
INTRUSION DETECTION BASED ON DATA MINING  

    
 
 

Keywords: Intrusion detection, anomaly detection, user anomaly, data mining, frequent episodes 

Abstract: Traditional computer misuse detection techniques can identify known attacks efficiently, but perform very 
poorly in other cases. Anomaly detection has the potential to detect unknown attacks, however, it is a very 
challenging task since it is aimed at the detection of unknown attacks without any priori knowledge about 
specific intrusions. This technology is still at its early stage. Existing research in this area focuses either on 
user activity (macro-level) or on program operation (micro-level) but not on both simultaneously. In this 
paper, an attempt to look at both concurrently is presented.  Based on an intrusion detection framework 
(Lee, 2001), we implemented a user anomaly detection system and conducted several intrusion detection 
experiments by analysing macro-level and micro-level activities.  User behaviour modelling is based on data 
mining; frequent episode algorithms are used to build the user’s normal profiles. The experimental results 
have shown that the system can detect anomalies and changes in the user’s normal working patterns 
effectively. 

1 INTRODUCTION 

In recent years, intrusion and other types of 
attacks to the computer network systems have 
become more and more widespread and 
sophisticated. In addition to intrusion prevention 
techniques such as authentication, firewall and 
cryptography, intrusion detection is often used as a 
second line of defence to protect computer networks. 

Intrusion detection techniques can be classified 
into two categories: misuse detection and anomaly 
detection (Lee, 2001). Misuse detection looks for 
signatures of known attacks, and any matched 
activity is considered an attack. Misuse detection 
can detect known attacks efficiently, but it performs 
poorly with unknown attacks. Anomaly detection 
constructs models of subject behaviour, and any 
significant deviation from normal behaviours is 
considered part of an attack. Anomaly detection has 
the potential to detect unknown attacks since no 
advance knowledge about specific intrusions is 
required (Lee, 2001). In practice, both techniques 
are used in an intrusion detection system as they 
complement each other. 

 
 
 
 

 
Accuracy, extensibility and adaptability are three 

important characteristics of intrusion detection 
systems (Lee, 2001). Since attacks change their 
types and patterns frequently, any intrusion detection 
system needs to update the detection rules 
dynamically so that it can notice new attacks. To 
remain efficient Intrusion detection systems should 
not use too much of system resources, as it would 
heavily affect the normal activities and would reduce 
overall efficiency. 

A number of techniques such as data mining, 
statistics and genetic algorithms have been used for 
intrusion detection on the user and program activity 
levels individually. In (Lee 2001), a novel 
framework, called MADAM ID, for Mining Audit 
Data for Automated Models for Intrusion Detection 
is presented. It uses data mining algorithms to 
compute activity patterns from system audit data and 
extracts predictive features from the patterns. It then 
applies machine-learning algorithms to the audit 
records that are processed according to the feature 
definitions and generates intrusion detection rules. 
The data mining algorithms used to generate the 
patterns are meta-classification, association rules 
and frequent episode algorithms. The test results in 
1998 conducted by DARPA Intrusion Detection 
Evaluation showed that the model was one of the 
best performing of all the participating systems in 
off-line mode. In order to detect user anomalies, the 
normal user activity profiles are created and a 

mailto:jiankun.hu@rmit.edu.au
mailto:xhoang@cs.rmit.edu.au


 

similarity score range (upper and lower bound) is 
assigned to each user’s normal pattern set. When in 
action, the system computes the similarity score of 
the current activity’s patterns, and if this score is not 
in the similarity score range, the activity is 
considered as an anomaly. 

Pikoulas et al (Pikoulas, 2001) have built an 
agent-based intrusion detection system using 
Bayesian forecasting technique to predict user 
action. The system was built on multi-agent 
techniques, in which a core agent sitting on a server 
keeps all user profiles, and the user agents are on the 
workstations. The user profile will be downloaded 
automatically from the core agent to user agent 
when the user starts a session. The system is 
reported to be able to determine user’s unpredictable 
activities or changes in normal working patterns. 

On the program activity level (micro-level), 
Warrender et al have pointed out that a number of 
machine-learning approaches such as rule induction, 
hidden Markov model can be used to learn the 
concise and generalizable representation of the 
“self” identity of a system program by relying on the 
program’s run-time system calls. The learned 
models were shown to be able to accurately detect 
anomalies caused by exploits on the system 
programs. Yet, combination of these two (macro-
level and micro-level) for intrusion detection has not 
been reported. 

