands. Moreover, these tools are often attractive for system
administrators because a small number of them can be installed at strategic
points in the network to cover most of the current attacks.

Hybrid approaches have also been developed that use both network-based and
host-based intrusion-detection tools in a multihost environment, i.e. a network
of workstations. DIDS [57] uses Haystack [56] running on each host to detect
local attacks and NSM [24] to monitor the network. Both components report
to the DIDS Director, where the final analysis is done.

As a side effect, more specialized intrusion-detection tools have emerged that
monitor the most critical elements of an organization’s presence on the In-
ternet. These products monitor firewalls (NetStalker [23]), web servers (Web-
Stalker [23]), routers (NetRanger [66] or the newer documentation after Wheel-
group’s acquisition by Cisco [6]), looking for evidence of attacks in the very
specific context of these network elements.

3.83.1 Host-based information sources

Host audit sources are the only way to gather information about the activities
of the users of a given machine. On the other hand, they are also vulnerable
to alterations in the case of a successful attack. This creates an important
real-time constraint on host-based intrusion-detection systems, which have to
process the audit trail and generate alarms before an attacker taking over the
machine can subvert either the audit trail or the intrusion-detection system
itself.

System sources All operating systems have commands to obtain a snap-
shot of information on the processes currently active on the computer. In a
UNIX environment, examples of such commands are ps, pstat, vmstat, getr-
limit. These commands provide very precise information about events because
they examine the kernel memory directly. However, they are very difficult to
use for continuous audit collection in intrusion-detection tools because they
do not offer a structured way of collecting and storing the audit information.

13

Accounting Accounting is one of the oldest sources of information on sys-
tem behavior. It provides information on the consumption of shared resources
by the users of the system. Resources are, for example, processor time, mem-
ory, disk or network usage, and applications launched. Accounting is found
everywhere, from network equipment to mainframes to UNIX workstations.
This omnipresence has led some designers of intrusion-detection prototypes to
try to use it as an audit source.

In the UNIX environment, accounting is a universal source of information.
The format of the accounting record is the same on all UNIXes, information is
compressed to gain disk space, and the overhead introduced by the recording
process is very small. It is well integrated in modern operating systems, and
easy to set up and exploit.

However, accounting information also has a number of drawbacks, which make
it untrustworthy for security purposes. By default, accounting files are some-
times located in the same disk partition as the /tmp directory. Users then
simply have to fill the partition up to 90%, and accounting stops. Although
this is easily fixed, more important drawbacks include:

o Lack of parameterization. Accounting is either on or off, but cannot be
activated for selected users only.

o Lack of precise time stamp. The date included in the accounting record is
precise to the second, which does not allow the sorting and resequencing
of actions. As commands in the accounting file are logged in the order in
which they terminate, this lack of precision does not allow one to obtain
the list of commands in the order in which they were actually submitted.
Command sequencing might be important information for some intrusion-
detection techniques.

o Lack of precise command identification. Only the first 8 characters of the
name of the command submitted by the user are stored in the accounting
record. Important path information (to fully identify the command) and
command line arguments are lost. This would render the detection of Trojan
horses well as the use of knowledge-based intrusion-detection techniques
impossible.

o Absence of system daemon activity. Accounting keeps information only
about binary executables that terminate. In this case, continuously running
executables such as system daemons (e.g. sendmail) are never audited.

o Delay of obtaining information. The accounting record is written when
the application terminates. Therefore, intrusion detection can only perform
damage control as the intrusion would already have been carried out.

Owing to these drawbacks, accounting is not used for knowledge-based intrusion-

detection, and rarely for behavior-based intrusion detection. The statistical
and neural network modules of Hyperview [7] made use of accounting infor-

14

mation as a complement to security audit but not as a substitute for it.

Syslog Syslog is an audit service provided to applications by the operating
system (UNIX and others). This service receives a text string from the appli-
cation, prefixes it with a time stamp and the name of the system on which
the application runs, and then archives it, either locally or remotely.

Syslog is not known for its security, as Syslog daemons on several UNIX op-
erating systems have been the subject of CERT documents [4] showing the
exploitation of buffer overflows in the syslog daemon to execute arbitrary code.

Syslog is very easy to use, which has prompted many application developers to
use it as their audit trail. A number of applications and network services use it,
such as login, sendmail, nfs, hittp, and this also includes security-related tools
such as sudo, klazon, or TCP wrappers. Therefore, a few intrusion-detection
tools have been developed that use information provided by the syslog daemon,
an example of this approach being Swatch [22]. Although syslog is a lightweight
audit source that does not generate a large amount of audit data per machine,
a large network can generate a large number of messages, very few of which are
security-relevant. Swatch [22] reduces the burden of the system administrator
by correlating messages (e.g. if several machines report that an nfs server is
down, these reports would be aggregated into one) and highlighting security-
related ones.

C2 security audit The security audit records all potentially security-
significant events on the system. As the US government has required that
all computer systems it purchases be certified at the C2 level of the TCSEC
[63], all operating system vendors competing in this area have had to include
an “accountability” feature. This translates into security audit trails such as

SUN’s BSM and Shield packages, or AIX audit.

