Keywords:

Abstract:

INTRUSION DETECTION BASED ON DATA MINING

Intrusion detection, anomaly detection, user anomaly, data mining, frequent episodes

Traditional computer misuse detection techniques can identify known attacks efficiently, but perform very
poorly in other cases. Anomaly detection has the potential to detect unknown attacks, however, it is a very
challenging task since it is aimed at the detection of unknown attacks without any priori knowledge about
specific intrusions. This technology is still at its early stage. Existing research in this area focuses either on
user activity (macro-level) or on program operation (micro-level) but not on both simultaneously. In this
paper, an attempt to look at both concurrently is presented. Based on an intrusion detection framework
(Lee, 2001), we implemented a user anomaly detection system and conducted several intrusion detection
experiments by analysing macro-level and micro-level activities. User behaviour modelling is based on data
mining; frequent episode algorithms are used to build the user’s normal profiles. The experimental results
have shown that the system can detect anomalies and changes in the user’s normal working patterns

effectively.

1 INTRODUCTION

In recent years, intrusion and other types of
attacks to the computer network systems have
become more and more widespread and
sophisticated. In addition to intrusion prevention
techniques such as authentication, firewall and
cryptography, intrusion detection is often used as a
second line of defence to protect computer networks.

Intrusion detection techniques can be classified
into two categories: misuse detection and anomaly
detection (Lee, 2001). Misuse detection looks for
signatures of known attacks, and any matched
activity is considered an attack. Misuse detection
can detect known attacks efficiently, but it performs
poorly with unknown attacks. Anomaly detection
constructs models of subject behaviour, and any
significant deviation from normal behaviours is
considered part of an attack. Anomaly detection has
the potential to detect unknown attacks since no
advance knowledge about specific intrusions is
required (Lee, 2001). In practice, both techniques
are used in an intrusion detection system as they
complement each other.

Accuracy, extensibility and adaptability are three
important characteristics of intrusion detection
systems (Lee, 2001). Since attacks change their
types and patterns frequently, any intrusion detection
system needs to wupdate the detection rules
dynamically so that it can notice new attacks. To
remain efficient Intrusion detection systems should
not use too much of system resources, as it would
heavily affect the normal activities and would reduce
overall efficiency.

A number of techniques such as data mining,
statistics and genetic algorithms have been used for
intrusion detection on the user and program activity
levels individually. In (Lee 2001), a novel
framework, called MADAM ID, for Mining Audit
Data for Automated Models for Intrusion Detection
is presented. It uses data mining algorithms to
compute activity patterns from system audit data and
extracts predictive features from the patterns. It then
applies machine-learning algorithms to the audit
records that are processed according to the feature
definitions and generates intrusion detection rules.
The data mining algorithms used to generate the
patterns are meta-classification, association rules
and frequent episode algorithms. The test results in
1998 conducted by DARPA Intrusion Detection
Evaluation showed that the model was one of the
best performing of all the participating systems in
off-line mode. In order to detect user anomalies, the
normal user activity profiles are created and a

mailto:jiankun.hu@rmit.edu.au
mailto:xhoang@cs.rmit.edu.au

similarity score range (upper and lower bound) is
assigned to each user’s normal pattern set. When in
action, the system computes the similarity score of
the current activity’s patterns, and if this score is not
in the similarity score range, the activity is
considered as an anomaly.

Pikoulas et al (Pikoulas, 2001) have built an
agent-based intrusion detection system using
Bayesian forecasting technique to predict user
action. The system was built on multi-agent
techniques, in which a core agent sitting on a server
keeps all user profiles, and the user agents are on the
workstations. The user profile will be downloaded
automatically from the core agent to user agent
when the user starts a session. The system is
reported to be able to determine user’s unpredictable
activities or changes in normal working patterns.

On the program activity level (micro-level),
Warrender et al have pointed out that a number of
machine-learning approaches such as rule induction,
hidden Markov model can be used to learn the
concise and generalizable representation of the
“self” identity of a system program by relying on the
program’s run-time system calls. The learned
models were shown to be able to accurately detect
anomalies caused by exploits on the system
programs. Yet, combination of these two (macro-
level and micro-level) for intrusion detection has not
been reported.

