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Abstract- The retail sector often does not possess
sufficient knowledge about potential or actual frauds.
This requires the retail sector to employ an anomaly
detection approach to fraud detection. To detect
anomalies in retail transactions, the fraud detection
system introduced in this work implements various
salient features of the human immune system. This
novel artificial immune system, called CIFD
(Computer Immune system for Fraud Detection),
adopts both negative selection and positive selection to
generate artificial immune cells. CIFD also employs an
analogy of the self-M ajor Histocompatability Complex
(MHC) molecules when antigen data is presented to
the system. These novel mechanisms are expected to
improve the scalability of CIFD, which is designed to
process gigabytes or more of transaction data per day.
In addition, CIFD incorporates other prominent
features of the HIS such as clonal selection and
memory cells, which allow CIFD to behave adaptively
astransaction patter ns change.
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1 Introduction

As many business sectors in the UK and Europe move
towards implementing e-commerce solutions, and come to
rely ever more heavily upon open systems and networks,
the potential for fraud and related criminal activities is
greatly increased. In order to promote the move towards
secure e-commerce, research aimed at providing efficient
and effective fraud detection is being pursued with
increasing vigour (AAAI, 2002).

The financia fraud problem studied in this paper is set
in the retail business sector, where business transactions
are handled electronically. As a result, they are potential
targets for various fraudulent activities. However, the
retail sector often does not possess sufficient expertise
about potential or actual frauds. This requires the retail
sector to employ an anomaly detection approach to fraud
detection.

In order to develop a fraud detection system (FDS) to
meet the new requirement for detecting retail business

fraud, this paper introduces a novel fraud detection
approach implementing analogies of various salient
features of the human immune system (HIS). The negative
selection algorithm is the most well known artificial
immune system (AlS) that has been popularly used for
anomaly detection (De Castro and Timmis, 2002).
However, arecent study shows a scaling problem with this
algorithm when it is used to monitor alarge amount of real
data (Kim and Bentley, 2001). This problem motivates
this study to propose a new AIS, which can detect
anomalies from a huge volume of retail transaction data.

The novel AIS, called CIFD (Computer Immune
system for Fraud Detection), implements negative
selection and positive selection together to generate
artificial immune cells. In addition, it employs the analogy
of the self-Mgor Histocompatability Complex (MHC)
molecules in order to present antigen data to the system.
These novel features are introduced in order to improve
the scalability of CIFD. In addition, CIFD accommodates
other salient features of the HIS, which are often
implemented by AlS such as clonal selection and artificial
memory cells. These features allow CIFD to behave
adaptively as transaction patterns change.

In the next section, we present a brief review of
financial fraud in the retail sector. Section 3 introduces the
T-cell development process of the HIS and section 4
describes how CIFD implements the T-cell development
process introduced in section 3. Then, section 5 gives an
overview of the conceptua architecture of the CIFD
system, and section 6 discusses related work with the HIS
andlogy CIFD has used with respect to the system
scalability. Finally, section 7 presents further work with
our interim conclusions.

2 Financial Fraud in Retail Business

In order to develop an effective fraud detection system
(FDS), the appropriate monitoring targets of the FDS
should first be identified. The potential frauds within a
large retail business can be broadly classified into two
categories. fraud against the business itself, and fraud
against its clients via its systems. The CIFD system
presented in this paper focuses on detection of frauds in
the former category. This type of fraud, which is against



the business itself, can also be categorised into three
groups according to the potential parties committing the
fraud. They are customers (users of the services),
employees who are regular users of the retail transaction
processing system (RTPS), and other employees who are
not normally users of the RTPS but have legal access to it.
The second group was selected as the most suitable
monitoring target for CIFD for the following reasons:

e Customers using the services would be more easily
able to commit fraud against the selected business's
clients than against the business itself.

e Other employees with legal access to RTPS who wish
to commit fraudulent activities would probably have
to do so in conspiracy with the employees who use
the system in order to obtain cash or stock.

