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ABSTRACT
Learning from imbalanced datasets presents an interesting
problem both from modeling and economy standpoints. When
the imbalance is large, classification accuracy on the smaller
class(es) tends to be lower. In particular, when a class is of
great interest but occurs relatively rarely such as cases of
fraud, instances of disease, and regions of interest in large-
scale simulations, it is important to accurately identify it.
It then becomes more costly to misclassify the interesting
class. In this paper, we implement a wrapper approach that
computes the amount of under-sampling and synthetic gen-
eration of the minority class examples (SMOTE) to improve
minority class accuracy. The f-value serves as the evaluation
function. Experimental results show the wrapper approach
is effective in optimization of the composite f-value, and re-
duces the average cost per test example for the datasets
considered. We report both average cost per test example
and the cost curves in the paper. The true positive rate of
the minority class increases significantly without causing a
significant change in the f-value. We also obtain the lowest
cost per test example, compared to any result we are aware
of for the KDD Cup-99 intrusion detection data set.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning - Induction

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
cost-sensitive learning and evaluation, imbalanced datasets,
wrapper, under-sampling, SMOTE
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In this work, we focus on the problem of learning a clas-
sification model from imbalanced data sets. An imbalanced
data set is one in which there is a significant difference in
the number of examples in a set of classes. The imbalanced
datasets pose an economic or utility problem, as there is
usually a higher cost in misclassifying the interesting class.
A simple consistent guess can become an accurate classifier,
by classifying everything as the majority class, but that is
not useful for the problem at hand. On the other hand, a
simple guess classifying everything as the interesting class
will also not work due to the number of false positives. One
wants a high number of true positives, while maintaining a
low false-positive rate.

There are many examples of imbalanced data sets where
the minority class is of interest. For example, cellular-phone
fraud or credit card fraud data are typically comprised of a
very small proportion of the the fraudlent cases (minority
class) [19, 29, 11]. However, it is quite important to predict
a fraudulent transaction. It is also important to minimize
the false positives (the nonfraudulent transactions that are
predicted to be fraudulent) because these cost time to inves-
tigate and can potentially upset the customer. Thus, there
is a non-zero cost associated with the false positives as well.
Typically, the cost with the false negatives will be the cost of
the transaction. We don’t want a system that will strongly
target true positives at the expense of a high false positive
rate, thereby increasing the total cost of the operation.

As another example, large-scale simulations can be based
on extremely large data sets. Some simulations are replacing
or augmenting physical experiments. This requires that they
be done in great detail [26, 9]. However, the process of
building very large-scale simulations and examining them for
correctness when looking for important, subtle details may
prevent all areas of interest from being viewed [6]. In any
event, the process of validating a simulation can take weeks
to months. A similar amount of time is required to actually
utilize and explore the simulation. This is indicative of the
great opportunity for building intelligent tools which can
help the simulation designers/users find regions of interest
and/or anomalies quickly. There is a cost involved not only
in correctly displaying the regions of interest but also the
costs in time. Hence, the intelligent tool should not only be
“fast”, but also accurately identify the interesting regions,
without too many false alarms. Having many false alarms
for the user to browse through can inadvertently increase
the cost in terms of the time spent. As these two examples
highlight, there is a “utility” associated with the usage of



a technique. That utility is comprised of various costs of
errors, time spent, etc.

We investigate an enhancement to a particular compos-
ite approach, combining over-sampling by creating new ex-
amples and under-sampling, for dealing with imbalanced
data sets. The Synthetic Minority Oversampling TEchnique
(SMOTE) creates synthetic examples from minority classes
[14]. We also under-sample the majority class(es) to obtain
higher accuracy on the minority class(es) without greatly
increasing the number of false positives. However, previous
work has not shown how to effectively set the amounts of
under-sampling and SMOTE for a given dataset. In this
paper, we explore an automated method to do this. We set
up the method such that the f-value [10] is optimized. We
chose the f-value as it is a composite measure that incor-
porates both the false positives and false negatives. Hence,
if an approach significantly increases the true positives, but
also increases the false positives, then the f-value will ap-
propriately reflect that. We evaluate the final performance
of the classifiers under a cost-based framework using cost-
curves and average cost per test example.