Intuitively, combination of macro-level and 
micro-level activities should produce better results 
as the system can provide multi-layered information. 
In this paper, we implement a user anomaly 
detection system based on the intrusion detection 
framework (Lee, 2001) and conducted several 
intrusion detection experiments by analysing both 
macro-level and micro-level activities. User 
behaviour is modelled by using data mining, and the 
frequent episode algorithms are used to build the 
user’s normal profiles. At the first step, we gather 
the user’s session data and use frequent episode 

algorithms to build the user’s normal profiles. In the 
anomaly detection step, we monitor the current user 
and program activities, and then compare the current 
activity patterns with the user’s profile to determine 
if the activities are normal or anomaly. The 
experimental results have shown that the system can 
detect user anomalies and changes in the user’s 
normal working patterns effectively.   

The remaining part of the paper describes the 
proposed system and is organised as follows.  Part 2 
explains the process of building user profile.  Part 3 
discusses the detection model.  Part 4 presents the 
experimental results.  Finally conclusion and future 
work is described. 

2 BUILDING USER PROFILE 

2.1 Collect the user process data 

Our detection system is built on the Windows 
NT platform using the Win32 library to monitor user 
and program activities. The Process Status Helper 
(PSAPI.DLL) and the Tool Help Library are used to 
get running process information. Figure 1 shows the 
system’s process monitoring structure (Microsoft, 
2002). 

When the user starts a new session, the detection 
system starts automatically and it begins to obtain 
session information such as login user name, session 
start time. It then collects information about all 
running processes in the user’s session every five 
seconds. The major information of running 
processes collected is presented in table 1. The 
process identifier is unique and it is assigned by the 
operating system. Other process information such as 
memory and input/output (I/O) information reflect 
the usage of system resources by user processes. 

 

Windows Kernel

PSAPI  
library 

Toolhelp32 
library 

Process Monitoring 
System 

Figure 1: Process monitoring structure 



 

Table 1- Information of monitoring process 

Process 
Attributes 

Description 

ProcessID Identifier of process 

ProcessName Name of process 

StartTime Date & Time process started 
ExitTime Date & Time process ended 

HandleCount Number of handles of the process 

ThreadCount Number of running threads of the 
process 

MemoryUsed Include information about memory used 
of the process such as current memory 
used, peak memory used and virtual 
memory used. 

I/O information Include information about input/output 
operations such as read, write and other 
count and transferred data. 

 

2.2 Building user profile 

In order to build the user profile, we collect 
process data from 30 user login sessions. We divide 
the running process in the system into two types: 
system processes and user processes. The system 
processes such as “winlogon.exe” and “services.exe” 
are processes that are started automatically by the 
system and they provide basic service to the user 
processes and user-working environment. User 
processes such as “acrobat.exe” and “winword.exe” 
are user application processes that are started by the 
user in the session. As our purpose is to detect 
anomalous user activity, we focus on monitoring 
user processes. We keep track of user activity by 
recording all related events such as process start, 
process exit etc. On the program activity level, 
consumption of system resources by user processes 
is monitored. Table 2 shows a partial sample of 
process information collected by the monitoring 
system. 

We applied the frequent episode algorithms 
(Mannila, 1997; Borgelt, 2002) on a collected data 
set to find the normal usage patterns of a given user. 
For example, Alice is a secretary and she usually 
uses programs such as email client, web browser and 
word processor, and her application usage pattern is 
Alice(mail:0.95, browser:0.80, word:0.80). This 
means 95% probability of Alice using an email 
client in her working session and 80% probability of 
using both web browsers and word processing 
programs. 

 

Table 2- Process data sample (extract) 

SessionID ProcessID Process name Start time 

57 884 msimn.exe 2002-10-19 16:17:02 

57 748 iexplore.exe 2002-10-19 16:17:12 

57 720 winword.exe 2002-10-19 16:19:20 

57 156 smss.exe 2002-10-19 16:07:35 

57 204 winlogon.exe 2002-10-19 16:07:48 

57 232 services.exe 2002-10-19 16:07:50 

57 244 lsass.exe 2002-10-19 16:07:51 

 
For each user process, we also need to establish 

the normal resource usage patterns. One of the most 
important information we have to evaluate is the 
number of threads concurrently running, this is 
called the ThreadCount of a process. An example is 
shown in Table 1. The more threads a process has 
the more system resources it uses; for example, if 
the user runs a web browser, each browser window 
needs a separate thread. Other information such as 
handle count, memory usage and I/O information are 
also processed when constructing the profile. 

In general, each user profile contains two parts: 
(1) the list of user applications with frequency of use 
and normal start time, and (2) the system resources 
usage pattern for each user process. In the system 
resources usage table, each process has an entry and 
each parameter has its own normal range. For 
example, Alice’s web browser process has a thread 
count between 6 and 10, memory usage between 12 
and 15MB and data transferred (read) between 5 and 
10MB. Table 3 shows the system resource table 
entry for “winword.exe” (a word processor 
application). 