Thus, it is believed that the focus of CIFD on monitoring
internal users of the RTPS greatly reduces the overall
complexity of the task without seriously compromising the
effectiveness of the system. A typical example of a fraud
that is committed by the internal users of the RTPS is the
entry of fake transactions. The internal users, who are
employees of an outlet, are paid proportionally according
to the number of transactions they process per day. Hence,
it is often found that they spread a possible transaction
into several transactions, causing the retail business owner
to overpay. However, other than this simple example, the
end-users of CIFD do not posses much detailed
knowledge of frauds.

Because of these reasons, CIFD aims to detect
anomalies in product sales patterns, made from the
transactions entered by the internal users of RTPS. The
basic concept of detecting anomalous product sales
patterns is to look for patterns that appear to be
significantly different from normal product sales patterns
observed from data collected previoudly.

3 Supplementing Negative Selection for T-cell
Maturation

3.1 Negative Selection Algorithm

CIFD ams to detect non-self product sales patterns by
discerning those patterns that are not regarded as normal.
T-cellsin the HIS are a type of immune cell which playsa
leading role in dicriminating between self and non-self
cells. Alongside the ability to detect non-self antigens, T-
cells also have a key feature called self-tolerance: not
reacting to self antigens. One explanation of how T-cells
achieve self-tolerance is given by negative selection
(Tizard, 1995). At the thymus, immature T-cells develop
into mature T-cells and negative selection occurs during
this process. During negative selection, immature T-cells
in the thymus are tested to see if they bind to self antigens.
If the T-cells bind to any self antigens they are eliminated,

otherwise they become mature. Mature T-cells are then
distributed to lymph nodes and start detecting non-self
antigens. Mature T-cells which pass a negative selection
test are believed to bind to only non-self cells without
binding to self-cells.

Negative selection of T-cells inspired the devel opment
of the negative selection algorithm (Forrest et al., 1997).
The algorithm has been popular in various applications for
anomaly detection purposes (De Castro and Timmis,
2002). However, this appealing approach shows scaling
problems when it is applied to a large amount of real data
(Kim and Bentley, 2001). Since the publication of Kim
and Bentley's work, many other studies have reported
similar problems and proposed potential solutions (Ayara,
, et al., 2002; Lamont, et al., 1999; Dasgupta and
Gonzalez 2002; Esponda, Forrest, and Helman, 2003).
Although these new suggestions provide possible options
for tackling the scaling problem of the negative selection
algorithm, none of them has yet reported that a new
approach that actually scales to a huge amount of data,
whose size in real applications may reach severa
gigabytes or more.

3.2 T-cell Maturation

In order to solve the above problem, we pay attention to
the other T-cell selection process occurring during T-cell
maturation. The maturing process of T-cellsin the thymus
consists of two selection stages. positive and negative
selections (Sompayrac, 1999). Whilst negative selection is
crucial, to provide self-tolerance to the HIS, positive
selection is needed for T-cells to recognise the self-Major
Histocompatability Complex (MHC). The antigens
presented to T-cells for binding are carried by Antigen
Presenting Cells (APCs). APCs are specia cells that
engulf antigens distributed throughout a body and convey
them to T-cells for binding. In addition, APCs transform
engulfed antigens to a specific form that allows T-cells to
bind to them. The MHC molecules of APCs perform akey
rolein this transformation. MHCs sample the fragments of
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Figure 1. MHC/peptide bind to TCR

antigen proteins (caled peptides) inside APCs and carry
them to the surfaces of APCs. Then, actua binding
between antigens and T-cells occurs between T-cell
receptors (caled TCR) and MHC/peptide bindings on
APC surfaces (figure 1). MHCs are known to be unique to
each individual and therefore provide a marker of ‘self’.
Hence, the MHC of each individua is called the self-
MHC.