It is important to identify the potentially optimal under-
sampling and SMOTE percentages. The amount of sam-
pling performed to mitigate the imbalance in class distrib-
ution will have an effect on the performance of the classi-
fier. We want to reduce the costs per test example. The
utility of the learning algorithm for a particular domain or
task is strongly dependent on the right amount of sampling
and the examples distribution in the dataset. Each dataset
and the corresponding class distribution will have its own
requirements [32]. The computational time and resources
spent deploying the wrapper technique should be mitigated
by the reduced cost per test example, and a higher detection
of the interesting class or regions in the dataset. There is
a tradeoff between the time spent in learning or searching
for the parameters, and the relative reduction in the costs
or improvement in the true positives on the testing set. We
will show that minority class accuracy is improved on several
data sets with only small increases in false positive predic-
tions. In addition, we will also show that our approach pro-
duces much reduced costs per test example. The approach
is shown to be both tractable computationally and effective
in choosing the parameters.

2. LEARNING FROM
IMBALANCED DATASETS

Researchers in the machine learning community have dealt
with the problem of class imbalance by using various ap-
proaches like over-sampling the minority classes, undersam-
pling the majority classes, assigning different costs for dif-
ferent misclassification errors, learning by recognition as op-
posed to discrimination, etc [3, 25, 27, 32, 4, 1, 24, 2, 34].
There is a significant body of research comparing the various
sampling methods [12, 28, 17, 22, 7]. Sampling strategies
have almost become the de facto standard for countering
the imbalance in datasets [13]. With all this there is still
no answer on how to do the sampling required for obtaining
good classifier accuracies on minority classes.

There are a number of different approaches that can be
applied to build classifiers on imbalanced data sets. In
this work, we examined under sampling and over-sampling
by creating synthetic examples of minority classes. Under-

sampling the majority class can reduce the bias of the learned
classifier towards it and thus improve the accuracy on the
minority classes.

Some studies [27, 21] have been done which combined
under-sampling of majority classes with over sampling by
replication of minority classes. While Japkowicz [21] found
this approach very effective, Ling and Li [27] were not able
to get significant improvement in their performance mea-
sures. Japkowicz experimented with only one-dimensional
artificial data of varying complexity whereas Ling and Li
used real data from a Direct Marketing problem. This might
have been the reason for the discrepancy between their re-
sults. On the whole, from the body of literature, it was
found that under-sampling of majority classes was better
than over-sampling with replication of minority classes [17,
12] and that the combination of the two did not significantly
improve the performance over under sampling alone.

Chawla et al. [14] introduced a new over-sampling ap-
proach for two class problems that over-sampled the minor-
ity class by creating synthetic examples rather than repli-
cating examples. They pointed out the limitation of over-
sampling with replication in terms of the decision regions in
feature space for decision trees. They showed that as the
minority class was over sampled by increasing amounts, for
decision trees, the result was to identify similar but more
specific regions in the feature space. A preferable approach
is to build generalized regions around minority class exam-
ples.

The synthetic minority over-sampling technique (SMOTE)
was introduced to provide synthetic minority class examples
which were not identical but came from the same region
in feature space. The over-sampling was done by selecting
each minority class example and creating a synthetic exam-
ple along the line segment joining the selected example and
any/all of the k minority class nearest neighbors. In the
calculations of the nearest neighbors for the minority class
examples a Euclidean distance for continuous features and
the value Distance Metric (with the Euclidean assumption)
for nominal features was used. For examples with continu-
ous features, the synthetic examples are generated by taking
the difference between the feature vectors of selected exam-
ples under consideration and their nearest neighbors. The
difference between the feature vectors is multiplied by a ran-
dom number between 0 and 1 and then added to the feature
vector of the example under consideration to get a new syn-
thetic example. For nominal valued features, a majority vote
for the feature value is taken between the example under
consideration and its k nearest neighbors. This approach
effectively selects a random point along the line segment
between the two feature vectors. This strategy forces the
decision regions of the minority class learned by the classi-
fier to become more general and effectively provides better
generalization performance on unseen data.

