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Abstract

Intrusion Detection systems (IDSs) have previously been built by hand. These systems
have di�culty successfully classifying intruders, and require a signi�cant amount of computa-
tional overhead making it di�cult to create robust real-time IDS systems. Arti�cial Intelligence
techniques can reduce the human e�ort required to build these systems and can improve their
performance. Learning and induction are used to improve the performance of search problems,
while clustering has been used for data analysis and reduction. AI has recently been used in
Intrusion Detection (ID) for anomaly detection, data reduction and induction, or discovery, of
rules explaining audit data. We survey uses of arti�cial intelligence methods in ID, and present
an example using feature selection to improve the classi�cation of network connections. The
network connection classi�cation problem is related to ID since intruders can create \private"
communications services undetectable by normal means. We also explore some areas where AI
techniques may further improve IDSs.
Keywords: Arti�cial Intelligence, Intrusion Detection, Feature Selection.

1 Problems in Intrusion Detection

Intrusion Detection (ID) is the identi�cation of attempted or ongoing attacks on a computer system

or network. Issues in ID research include data collection, data reduction, behavior classi�cation,

reporting and response. Although there are many signi�cant open problems in ID research, we

focus on data reduction and classi�cation. Data reduction consists of analyzing a collection of data

in order to identify the most important components of the data, thereby reducing processing time,

communications overhead and storage requirements. Classi�cation is the process of identifying

attackers and intruders. Arti�cial intelligence (AI) techniques have been used in many IDSs to

perform these important tasks.

Section 2 of this paper will brie
y discuss arti�cial intelligence methods and describe some of

the methods which will appear in this paper. Section 3 will discuss the problem of data reduction

and discuss how AI methods have been used in a variety of IDSs to solve this problem. Section 4
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will discuss the application of AI to the classi�cation problem. Section 5 will present an example

of the use of feature selection to improve the classi�cation of network connections, and section 6

will discuss some future applications of AI in IDSs.

2 Arti�cial Intelligence Methods

Arti�cial Intelligence is concerned with improving algorithms by employing problem solving tech-

niques used by human beings. Humans excel at tasks such as learning, or gaining the ability

to perform tasks from examples and training. An expert system handles problems using a com-

puter model of expert human reasoning. However, most expert systems must undergo continuous

maintenance to perform well [WeKu].
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Figure 1: Growing a Decision Tree.

Other systems can acquire knowledge from a set of training instances. These training instances

can be questions and correct answer pairs, or problems and the steps of a solution. Rule Based

Induction derives rules which explain the training instances more clearly than a mathematical or

statistical analysis of data [WeKu]. Classi�er systems attempt to learn how to classify future

examples from a set of training data. An example of a system that can be used as a classi�er

is a Neural Network, which uses a model of biological systems to perform classi�cation. Neural

networks are characterized by highly connected networks which are trained on a set of data in

the hopes that the network will correctly classify future examples [WeKu]. Another example of

a classi�er is a Decision Tree [BuCa] [WeKu]. Decision trees are constructed by �nding ways to

separate the data into two or more groups. We then separate each of these groups in turn, until we

have small groups of examples left. Decision tree algorithms are designed to �nd the best questions

to ask so that most or all of the examples in each group belong to one class. Figure 1 shows how a

tree used to classify network connections is constructed. The goal of Feature Selection is to reduce

the amount of information required to make good predictions, and to improve the error rate of

classi�ers [WeKu]. This is accomplished by searching subsets of features, or information sources,

and testing the ability of those features to classify the training instances. The search process itself
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is the subject of continuing research in the AI community. Humans are also able to generalize

or abstract from large amounts of information by a process called discovery or clustering. Data

clustering techniques are used to group data together according to some criteria [ShDi]. Clustering

is used to discover hidden patterns in data that humans might miss.

3 Data Reduction for Intrusion Detection

Due to the massive amount of audit data available, classi�cation by hand is impossible. For

example, a user typically generates between 3-35Mbytes of data in an eight hour period and it

can take hours to analyze a single hour's worth of data. Analysis is di�cult even with computer

assistance because extraneous features can make it harder to detect suspicious behavior patterns.

Complex relationships exist between the features which are di�cult for humans to discover. IDSs

must therefore reduce the amount of data to be processed. This is especially important if real-time

detection is desired. Therefore, some form of data reduction is required for IDSs. Reduction can

occur in one of several ways. Data that is not considered useful can be �ltered, leaving only the

potentially interesting data. Data can be grouped or clustered to reveal hidden patterns; by storing

the characteristics of the clusters instead of the data, overhead can be reduced. Finally, some data

sources can be eliminated using feature selection.