Thymus

Immature
T-cell

Immature
T-cell

Immature
T-cell

Positive
Selection

Immature

Mature
T-cell

Negative
Selection

"Too Strong - killed"

Figure 2. Positive selection and negative selection

Returning to the maturation of T-cells, unlike negative
selection, positive selection selects only T-cells that bind
to self-MHC/peptide bindings on APCs in the thymus. In
other words, T-cells which do not bind to self-
MHC/peptide bindings on APCs are eliminated. Figure 2
shows this process together with negative selection’. The
immunology literature explains the role of positive
selection as providing T-cells with self-MHC restriction
(Tizard, 1995; Sompayrac, 1999). The sdf-MHC
restriction ensures that al mature T-cells can recognise
antigen peptides in the context of self-MHC. This feature
concerns the activation focus of T-cells. For instance, the
uninfected self-cells having virus-debris stuck on their
surfaces could activate T-cells if T-cells did not have the
self-MHC restriction feature. However, with the self-MHC
restriction feature, T-cells only activate when they can
bind to peptides carried by self-MHC from the inside of
infected cells. That is to say, positive selection eliminates
useless T-cells that cannot activate later.

Whilst positive selection provides a useful feature
together with negative selection, there is a question to be
answered. How can a T-cell, which binds to self-
MHC/peptides during positive selection, pass negative
selection, which requires it not to bind to self-
MHC/peptides? There are several models attempting to
explain this point, but none of them yet provides a clear
answer (Sompayrac, 1999). However, the common
thinking among these models is that the strength of
binding between self-MHC/peptide and TCR (known as
the affinity of a T-cell) determines a pass or a failure of
the two selection tests. For instance, T-cells binding self-
MHC/peptides with relatively weak affinities are selected
from positive selection. Among T-cells selected from
positive selection, those whose affinities are relatively
strong are discarded during negative selection. Therefore,

! The order of occurrence of these two selection stages is not
known yet (Sompayrac, 1999). As a simplifying illustration of
these stages, we arbitrarily put positive selection before negative
selection.

T-cells whose &ffinities are not too strong to be activated
by self-antigens, but not too weak to be ignored by self-
MHC become mature T-cells.

Through the self-MHC restriction and self-tolerance,
T-cells are able to recognise foreign invaders without
attacking self-antigens. We believe that a T-cell
maturation process including the positive and negative
selection together with self-MHC may possibly help to
reduce the lengthy computing time of AlS based solely on
the negative selection algorithm. A novel AIS, CIFD,
proposed here adopts a T-cell maturation process
consisting of positive selection and negative selection
alongside self-MHC. We hope that the self-MHC
restriction feature of artificial T-cells, which is provided
by sef-MHC and positive selection, contributes to
improve the scalability of CIFD. In addition, CIFD
accommodates other salient features of the HIS, which are
often implemented by AIS, such as clona selection and
artificial  memory cells. The overal conceptua
architecture of CIFD isintroduced in section 5.

4 CIFD Implementation of T-detector
Maturation

This section introduces how self-MHC, positive selection
and negative selection described above are implemented
within CIFD. Contrary to many other approaches (De
Castro and Timmis, 2002), we do not attempt to develop
CIFD using the exact mechanisms of the HIS. Rather, we
only mimic them at a high level of abstraction and employ
other available data mining algorithms for actual
implementation.

4.1 Self-MHC

Self-MHC pre-processes a given antigen to be in an
appropriate form to bind TCR of mature T-cells.
Association rule mining is CIFD’s equivalent of self-
MHC. Association rule mining automatically discovers
interesting associations or correlations among a large
number of possible attribute values. It selects frequent
itemsets > whose frequency of occurrence (known as
support) is above a minimum threshold. These frequent
itemsets are then represented in an “If-Then” rule form by
inserting “If” and “Then” between items. Among these
rules, those whose accuracy (known as confidence) is
above a minimum threshold are finally selected. For
instance, the most commonly used association rule-mining
algorithm, Apriori (Agrawal and Srikant, 1994), generates
rules such as “If milk Then bread with confidence = 70%"
from supermarket sales transaction data. This rule implies

2 Anitemis aspecific pair of { atributei, existing valuej of
attribute i) and an itemset is a collection of such items. For
instance, “ Quantity = 100" is an item and { Quantity = 100,
Employee-ID = 200} is an itemset.