However, an investigation into how to choose the num-
ber of examples to be added was not done. In addition,
the amount of under-sampling also needs to be determined.
Given the various costs of making errors, it is important
to identify potentially optimal values for both SMOTE and
under-sampling. This is equivalent to discovering the op-
erating point in the ROC space giving the best trade-off
between True Positives and False Positives. In this paper,
we develop an approach to automatically set the parameters.
We discuss a wrapper framework using cross-validation that



performs a step-wise and greedy search for the parameters.
Note that while the computational aspects of the automated
approach induces certain costs, we do not incorporate that
into our framework. We optimize based on the different
types of errors made. However, we do try to restrict our
search space. We show that this approach works on three
highly skewed datasets. We also utilized a cost-matrix to
indicate the costs per test example based on the different
kinds of errors.

3. WRAPPER
In this work, a wrapper [23] approach was utilized to de-

termine the percentage of minority class examples to add to
the training set and the percentage to under-sample the ma-
jority class examples. The wrapper approach works by doing
a guided search of the parameter space. In this case the un-
derlying classifier is used to evaluate the chosen performance
function for every considered amount of under-sampling and
SMOTE. A particular parameter or set of parameters is cho-
sen and a five-fold cross validation on the train data is done
to get the performance average. The parameters are varied
in a systematic way such that a set of parameter candi-
dates are generated, training sets are updated, and the clas-
sifiers built and evaluated. The candidate associated with
the highest performance is chosen to have its parameters
systematically modified to create new candidate solutions.
This process is a type of best-first search. In order to eval-
uate the effectiveness of the wrapper approach in selecting
the parameters for under-sampling and SMOTE, we need to
use a metric other than strict accuracy. With imbalanced
data, accuracy can be misleading, because it causes you to
favor high prediction accuracy on the majority class which
is often uninteresting. Hence, the f-value metric was used
as the evaluation function [10]. It is made up of two mea-
sures: precision which gives us the measure of correctness
of the classifier in predicting the actual positive or minority
class, whereas recall gives us the measure of the percentage
of positive or minority class examples predicted correctly.
The precision, recall and f-value were calculated as follows,
where β corresponds to the relative importance of precision
vs recall.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

f − value =
(1 + β2) × precision × recall

β2 × recall + precision
(3)

We implemented our wrapper approach as follows. We
first do a ten-fold stratified split to separate the original
dataset into ten training sets and ten disjoint testing sets.
Then, for each of the ten training folds, we implement the
wrapper approach using five-fold cross-validation to get more
robust amount estimates for under-sampling and SMOTE.
Note that these performance estimates will hold true only
when either the training data is a good representative of
the actual data distribution or the wrapper strategy does
not over-fit the training data. If the training data is not
a good representative of the actual data, no strategy can
help. So the only thing which remains is to see whether

the wrapper approach finds under-sampling and SMOTE
levels which when used to build a classifier, do not over-fit
the training data. Once the wrapper selects the particu-
lar amount of SMOTE and under-sampling, we apply those
amounts five different random times on the training set,
since both SMOTE and under-sampling randomly remove
or create new instances. The classifiers learned from the
updated training sets are evaluated on the same testing set,
and those performances are averaged. This is done for each
of the 10 folds. Thus, the final ten-fold average reported is
essentially over fifty classifiers.

The two search parameters for the wrapper are the under-
sampling and SMOTE percentages. The search space be-
comes large if the search is done simultaneously for both
the under-sampling percentage and the SMOTE percentage
(creation of new synthetic examples). Hence, we chose to
first use wrappers to find the best under-sampling percent-
age. The wrapper starts with no under sampling for all
majority classes and obtains baseline results on the train-
ing data. Then in a step-by-step greedy fashion it tra-
verses through the search space of under-sampling percent-
ages to seek better performance over the minority classes.
The search process continues as long as it does not reduce
the f-value of the minority classes or reduce the f-value over
the majority classes more than some specified amount (gen-
erally 5%). Note that for under-sampling we look at both
the minority and majority class f-values. We also looked at
the f-value for the majority class as we only want to remove
the redundant examples through undersampling, and not
remove some of the important majority class examples. By
looking at both the values simultaneously we are maintain-
ing the decision regions for all the classes. Also, we wanted
to identify the amount of under-sampling before introducing
any synthetic minority class examples as that could have in-
advertently penalized the f-value for the majority class. We
want to first remove the majority class examples, that add
no learning value to the base classifier.