3.1 Data Filtering

The purpose behind data �ltering is to reduce the amount of data directly handled by the IDS.

Some data may not be useful to the IDS and thus can be eliminated before processing. This has

the advantage of decreasing storage requirements and reducing processing time. However, �ltering

may throw out useful data, and so must be done carefully.

In systems such as DIDS [SnBr], MIDAS [SeSh], TIM [TeCh] and NSM [HeDi], data �ltering

is done using heuristic or ad hoc methods, which can be viewed as expert rules for �ltering. Other

systems �lter data in a more adaptive or dynamic way. [DeBe] present a �ltering system based

on a neural network which acts to �lter data which does not �t an observed trend. They assume

that user activity contains notable trends that can be detected, and that there are correlations

among the collected audit data. Regularity ensures that the network will pick up the regular

trends exhibited, and automatically account for correlations in the input data. Using a type of

neural network called a recurrent network ensures that behavior trends can be accurately recalled.

The network \forgets" behavior over time, and can thus adjust to new trends. Thus the network

acts as a �lter to determine whether or not an audit record �ts the regular trends.

3.2 Feature Selection

In complex classi�cation domains, some data may hinder the classi�cation process. Features may

contain false correlations which hinder the process of detecting intrusions. Further, some features

may be redundant since the information they add is contained in other features. Extra features

can increase computation time, and can impact the accuracy of an IDS. Feature selection improves

classi�cation by searching for the subset of features which best classi�es the training data [SiSk]

. In the ID domain, features are derived from information sources used to detect intrusions,

and training instances are derived from detected intrusion attempts as well as normal behavior.

Thus, feature selection can be used to �nd features most indicative of misuse, or can be used to

distinguish between types of misuse. [Do] and [SiSk] have performed comparisons of a variety of
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feature selection techniques, and [Do] tested several techniques on simulated computer attack data

to explore the possibility of using feature selection to improve intrusion detection techniques. In

section 5 we give an example of feature selection applied to classifying network connections.

3.3 Data Clustering

Clustering can be performed to �nd hidden patterns in data and signi�cant features for use in

detection. Clustering can also be used as a reduction technique by storing the characteristics of

the clusters instead of the actual data. Arti�cial Intelligence researchers have noted the close rela-

tionship between learning and data compression. Discovering the generalization of a concept is in

essence �nding a more compact representation of the set of objects, and a hierarchical clustering

algorithm can be used for inductive generalization [Th]. Statistical clustering measures the prob-

ability that each example is in a given cluster. Exemplar methods build a representative of each

cluster throughout the clustering process. Distance clustering uses a distance measure to estab-

lish membership in a cluster. Conceptual clustering requires that an object meet necessary and

su�cient conditions for cluster membership.

PRAD [LaBe] uses k-nearest neighbor (knn) clustering to reduce data. To perform knn clus-

tering, x percentiles of the distribution are determined. The data is reduced to one of the values

1 to x. Thus each of n data elements is clustered with k = n

x+1
neighboring data points. Along

with the choice of number of percentile points, the positions of the percentiles can also be located.

For instance, [La] uses 2 percentiles and splits the categories at the 50th percentile. The Bernoulli

vector used in Haystack uses x = 2 and splits at the 90th percentile. [He]

Wisdom&Sense [LiVa] also performs clustering of numerical data. The history of audit data is

separated into clusters which correspond to high density regions followed by low density regions;

the historical data is then represented by clusters which represent each density region.

4 Behavior Classi�cation in Intrusion Detection

Classifying user or system behavior is a very hard problem. One problem is that only a small

fraction of behavior is misuse; another is that often misuse looks like normal use, so it can be

di�cult to distinguish between intruders and normal users. As a result, classi�cation can result in

\false negatives", wherein an attacker is misclassi�ed as a normal user. \False positives" can also

degrade productivity in the systems being protected by invoking countermeasures unnecessarily.

Finally, all types of intrusive behavior can't be identi�ed in advance. Several AI techniques have

been used to improve IDS classi�cation performance. Statistical anomaly detection works on the

assumption that many attackers behave di�erently from normal users, or that a system or process

behaves di�erently during an attack. If a user is behaving abnormally it may indicate an attacker

using that user's account. Expert systems encode policy statements and known attacks as a �xed set

of rules. User behavior is matched to these rules to determine if an attack is under way. Rule-based

systems create (discover) and manage rules corresponding to anomalous behavior.

