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Abstract 
 
Most real-world data streams are generated by non-

stationary processes that may change drastically over time.  
In our previous work, we have presented a real-time data 
mining algorithm called OLIN (On-Line Information 
Network), which adapts itself automatically to the rate of 
concept drift in a non-stationary data stream by repeatedly 
constructing a new model from a sliding window of latest 
examples. In this paper, we introduce an incremental 
version of the OLIN algorithm, which saves a significant 
amount of computational effort by updating an existing 
model as long as no concept drift is detected. The 
approach is evaluated on large real-world streams of 
traffic and stock data. 
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1. Introduction 
 
In the last 20 years, there has been a huge increase in the 

amount of information and data, which are kept in 
databases and computer files. The data to be stored is 
doubling itself every year. Study made by the UC 
Berkeley's School of Information Management and 
Systems in 2003 about the storage and flows analyzes of 
data [3], indicates the following findings:  
• Information flow via electronic channels - telephone, 

radio, TV, and the Internet (The World Wide Web 
contains about 170 terabytes of information), contained 
almost 18 exabytes of new information. Three and a half 
times more than is recorded in storage media. 

• Each year, 800 MB of recorded information is produced 
per person. 

• Ninety-two percent of new information is stored on 
magnetic media, primarily hard disks. 

According to another study [12], transaction-processing 
workload climbed from an average of 2,094 transactions 
per second (tps) in 2001 to 3,223 tps two years later, an 
increase of 54 percent. 

The modern information technology produces every 
year more powerful computers, which enable us to collect, 
store, transfer, and combine huge amounts of data at very 
low cost. The progress of the digital data acquisition and 
technology of storage made the growth of the huge 
databases possible. This progress in database capability has 
influenced many areas in human's life, from supermarket 
transaction data and credit card usage records to molecular 
and medical databases. 

The growth in data has also increased the difficulties 
and challenges of extracting valid and potentially useful 
information from these databases, which is the main task of 
data mining and Knowledge Discovery in Databases 
(KDD). The main difficulty in mining non-stationary data 
streams is to cope with the changing data concept. , The 
fundamental processes generating most real-time data 
streams may change over years, months and even seconds, 
at times drastically. This change, also known as concept 
drift [1], causes the data-mining model generated from past 
data, to become less accurate in the classification of new 
data. Algorithms and methods, which extract patterns from 
continuous data streams, are known as online learning [4]. 
Real-time data mining of high-speed data streams has large 
potential in fields such as monitoring manufacturing 
processes, prediction of stock prices, and intrusion 
detection in computer networks. 

In this paper, we propose a new, incremental approach 
to mining non-stationary data streams. The main idea of the 
incremental approach is to increase the average 
classification rate (in records per second) of real-time data 
mining systems by reducing the number of times a 
completely new model is generated.  The proposed 
approach is evaluated on an incremental version of the On-
Line Information Network (OLIN) algorithm presented by 
Last in [5]. OLIN is based on the batch Info-Fuzzy 
Network (IFN) algorithm developed by Last & Maimon [6] 
[7]. The proposed incremental algorithm keeps updating an 



 

 

existing model as long as no concept drift is detected in the 
arriving data. While most of the existing online algorithms, 
which deal with the problem of concept drift, build a new 
model from every new window of training examples, our 
incremental approach saves the expensive CPU time by 
performing minimal changes in the current structure of the 
classification model. 

 
2. Related Work 

 
When dealing with non-stationary data streams, the 

optimal situation is to have KDD systems that operate 
continuously, constantly processing the data received so 
that potentially valuable information is never lost. In order 
to achieve this goal, several methods for extracting patterns 
from non-stationary streams of data have been developed, 
all under the general title of online (incremental) learning 
methods. 

The pure incremental learning methods take into 
account every new instance that arrives. These algorithms 
may be irrelevant when dealing with high-speed data 
streams. Widmer & Kubat [2] have described a series of 
purely incremental learning algorithms that flexibly react to 
concept drift and can take advantage of situations where 
context repeats itself. The series of algorithms is based on a 
framework called FLORA. FLORA maintains a 
dynamically adjustable window during the learning process 
and whenever a concept drift seems to occur (a drop in 
predictive accuracy) the window shrinks (forgets old 
instances), and when the concept seems to be stable the 
window is kept fixed. Otherwise, the window keeps 
growing until the concept seems to be stable.  FLORA is a 
computationally expensive methodology, since it updates 
the classification model with every example added to or 
removed from the training window. 