Intuitively, combination of macro-level and
micro-level activities should produce better results
as the system can provide multi-layered information.
In this paper, we implement a user anomaly
detection system based on the intrusion detection
framework (Lee, 2001) and conducted several
intrusion detection experiments by analysing both
macro-level and micro-level activities. User
behaviour is modelled by using data mining, and the
frequent episode algorithms are used to build the
user’s normal profiles. At the first step, we gather
the user’s session data and use frequent episode

algorithms to build the user’s normal profiles. In the
anomaly detection step, we monitor the current user
and program activities, and then compare the current
activity patterns with the user’s profile to determine
if the activities are normal or anomaly. The
experimental results have shown that the system can
detect user anomalies and changes in the user’s
normal working patterns effectively.

The remaining part of the paper describes the
proposed system and is organised as follows. Part 2
explains the process of building user profile. Part 3
discusses the detection model. Part 4 presents the
experimental results. Finally conclusion and future
work is described.

2 BUILDING USER PROFILE

2.1 Collect the user process data

Our detection system is built on the Windows
NT platform using the Win32 library to monitor user
and program activities. The Process Status Helper
(PSAPI.DLL) and the Too! Help Library are used to
get running process information. Figure 1 shows the
system’s process monitoring structure (Microsoft,
2002).

When the user starts a new session, the detection
system starts automatically and it begins to obtain
session information such as login user name, session
start time. It then collects information about all
running processes in the user’s session every five
seconds. The major information of running
processes collected is presented in table 1. The
process identifier is unique and it is assigned by the
operating system. Other process information such as
memory and input/output (I/O) information reflect
the usage of system resources by user processes.

System

Process Monitoring

f

f

PSAPI
library

Toolhelp32
library

?

f

Windows Kernel

Figure 1: Process monitoring structure

Table 1- Information of monitoring process

Table 2- Process data sample (extract)

SessionID | ProcessID | Process name Start time
57 884 msimn.exe 2002-10-19 16:17:02
57 748 iexplore.exe 2002-10-19 16:17:12
57 720 winword.exe 2002-10-19 16:19:20
57 156 smss.exe 2002-10-19 16:07:35
57 204 winlogon.exe |2002-10-19 16:07:48
57 232 services.exe 2002-10-19 16:07:50
57 244 Isass.exe 2002-10-19 16:07:51

P rocess Description
Attributes

ProcessID Identifier of process

ProcessName Name of process

StartTime Date & Time process started

ExitTime Date & Time process ended

HandleCount Number of handles of the process

ThreadCount Number of running threads of the
process

MemoryUsed Include information about memory used
of the process such as current memory
used, peak memory used and virtual
memory used.

I/0O information |Include information about input/output
operations such as read, write and other
count and transferred data.

2.2 Building user profile

In order to build the user profile, we collect
process data from 30 user login sessions. We divide
the running process in the system into two types:
system processes and user processes. The system
processes such as “winlogon.exe” and “services.exe”
are processes that are started automatically by the
system and they provide basic service to the user
processes and user-working environment. User
processes such as “acrobat.exe” and “winword.exe”
are user application processes that are started by the
user in the session. As our purpose is to detect
anomalous user activity, we focus on monitoring
user processes. We keep track of user activity by
recording all related events such as process start,
process exit etc. On the program activity level,
consumption of system resources by user processes
is monitored. Table 2 shows a partial sample of
process information collected by the monitoring
system.

We applied the frequent episode algorithms
(Mannila, 1997; Borgelt, 2002) on a collected data
set to find the normal usage patterns of a given user.
For example, Alice is a secretary and she usually
uses programs such as email client, web browser and
word processor, and her application usage pattern is
Alice(mail:0.95, browser:0.80, word:0.80). This
means 95% probability of Alice using an email
client in her working session and 80% probability of
using both web browsers and word processing
programs.

For each user process, we also need to establish
the normal resource usage patterns. One of the most
important information we have to evaluate is the
number of threads concurrently running, this is
called the ThreadCount of a process. An example is
shown in Table 1. The more threads a process has
the more system resources it uses; for example, if
the user runs a web browser, each browser window
needs a separate thread. Other information such as
handle count, memory usage and I/O information are
also processed when constructing the profile.

In general, each user profile contains two parts:
(1) the list of user applications with frequency of use
and normal start time, and (2) the system resources
usage pattern for each user process. In the system
resources usage table, each process has an entry and
each parameter has its own normal range. For
example, Alice’s web browser process has a thread
count between 6 and 10, memory usage between 12
and 15MB and data transferred (read) between 5 and
10MB. Table 3 shows the system resource table
entry for “winword.exe” (a word processor
application).