HIS Role CIFD Role
Self-MHC Sample the fragments of antigens and | Association Rule | Extract frequent transaction patterns from input
Molecule carry them on the surface of APCs Mining Algorithm antigen data and provide them to CIFD as input

Self-MHC/Peptide
bindings

Antigen binding areas of T-cells

Strong association

rules

Antigen data patterns that bind T-detectors

MHC

Positive Selection | Provide  sdf-MHC  restriction by | Generate Immature T- | Provide self-MHC restriction by generating immature
generating immature T-cells that bind self- | Detectors T-detectors that binds the IF part of strong
MHC/peptides with relatively weak association rules.
affinities

Negative Provide sdf-tolerance by diminating | Generate Mature T- | Provide self-tolerance by generating mature T-

Selection immature T-cells that bind sef- | Detectors detectors whose distance to conflicting strong
MHC/peptides with strong affinities association rulesis large.

Self-MHC High diversity provides a greater chance | Calendar Schema Increase the granularities of association rules so that

Diversity for non-self antigen peptides to bind self- it provides a greater chance for non-self antigen data

to bind T-detectors

Table 1 Comparison between the human immune system(HIS) and CIFD.

that a shopper buying milk is 70% likely to purchase bread
aswell.

The motivation for using association rule mining as
self-MHC is twofold: scalability and feature construction.
Apriori offers a clever strategy to increase scalability. It
uses the monotonic property of frequent itemsets. an
itemset can be freguent only when all of its subset itemsets
are frequent. This property alows Apriori to filter out
itemsets as soon as they have an infrequent subset itemset
(Agrawal and Srikant, 1994). As aresult, the total number
of itemsets whose supports need to be counted is greatly
reduced. This feature makes Apriori an efficient algorithm
and it has become very popular. In addition, Lee (1999)
showed that Apriori-based association rule mining
algorithms are competent at constructing meaningful new
features when the original data format does not necessarily
provide expressive features reflecting normal patterns.
These features are analogous to those offered by the self-
MHC of the HIS. As the self-MHC carries the hidden
antigen peptides onto the APC surface in a visible form,
Apriori constructs meaningful features of antigen data in
anintelligent formasan “1f-Then” rule.

In addition, Apriori selects strong association rules,
whose confidences are above a pre-defined threshold, as a
final rule set. Strong association rules generated by
Apriori reflect “frequent transaction patterns’. These are
the self-MHC/peptide bindings of CIFD, which would be
presented to bind T-detectors. This means that self-
MHC/peptide bindings of CIFD, which are strong
association rules, represent “frequent transaction
patterns’.

4.2 Positive Selection and Negative Selection

In order to perform positive and negative selection, CIFD
must first generate immature artificial T-cells, called T-
detectors. The best-known approach to generating
immature T-detectors for AIS is pseudo-random
generation (De Castro and Timmis, 2002). Some later
works by (Ayara et al., 2002; Lamont et al., 1999;
Dasgupta and Gozalez, 2002) also suggest different

approaches in order to generate immature T-detectorsin a
more efficient way. However, none of these works seem to
be efficient enough to scale up to the volume of data
provided to CIFD. CIFD is designed to monitor sales
transactions involving 19,700 UK outlets and 2,723
distinct products, each transaction record contains 23
fields, giving a total of 1.6GB data/day. The immediate
challenge to be tackled by this work is therefore
developing a system that can scale up to this huge volume
of data. This requires CIFD to have both positive and
negative selection implementation in a modified way.

HIS CIFD

<--}-- Daily Transactions

é
‘

Self-MHC Molecules of
APCs

v

Association Rule Mining

"If A Then C"
"If B Then C"

Self-MHC/Peptide
Bindings

I«

€}

ol

Immature T-Cells -1

«.«

Generate Immature
T-Detectors

Positive Selection

"If Aand B Then D", ...
“If Aand B Then Z

!