Domingos & Hulten [8] have proposed the VFDT (Very 
Fast Decision Trees learner) system in order to overcome 
the longer training time issue of the pure incremental 
algorithms. The VFDT system is based on a decision tree 
learning method, which builds the trees based on sub-
sampling of a stationary data stream. To deal with changing 
data streams, Domingos & Hulten [9] have proposed an 
improvement to the VFDT algorithm which is the CVFDT 
(Concept-adapting Very Fast Decision Tree learner). 
CVFDT applies the VFDT algorithm to a sliding window 
of a fixed size and builds the model in an incremental 
manner instead of building it from scratch whenever a new 
set of examples arrives.  CVFDT increases the 
computational overload vs. VFDT by growing alternate 
sub-trees at its internal nodes.  The model is modified when 
the alternate becomes more accurate than the original. 

Last in [5] describes an online classification system that 
uses an info-fuzzy network (IFN). The system called OLIN 
(On Line Information Network) gets a continuous stream 
of non-stationary data and builds a network based on the 

latest examples (sliding window). OLIN detects a concept 
drift (an unexpected rise in the classification error rate) and 
dynamically adjusts the size of the training window and 
accordingly, the rate of the model reconstruction. The 
calculations of the window size in OLIN are based on the 
information theory and statistics.  The experimental results 
of [5] show that in non-stationary data streams, dynamic 
windowing generates more accurate models than the static 
(fixed size) windowing approach used by CVFDT. 

 
3. The IFN Algorithm 

 
Many learning methods use information theory to 

induce classification rules. One of the methods, developed 
by Last & Maimon [6] [7] is the IFN algorithm. IFN, or 
Info-Fuzzy Network, is an oblivious tree-like classification 
model, which is designed to minimize the total number of 
predicting attributes. The underlying principle of the IFN 
method is to construct a multi-layered network in order to 
test the Mutual Information (MI) between the input and 
output attributes. Each hidden layer is related to a specific 
input attribute and represents the interaction between this 
input attribute and the other ones. The IFN algorithm is 
using the pre-pruning strategy: a node is split if this 
procedure brings about a statistically significant decrease in 
the entropy value (or increase in the mutual information) of 
the target attribute. If none of the remaining input attributes 
provides a statistically significant increase in mutual 
information, the network construction stops. The output of 
this algorithm is a network, which can be used to predict 
the values of a target attribute similarly to the prediction 
technique used in decision trees.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 illustrates a sample structure of an info-fuzzy 

network. In this example, the network contains two layers, 
which represent two input attributes. The first input 
attribute has three values, represented by nodes no. 1, 2, 
and 3 in the first layer. Nodes no. 1 and 3 are split by the 
network construction procedure. The second layer has four 
nodes, which are the combinations of two values of the 
second input attribute with two split nodes of the first layer. 

Figure 1. Info-fuzzy Network Two Layered 
Structure [7] 



 

 

The target layer represents the target attribute, which gets 
three values. 
 
4. Incremental On-Line Information Network 
 
4.1. Algorithm Overview 

 
The online algorithm of Last [5] deals with the concept 

drift problem simply by generating a new model for every 
new sliding window. On one hand, this regenerative 
approach ensures accurate and relevant models over time 
and therefore an increase in the classification accuracy. On 
the other hand, the OLIN algorithm has a major drawback, 
which is the high cost of generating new models. The 
regenerative on-line IFN does not take into account the 
costs involved in replacing the existing model with a new 
one. 

In this paper, we present a new algorithm, called 
Incremental On-Line Information Network (Incremental 
OLIN), which is an extension, to the regenerative OLIN 
algorithm of Last [5]. As shown in the evaluation section 
below, the incremental algorithm achieves almost the same 
and sometimes even higher accuracy rates than the 
regenerative algorithm and it is significantly cheaper since 
it does not require producing a new model for every new 
window of examples. As long as no concept drift is 
detected, the Incremental OLIN algorithm is applied 
repeatedly to a sliding window in order to update the 
current model rather than replace it completely.  