4.1 Expert Systems

In an expert system, a set of rules encoding knowledge of an \expert" are used to make conclusions

about information gathered by the IDS. The rule set must be modi�ed by hand, and may incorpo-

rate a statistical or probabilistic component. However, in specialized domains expert systems can

outperform humans.
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IDES contains a rule-based component which encodes knowledge about past intrusions, known

system vulnerabilities, and security policy. IDES rules are encoded in an expert system shell. As

information is gathered, the expert determines whether or not any rules have been satis�ed, then

chooses the most appropriate rule to select [LuJa]. [DeBe] propose an expert system in connection

with a neural network. The neural network component reports anomalies to the expert system,

which also employs data not used by the net. The expert contains a rule base similar to that used

in IDES, with known attacks and system policy information. It also provides the network with

contextual inputs that audit data does not provide, and ensures that the network does not train on

intrusive behavior. Other IDSs employing expert systems are Haystack [He], AudES [Ts], MIDAS

[SeSh] and NADIR [JaDu].

4.2 Anomaly Detection

Anomaly detection is based on the assumption that misuse or intrusive behavior deviates from

normal system use [LuTa] [De] [DeBe] [LiVa]. In many cases this is a valid assumption, as in the

attacker who breaks into a legitimate user's account. The attacker may behave di�erently than

the regular user, so if the IDS has established what the user normally does during a session, it can

determine that the user is not behaving normally and detect the attack. IDSs constructed with

this philosophy learn pro�les of behavior and report anomalies to either a human or another part

of the IDS for more detailed analysis. An anomaly detection system contains three distinct phases:

1. Abstract local information

2. Evolve background information from local abstractions

3. Establish anomaly background boundaries.

[Ma] discusses smoothing raw data to eliminate reliance on outlying data points, blending data

using an exponential method to weight historical data higher than current data, and �nding and

blending the variation in behavior to establish a tolerance level for network anomaly detection.

Anomaly detection can be di�cult since the concept of normal can change over time. Furthermore,

normalcy can be established with respect to di�erent time frames. For example, a system can

establish session, daily and weekly trends.

PRAD [La] learns pro�les of resource usage, time information, and directory access patterns.

Pro�les are analyzed with respect to login sessions and time windows, and performance in windows

is weighted over time. Windows extend across logins so that information across login sessions

can be maintained in the pro�les. PRAD provides a means for including changing legitimate user

behavior in pro�les after legitimacy is ascertained. Other systems employing statistical anomaly

detection are MIDAS[SeSh] , IDES [JaVa], NADIR [JaDu] and Haystack [He].

4.3 Rule-Based Induction

In contrast to expert systems, rule-based systems automatically develop rules to explain the his-

torical data they collect. Rules are modi�ed over the lifetime of a system in order to keep the rule

set accurate and manageable.

In Wisdom&Sense, rules are generated which specify legal values of features conditioned on the

values of other features. Legality is determined from the history of data for each feature. Rules can

overlap in speci�city due to incomplete information in the history. Rule pruning occurs if there are

too many legal values for a feature, too few historical values, the rule is too deep, if rules overlap, or
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a rule is conditioned on a previously (in the forest of rules) determined anomalous value. All rules

can either be used to signal anomalies, or the most appropriate rules to use may be determined

[LiVa]. TIM's rules remain in the rule base only if they are highly predictive or con�rmed by

many observations. Prediction is calculated using an entropy model. The user must specify the

behavior TIM is trying to predict. Rules are stored in a lattice, and predict an outcome with a

speci�c accuracy based on the observed audit history. Both short term and long term patterns are

checked against for anomalies. Rules also support instantiation. TIM allows the user to enter rules

describing either patterns or abstractions of the audit data. [TeCh]

5 An Experiment Using Feature Selection

A growing problem in intrusion detection is network-based intrusion detection. Since computer

systems are increasingly network dependent it is imperative to protect both local and regional

networks. An example of the kinds of problems that must be faced can be seen in the problem of

classifying a network connection. On UNIX systems a connection is characterized by the source

port and destination port numbers. Certain ports are reserved for di�erent services; e.g. telnet uses

port 23. However, an intruder can hide network connections by strategically placing the servers

that receive the connections on di�erent ports[He2]. The mapping of ports to services is internal

to a single machine; an intruder could also change the port map. Thus we would like to be able to

identify the type of connection made without referring to port numbers.