Then with the under-sampling percentage fixed, we used
the wrapper approach, to find the SMOTE percentage. Over-
sampling by creating synthetic examples is done until no
minority class f-value increase is obtained for 3 candidate
expansions. Now, for SMOTE we are only interested in im-
proving the performance of the minority class. The f-value
takes into account the increase in false positives (lowered
precision), if any, by SMOTE increments. Thus, an over-
whelming increase in the precision will stop the SMOTE
process. This provides significantly improved computation
times at the cost of a potential loss in accuracy. Once the
best percentages for under-sampling and over-sampling via
SMOTE are found, the training folds are updated with the
requisite SMOTE and undersampling amounts. A classi-
fier is then learned and evaluated on the unseen test data.
We would like to be able to put this in a cost-framework
if the time spent in searching for the “optimal” and “best”
under-sampling and SMOTE percentages, justifies the per-
formance improvement. We are investigating that line of
work, as future work.

4. EXPERIMENTS
We report results on three data sets:

• Mammography Dataset,

• Forest Cover Dataset, and



Table 1: Summary of Datasets. The percentages indicate the proportion of minority class in the complete
dataset.

Dataset # of Examples # classes # of Majority
class examples

# of Minor-
ity class ex-
amples

# of at-
tributes

# of continu-
ous attributes

Mammography 11183 2 10923 260 (2.3%) 6 6
Forest cover 38501 2 35754 2747 (7.13%) 54 54
Modified
KDD cup
99 (intrusion
data)

69980 5 Normal: 35000;
Dos: 25988;
Probe: 4813

U2R: 267
(0.41%);
R2L: 3912
(5.95%)

41 34

• KDD-cup 99: Network Intrusion Detection Dataset
(two versions).

A brief summary of the datasets is presented in Table 1 and
further details are given in later subsections. The Forest
Cover dataset is available from the UCI repository [8] and
our modifications to it will be described in the proceeding.
The network intrusion data set comes from the KDD cup
competition in 1999 [20] and the mammography data set
is one that we locally extracted [33]. It is clear from Ta-
ble 1 that there is significant imbalance between the two
classes of each of these data sets. Hence, there is an oppor-
tunity to improve the minority class recognition accuracy
because a typical classifier will be highly accurate but fo-
cused on the majority class. We report the f-value for all
our experiments. The f-value assumed a β of 1. We intro-
duced a cost-matrix for the mammography dataset, as there
can be a large cost associated with misclassification of a po-
tentially malignant calcification (cancer) as non-calcification
(non-cancerous). Moreover, there is also a slight cost asso-
ciated with misclassifying the non-calcifications as calcifica-
tions. While there wasn’t a natural application of costs to
the forest cover dataset, we still constructed a cost-matrix
for the sake of analysis. The KDD-cup dataset comes with
a cost-matrix for each of the relative type of errors.

However, we did not incorporate the cost-matrix during
the validation stage to select the amount of SMOTE and
under-sampling. We are going to investigate that as a future
line of work. It requires a definite cost matrix to be known
for a dataset. It will be interesting to compare the SMOTE
and undersampling parameters discovered using cost matri-
ces during validation with the SMOTE and undersampling
parameters discovered without using the cost-matrices (as-
suming the same loss).

4.1 Classifiers
Experiments were done with two types of classifiers, de-

cision trees using software (USFC4.5) which emulates C4.5
release 8 [30] and a rule learning technique called RIPPER
[15]. USFC4.5 was used with the default settings. By de-
fault, RIPPER will build rules first for the smallest class and
will not build rules for the largest class. In the case of two
class problems with imbalanced classes, such as here, only
rules for the minority class are going to be built. Hence, one
might expect that RIPPER will be better than a decision
tree in accuracy on the minority class.