Negative Selection

Generate Mature
<

T-Detectors

Mature T-Cells <-- -3 “If Aand B Then D"

‘
‘

Figure 3. Generate T-detectors

Instead of randomly generating an immature T-
detector, CIFD generates an immature T-detector in the
form of an “If-Then rule” that contradicts given self-
MHC/peptides. More specifically, it generates an
immature T-detector by combining two strong association
rules which share the same consequent (the “Then” part of
arule) (Hussain et al., 2000). For instance, let two strong
rules presented as self-MHC/peptides to the “Generate
Immature T-detectors’ process in figure 3 be “If A Then
C” and “If B Then C”. Animmature detector is generated
by having an antecedent (the “If” part of a rule) that
combines the two antecedents of the rules and a




consequent that contradicts the consequent of the two
rules. Hence, an immature detector generated from the
above two strong rules would be “If AB Then not C”.
Since there can be more than one value representing “not
C" as the consequent of this rule, a set of immature
detectors would be {“If AB Then D", “If AB Then
E”,...}. However, among these rules, some rules do not
follow a CIFD self-context, analogous to immature T-cells
discarded by positive selection, and they can be filtered by
applying a rule confidence threshold. Only the immature
T-detectors whose confidences are higher than a pre-
defined threshold are selected. The “Generate Immature
T-detectors” process in figure 3 indicates this process.
This process corresponds to the positive selection for T-
cell maturation.

Hussain et al. introduced this approach in order to
mine unexpected rules (Hussain et al., 2000). Immature T-
detector generation via unexpected rule mining is chosen
since we believe that this method of implementation will
provide self-MHC restriction of T-detectors, which
concerns T-detector activation focus in the current self-
context. This is because immature T-detectors are
generated and selected based on currently presenting self-
antigen information. In particular, we can find a direct
resemblance between the elimination of immature T-
detectors whose confidences are very low, and the
removal of immature T-cells whose affinities are very
weak during positive selection.

As shown in figure 3, immature T-detectors are then
passed to the next process “ Generate mature T-detectors”.
This process is analogous to negative selection of the HIS.
During this process, immature T-detectors start being
compared to two strong rules, which are comparable to
self-MHC/peptide bindings. This process measures the
distance between two strong rules and each immature T-
detector. Then, as negative selection of the HIS only
selects the T-cells with low affinities for self-
MHC/peptide bindings, the process will select immature
T-detectors whose distances to two strong rules are larger
than a pre-defined threshold. The selected T-detectors
now become mature T-detectors, which are ready for
activation.

One thing that should be noted here is that the CIFD
negative selection approach does not require T-detectors
to avoid having high affinities with all self-MHC/peptide
bindings. Instead, it only requires T-detectors to have low
affinities with two strong association rules which have
been used for generating immature T-detectors. After this
modification, will mature T-detectors still have sufficient
self-tolerance? To answer this question, it is necessary to
understand how the T-detectors of CIFD activate. Since T-
detectors exist as a form of “If-Then” rule, CIFD allows
T-detectors to activate when any antigen, which is a
transaction, is satisfied by the rule represented by a mature
T-detector. That isto say that only a transaction which has
attribute values described by the antecedent of a given
mature T-detector can activate it. As seen above, the
mature T-detector has been tolerant of al self-antigens
that have attribute values of the T-detector rule

antecedent. Therefore, mature T-detectors, generated as
above, will still have adequate self-tolerance.

4.3 Sdf-MHC Diversity

Since self-MHC is a key molecule that determines mature
T-cell activation, the diversity of self-MHC types strongly
influences the overall immunity of the HIS (Hofmeyr,
2001). Asthe diversity of self-MHC types increases, there
is a greater chance for non-self antigen peptides to bind
self-MHC types. It is known that some viruses, such as the
Epstein-Barr virus, evolved to avoid binding a certain type
of self-MHC (Hofmeyr, 2001). As a result, individuals
having this type of self-MHC are often found to be
vulnerableto thisvirus.

Similarly, the T-detectors of CIFD would be more
likely to bind diverse anomalies with varied self-MHC
types. Currently, the self-MHC/peptide bindings of CIFD
represented by association rules describe frequent patterns
in transactions. However, there can be different sets of
frequent transaction patterns depending on diverse time
granularities. For instance, frequent transaction patternsin
the morning of weekdays would be different from those in
the evening at weekends. Thus, various types of self-MHC
can represent various levels of frequent transaction
patterns according to diverse time granularities.