All these security audits have the same basic principle. They record the cross-
ing of instructions executed by the processor in the user space and instructions
executed in the Trusted Computing Base (TCB) space [63]. The rationale for
this security model sets forth that the TCB is trusted, that actions in the
user space cannot harm the security of the system, and that security-related
actions that can impact the system only take place when users request services

from the TCB.

In the UNIX environment, the TCB is basically the kernel. Therefore, the
audit system records the execution of system calls by all processes launched
by the users. Compared with a full system call trace, the audit trail provides a
limited abstraction: context switches, memory allocation, internal semaphores

15

and consecutive file reads do not appear in the trail. On the other hand, there
is always a straightforward mapping of audit events to system calls.

The UNIX security audit record contains a great deal of information about
the events. It includes detailed user and group identification (from the login
identity to the one under which the system call is executed), the parameters of
the system call execution (file names including path, command line arguments,
etc.), the return code from the execution, and the error code.

The main advantages of the security audit are:

e a strong identification of the user, its login identity, its real (current) iden-
tity, its effective (set-user-id bit) identity, its real and effective (set-group-id
bit) group identities;

e a repartition of audit events into classes to facilitate the configuration of
the audit system:;

e a fine-grain parameterization of the information gathered according to user,
class, audit event, or failure or success of the system call;

e a shutdown of the machine if the audit system encounters an error status
(usually a running out of disk space).

16

The main drawbacks of the security audit are:

e a heavy use of system resources when detailed monitoring is requested.
Processor performance could potentially be reduced by as much as 20%,
and requirements for local disk space storage and archiving are high;

e a possible denial-of-service attack by filling the audit file system;

o difficulties to set up the audit service owing to the number of parameters
involved. Standard configurations delivered by vendors minimize the perfor-
mance hit by recording only classes of rare events (administrative actions,
logins, and logouts). The auditing requirements of an intrusion-detection
tool demand more detailed information, e.g. about file accesses or processes
executed;

o difficulties to exploit the information obtained owing to its size and com-
plexity. This is compounded by the heterogeneity of audit system interfaces
and audit record formats in the various operating systems;

e parameterization of the audit system involving subjects (users) and actions
(system calls or events), and only very rarely objects (on which the ac-
tion is performed). Important objects should be monitored by an intrusion-
detection tool, and this is done primarily by scanning the entire trail.

The C2 security audit is the primary source of audit information for an over-
whelming number of host-based intrusion-detection prototypes and tools be-
cause it is currently the only reliable mechanism for gathering detailed in-
formation on the actions taken by users of an information system. Work has
conducted by several groups [21,43,49,62] to define what should be in the se-
curity audit trail as well as a common format for audit trail records, but this
is an ongoing research effort.

3.3.2 Network-based information sources

SNMP information The Simple Network Management Protocol (SNMP)
Management Information Base (MIB) is a repository of information used for
network management purposes. It contains configuration information (rout-
ing tables, addresses, names) and performance/accounting data (counters to
measure traffic at various network interfaces and at different layers of the net-
work). This section describes experiments performed within the SECURENET
project [59] to use SNMP V1 common MIB for Ethernet and TCP/IP. Other
projects also target the use of SNMPv2 and v3 for security and intrusion
detection [33].

The SECURENET project explored whether the counters maintained in this
MIB are usable as input information for a behavior-based intrusion-detection
system. The starting point was to examine the counters at the interface level
because this was the only place where one can differentiate between infor-

17

mation sent over the wire and information transmitted inside the operating
system via the loop-back interface. The prototype collected increments on the
number of bytes and packets transmitted and received at each interface ev-
ery five minutes. The outcome of a very simple average/standard deviation
analysis of this data was not satisfactory, as the standard deviation was larger
than the average for almost all sets collected during daytime activity, and no
correlation was observed between the two interfaces.

MIB counters at higher levels of the network do not contain much more in-
formation. On the IP, TCP and UDP layers, the counters exhibited similar
behavior but, owing to the larger number of counters at these layers, we did
not compute all possible correlations. The ICMP counters show more consis-
tency with respect to their statistical modeling, but we have not tried ICMP
attacks [3] to validate this approach.

This study shows that SNMP MIBs are a potentially interesting candidate as
an audit source for intrusion-detection systems. The demise of SNMPv2 owing
to a lack of consensus on the security features has certainly dampened its inter-
est to the intrusion-detection community. However, with the rise of SNMPv3,
new projects are taking advantage of its features for intrusion-detection tools

33].

Network packets As the popularity of network sniffers for gathering infor-
mation has grown in the attacker community, it is also regarded today as an
efficient means for gathering information about the events that occur on the
network architecture. This is consistent with the trend of moving from a cen-
tralized to a distributed computing model, and the pace of change has even
increased with the widespread diversification of the Internet. Most accesses
to sensitive computers take place today over a network. Therefore capturing
the packets before they enter the server is probably the most efficient way to
monitor this server.