The wrapper algorithm that uses five fold cross-validation
on the training set finds the undersampling and SMOTE
percentages for a particular training fold (one of the ten
folds for cross-validating the system). Then under-sampling

and SMOTE are applied to each fold with wrapper selected
percentages, a classifier was built on the updated training
data and evaluated on the test data, unseen during the
wrapper process. Due to the inherent random nature of
under-sampling and SMOTE, the process of training and
testing with wrapper selected under-sampling and SMOTE
percentages is done five times to get an averaged (more sta-
ble) performance measure. To summarize, on each of the
10 folds, training and testing for wrapper selected SMOTE
and under-sampling percentages was done five times i.e.
SMOTE and under-sampling was done for a total of 50 times
for cross-validation to get average stable results. All results
reported in the proceeding are averages obtained in this way.
In the tables, t-stat indicates the results of a significance
test at the 95% level. This was a paired t-test. The x%
of under-sampling means that x% of majority class exam-
ples were retained; and the y% of SMOTE means that many
more examples of the minority class were created. For ex-
ample, 200% of SMOTE means that twice as many (than
the original number) minority class examples were created.

5. RESULTS
We did a ten-fold cross-validation, for mammography and

forest cover datasets, in which the original dataset is strat-
ified into ten disjoint sets or folds from which ten distinct
testing sets and ten training sets are created. For the in-
trusion dataset, we utilized the training and testing sets as
provided. We also used the cost-matrix as provided for the
intrusion dataset and report the average cost per test ex-
ample to compare with other published results [18]. For the
mammography and forest cover datasets, we report various
perfomance metrics, including TPrate, FPrate, f-values, av-
erage cost per test example at different cost ratios, and cost
curves. Our main goal is to compare the classifiers in terms
of reduction in the expected cost across different cost ratios.
Drummond and Holte [16] introduced the cost space rep-
resentation that allows for comparing different classifiers in
terms of the expected cost. Let p(+) be the prior probabil-
ity of the positive class, and p(-) be the prior probability of
the negative class. C(−|+) is cost of misclassifying a pos-
itive example as a negative example (false negative); and
C(+|−) is cost of misclassifying a negative example as a
positive example (false positive). The Normalized Expected
Cost (NE[C]) can then be expressed in terms of TPrate,
FPrate, and Probability Cost Function (PCF) as follows:

PCF (+) =
p(+)C(−|+)

p(+)C(−|+) + p(−)C(+|−)
(4)
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Figure 1: Average Cost per test example at different cost ratios for the Mammography dataset.

NE[C] = (1 − TPrate− FPrate) × PCF (+) + FP (5)

The performance of classifier using a fixed threshold, as
used in this paper, is represented by a pair of (TP, FP). It
can thus be represented as a line in the cost space, compris-
ing of the normalized expected cost (NE[C]) in the y-axis
and PCF (+) in the x-axis. The range of both the measures
is between 0 and 1. Given a family of such classifiers, if
a classifier is lower in the normalized expected cost across
a range of PCF , it dominates the other. One can, thus,
choose a classifier that has a minimum cost either over a
range of PCF (+) or at a particular operating range.

5.1 Mammography Data
The Mammography Dataset was used in [33] and con-

sists of 11,183 total samples with six numeric features and
two classes representing calcification (cancerous) and non-
calcification (non-cancerous). The minority class which rep-
resents calcification contained only 260 examples in the dataset
i.e. only 2.32% of the total examples. The results obtained
are shown in Table 2. The negative sign before the number
in the ’% increase’ row indicates reduction in the associated
value. It can be seen from Table 2, that for all four experi-
mental trials, the wrapper algorithm was able to statistically
significantly improve TP-rates for the minority class at the
expense of a statistically significant reduction in f-values for
the majority class. However, the wrapper method also pro-
duces significantly higher FP-rates than the baseline meth-
ods. But, the correspnding decrease in the f-value was not
significant. Hence, the goal of a higher true positive rate
is attainable without a significant reduction in the overall
f-value.

We then constructed a cost-matrix for the mammography
dataset by considering the the following costs of making er-
rors between the positive and negative examples (using the
convention (C(+|−), C(−|+)): (5, 5); (5, 10); (5, 50); (5,
100); and (5, 500). Figure 1 shows the results using these
varied cost ratios with the different methods presented in
Table 2. As one would expect, if using the same costs of
errors, the baseline method produces the lowest cost per
test example, and is indeed the preferred method. However,
varying the costs from twice as much for false negative to 100
times, we see that the SMOTE classifier achieves the least

cost. Under-sampling in conjunction with SMOTE provides
very little reduction in the cost, if any. Both the C4.5 and
Ripper classifiers exhibit similar behavior with SMOTE —
significant improvement in performance over baseline. Rip-
per is well-suited for the task, as it is able to produce lower
cost estimates per test example. We believe that incorpo-
rating a f-value in the wrapper framework maintains the
relative importance of false positives and false negatives, as
the number of true positives increases. However, one might
vary the relative importance of precision and recall in the
equation based on the specified costs. We assumed uniform
costs in the f-value.