To implement diverse types of self-MHC, CIFD uses
calendar schema introduced by Li et al. (2002). A
calendar schema is a relation schema, which represents a
specific calendar category such as “for every morning of
weekdays’ or “for any time of Monday of the first week of
the month”. Li et al. modified Apriori so that it generates
association rules according to various calendar schemas.
This new agorithm mines an association rule such as “If
milk Then bread with confidence = 50% for every
Monday morning” or “If milk Then bread and Newspaper
with confidence = 90% for every Saturday morning”.
Thus, al antigens presented to CIFD are represented
according to different types of time granularity. As various
types of self-MHC are more likely to bind diverse types of
antigen peptides, the modified Apriori is more likely to
generate diverse frequent transaction patterns within
various time granularities.

5 CIFD Conceptual Architecture Overview

In this section, the conceptual architecture of CIFD is
illustrated. CIFD includes six different processes that
provide novel features introduced in sections 2 and 3
together with other features, which can be found from
other AIS. The six processes are 1) Filter and Convert
Transactions, 2) Self Profile, 3) Generate Detectors, 4)
Apply Detectors, 5) Analyse Detections, and 6) Notify
Detections. Figure 4 shows these processes.

The Filter and Convert Transactions process filters
and converts input transaction data into a suitable format
for processing by CIFD. Transaction data supplied to this
study is extracted from a central system that handles daily



data from a large number of outlets operating within a
retail business organisation. The retail business transaction
data includes many attributes which do not need to be
monitored for anomaly/fraud detection purposes. In
addition, further information required for anomaly/fraud
detection can be derived by converting existing attributes
into new formats, e.g. “transaction time stamp” can be
converted to “Day of Week” and “Time of Day”.
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Figure 4. Conceptual Architecture of CIFD

The filtered and converted transaction data is passed to
the Self Profile process. As discussed in the previous
sections, CIFD requires a separate process to generate
self-MHC/peptide bindings. The Self Profile process
performs this task. It mines association rules, which
describe frequent transaction patterns within various
calendar categories.

The third process, Generate Detectors, generates three
different types of detector: T-detectors, memory detectors
and B-detectors. T-detectors play a similar role to that of
T-cells of the HIS. T-detectors are generated through the
T-detector maturation process introduced in section 4. In
addition, immature detectors passed to the process
“Generate Mature T-Detectors’ in figure 3 have to be
exposed to various self-MHC/peptide bindings over a
specific timeframe before they become mature. This is
because CIFD is designed to process one day’s worth of
data at one time, for overnight batch processing. Thus, a
T-detector passing one negative selection test will be
tolerant only over the given day’s transactions. To ensure
a T-detector is tolerant over a sufficient portion of self-
antigens (at least al the antigens covering a calendar
schema assigned to a T-detector), CIFD alows a T-
detector to be mature only when it passes negative
selection for a sufficient period.

Memory detectors perform the same role as memory
cellsin the HIS. Memory cells are replicas of T-detectors
that are successful in detecting fraudulent transactions. As
memory cells react to reappearing or structurally related
antigens quicker than an initial reaction, so the CIFD
memory detectors are also expected to detect similar
anomalies/frauds to those detected previously.

B-detectors are analogous to the B-cells of the human
immune system. In the human immune system, successful
B-cells are cloned but with dight variations (Somatic
Hypermutation) and thus they are expected to have
associative antigen information. Similarly, the B-detectors
in CIFD are generated by mutations of successful T-
detectors®. The principal rationale behind the use of B-
detectors is that there could well be new anomalies
(potential frauds) that are committed by dightly modifying
an existing anomaly/fraud scenario, and there may be yet
other anomalies, which have similar points of vulnerability
in common. These three different types of detector will
exist as an “If-Then” rule form labelled by a specific
calendar category. Furthermore, all detectors will have
limited life spans so that they will be deleted after a while
if they detect no anomaly. This feature means that CIFD
dynamically learns fluid patternsin transactions.