It is also consistent with the occurrence of denial-of-service attacks. As com-
panies put valuable information on the Internet, and even depend on it as a
source of revenue, the prospect of simply shutting down a web site creates an
effective threat to the organization running it. Most of these denial-of-service
attacks originate from the network and must be detected at the network level,
as a host-based intrusion-detection system does not have the capability to
acquire this kind of audit information.

There is an inherent duality in network sniffers, which is also apparent in the
firewall world with its differences between application-level gateways and fil-
tering routers [1]. If the analysis is carried out at a low level by performing
pattern matching, signature analysis, or some other kind of analysis of the

18

raw content of the TCP or IP packet, then the intrusion-detection system
can perform its analysis quickly, but does not take into account session infor-
mation, which could span several network packets. If the intrusion-detection
system acts as an application gateway and analyzes each packet with respect
to the application or protocol being followed, then the analysis is more thor-
ough, but also much more costly. Moreover, this analysis of the higher levels
of the protocol is also dependent on the particular machine being protected,
as implementations of the protocols are not identical from one network stack
to another.

This approach addresses several problems:

e Detection of network-specific attacks. There are a number of network at-
tacks, particularly denial-of-service, that cannot be detected in a timely
fashion by searching for audit information on the host, but only by analyz-
ing network traffic.

o Impact of auditing on the host performance. Information is collected en-
tirely on a separate machine, with no knowledge of the rest of the network.
Therefore, installation of such tools is facilitated because, both in terms of
configuration and performance, they do not impact the entire environment.

o Heterogeneous audit trail formats. The current de facto standardization
towards TCP/IP facilitates the acquisition, formatting, and cross-platform
analysis of the audit information.

e Certain tools analyze the payload of the packet, which allows the detection
of attacks against hosts by signature analysis. However, an efficient analysis
requires knowledge of the type of machine or application for which the
packet is intended.

But it also has a number of drawbacks:

e It is more difficult to identify the culprit when an intrusion is discovered.
There is no reliable link between information contained in the packets and
the identity of the user who actually submitted the commands on the host.

e With switched networks (switched Ethernet, switched Token Ring, ATM),
it 1s not obvious where the sniffer should best be placed. Some tools are
located on switches, other at gateways between the protected system and
the outside world. The former yields better audit information but is also
more costly. One has to realize, however, that switched networks are also
much less vulnerable to sniffer attacks [5,50] and are actually recommended
to improve the security of a network.

e Encryption makes it impossible to analyze the payload of the packets, and
therefore to hide a considerable amount of important information on these
tools. Also, it is possible, even without encryption, to obfuscate the con-
tents of the packet to evade detection if the signatures are not sufficiently
comprehensive.

19

o Systematic scanning, for example at the firewall, is difficult because it might
create bottlenecks. This will only worsen as the bandwidth to access the
Internet is increased at sensitive sites (e.g. banks, electronic commerce web
sites).

e Finally, these tools are inherently vulnerable to denial-of-service attacks if
they rely on a commercial operating system to acquire network information.
As the network stacks of these commercial operating systems are vulnerable
to attacks, so is the intrusion-detection system.

Network packets are now the source of information used by several recent
commercial products [6,28,66], and several projects in the research commu-
nity have taken this track as well [46,51,52,61]. A recent evaluation of these
products by Ptacek and Newsham [50] shows that the sniffer approach, or
at least the current implementations, has flaws that make it possible for a
skilled attacker to evade detection. In particular, Ptacek and Newsham [50]
show that IP fragmentation is not handled well, and that the use of wildcards
and control sequences in protocols such as http makes it possible to evade
detection by signatures.

Research is also being conducted in this area. After IDES and NIDES, SRI is
now developing a prototype called Emerald [48] to deal with analysis of net-
work traffic. Other network sniffers such as Bro [46] or Network Flight Recorder
[51] have been developed as network data acquisition tools and therefore do
not support intrusion detection per se.

3.4 Continuous monitoring versus periodic analysts

Continuous versus periodic intrusion detection applies to the way the tool per-
forms its analysis. A dynamic intrusion-detection tool performs a continuous,
real-time analysis by acquiring information about the actions taken on the
environment immediately after they happen. A static intrusion-detection tool
periodically takes a snapshot of the environment and analyzes this snapshot,
looking for vulnerable software, configuration errors, and so on.

These static tools assess the security level of the current configuration of the
environment. Examples of these tools include COPS [14,16] and Tiger [53]
for host environments, and Satan [15] and Ballista [55] (now called CyberCop
Scanner [44] since the buyout of Secure Networks by Network Associates Inc.)
for networks. In the same category are virus detectors, which scan the disks
looking for patterns identifying known viruses. These checks include verifying
the version of the applications installed to ensure that the latest security
patches have been applied, checking for weak passwords, verifying the contents
of special files in users’ home directories, or verifying the configuration of open

20

network services. This analysis provides an instant snapshot of the state of the
system, but is only valid at that precise moment.