We also implemented cost-curves over the range of PCF (+)
established by varying C(+|−) and C(−|+) [16]. Figure 2
shows the result. Again over the wide range of PCF (+),
the Ripper-SMOTE classifier achieves the lowest expected
costs. Until a PCF (+) of 0.05 all the classifiers achieve
similar performances, but beyond that the Ripper-SMOTE
classifier dominates over the others.

5.2 Forest Cover Data
Originally, the Forest Cover dataset [8] consisted of 581,012

examples with 54 numeric features related to cartographic
variables and seven classes representing the type of the forest
cover. For our study, the data samples from two classes were
extracted while the rest were ignored as done in [14]. The
two classes we considered are Ponderosa Pine with 35,754
samples and Cottonwood/Willow with 2,747 samples. The
results obtained on this dataset are tabulated below in Ta-
ble 3.

For the Forest cover dataset, the results for the minority
class were as expected, with the wrapper TP rate increasing
with statistical significance. But the interesting thing about
these results was that, the wrapper f-values obtained on the
majority class using RIPPER in both scenarios actually in-
creased slightly instead of decreasing which was the gen-
eral trend. For the ’SMOTE only’ scenario using RIPPER,
the wrapper f-values were better than baseline f-values with
statistical significance. For C4.5, the drop in the wrapper
f-values over the majority class though statistically signifi-
cant was extremely small. These were almost perfect results
which one might always hope for, where the minority ex-



Table 2: Results for the Mammography Data. > indicates Wrapper is statistically significantly greater than
Baseline; < indicates Wrapper is statistically significantly lower than Baseline; and ≡ indicates there is no
statistically significant difference between the Wrapper and Baseline methods.

C4.5 Ripper
SMOTE only Undersampling

and SMOTE
SMOTE only Undersampling

and SMOTE
Average
SMOTE %

210% 180% 300% 180%

Average
Under- sam-
pling %

100% 87% 100% 94%

Average Mi-
nority Class
TP-rate

Baseline 0.546 0.546 0.577 0.577

Wrapper 0.658 0.659 0.696 0.665
% increase 16.96% 17.15% 17.13% 13.29%
t-stat -4.7 -3.913 -4.276 -3.322
significance > > > >

Average Mi-
nority Class
FP-rate

Baseline 0.0031 0.0031 0.00439 0.00439

Wrapper 0.0088 0.0099 0.0114 0.0099
% increase 64.58% 68.63% 61.47% 55.96%
t-stat -9.626 -6.387 -8.952 -5.461
significance > > > >

Average Mi-
nority Class
f-value

Baseline 0.644 0.644 0.652 0.652

Wrapper 0.647 0.634 0.643 0.639
% increase 0.49% -1.61% -1.38% -1.90%
t-stat -0.128 0.398 0.484 0.727
significance ≡ ≡ ≡ ≡

Average Ma-
jority class f-
value

Baseline 0.993 0.993 0.993 0.993

Wrapper 0.992 0.991 0.991 0.991
% decrease 0.16% 0.21% 0.21% 0.18%
t-stat 3.678 3.923 5.674 4.224
significance < < < <
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Figure 2: Cost Curve for Mammography dataset.



Table 3: Results for the Forest Cover Data. > indicates Wrapper is statistically significantly greater than
Baseline; < indicates Wrapper is statistically significantly lower than Baseline; and ≡ indicates there is no
statistically significant difference between the Wrapper and Baseline methods.