We examined how feature selection can improve classi�cation of network connections by min-

imizing the classi�cation error rate and by reducing the number of features required to classify

connections. To do so, we analyzed three feature selection algorithms to test methods for selecting

the best subset of features to classify connections using decision trees. We conducted two types of

experiments: one selecting features which distinguish one type of connection from all others, and

one which classi�ed all connection types. Our data consisted of 15,947 connections from one local

area network during one week of normal use.

5.1 NSM Features

We collected information about network connections using NSM [HeDi]. NSM returns data about

each connection. We collected the following information for each connection:

Feature Feature type

Index int

Expert system warning 
oat

Time in seconds int

# of packets from source int

# of packets from destination int

# of data bytes from source int

# of data bytes from destination int

Most of the �elds are self-explanatory; the expert system warning value is NSM's expert analysis

of how likely the connection is to be an attack. Each piece of information collected was used as a

feature for our experiments. In addition to these �elds we also collected the actual connection type

for use in training.
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5.2 Search Algorithms

To reiterate, feature selection is used to reduce the amount of information required to make good

predictions, and to improve the error rate of classi�ers. Since our task is to correctly classify

future examples based on the training examples, we used the classi�cation error rate of a decision

tree to evaluate each set of features [BuCa] [WeKu]. This error rate is computed by counting the

misclassi�cations on a test data set which is independent from the training set [BuCa]. We tested

representative algorithms from each of 3 broad classes of search algorithms.

Backward sequential search begins with the full set of features. At each stage of the search, each

feature in the remaining set is removed. The best feature to eliminate from the set is determined

by comparing the error rates of the classi�ers created using the resulting feature sets. Backward

Sequential Search runs in polynomial time [Do].

Beam search is a type of best-�rst search which uses a bounded queue to limit the scope of the

search. The queue is ordered from best-state to worst-state, with the best state placed in the front

of the queue. The algorithm operates by taking the �rst state in the queue, the most promising

state, and extending the search from that state as in Backward Sequential Search. Each new state

visited is placed in the queue in order of the goodness of it's state. If there is no limit on the length

of the queue, then Beam Search takes exponential time to complete but if the queue length is 1

then Beam Search takes polynomial time. Thus accuracy can be increased if the queue length is

increased [Do].

In Random Generation Plus Sequential Selection, we perform several sequential selections from

di�erent places in the search space. As mentioned, the goal is to avoid picking the �rst good feature

set seen on the assumption that other good feature sets are also available. To do so, we generate a

random feature set, then perform backward and forward sequential selection on the state. Random

Generation runs in polynomial time but is more expensive than Backwards Sequential Selection

[Do].
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Figure 2: Feature Set Size vs Error Rate For Classifying Connections.

5.3 Algorithm Performance

The table below shows the size, classi�cation error rates, and number of states searched for each

problem. Note that with 7 features the total number of subsets of these features is 128. We can

see here that in most cases using a computationally expensive algorithm did not gain much in

terms of numbers of features or error rate with the exception of the shell classi�cation problem.
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Further, the RGSS algorithm always repeated states in it's search. This implies that di�erentiating

connections can be done reasonably well with a less-than-exhaustive search. However, the fact that

the random search did �nd a better classi�er indicates that sophisticated algorithms can be worth

the cost. Notice that the classi�cation error is smaller than the percentage of the smallest class of

connections observed.
Problem Algorithm Number of States Size of Best Feature Set Error Rate

All Beam 53 6 0.011266%

All BSS 29 6 0.011266%

All RGSS 206 6 0.011266%

SMTP Beam 53 5 0.007231%

SMTP BSS 29 5 0.007231%

SMTP RGSS 190 5 0.007231%

Login Beam 38 4 0.001177%

Login BSS 29 4 0.001177%

Login RGSS 188 4 0.001177%

Shell Beam 38 4 0.002018%

Shell BSS 29 4 0.002018%

Shell RGSS 178 4 0.001009%
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Figure 3: Feature Set Size vs Error Rate For Identifying SMTP Connections.

5.4 Error Rate Performance

The following graphs show how error rate varied with size of feature sets found for each of the

problems. We note that in all cases the algorithms performed similarly. We also note that in

all cases except the shell connections problem each algorithm found not only the same sized best

feature set but that the sets were composed of the same best features.