These tools are well known and widely used by system administrators, but
they are not sufficient to ensure high security. First of all, security patches are
not necessarily available on legacy systems, which cannot be upgraded without
losing their operational requirements. Then, running these security assessment
tools is often a lengthy process, particularly in a networked environment where
every system has to be checked individually. Therefore, the security exposure
between two consecutive runs might be significant, approximately a day or
so, for it has been shown that active exploitation of vulnerabilities over the
Internet can take less than one day.

Such tools, as well as others specifically developed for that purpose (e.g. Trip-
wire [34] or ATP [65]) can be used to detect the traces of an intrusion. Such
traces can be the replacement of a given application by an older, vulnerable
one, which would be signaled by COPS or Tiger to the system administra-
tor as a potential intrusion. Tripwire [34] extends this principle by computing
the signature of a large set of system files and comparing it with a database
of reference signatures kept in a safe place, therefore rendering the change-
detection process systematic. An alarm by a Tripwire-like system signals an
intrusion in a behavior-based way, i.e. that some file in the system is not what
it used to be. However, these checks are periodic, and in this sense they do
not fulfill the timeliness and performance requirements of intrusion-detection
systems. Therefore, we do not consider them in the scope of this paper as
being full-fledged intrusion-detection systems, as defined in Section 2.2.

Dynamic intrusion-detection tools monitor the actions that take place on the
system. Monitoring takes place either in real time or in batch, reviewing audit
files or network packets accumulated over a given period of time. Dynamic
monitoring implies real-time analysis and allows a constant assessment of the
security of the system. It is, however, a costly process, both for transporting
the audits and for processing them.

4 Intrusion-detection tools

Table 1 presents a selection of intrusion-detection tools that we have encoun-
tered and shows a taxonomy of their components. The selection merely illus-
trates the notions described in this paper, and implies no judgment of the
quality of the tool, product, or method on our part. Also, the number of tools
and prototypes being developed throughout the world is such that an exhaus-
tive list is difficult to compile, and we shall continue to add entries to this
table.

21

Table 1
Panorama of intrusion-detection systems

IDS origin IDS Name Time Ref Knowledge-based IDS Behavior-based IDS HB | NB
Frame ES | SA | PN [STA | Stat | BS | NN | Ul
Univ. Namur ASAX 1990-1997 [21] X X
AT&T ComputerWatch | 1987-1990 [12] X X
USAF Haystack 1987-1990 [56] X X
DIDS 1089-1995 | [57] | X X X | x
CS Télécom Hyperview 1990-1995 [7] X X X
SRI IDES 1083-1992 | [11] | X X X
NIDES 1902-1995 | [30] | X X X
Emerald 1996— (48] X X X
Purdue Univ. IDIOT 1992-1997 [35] X X
UC Davis NSM 1089-1995 | [24] X X X
GrIDS 1995— [61] X X
LANL W&S 1087-1990 | [64] X X
Nadir 1990- 9] | x X X
Cisco/WheelGroup NetRanger 1995— [6,66] X X
IS8 RealSecure 1995- [28] X X
Securenet Consortium SecureNet 1992-1996 [59] X X X
Network Associates Inc Stalker 1995- [23] X X
WebStalker 1997- [23,45] X X
CyberCop Server
UCSB STAT 1901-1992 | [47] X X
USTAT 1992-1993 | [27] X X
Stanford Univ. Swatch 1992-1993 [22] X X
MCNC and NCSU JiNao 1995- 33 | X X X

Abbreviations used: ES: expert system; SA: signature analysis; PN: Petri net; STA: state transition analysis; Stat: statistics;

NN: neural network; UIL: user intent; HB: host-based, and NB: network-based.

Table 1 contains more host-based intrusion-detection systems than network-
based intrusion-detection systems. However, this is not the trend in intrusion
detection, which is towards network information and protection of the infras-
tructure. There are more network-based intrusion-detection products [28,66]
commercially available today than host-based ones [23,45], as well as recent
projects still under development. The main reasons for this are probably the
ease of installing a network-based tool (no user workstation manipulation re-
quired), the performance degradation experienced by systems when an audit
is started, and the difficulty and cost of managing a large-scale host audit
infrastructure.

Table 1 also shows that, even though many techniques have been explored for
intrusion detection, most commercial products available today implement one
and only one technique, and that the majority of the recent ones [23,28,66]
use signatures, for two reasons:

22

o The knowledge-based approach is easier to implement than the behavior-
based one. In fact, the cost in terms of false alarms of the behavior-based
techniques has hitherto made them inappropriate for commercial intrusion
detection.

o Speed is essential in processing the audits and preempts the expressiveness
of the technique. Therefore, signatures are used instead of rules.

In addition, the collaborative approach of correlating several analyzers to im-
prove the intrusion-detection system has been studied [11,59] and is retained
as part of the ongoing work in CIDF, but has not yet been incorporated in
the commercial world.

5 The reusability issue

One of the greatest challenges faced by intrusion-detection products and pro-
totypes is the capability to reuse existing components in an environment dif-
ferent from the original one. This is due mainly to incompatible audit and
alarm formats.