 
Table 3- Resource usage for winword.exe 

Process Attribute Min Max 

ThreadCount 2 4 
WorkingSetSize (bytes) 6582272 12955648 
PeakWorkingSetSize (bytes) 6582272 12955648 
PagefileUsage (bytes) 2830336 4730880 
PeakPagefileUsage (bytes) 2830336 4755456 
ReadOperationCount 28 266 
WriteOperationCount 2 6646 
OtherOperationCount 1363 9330 
ReadTransferCount (bytes) 7513 64129 
WriteTransferCount (bytes) 162 210906 
OtherTransferCount (bytes) 21312 122506 



 

3 ANOMALY DETECTION  

The model of our anomaly detection system is 
shown in figure 2. After the initial step of building 
the user profile, the detection system is ready for 
action. When the user starts a new session, the 
system captures the username and loads the 
appropriate profile for the user. For testing purposes, 
we built the user profile as a text file. The 
monitoring system samples the user processes every 

five seconds, extracts the information needed and 
sends them to the detection engine. The detection 
engine compares process sample information against 
the user profile and evaluates the result. The 
comparison procedure is presented in figure 3. Our 
two-level layered detection scheme assesses the user 
level activity first, and if the pattern is accepted as 
normal it goes on to the program level activity 
pattern test. 

In order to increase accuracy and reduce false 

Process 
Information

Detection 
Engine 

Decision

User  
Profile 

Process  
Monitor

Frequent  
Patterns

Figure 2: Data mining-based detection model

Process  
Information

User 
Profile 

Compare 
Process List

Compare 
Process Info

Take 
Action/Alarm

End 

Process
Not in
List

Process
in 

List

Usage
Pattern
Agreed

Usage
Pattern

Not 
Agreed

Figure 3: Profile Comparison Procedure 



 

alarm rate, we introduced a window size parameter, 
which is the minimum period of time in which all 
comparison results from process samples will be 
produced. The average of the comparison results is 
calculated and evaluated, and then the decision 
about normal/anomalous operation is taken. In our 
system, the window size is the number of samples 
taken. It must be chosen carefully, as large window 
size reduces the false alarm rate but it also increases 
system response time, and this in turn may make the 
system miss some anomalous events. In the 
experiments, we employed a window size of 5 
samples. For programming convenience, the data 
samples were stored in a circular queue.  

The actions taken by the detection system can be 
simply sending an alarm message, or the system may 
take active steps such as kill the application that 
causes anomalies or even force the user to log off 
from the system. 

4 EXPERIMENTAL RESULTS 

Several experiments were performed on a 
Windows 2000, 1000MHz CPU machine. The 
sampling, at a rate of one in every five seconds, had 
no noticeable effect on the normal tasks in the 
system. The detection module was in waiting status 
most of the time (consumed ~0% CPU time) and it 
only used less than 5% of CPU time when active and 
processing the samples. 

At the user activity level, the system can detect 
anomalous events such as users running programs 
that are not in the user normal profile, and a user 
opening a program at a time that does not fit with the 
normal time pattern. Table 4 shows samples of 
Alice’s normal and abnormal behaviour that the 
system can detect. In this experiment, the system 
captures all session events, such as what programs 
Alice uses and when they started. The evaluation 
module first checks whether all of Alice’s programs 
are in the process list. If any of them is not there, the 
corresponding program is unauthorised, and an 
anomaly has been detected. If they all are there, the 
next step is checking the time when it is regularly 
used. If the timing of this event in Alice’s session 
does not match her profile, it will be considered 
abnormal. 

On the program activity level, we focus on the 
detection of excessive usage of system resources of 
user’s programs. We monitor eleven parameters of 
each process, as listed in Table 3, and each one is 
marked as within or outside the normal range. 
Human behaviour is difficult to predict, so it is very 
rare that a user’s current activity fully agrees with 
the stored user profile. To cater for variations, the 

number of parameters in the normal range is 
compared to the total number of parameters, a ratio 
is calculated.  We introduced an acceptance 
threshold whose value is between 0 and 1, and if the 
ratio is greater than the threshold, the user’s current 
activity is accepted as normal, otherwise it is 
rejected. Table 5 presents experimental results for 
this activity level. 