The next process is the Apply Detectors process. All
three types of detector are used to monitor new transaction
data. When new transactions arrive, this process selects
detectors whose calendar categories meet the time of the
transactions. The selected detectors are simply compared
to the transactions and filter the transactions that do not
satisfy detector rules. The filtered transactions are sent to
the Analyse Detection process with detectors for further
analysis. The transactions detected by memory detectors
may be passed to the Analyse Detections process
immediately (this maps to a primary response of the HIS;
Hofmeyr, 2001) whilst the other transactions detected by
T and B-detectors may require detection by more than one
detector to be passed to the Analyse Detections process
(this corresponds to a secondary response of the HIS;
Hofmeyr, 2001). Thisis one simple example of how CIFD
would implement two different immune responses.
However, more careful study is needed for actual
implementation. For instance, the various confidence
values of T-detectors may indicate different immune
response thresholds, and B-detector may need help from
T-detectors to trigger immune responses.

The Analyse Detections process analyses the
transactions detected by the three different types of
detector sets. Initial detection results need to be examined
further in order to decide whether they are indeed
anomalies. In the HIS, an additional confirmation signal
called costimulation sent from the innate immune cells is
required for immune cell activation (Kim, 2002; Hofmeyr,
2001). The role of costimulation is to disallow inaccurate
reactions. In the same way, the CIFD system aimsto allow
human auditors to provide feedback into the system in
order to lower the false positive rate in the future. A kind
of visualisation tool would help auditors to analyse initial
detection results. Auditors' analysis results will determine
the detectors to be cloned and mutated to produce new B-

3 It should be noted that thisis a variation on the HIS. B-cells of
the HIS are also matured in bone marrow and mature B-cells are
released to the lymph nodes for activation. New B-cells
generated by applying Somatic Hypermutation are on successful
B-cellsnot T-cdlls.



detectors and memory detectors, in addition to CIFD’s
own contribution. In this case, auditors themselves can
refine selected successful detectors in order to generate
memory detectors and B-detectors. This mechanism would
provide CIFD with the ability to learn. Therefore, we
expect the degree of human intervention will decrease as
CIFD learns more diverse anomaly/fraud types.

The Notify Detections process will notify the users of
the fina analysis of detection. It is important to present
the final detection results of CIFD in a comprehensible
format to the users. This should include some justification
asto why CIFD detects some transactions as anomal ous.

Among these six processes, the first two processes, the
Filter and Convert Transactions and Self Profile are
developed and tested. The details about these processes
and test results are reported in (Kim, 2003).

6 Discussion and Related Work

In order to reduce the negative selection algorithm's
computing time, severa works have added an
evolutionary approach. Ayara et al. (2002) introduced a
modified negative selection agorithm by employing
somatic hypermutation. To generate an immature detector,
it selects a detector matching self-antigens and mutates the
parts of the detector which match self-antigens. In
addition, the mutation rate is determined proportionally to
the affinity of the detector. The rationale behind this
approach is the generation of mutants that are further away
from self-antigens. Lamont et al. (1999) uses a genetic
algorithm to generate detectors. The fitness function of a
detector is defined as the growth rate of non-self space
coverage by each detector. Dasgupta and Gozalez (2002)
introduce a similar approach, employing a genetic
algorithm to generate detectors. The fitness function
reported there is defined as the growth rate of non-self
space coverage by each detector with a penaty value,
which is the number of matching self-antigens.

Work by Esponda, Forrest and Helman (2003)
provides new theoretical analyses that show the number of
detectors needed to maximise detection coverage when the
algorithm uses negative selection and positive selection
respectively. Thiswork aso estimates for the first time the
self-set size that allows the negative selection algorithm to
be computationally advantageous compared to positive
selection. This work is significant because it alows
evauation of the feasibility of the negative selection
algorithm before it is applied to a given problem. Another
theoretical analysis by Wierzchon (2001) also introduces a
new negative selection algorithm that requires low-space
complexity to generate detectors.

All of these works use the negative selection algorithm
for anomaly detection purposes such as network intrusion
detection and fault detection. They have indeed shown
better understanding of the negative selection algorithm
and their modifications that might cure the scaling
problem of the algorithm. Nevertheless, none of them has
been tested on the huge volume of data that CIFD has to

handle. From the above works, Lamont et al (1999) and
Dasgupta and Gonzalez (2002) have tested their new
systems on real data sets, whose sizes are 1.3Mbytes and
unreported respectively. However, Lamont et al reported
that their new suggestion requires far too much
computation time to be applied to the given data set and
Dasgupta and Gonzalez (2002) did not report computation
time.