A working group has been created under the auspices of the Defence Advanced
Research Projects Agency (DARPA) to develop a common intrusion-detection
framework (CIDF) [62]. This work aims primarily at coordinating the many
projects funded by DARPA that are concerned with intrusion detection, and
ensuring that the tools developed are able to interoperate. The CIDF descrip-
tion of an intrusion-detection system (Fig. 4) is more detailed than the one
above and defines all the possible roles of components that can comprise an
intrusion-detection system. The interfaces of each of these component roles
are then defined, so that any CIDF-compliant box can be integrated into a
larger tool. The CIDF group is currently in the process of joining the Internet
Engineering Task Force to make their work a standard in the Internet world.

Event Event Event Response
Generator Analyzer Analyzer Box
E-box 1 A-box 2 A-box 3 R-box 1

I Al VYK AjA

R [A !

\ vy iy
Event Event Event
Generator Analyzer Database
E-box 2 A-box 1 D-box 1

Fig. 4. CIDF description of an intrusion-detection system.

Figure 4 does not include the system being monitored. Obviously, the boxes

23

run on hardware of some kind, most likely the system that produces the events
in the case of the event box, or on either the monitored system or a specific
hardware in the case of the other boxes.

CIDF defines four kinds of components for an intrusion-detection system and
very specific roles for each of them. All these components deal with gidos
(generalized intrusion-detection objects), which are represented via a standard
common format (s-expressions). Gido streams are represented as dashed ar-
rows in Fig. 4. Gidos carry information that is moved around in the intrusion-
detection system. From a semantics point of view, gidos currently represent
either audit events that occurred in the system or an analysis of those audit
events (henceforth referred to as alarms).

o FEvent bozes (E-bozes) generate audit events that are processed by the
intrusion-detection system. E-boxes typically run on the system that gen-
erates the audit events, where they collect the audit events and make them
available to other components of the intrusion-detection system. E-boxes
produce audit events but do not consume them. Their task is to sample the
particular environment for which they are specialized, and to turn occur-
rences in that environment into CIDF gidos for use by other components.
Figure 4 shows two event-generator boxes delivering audit events to two
analyzers.

o Analysis bozes (A-bozes) process (similar to the detector component) events
from the E-boxes to create alarms. Analyzers take in gidos and analyze their
significance (policy violations, anomalies, intrusions). Their conclusions are
turned out as alarms. In Fig. 4, two of the three A-boxes receive audits from
E-boxes, whereas the third one aggregates information and passes it to the
countermeasures.

e Database bozes (D-bozes) store events for later retrieval. D-boxes are gidos
archivers. They receive events sent by E-boxes or A-boxes, store them for
long-term keeping, and provide a retrieval and query service. For example,
a D-box would store the audit and alarm streams described in Fig. 2. Con-
figuration and database are private to each A-box and must be maintained
independently. In Fig. 4, the D-box provides gidos to one of the analyzers
and to the countermeasures.

e Response bozes (R-bozes) (sometimes also called countermeasure boxes) ap-
ply countermeasures to the system according to the alarms generated. They
are the active arm of the intrusion-detection system; they enforce the deci-
sions made in response to attacks. In Fig. 4, an R-box takes its input from

the third A-box.

CIDF is work-in-progress. The most important contribution of CIDF is to
define interfaces by which the different kinds of boxes can communicate, thus
introducing the reusability of components in intrusion detection. It is a fact
that as of today, a large number of research prototypes and products have been

24

developed, but these heterogeneous developments do not allow the reusability
of techniques or tools in different environments.

Currently, the CIDF effort is giving birth to an IETF working group chartered
to create standards in the intrusion-detection area. The current draft charter
being discussed states that “the purpose of the Intrusion Detection Working
Group is to define data formats and exchange procedures for sharing infor-
mation of interest to intrusion-detection systems and their management in-
frastructure.” The output of the working group should include a requirements
document, a common language specification, and a framework document. As
the charter is still undergoing discussion, interested readers are referred to the
CIDF mailing list (cidf@seclab.cs.ucdavis.edu) for up-to-date information.

6 Conclusion and future directions

Intrusion detection is currently attracting considerable interest from both the
research community and commercial companies. Research prototypes continue
to be created, and commercial products based on early research are now avail-
able. In this paper, we have given an overview of the current state-of-the-art
of intrusion detection, based on a proposed taxonomy illustrated with exam-
ples of past and current projects. This taxonomy highlights the properties
of intrusion-detection systems and covers the past and current developments
adequately.

Information sources for these tools are currently either a C2 audit trail, syslog,
or network packets. Whereas system sources were widely used in the early
stages of research, the current focus of research prototypes as well as products
is to protect the infrastructure, rather than the end-user station, and this
paradigm has introduced the usage of network sniffers that analyze packets.
As shown, there are still quite a number of research issues concerning the
efficiency of network and host audit sources, the formatting and existence of
a common audit trail format, and even the contents of the audit trail itself.