C4.5 Ripper
SMOTE only Undersampling

and SMOTE
SMOTE only Undersampling

and SMOTE
Average
SMOTE %

600% 430% 560% 580%

Average
Under- sam-
pling %

100% 99% 100% 93%

Average Mi-
nority Class
TP-rate

Baseline 0.873 0.873 0.834 0.834

Wrapper 0.905 0.903 0.900 0.905
% increase 3.59% 3.28% 7.34% 7.87%
t-stat -4.889 -4.223 -7.544 -7.532
significance > > > >

Average Mi-
nority Class
FP-rate

Baseline 0.0072 0.0072 0.009 0.009

Wrapper 0.0109 0.0105 0.0133 0.014
% increase 33.72% 30.82% 28.42% 32.58%
t-stat -10.996 -8.626 -9.507 -5.719
significance > > > >

Average Mi-
nority Class
f-value

Baseline 0.887 0.887 0.852 0.852

Wrapper 0.884 0.885 0.868 0.866
% increase -0.35% -0.24% 1.88% 1.69%
t-stat 0.771 0.549 -3.963 -3.178
significance ≡ ≡ > >

Average Ma-
jority class f-
value

Baseline 0.992 0.992 0.989 0.989

Wrapper 0.991 0.991 0.989 0.989
% decrease 0.06% 0.05% -0.06% -0.04%
t-stat 2.225 1.884 -2.19 -1.087
significance < < > ≡
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Figure 3: Average Cost per test example at different cost ratios for the Forest Cover dataset.



amples which were previously misclassified were correctly
classified without increasing the number of majority class
examples being classified as belonging to the minority class.
The reason for these good results might be due to the sim-
ilar distribution of the minority class examples in training
and test data when cross-validation is performed. For ex-
ample, in the forest cover dataset which contains 2,747 total
minority class examples, the training data will contain ap-
proximately 2,472 examples while test data will contain 275
examples. Since there were a fair number of examples in
the minority class SMOTE may have been more effective.
It is unlike the mammography dataset where the number of
minority class examples in the testing set is only 27.

We also looked at the Forest cover dataset under a cost
framework. While, there weren’t any obvious cost matrices
that could be constructed, we simply utilized the follow-
ing relative costs of (C(+|−), C(−|+)): (1, 1); (1, 10); (1,
50); (1,100); and (1,500). As evident in Figure 3, Ripper
and C4.5 provide different performances as the cost matri-
ces change for this dataset. Ripper is helped by undersam-
pling, while C4.5 is not. This further justifies the use of
wrapper techniques for different classifiers when considering
sampling as a strategy for imbalanced datasets. Moreover,
Ripper at (1,1) also benefited by SMOTE. Figure 4 shows
the cost-curves across the range of PCF (+). The wrapper
based SMOTE and SMOTE-Undersampling for C4.5 and
Ripper, respectively, produce the lowest expected for the
broad range of PCF (+). The choice of the classifier with
the sampling methods doesn’t seem to make a significant dif-
ference in the expected costs, while the individual classifiers
are significantly apart in the cost space.

An interesting addition to our work will be analysis of the
behavior of SMOTE and the rules thus constructed with
both Ripper and C4.5. We would also investigate combina-
tion of the outputs of both the classifiers if they are making
different kinds of errors to reduce the overall costs.

5.3 KDD-99 Cup Intrusion Dataset
This data set we treat differently. We look at it in a way

that allows for comparisons with previous published work.
A particular interesting example for comparison is to look at
the results from of the KDD-99 cup data. A cost matrix was
used in the scoring of the competition as shown in Table 4
[18]. It was used to produce the results in Table 7 below.
There were many duplicate examples in the original 5 million
example training set. All duplicate examples were removed.
We also under-sampled both the normal and neptune (dos)
class by removing examples which occurred only once. For
Training Data 1 as in the Table 4, we under-sampled the
normal class, and for the Training Data 2 we under-sampled
both the normal and neptune classes. Note that for both
these set of experiments, the test set remained unchanged.
Our assumption was that some of them could be mislabeled
or they were not very representative. These changes resulted
in the training data set used here. Only SMOTE was applied
to the modified data with the percentages for each minority
class shown in Table 5.

It can be seen that our approach with RIPPER as the
classifier produced the lowest cost per example after under-
sampling both the normal and neptune classes (Training
Data 2), and applying 100% SMOTE to the u2r class, while
keeping the r2l class unchanged. This was better than the
winner of the contest and better than the succeeding results

from the literature. Even C4.5 as the base classifier with
SMOTE (200% u2r and 300% for r2l) performed better than
the other published techniques.