 
Table 4- Alice’s normal/abnormal behaviours 

Time Start Application Normal/ Abnormal 

9.00 Mail client Normal (from 9.00-9.30) 

9.20 Web browser Normal (from 9.00-10.00) 

10.00 Word processor Normal (from 9.30-10.30) 

9.10 C++ Compiler Abnormal (application not 
in the list) 

9.20 FTP program Abnormal (application not 
in the list) 

16.05 Mail client Abnormal (not valid time 
pattern) 

 
 
Table 5- ThreadCount normal/abnormal ranges 

Processes Normal  
range 

Current 
Usage 

Normal/ 
Abnormal 

msimn.exe 
(mail client) 

6-9 8 Normal 

winword.exe 
(word 
processor) 

2-4 10 Abnormal 

iexplore.exe 
(web browser) 

1-17 25 Abnormal 

 
 
 
Discussion 
On the user level, as Table 4 shows, the system 

can detect unauthorised use of programs correctly. 
On the program level, the excessive use of system 
resources can be detected. In the example shown in 
Table 5 the ThreadCount parameter indicates the 
current usage as 8 threads, which is within the 
normal range of 6-9. However, word processor 
usage is excessive and so is web browser usage, 
since ThreadCounts go outside the normal ranges. 

We have tested the system with acceptance 
threshold values of 0.70, 0.75, 0.80 and 0.90 on 
various user profiles. It was clear that the higher 
threshold selected the higher the system’s accuracy. 
However, higher threshold may result in false 
alarms. On the other hand, if the threshold value is 
too low, the system may miss anomalous events. 



 

5 CONCLUSION AND FUTURE 
WORK 

In this paper an anomaly detection system based 
on data mining was presented. The frequent episode 
algorithm was used to get normal usage patterns at 
the initial step of the system operation. The system 
is able to detect anomalies or changes in the user’s 
normal working patterns on two levels: on the user 
level and on the program level. By integrating 
detection on the user and on the program levels into 
one system, a good overall picture of a user session 
can be obtained. 

In future, the following improvements are 
planned for the system. 

(i) Dynamic learning of user profiles will allow 
the system to be more adaptive.  

(ii) The range of valid values for a process 
parameter can change with time, so values for 
time intervals will be introduced 

(iii) The false alarm rate, as well as the undetected 
anomalies rate depend on the window size. 
Determining the most suitable window size is 
an issue for further research. 

 

REFERENCES 

Borgelt C., 2002. Finding Association Rules/Hyperedges 
with the Apriori Algorithm. http://fuzzy.cs.uni-
magdeburg.de/~borgelt/software.html#assoc.  

Boudaoud, K., Labiod, H., Boutaba, R., and Guessoum, 
Z., 2002. Network security management with 
intelligent agents. In the Network Operations and 
Management Symposium, 2000. NOMS 2000. 2000 
IEEE/IFIP, 2000. Page(s): 579 -592. 

Lane, T., and Brodley, C. E., 1998. Approaches to Online 
Learning and Concept Drift for User Identification in 
Computer Security. American Association for 
Artificial Intelligence press. 

Lee, W. and Stolfo, S. J., 2001. A Framework for 
Constructing Features and Models for Intrusion 
Detection Systems. In ACM Transactions on 
Information and System Security, Vol. 3, No. 4, 
November 2000, Pages 227–261. 

Lee, W., Stolfo, S. J., and Mok, K. W., Algorithms for 
System Mining Audit Data. A chapter in Data 
Retrieval and Data Mining, T. Y. Lin and N. Cercone 
(eds), Kluwer Academic Publishers, 1999. 

Mannila, H., Toivonen, H., and Verkamo, I., 1997. 
Discovery of Frequent Episodes in Event Sequences. 
In Data Mining and Knowledge Discovery 1, pages 
259–289. Kluwer Academic Publishers. 

Microsoft Corporation, 2002. MSDN Library, 
http://msdn.microsoft.com/library/default.asp. 

Pikoulas, J., Buchanan, W.J., Mannion, M., and 
Triantafyllopoulos, K. 2001. An agent-based Bayesian 
forecasting model for enhanced network security. In 
ECBS 2001 Proceedings on Engineering of Computer 
Based Systems – the Eighth Annual IEEE 
International Conference and Workshop. 
Pages 247-254. 

WARRENDER, C., FORREST, S., AND 
PERLMUTTER, B., 1999. Detecting intrusions using 
system calls: Alternative data models. In the 
Proceedings of the 1999 IEEE Computer Society 
Sympo-sium on Research in Security and Privacy 
(Berkeley, CA, May). IEEE Computer Society Press, 
Los Alamitos, CA, pages 133–145. 

Zhang, R., Qian D., Ba, C., Wu, W., and Guo, X., 2001. 
Multi-agent based intrusion detection architecture, In 
the 2001 International Conference Proceedings of 
Computer Networks and Mobile Computing. Page(s): 
494 -501. 


	1	INTRODUCTION
	2 BUILDING USER PROFILE
	2.1 Collect the user process data
	2.2 Building user profile

	3 ANOMALY DETECTION
	4 EXPERIMENTAL RESULTS
	5 CONCLUSION AND FUTURE WORK
	REFERENCES