There are also a number of open research issues concerning the analysis of the
audit trail. Signature analysis is clearly in the commercial domain now, but it
has been shown to be insufficient to detect all attacks. Therefore, work is still
in progress to experiment with new approaches to both knowledge-based and
behavior-based intrusion detection. The detection of abuse-of-privilege attacks
(primarily insider attacks) is also the subject of ongoing work.

25

References

[1] Steven M. Bellovin and William R. Cheswick, Network firewalls, IEEE
Communications MAGAZINE, 32(9) (1994) 50-57.

[2] James Cannady and Jay Harrell, A comparative analysis of current

intrusion detection technologies, Proc. 4th Technology for Information Security
Conference (TISC’96) (Houston, TX, May 1996).

[3] CERT Coordination Center, Denial-of-service attack via ping, Available by
anonymous ftp from ftp.cert.org (December 1986).

[4] CERT Coordination Center,Syslog vulnerability—A workaround for sendmail.
Available by anonymous ftp from ftp.cert.org (October 1995).

[6] William R. Cheswick and Steven M. Bellovin, Firewalls and Internet Security-
Repelling the Wily Hacker. Professional Computing Series (Addison Wesley,
1994) ISBN 0-201-63357-4.

[6] Cisco Systems Inc, NetRanger—Enterprise-scale, Real-time, Network
Intrusion Detection System, Available from the company’s website at
http://www.cisco.com/warp/public/751/netranger/netra_ds.htm (1998).

[7] Hervé Debar, Monique Becker, and Didier Siboni, = A neural network
component for an intrusion detection system, Proc. 1992 IEEE Computer
Society Symposium on Research in Security and Privacy (Oakland, CA, May
1992) 240-250.

[8] Hervé Debar, Marc Dacier, and Andreas Wespi, Fixed vs. variable-length
patterns for detecting suspicious process behavior, Technical Report RZ
3012, IBM Zurich Research Laboratory, Saumerstrasse 4, CH-8803 Riischlikon,
Switzerland, April 1998. (Submitted to Esorics’98).

[9] Hervé Debar, Marc Dacier, and Andreas Wespi, Reference Audit Information
Generation for Intrusion Detection Systems, in: Reinhard Posch and Gydrgy
Papp, eds., Proc. 14th International Information Security Conference IFIP
SEC’98 (Vienna, Austria and Budapest, Hungaria, August 31-September 4,
1998) (Chapman and Hall).

[10] Dorothy Denning, An intrusion-detection model, IEEE Transactions on
Software Engineering, 13(2) (1987) 222-232.

[11] Dorothy E. Denning and Peter G. Neumann, Requirements and model for
IDES—A real-time intrusion detection expert system, Technical report,
Computer Science Laboratory, (SRI International, Menlo Park, CA, 1985).

[12] Cheri Dowell and Paul Ramstedt, The ComputerWatch data reduction tool,
Proc. 13th National Computer Security Conference (Washington, DC, October
1990) 99-108.

26

[13] Mansour Esmaili, Rei Safavi-Naini, and Josef Pieprzyk, Computer intrusion
detection: A comparative survey, Technical Report 95-07, Center for Computer
Security Research, University of Wollongong, Wollongong, NSW 2522, Australia
(May 1995).

[14] Dan Farmer,Cops overview, Available from
http://www.trouble.org/cops/overview.html (May 1993).

[15] Dan Farmer and Wietse Venema, Improving the security of your site by
breaking into it, available at http://www.trouble.org/security/admin-guide-to-
cracking.html, 1993. (Internet white paper).

[16] Daniel Farmer and Eugene Spafford, The cops security checker system, Proc.
Summer USENIX Conference (Anaheim, CA, June 1990) 165-170.

[17] Stephanie Forrest, Steven A. Hofmeyr, and Anil Somayaji, Computer
immunology, Communications of the ACM 40(10) (October 1997) 88-96.

[18] Jeremy Frank, Artificial intelligence and intrusion detection: Current and future
directions, Proc. 17th National Computer Security Conference (Baltimore, MD,
October 1994).

[19] Patrick Gallinari, Sylvie Thiria, and Francoise Fogelman-Soulie, Multilayer
perceptrons and data analysis, Proc. IEEE Annual International Conference

on Neural Networks (ICNN88), Vol. I (San Diego, CA, July 1988) 391-399.

[20] Thomas Garvey and Teresa Lunt, Model-based intrusion detection, Proc. 14th
National Computer Security Conference (October 1991) 372-385.

[21] Naji Habra, Baudouin Le Charlier, Aziz Mounji, and Isabelle Mathieu,
Asax: Software architecture and rule-based language for universal audit trail
analysis, in: Y. Deswarte, G. Eizenberg, and J.-J. Quisquater, eds., Proc. 2nd
FEuropean Symposium on Research in Computer Security (ESORICS), number
648 in Lecture Notes in Computer Science, Toulouse, France, November 1992
(Springer-Verlag, Berlin, Germany).

[22] Stephen E. Hansen and E. Todd Atkins, Automated system monitoring and
notification with swatch, Proc. 7th Systems Administration Conference (LISA
’93) (Monterey, CA, November 1993).