The basic intuition behind the incremental approach is 
to update the current classification model with the current 
training window concept as long as no major concept drift 
has been detected and to build a new model in case of a 
major concept drift. From applying the regenerative OLIN 
[5] to several data sets (in transportation, manufacturing, 
and stock market domains) a few phenomena have been 
observed. The first one: when there is no concept drift 
between two adjacent training windows, the differences 
between the new constructed model and the former one are 
minor (about 80% of the network structure remains the 
same). This means that instead of re-constructing a new 
model (in case of no concept drift), the latest model can be 
updated in much less time and effort. The second one: 
when there is no concept drift between two adjacent 
windows, the main differences between the new model and 
the former model are in the last hidden layer. The third one: 
when a concept drift is discovered between two adjacent 
windows, the new model is almost totally different from 
the former one (in 90% of the cases the differences 
propagate up to the root node). The above phenomena 
indicate that in updating an existing model, it is sufficient 
to update its last layer and that if a concept drift has been 
detected, it is preferable to construct a new model.  

Several operations for updating the model can be 
applied. One of them is to check the split validity on each 

node starting from the root and downwards the network. 
This check is made in order to ensure that the current split 
of a specific node actually contributes to the mutual 
information calculated from the current training set. The 
elimination of non-relevant splits should decrease the error 
rate. Another operation is to check which attribute is more 
appropriate to correspond to the last (terminal) layer: the 
attribute that is already associated with the last layer or the 
second best attribute for the last layer of the previous 
model. The attribute selected for the last layer of the new 
model will be the one with the greater conditional mutual 
information based on the current training window. The last 
operation is attempting to split the nodes of the last layer 
on attributes, which are not yet participating in the updated 
network. 

 
4.2. Detailed Description 

 
Following is the pseudo-code outline of the Incremental 

OLIN algorithm. 
The IFN_Control procedure is responsible for 

managing the application. It gets as input a continuous 
stream of examples (S). The initial size of the training 
window Winit is calculated by using an equation developed 
by Last in [5]. Afterwards, the initial IFN model is 
produced by applying the IN algorithm to the initial 
window of examples. 

 
IFN_Control (S) 
Calculate the initial size of the training window Winit 
Set W = Winit 
Obtain IFN model by applying the IN algorithm to the 

sliding window (W) 
While S is not finished 
 IFN model = Incremental_IFN (W, IFN model) 
 Return IFN model 
 

The algorithm will run till the end of the data stream. If 
the data stream is infinite, the algorithm will keep running 
and producing IFN models for classification. 

The Incremental_IFN procedure is responsible for 
calculating both error rates of the training and validation 
examples after running the current model on those data 
sets. In addition, the maximum expected difference 
between those errors Max_Diff is calculated at the 99% 
confidence level using a Normal Approximation to the 
Binominal distribution (as shown in [5]). It is important to 
mention that we assume immediate availability of correct 
classifications for the window of validation examples. This 
is a reasonable assumption in stock prediction, traffic 
control, web usage mining, and other real-time data mining 
domains [2], [5]. 

A stable concept is observed if the actual difference 
between the validation and training errors is smaller than 
the maximum expected difference Max_Diff. In this case, 



 

 

operations for updating the network are applied. If a 
concept drift occurs, we are forced to create a new 
network. 
 
Incremental_IFN (W, IFN model) 
Calculate the training error rate Etr of IFN model 
Calculate the validation error rate Eval of IFN model 
Find the maximum expected difference between the last 

training and the validation errors Max_Diff 
If (Eval - Etr) < Max_Diff //concept is stable 

Update_Current_Network (IFN_Model, W) 
Else 

Obtain new IFN model by applying the IN algorithm to 
the sliding window (W) 

Calculate New_Training_Window_Size (W) [5] 
Return updated IFN_Model 
 

The Update_Current_Network procedure gets as inputs 
the current network structure and a sliding window. This 
procedure activates another procedure 
(Check_Split_Validity) for checking the split validity of the 
current network. Afterwards, it replaces the last layer of the 
network if needed. Finally, it activates the 
New_Split_Process procedure performing a new split 
process on the last layer (whether it was replaced or not). 
 