Table 3- Resource usage for winword.exe

Process Attribute Min Max
ThreadCount 2 4
WorkingSetSize (bytes) 6582272 112955648
PeakWorkingSetSize (bytes) | 6582272 | 12955648
PagefileUsage (bytes) 2830336 | 4730880
PeakPagefileUsage (bytes) [2830336 [4755456
ReadOperationCount 28 266
WriteOperationCount 2 6646
OtherOperationCount 1363 9330
ReadTransferCount (bytes) | 7513 64129
WriteTransferCount (bytes) | 162 210906
OtherTransferCount (bytes) |21312 122506

3 ANOMALY DETECTION

The model of our anomaly detection system is
shown in figure 2. After the initial step of building
the user profile, the detection system is ready for
action. When the user starts a new session, the
system captures the username and loads the
appropriate profile for the user. For testing purposes,
we built the user profile as a text file. The
monitoring system samples the user processes every

five seconds, extracts the information needed and
sends them to the detection engine. The detection
engine compares process sample information against
the user profile and evaluates the result. The
comparison procedure is presented in figure 3. Our
two-level layered detection scheme assesses the user
level activity first, and if the pattern is accepted as
normal it goes on to the program level activity
pattern test.

In order to increase accuracy and reduce false

Process

Monitor
Frequent < Process
Patterns Information

Detection
User Engine
Profile &
Decision

Figure 2: Data mining-based detection model

Process
Information
- Compare
User Process List
Profile
Process Process
in Not in
List List
Compare
Process Info
Usage
Pattern Usage
Agreed Pattern
Not
Acreed \ 4
End Take
Action/Alarm

Figure 3: Profile Comparison Procedure

alarm rate, we introduced a window size parameter,
which is the minimum period of time in which all
comparison results from process samples will be
produced. The average of the comparison results is
calculated and evaluated, and then the decision
about normal/anomalous operation is taken. In our
system, the window size is the number of samples
taken. It must be chosen carefully, as large window
size reduces the false alarm rate but it also increases
system response time, and this in turn may make the
system miss some anomalous events. In the
experiments, we employed a window size of 5
samples. For programming convenience, the data
samples were stored in a circular queue.

The actions taken by the detection system can be
simply sending an alarm message, or the system may
take active steps such as kill the application that
causes anomalies or even force the user to log off
from the system.

4 EXPERIMENTAL RESULTS

Several experiments were performed on a
Windows 2000, 1000MHz CPU machine. The
sampling, at a rate of one in every five seconds, had
no noticeable effect on the normal tasks in the
system. The detection module was in waiting status
most of the time (consumed ~0% CPU time) and it
only used less than 5% of CPU time when active and
processing the samples.

At the user activity level, the system can detect
anomalous events such as users running programs
that are not in the user normal profile, and a user
opening a program at a time that does not fit with the
normal time pattern. Table 4 shows samples of
Alice’s normal and abnormal behaviour that the
system can detect. In this experiment, the system
captures all session events, such as what programs
Alice uses and when they started. The evaluation
module first checks whether all of Alice’s programs
are in the process list. If any of them is not there, the
corresponding program is unauthorised, and an
anomaly has been detected. If they all are there, the
next step is checking the time when it is regularly
used. If the timing of this event in Alice’s session
does not match her profile, it will be considered
abnormal.

On the program activity level, we focus on the
detection of excessive usage of system resources of
user’s programs. We monitor eleven parameters of
each process, as listed in Table 3, and each one is
marked as within or outside the normal range.
Human behaviour is difficult to predict, so it is very
rare that a user’s current activity fully agrees with
the stored user profile. To cater for variations, the

number of parameters in the normal range is
compared to the total number of parameters, a ratio
is calculated. We introduced an acceptance
threshold whose value is between 0 and 1, and if the
ratio is greater than the threshold, the user’s current
activity is accepted as normal, otherwise it is
rejected. Table 5 presents experimental results for
this activity level.