[23] Haystack Labs, Inc. Stalker, Available from the company’s website at
http://www.haystack.com/stalk.htm (1997).

[24] L. Todd Heberlein, Gihan V. Dias, Karl N. Levitt, Biswanath Mukherjee, Jeff
Wood, and David Wolber, A network security monitor, Proc. Symposium on
Research in Security and Privacy, Oakland, CA, May 1990, 296-304, (IEEE
Computer Society Press, Los Alamitos, CA).

[25] Paul Helman and Gunar Liepins, Statistical foundations of audit trail
analysis for the detection of computer misuse, IEFE Transactions on Software
Engineering, 19(9) (September 1993) 886-901.

27

[26] Paul Helman, Gunar Liepins, and Wynette Richards, Foundations of intrusion
detection, Proc. 5th Computer Security Foundations Workshop (Franconic, NH,
June 1992) 114-120.

[27] Koral Tlgun, Ustat: A real-time intrusion detection system for unix, Proc.
IEEE Symposium on Research in Security and Privacy (Oakland, CA, May
1993) 16-28.

[28] Internet Security Systems, Inc.RealSecure, Internet
http://www.iss.net/prod/rsds.html (1997).

[29] Kathleen Jackson, David DuBois, and Cathy Stallings, An expert system
application for network intrusion detection, Proc. 14th National Computer
Security Conference (November 1991) 215-225.

[30] R. Jagannathan, Teresa Lunt, Debra Anderson, Chris Dodd, Fred Gilham,
Caveh Jalali, Hal Javitz, Peter Neumann, Ann Tamaru, and Alfonso
Valdes, System design document: Next-generation intrusion detection expert
system (NIDES), Technical Report A007/A008/A009/A011/A012/A014, SRI
International, 333 Ravenswood Avenue, Menlo Park, CA 94025 (March 1993).

[31] Harold Javitz and Alfonso Valdes, The SRI IDES statistical anomaly detector,
Proc. IEEE Symposium on Research in Security and Privacy (May 1991) 316—
326.

[32] Harold S. Javitz, Alfonso Valdez, Teresa F. Lunt, Ann Tamaru, Mabry Tyson,
and John Lowrance, Next generation intrusion detection expert system
(NIDES). 1. Statistical algorithms rationale. 2. Rationale for proposed resolver,
Technical Report A016 Rationales, SRI International, 333 Ravenswood Avenue,
Menlo Park, CA (March 1993).

[33] Y. Frank Jou, Fengmin Gong, Chandru Sargor, Shyhtsun Felix Wu, and
W. Rance Cleaveland, Architecture design of a scalable intrusion detection
system for the emerging network infrastructure, Technical Report CDRL A005,
MCNC Information Technologies Division, Research Triangle Park, N.C. 27709
(April 1997).

[34] Gene H. Kim and Eugene H. Spafford, The design and implementation of
tripwire: A file system integrity checker, in: Jacques Stern, ed., 2nd ACM
Conference on Computer and Communications Security (ACM Press, COAST,
Purdue, November 1994) 18-29.

[35] Sandeep Kumar and Eugene Spafford, A pattern matching model for
misuse intrusion detection, Proc. 17th National Computer Security Conference
(October 1994) 11-21.

[36] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi, A
taxonomy of computer program security flaws, ACM Computing Surveys, 26(3)
(September 1994) 211-254.

[37] Gunar Liepins and H. S. Vaccaro, Anomaly detection: Purpose and framework,
Proc. 12th National Computer Security Conference (October 1989) 495-504.

28

[38] Teresa Lunt and R. Jagannathan, A prototype real-time intrusion-detection
expert system, Proc. Symposium on Security and Privacy (Oakland, CA, April
1988) 59-66.

[39] Teresa F. Lunt, Automated audit trail analysis and intrusion detection: A
survey, Proc. 11th National Computer Security Conference (Baltimore, MD,
October 1988).

[40] Teresa F. Lunt, A survey of intrusion detection techniques, Computers &
Security, 12(4) (June 1993) 405—418.

[41] Teresa F. Lunt, R. Jagannathan, Rosanna Lee, Sherry Listgarten, David L.
Edwards, Peter G. Neumann, Harold S. Javitz, and Alfonso Valdes, IDES: The
enhanced prototype—A real-time intrusion-detection expert system, Technical
Report SRI-CSL-88-12, SRI International, 333 Ravenswood Avenue, Menlo
Park, CA (October 1988).

[42] Noelle McAuliffe, Dawn Wolcott, Lorrayne Schaefer, Nancy Kelem, Brian
Hubbard, and Theresa Haley, Is your computer being misused? a survey of
current intrusion detection system technology, Proc. 6th Annual Computer
Security Applications Conference (Tucson, AZ, December 1990) 260-72 (IEEE
Computer Society Press, Los Alamitos, CA).

[43] Abdelaziz Mounji, Languages and Tools for Rule-Based Distributed Intrusion
Detection, Doctor of science, Facultés Universitaires Notre Dame de la Paix,
Namur (Belgium, September 1997).