On the other hand, there are other AlS that process a
large amount of real data for anomaly detection. Kephart
et al. (1997) at the IBM research centre developed an AIS
for virus detection and their prototype has eventually been
developed into a commercia system (White et al., 2000).
Another AIS developed by Burgess (2000) is a proactive
mai ntenance system for computer systems. Burgess (2000)
puts the emphasis of AIS on an autonomous and
distributed feedback and healing mechanism, triggered
when a small amount of damage can be detected at an
initial attacking stage.

Interestingly, these two research efforts deliver
somewhat different messages from the other work
introduced in this section. They attempt to identify and
understand useful processes of the HIS, and to see how
these can help with devising a new anomaly detection
system. However, they do not attempt to implement the
processes using the mechanism of the HIS, only to mimic
it a a high level of abstraction. They advance other
conventional algorithms to implement identified human
immune processes. In other words, they treat each process
of the human immune system as a black box and thus the
actual implementation of this box is not considered
important to provide the desired result from each process.
This may have assisted them in building a commercially
successful system. CIFD follows a similar philosophy.
The relevance to the study of AlS is the understanding of
useful  immune mechanisms for FD, and the
implementation of these mechanisms is not our main
concern.

There are also other AIS that employ a mechanism
analogous to self-MHC of the HIS. Forrest and Hofmeyr
(2001) use a permutation mask as self-MHC, which
defines a permutation of each detector binary string. As
the diverse types of self-MHC present different types of
peptides, the permutation mask allows multiple
representations of detectors. Toma et al. (2000) used the
internal state of mobile agents as self-MHC and the
interaction with externa information as self-MHC/peptide
bindings. To the best of our knowledge, CIFD is the first
AIS to employ self-MHC in order to provide a self-
restriction feature and increase the diversity of detectors.

7 Conclusion and Future Work

This paper introduces a novel AIS, caled CIFD
(Computer Immune system for Fraud Detection) that is
designed to scale to a huge volume of real data for fraud
detection. In order to improve scalability, CIFD presents
antigen data using an analogy of the self-MHC molecule



of the HIS. CIFD dso employs negative selection
combined with positive selection in order to reduce the
computing time taken to generate T-detectors. Together
with these novel features, CIFD is equipped with other
immune features: i) adaptability, which allows CIFD to
detect dynamically changing anomaly patterns and ii) the
ability to learn, memorising previously detected anomaly
patterns and quickly reacting to reappearing or structurally
related antigens. These are implemented using rather well
known artificial immune components such as clonal
selection and memory detectors.

We aso briefly study a group of AIS, which are
designed to improve the scalability of the negative
selection algorithm. The study shows that they have not
been shown to scale to a large volume of real data yet,
although they provide a better understanding of the
algorithm and promising modifications. This group of
work is then compared to the other group of AIS, which
successfully scale to large amounts of real data. The
interesting observation made from this comparison is that
AlS's with good scalability treat each process of the
human immune system as a black box and thus the actual
implementation of this box is not considered important.
This may have assisted them in building a commercially
successful system. CIFD aso follows a similar
philosophy.

We are currently completing the development of Filter
and Convert Transactions and Self Profile introduced in
section 5. The preliminary test results are reported in
(Kim, 2003) and thorough tests are currently being
conducted. The results reported there show that CIFD
successfully scales to 700 Mbyte data samples that contain
a total of 5,054,878 transactions within an acceptable
computing time. The detailed computation times taken for
processing daily transactions are presented in (Kim,
2003). Whilst these results show promising first signs, it is
necessary to test a completely developed CIFD if it isto
be considered an effective anomaly detector. With this
aim, the current work is focused on the development of
positive and negative selection algorithms in the T-
detector maturation process. The main research issues at
this stage of work are i) devisng an effective
measurement that represents the distances between self-
MCH/peptides bindings and an immature detector, ii)
defining an appropriate tolerisation period for an
immature detector and iii) defining a competent T-detector
activation scheme.
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