Update_Current_Network (IFN_Model, W) 
Check_Split_Validity (IFN_Model, W) on the last layer of 
the current model 
Calculate the conditional MI of Sec_Best_Attr based on the 
current training set (W) 
IF (conditional MI of the current last layer < conditional 
MI of Sec_Best_Attr) 

Replace last layer with Sec_Best_Attr 
New_Split_Process (IFN) on the last layer of the 
current model 

 
Check_Split_Validity is responsible to check if the 

current split of each node actually contributes to the 
conditional mutual information calculated from the current 
training set. 

 
Check_Split_Validity (IFN_Model, W) 
For i = total_number_of_layers-1 to i = 1  

For j = 1 to j = number of nodes in hidden layer i 
If node j is split 

Calculate the estimated conditional MI of j and 
the target attribute [6] 
Calculate the Likelihood-ratio statistic of j [6] 
If the Likelihood-ratio statistic of j is significant 

Leave the node split 
Else  

Remove the splitting and make j a terminal 
node 

 

New_Split_Process is responsible for splitting the nodes 
of the last layer on attributes, which are not yet included in 
the updated network. 
 
New_Split_Process (IFN) 
Repeat for every candidate input attribute i’ which is still 

not an input attribute 
Repeat for every node z of the final hidden layer 

Calculate the estimated conditional MI of i’ and the 
target attribute given z 
Calculate the Likelihood-ratio statistic of i’ and the 
target attribute given z 
If the Likelihood-ratio statistic of i’ is significant 

Split z on i’ and increment the conditional MI of 
the candidate input attribute i’ and the target 

 
The time complexity of the suggested incremental 

algorithm depends on the number of detected concept 
drifts. As long as no concept drift has been detected, the 
major computational cost is to add a new layer to the 
existing network. Checking the split validity of the nodes 
in the network is relatively cheap (O(n) where n is the 
number of nodes in the network). In case of concept drift, a 
new network should be constructed from scratch, and the 
cost  of the network construction procedure is linear in the 
number of records, linear in the number of distinct attribute 
values, and quadratic in the number of candidate input 
attributes [6]. 

 
5. Evaluation 

 
The Regenerative OLIN reconstructs a new model with 

every new sliding window of training examples. According 
to the results presented [5], the classification models 
produced by this algorithm are relatively accurate but the 
total processing time is very long due to high frequency of 
constructing a new model. The Incremental OLIN 
algorithm presented in this paper is aimed at decreasing the 
processing time per each new example. The Incremental 
OLIN was evaluated in comparison to the original 
Regenerative OLIN on several real-world data streams. 

 
5.1. Traffic Data 

 
The first set of data streams includes traffic flow 

information on a signaled three-way intersection in 
Jerusalem. The traffic data is recorded by lane sensors. The 
vehicles can cross the intersection in five different 
directions. The five data streams obtained for directions 1 
to 5 included the hourly incoming traffic volumes for 24 
hours a day, seven days a week during a period of more 
than 3 years. 

Each original data stream has been converted into a data 
set, where a record contains twelve candidate attributes 
representing the exact time (date, hour, day in week, etc.) 



 

 

when the traffic volume was measured and traffic volumes 
at earlier points of time (the previous hour, the same hour 
of the previous day, etc.). The target attribute represented 
the volume of traffic during a given hour. Due to the fact 
that the target attribute is continuous we have manually 
discretized it to three intervals of high, medium, and low 
traffic volume. The traffic data was divided into five 
separate data tables for the five directions. Each table 
corresponding to a given direction contained about 30,000 
hourly records. 
 
5.2. Stock Data 

 
The second set we used was a stock market data. This 

data set was also used in [5] for the evaluation of the 
Regenerative OLIN. The raw data represents the daily 
stock prices of 373 companies from the Standard & Poor’s 
index [10], over a 5-year period (from 8/29/94 to 8/27/99). 
The data was obtained from the Microsoft™ MoneyCentral 
web site [11]. An average of 15.64 intervals (with distinct 
trends) per company have been identified and the 
classification problem has been defined as predicting the 
correct length of the current interval based on the known 
characteristics of the current and the preceding intervals. 
The data table contains 5,462 records with six candidate 
attributes, which include the duration, the slope and the 
fluctuation measured in each interval as well as the sector 
of the corresponding stock. The target attribute which is the 

duration of the second interval in an interval-pair, has been 
discretized to five intervals of nearly equal frequency. 