6. CONCLUSIONS
In this work, a wrapper [23] approach was utilized to de-

termine the percentage of minority examples to add to the
training set and the percentage to under-sample the major-
ity class examples. The wrapper approach works by doing a
guided search of the parameter space. The evaluation func-
tion was applied with a five fold cross validation done on the
training set. Once the best percentages for under sampling
and SMOTE are found it can be used to build a classifier on
the updated training set and applied on the unseen testing
set.
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Figure 4: Cost Curve for Forest Cover dataset.

The f-value metric was used as the evaluation function.
By using such a composite measure, we are able to control
the relative increases in precision and recall, as both are es-
sentially dependent on the different types of errors — false
positives and false negatives. To statistically validate the
results, we applied a 10-fold cross-validation framework to
all but one of the datasets. Within each 10-folds, the wrap-
per utilized 5-fold cross-validation to identify the potentially
optimal amounts of under-sampling and SMOTE.

We show results from applying this approach to the mam-
mography dataset, the forest cover dataset, and the KDD-
cup 99: Network Intrusion Detection dataset. Two learning
algorithms were used, RIPPER a rule learning algorithm
and C4.5 a decision tree learning algorithm. For the exper-
iments, it was shown that it was possible to significantly
increase the accuracy on the minority class, and reduce
the overall expected costs. Our approach for imbalanced
datasets significantly outperformed the baselines both in the
true positive rate and the average cost per test example.
Note that the f-values did not differ significantly because
of the reduction in precision at the expense of the increase
in recall. However, the relative increase in false positives
does not impact the costs computation, because it is more
costly to err as a false negative than a false positive. We
achieved the lowest cost per test example of any approach



Table 4: Cost matrix used for scoring entries in KDD CUP 99 competition.
Actual/predicted dos u2r r2l probe normal

dos 0 2 2 1 2
u2r 2 0 2 2 3
r2l 2 2 0 2 4

probe 2 2 2 0 1
normal 2 2 2 1 0

Table 5: Comparison of results obtained on the original KDD CUP 99 test data. The numbers beside u2r
and r2l indicate the SMOTE percentage utilized for the experiments.

dos u2r r2l probe normal Cost per test
example

Winning Strategy
[18]

97.10% 13.20% 8.40% 83.30% 99.50% 0.2331

Decision Tree [5] 96.57% 13.60% 0.45% 77.92% 99.43% 0.2371
Nave Bayes [5] 96.65% 10.96% 8.66% 88.33% 97.68% 0.2485
Multi-classifier [31] 97.30% 29.80% 9.60% 88.70% - 0.2285
Using C4.5 on Train-
ing Data 1 u2r (200)
- r2l (0)

97.08% 14.47% 1.21% 93.52% 97.87% 0.2478

Using RIPPER on
Training Data 1 u2r
(100) - r2l (0)

97.45% 22.37% 6.96% 81.64% 96.18% 0.2444

Using C4.5 on Train-
ing Data 2 u2r (200)
- r2l (300)

99.41% 14.47% 7.39% 93.61% 97.34% 0.2051

Using RIPPER on
Training Data 2 u2r
(100) - r2l (0)

97.33% 19.74% 13.73% 91.98% 95.62% 0.2049

we know of for the intrusion detection data. We also intro-
duced artificial costs for both the mammography and forest
cover data. Our approach again produces lowest cost per
test example, when compared to the baseline approach. It
is very compelling that for the Forest cover dataset, our ap-
proach produces lower cost per test example even for (1, 1).
Hence, the wrapper approach for automatically selecting the
amounts of SMOTE with under-sampling is very promising.
The proposed framework should be applicable to any sam-
pling technique and evaluation measure.

In this paper, we did not include the costs in the f-value by
varying the β parameter to reflect the relative ratios. We be-
lieve that will be an interesting addition to our work. If the
costs are known then they can expressed within validation
framework for selecting the amounts of SMOTE and under-
sampling quantities. We believe incorporating costs should
again reduce the overall costs of the errors. The sampling
quantities are also discovered using the same costs for both
the classes as they will be used during evaluation. Thus, a
stronger utilitarian framework can be implemented.
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