Figure 2 shows the error rate vs feature set size for classifying all network connections. The

error rates are for the best feature set of the indicated size found by each algorithm. We see that

with as few as 3 features the error rate is < 0:02%. However, the best feature set only excluded the

number of destination data bytes. The 3 features found by all of the search algorithms were time

in seconds, packets from the destination and source data bytes, and had an error of 0.017488%.

Thus for this particular case a sophisticated algorithm wasn't necessary to �nd a good classi�er.

Figure 3 shows the error rate vs feature set size for classifying SMTP connections. We do not

see a jump in the error rate until 3 features, although the best feature set contained 5 features, with

the Index and Destination Data bytes excluded. All algorithms found that using time in seconds,
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packets from the destination and source data bytes gave an error of 0.009248%, so again the less

computationally expensive algorithm is the best choice.
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Figure 4: Feature Set Size vs Error Rate For Identifying Login Connections.

Figure 4 shows the error rate vs feature set size for classifying login connections. Again we do

not see a jump in the error rate until 3 features, although the best feature set contained 4 features.

This time the index, destination data bytes and source data bytes were excluded from the best

feature set. Again BSS and RGSS performed the best, with RGSS �nding that time in seconds,

packets from the destination and source data bytes gave an error of 0.001850%. Again BSS found

the same feature set and expanded fewer states.

The results from classifying shell connections were more interesting. While all 3 algorithms

found the best feature set size was 4, RGSS found a better feature set with a better error rate, as

shown below.

Algorithm Index Expert Time Src Pkts Dest Pkts Src Data Dest Data

Beam N Y N Y Y Y N

BSS N Y N Y Y Y N

RGSS N Y Y Y N Y N

Here, all algorithms found sets of 3 features with 5 times the error rate of the best feature set.
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Figure 5: Feature Set Size vs Error Rate For Identifying Shell Connections.

Figure 5 shoes shows the error rate vs feature set size for classifying shell connections.
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6 Future uses of AI in Intrusion Detection

Currently, many IDSs employ AI methods in their systems. We expect AI techniques will improve

understanding of how non-intrusive and intrusive behavior di�er, as well as enable hierarchical

classi�cation of di�erent types of attacks.

6.1 Feature Selection in Intrusion Detection Systems

We have demonstrated that feature selection can be e�ective in a small example. We can extend

feature selection to intrusion detection. NSM returns more data than we used in our experiment,

and can also be executed containing a list of strings to look for in connections. This information can

be invaluable in determining whether critical �les or commands pass across the network. However,

the number of interesting strings to check for can number easily in the hundreds. Another method

of deriving new features is by analyzing multiple transcripts and combining information for a single

source-destination pair. Since an attack might span multiple \attempts" over time, a single source-

destination pair might appear many times with di�erent data each time. Aggregating statistics

and adding others can result in more features. For instance, the number of times a particular

connection was made is such an aggregated feature.

6.2 Recon�guration and Customization of IDSs

IDSs can be site speci�c. Using data reduction techniques we can customize an IDS to a particular

site by �nding the information sources most useful to that site's IDS needs. We can also re-con�gure

an IDS using feature selection after �nding new data sources. For instance, NSM can be con�gured

to search for di�erent strings on a network. Feature selection can be used to determine which

strings are the best to search for.

IDSs such as DIDS, COPS, Haystack and IDES all make assumptions about the type of data

they collect. Feature selection techniques can be modi�ed to analyze the value of the features used

in other IDSs and perhaps to enhance their performance by eliminating noisy features. Systems

like DIDS and IDES may be di�cult to analyze, since they incorporate classi�er systems already.

In some cases the classi�ers may rely on all audit features being present before making decisions; if

those features are not present it may cause them to incorrectly classify (or fail to classify) behavior.

6.3 Clustering in Intrusion Detection

We envision that clustering will be very useful in intrusion detection. We plan to use clustering

techniques such as Autoclass [ChKe] to explore patterns in audit and network data. One way

clustering can be used in ID is by giving an overview of complex data. Another is by considering

each cluster in turn and analyzing interesting characteristics of each cluster. For instance, if one

cluster has characteristics of two other extremely dis-similar clusters, it may indicate usage patterns

midway between two \normal" groups, leading to suspicions of misuse.

7 Conclusions

We have provided a brief survey of AI methods used in a variety of IDSs. We have also demonstrated

how one technique, feature selection, can be used to reduce overhead and improve classi�cation of
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network connections. Other IDSs already make extensive use of AI techniques to improve their

ability to detect attacks on computer systems.
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