 
5.3. Initial Results 

 
The runs of both algorithms were carried out on a 

Pentium ∇Ι  processor with 256 MB of RAM. In the 
experiments, the online learning on the traffic data starts 
after inducing the initial model from the first 500 records, 
which leaves the system to work with about 30,000 records 
for each direction. For the stock data, the online learning 
starts after the first 462 records, which are used for 
inducing the initial model. Tables 1 and 2 show the results 
after applying the regenerative and the Incremental OLIN 
to the traffic data sets and the stock data set respectively. 

From the results on the traffic data, it can be seen that 
the Incremental OLIN has reduced the run time by at least 
20% and at most by 87% (the average run time saving was 
75%). At the same time, the accuracy rate decreased by 4% 
in the worst case while the average accuracy loss was only 
2%. One can also see that the incremental algorithm has 
increased the classification rate from 55 to 139 records per 
second. In the case of the stock data, the incremental 
version reduced the run time by 72.25% while increasing 
the error rate by 1.3% only. In addition, the classification 
rate increased from 47.97 to 172.85 records per second, 
when we used the incremental version. 

Table 1. Summary of Experiments Using the Regenerative OLIN 

 
Total 
Number of 
Records 

Run Time 
(sec.) 

Average 
Classification Rate 
(records/second) 

Error Rate Number of Observed 
Concept Drifts 

Direction1 28,761 487.68 58.975 0.107 55 
Direction2 30,480 466.38 65.354 0.215 55 
Direction3 30,480 1354.42 22.5 0.103 17 
Direction4 30,480 1829.57 16.66 0.114 7 
Direction5 30,480 271.96 112.075 0.111 51 

Traffic Average 30,136 882 55.11 0.13 37 
      

Stock Market 5462 113.87 47.97 0.415 8 

Table 2. Summary of Experiments Using the Incremental OLIN 

 
Total 
Number of 
Records 

Run Time 
(sec.) 

Average 
Classification Rate 
(records/second) 

Error Rate Number of Observed 
Concept Drifts 

Direction1 28,761 222.3 129.38 0.122 79 
Direction2 30,480 211.69 143.98 0.256 119 
Direction3 30,480 192.23 158.56 0.103 20 
Direction4 30,480 242.12 125.89 0.145 25 
Direction5 30,480 217.23 140.31 0.119 65 

Traffic Average 30,136 217.11 139.62 0.149 61.6 
      

Stock Market 5462 31.6 172.85 0.428 11 
  



 

 

6. Conclusions and Future Work 
 
This paper has presented a new, incremental approach to 

real-time classification of continuous non-stationary data 
streams. The incremental approach applies the 
classification algorithm repeatedly to a sliding window of 
examples, in order to update the existing model or to 
construct a new model. A concept drift is detected by an 
unexpected rise in the classification error rate. When the 
concept appears to be stable, the system updates the current 
classification model by applying several operations to it.  If 
a concept drift has been detected, the system re-generates a 
new model. 

 
The proposed incremental approach was evaluated using 

an incremental version of the On-Line Information 
Network (OLIN) algorithm, which constructs an oblivious 
tree-like classification model. The efficiency of the 
Incremental OLIN has been confirmed by experiments on 
real-world sets of online data. The data in use included a 
set of five traffic data streams, which contained about 
30,000 records for each traffic direction and a set of stock 
data, which contained 5,462 records. It is clear that the 
incremental version of OLIN outperforms the Regenerative 
OLIN in terms of processing rate. Another encouraging 
finding was the low decrease in accuracy of the 
incremental version compared to the regenerative one. 

The future work includes implementation of additional 
incremental classifiers and evaluating them on more real-
world datasets, as well as on artificially built data streams. 
Finding a better trade-off between the accuracy rate and the 
processing time can also be examined. 
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