Table 4- Alice’s normal/abnormal behaviours

Time Start Application Normal/ Abnormal
9.00 Mail client Normal (from 9.00-9.30)
9.20 Web browser Normal (from 9.00-10.00)
10.00 Word processor Normal (from 9.30-10.30)
9.10 C++ Compiler Abnormal (application not
in the list)

9.20 FTP program Abnormal (application not
in the list)

16.05 Mail client Abnormal (not valid time
pattern)

Table 5- ThreadCount normal/abnormal ranges

Processes Normal Current Normal/
range Usage Abnormal

msimn.exe 6-9 8 Normal
(mail client)
winword.exe 2-4 10 Abnormal
(word
processor)
iexplore.exe 1-17 25 Abnormal
(web browser)

Discussion

On the user level, as Table 4 shows, the system
can detect unauthorised use of programs correctly.
On the program level, the excessive use of system
resources can be detected. In the example shown in
Table 5 the ThreadCount parameter indicates the
current usage as 8 threads, which is within the
normal range of 6-9. However, word processor
usage is excessive and so is web browser usage,
since ThreadCounts go outside the normal ranges.

We have tested the system with acceptance
threshold values of 0.70, 0.75, 0.80 and 0.90 on
various user profiles. It was clear that the higher
threshold selected the higher the system’s accuracy.
However, higher threshold may result in false
alarms. On the other hand, if the threshold value is
too low, the system may miss anomalous events.

S CONCLUSION AND FUTURE
WORK

In this paper an anomaly detection system based
on data mining was presented. The frequent episode
algorithm was used to get normal usage patterns at
the initial step of the system operation. The system
is able to detect anomalies or changes in the user’s
normal working patterns on two levels: on the user
level and on the program level. By integrating
detection on the user and on the program levels into
one system, a good overall picture of a user session
can be obtained.

In future, the following improvements are
planned for the system.

(i) Dynamic learning of user profiles will allow
the system to be more adaptive.

(ii)) The range of valid values for a process
parameter can change with time, so values for
time intervals will be introduced

(iii) The false alarm rate, as well as the undetected
anomalies rate depend on the window size.
Determining the most suitable window size is
an issue for further research.

REFERENCES

Borgelt C., 2002. Finding Association Rules/Hyperedges
with the Apriori Algorithm. http://fuzzy.cs.uni-
magdeburg.de/~borgelt/software.html#assoc.

Boudaoud, K., Labiod, H., Boutaba, R., and Guessoum,
Z., 2002. Network security management with
intelligent agents. In the Network Operations and
Management Symposium, 2000. NOMS 2000. 2000
IEEE/IFIP, 2000. Page(s): 579 -592.

Lane, T., and Brodley, C. E., 1998. Approaches to Online
Learning and Concept Drift for User Identification in
Computer Security. American Association for
Artificial Intelligence press.

Lee, W. and Stolfo, S. J., 2001. A Framework for
Constructing Features and Models for Intrusion
Detection Systems. In ACM Transactions on
Information and System Security, Vol. 3, No. 4,
November 2000, Pages 227-261.

Lee, W., Stolfo, S. J., and Mok, K. W., Algorithms for
System Mining Audit Data. A chapter in Data
Retrieval and Data Mining, T. Y. Lin and N. Cercone
(eds), Kluwer Academic Publishers, 1999.

Mannila, H., Toivonen, H., and Verkamo, 1., 1997.
Discovery of Frequent Episodes in Event Sequences.
In Data Mining and Knowledge Discovery 1, pages
259-289. Kluwer Academic Publishers.

Microsoft ~ Corporation, 2002. MSDN
http://msdn.microsoft.com/library/default.asp.

Pikoulas, J., Buchanan, W.J., Mannion, M., and
Triantafyllopoulos, K. 2001. An agent-based Bayesian
forecasting model for enhanced network security. In
ECBS 2001 Proceedings on Engineering of Computer
Based Systems — the FEighth Annual IEEE
International Conference and Workshop.
Pages 247-254.

WARRENDER, C, FORREST, S., AND
PERLMUTTER, B., 1999. Detecting intrusions using
system calls: Alternative data models. In the
Proceedings of the 1999 IEEE Computer Society
Sympo-sium on Research in Security and Privacy
(Berkeley, CA, May). IEEE Computer Society Press,
Los Alamitos, CA, pages 133—-145.

Zhang, R., Qian D., Ba, C., Wu, W., and Guo, X., 2001.
Multi-agent based intrusion detection architecture, In
the 2001 International Conference Proceedings of
Computer Networks and Mobile Computing. Page(s):
494 -501.

Library,

	1	INTRODUCTION
	2 BUILDING USER PROFILE
	2.1 Collect the user process data
	2.2 Building user profile

	3 ANOMALY DETECTION
	4 EXPERIMENTAL RESULTS
	5 CONCLUSION AND FUTURE WORK
	REFERENCES