[44] Network Associates Inc., Cybercop scanner, Available from the company’s
website at http://www.nai.com/products/security/ballista/default.asp (1998).

[45] Network Associates Inc., Cybercop server, Available from the company’s website
at http://www.nai.com/products/security/cybercopsvr/index.asp (1998).

[46] Vern Paxson,Bro: A system for detecting network intruders in real-time, Proc.
7th USENIX Security Symposium (San Antonio, TX, January 1998).

[47] Phillip Porras and Richard Kemmerer, Penetration state transition analysis—
A rule-based intrusion detection approach, Proc. 8th Annual Computer
Security Applications Conference 220—-229 (IEEE Computer Society press, IEEE
Computer Society press, November 1992).

[48] Phillip A. Porras and Alfonso Valdes, Live traffic analysis of tcp/ip gateways,
Proc. ISOC Symposium on Network and Distributed System Security (NDSS’98)
(San Diego, CA, March 1998) (Internet Society).

[49] Katherine E. Price, Host-based misuse detection and conventional operating
systems’ audit data collection, Master of science (Purdue University, Purdue,
IN, December 1997).

[60] Thomas H. Ptacek and Timothy N. Newsham,Insertion, evasion, and denial of
service: Eluding network intrusion detection, Technical report, Secure Networks,
Inc., Suite 330, 1201 5th Street S.W, Calgary, Alberta, Canada, T2R-0Y6
(January 1998).

29

[61] Marcus J. Ranum, Kent Landfield, Mike Stolarchuk, Mark Sienkiewicz,
Andrew Lambeth, and Eric Wall, Implementing a generalized tool for network
monitoring, Proc. 11th Systems Administration Conference (LISA ’97) (San
Diego, CA, October 1997).

[62] P. Rolin, L. Toutain, and S. Gombault, Network security probe, CCS’94, Proc.
2nd ACM Conference on Computer and Communication Security (November
1994) 229-240.

[63] David R. Safford, Douglas Lee Schales, and David K. Hess, The tamu security
package: An ongoing response to internet intruders in an academic environment,
Proc. jth USENIX Security Symposium (Santa Clara, CA, October 1993) 91—
118.

[64] Warren S. Sarle, Neural networks and statistical models, Proc. 19th Annual SAS
Users Group International Conference (Cary, NC, April, 1994) 1538-1550 (SAS
Institute, SAS Institute).

[65] Secure Networks, Inc. Ballista security auditing system, Available from the
company’s website at http://www.securenetworks.com/ballista/ballista.html

(1997).

[66] Stephen Smaha, Haystack: An intrusion detection system, jJth Aerospace
Computer Security Applications Conference (October 1988) 37-44.

[67] Steven R. Snapp, James Brentano, Gihan V. Dias, Terrance L. Goan, L. Todd
Heberlein, Che lin Ho, Karl N. Levitt, Biswanath Mukherjee, Stephen E. Smaha,
Tim Grance, Daniel M. Teal, and Doug Mansur, DIDS (distributed intrusion
detection system)—motivation, architecture, and an early prototype, Proc.
14th National Computer Security Conference (Washington, DC, October 1991)
167-176.

[68] Michael Sobirey, Intrusion detection system bibliography, Internet:
http://www-rnks.informatik.tu-cottbus.de/ sobirey/ids.html (March 1998).

[69] Paul Spirakis, Sokratis Katsikas, Dimitris Gritzalis, Francois Allegre, John
Darzentas, Claude Gigante, Dimitris Karagiannis, P. Kess, Heiki Putkonen,
and Thomas Spyrou, SECURENET: A network-oriented intelligent intrusion
prevention and detection system, Network Security Journal, 1(1) (1994).

[60] Thomas Spyrou and John Darzentas, Intention modelling: Approximating
computer user intentions for detection and prediction of intrusions, In S.K.
Katsikas and D. Gritzalis, editors, Information Systems Security (Samos,
Greece, May 1996) 319-335, (Chapman and Hall).

[61] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, C. Wee, R. Yip, and D. Zerkle, GrIDS—A graph based intrusion
detection system for large networks, Proc. 19th National Information Systems
Security Conference (1996).

[62] Stuart Staniford-Chen, Brian Tung, Phil Porras, Cliff Kahn, Dan
Schnackenberg, Rich Feiertag, and Maureen Stillman, The common intrusion

30

detection framework-data formats, Internet draft draft-ietf-cidf-data-formats-
00.txt (March 1998).

[63] U.S. Department of Defense, Trusted computer systems evaluation criteria

(August 1983).

[64] H. S. Vaccaro and G. E. Liepins, Detection of anomalous computer session
activity, Proc. IEEE Symposium on Research in Security and Privacy (1989)
280-289.

[65] David Vincenzetti and Massimo Cotrozzi, Atp—anti tampering program, Proc.
4th USENIX Security Symposium (Santa Clara, CA, October 1993) 79-9.

[66] WheelGroup Corporation, Brochure of the netranger intrusion detection system,
available from the company’s website at
http://www.wheelgroup.com/netrangr/netranger_broch.html.

31

