

Incremental Info-Fuzzy Algorithm for Real Time Data Mining of Non-Stationary
Data Streams

Lior Cohen Gil Avrahami Mark Last

Ben-Gurion University of the Negev
Department of Information Systems Engineering

Beer-Sheva 84105, Israel
Email:{clior,gilav,mlast}@bgu.ac.il

Abstract

Most real-world data streams are generated by non-

stationary processes that may change drastically over time.
In our previous work, we have presented a real-time data
mining algorithm called OLIN (On-Line Information
Network), which adapts itself automatically to the rate of
concept drift in a non-stationary data stream by repeatedly
constructing a new model from a sliding window of latest
examples. In this paper, we introduce an incremental
version of the OLIN algorithm, which saves a significant
amount of computational effort by updating an existing
model as long as no concept drift is detected. The
approach is evaluated on large real-world streams of
traffic and stock data.

Keywords

Real-time data mining, incremental learning, online

learning, concept drift, info-fuzzy networks.

1. Introduction

In the last 20 years, there has been a huge increase in the

amount of information and data, which are kept in
databases and computer files. The data to be stored is
doubling itself every year. Study made by the UC
Berkeley's School of Information Management and
Systems in 2003 about the storage and flows analyzes of
data [3], indicates the following findings:
• Information flow via electronic channels - telephone,

radio, TV, and the Internet (The World Wide Web
contains about 170 terabytes of information), contained
almost 18 exabytes of new information. Three and a half
times more than is recorded in storage media.

• Each year, 800 MB of recorded information is produced
per person.

• Ninety-two percent of new information is stored on
magnetic media, primarily hard disks.

According to another study [12], transaction-processing
workload climbed from an average of 2,094 transactions
per second (tps) in 2001 to 3,223 tps two years later, an
increase of 54 percent.

The modern information technology produces every
year more powerful computers, which enable us to collect,
store, transfer, and combine huge amounts of data at very
low cost. The progress of the digital data acquisition and
technology of storage made the growth of the huge
databases possible. This progress in database capability has
influenced many areas in human's life, from supermarket
transaction data and credit card usage records to molecular
and medical databases.

The growth in data has also increased the difficulties
and challenges of extracting valid and potentially useful
information from these databases, which is the main task of
data mining and Knowledge Discovery in Databases
(KDD). The main difficulty in mining non-stationary data
streams is to cope with the changing data concept. , The
fundamental processes generating most real-time data
streams may change over years, months and even seconds,
at times drastically. This change, also known as concept
drift [1], causes the data-mining model generated from past
data, to become less accurate in the classification of new
data. Algorithms and methods, which extract patterns from
continuous data streams, are known as online learning [4].
Real-time data mining of high-speed data streams has large
potential in fields such as monitoring manufacturing
processes, prediction of stock prices, and intrusion
detection in computer networks.

In this paper, we propose a new, incremental approach
to mining non-stationary data streams. The main idea of the
incremental approach is to increase the average
classification rate (in records per second) of real-time data
mining systems by reducing the number of times a
completely new model is generated. The proposed
approach is evaluated on an incremental version of the On-
Line Information Network (OLIN) algorithm presented by
Last in [5]. OLIN is based on the batch Info-Fuzzy
Network (IFN) algorithm developed by Last & Maimon [6]
[7]. The proposed incremental algorithm keeps updating an

existing model as long as no concept drift is detected in the
arriving data. While most of the existing online algorithms,
which deal with the problem of concept drift, build a new
model from every new window of training examples, our
incremental approach saves the expensive CPU time by
performing minimal changes in the current structure of the
classification model.

2. Related Work

When dealing with non-stationary data streams, the

optimal situation is to have KDD systems that operate
continuously, constantly processing the data received so
that potentially valuable information is never lost. In order
to achieve this goal, several methods for extracting patterns
from non-stationary streams of data have been developed,
all under the general title of online (incremental) learning
methods.

The pure incremental learning methods take into
account every new instance that arrives. These algorithms
may be irrelevant when dealing with high-speed data
streams. Widmer & Kubat [2] have described a series of
purely incremental learning algorithms that flexibly react to
concept drift and can take advantage of situations where
context repeats itself. The series of algorithms is based on a
framework called FLORA. FLORA maintains a
dynamically adjustable window during the learning process
and whenever a concept drift seems to occur (a drop in
predictive accuracy) the window shrinks (forgets old
instances), and when the concept seems to be stable the
window is kept fixed. Otherwise, the window keeps
growing until the concept seems to be stable. FLORA is a
computationally expensive methodology, since it updates
the classification model with every example added to or
removed from the training window.

Domingos & Hulten [8] have proposed the VFDT (Very
Fast Decision Trees learner) system in order to overcome
the longer training time issue of the pure incremental
algorithms. The VFDT system is based on a decision tree
learning method, which builds the trees based on sub-
sampling of a stationary data stream. To deal with changing
data streams, Domingos & Hulten [9] have proposed an
improvement to the VFDT algorithm which is the CVFDT
(Concept-adapting Very Fast Decision Tree learner).
CVFDT applies the VFDT algorithm to a sliding window
of a fixed size and builds the model in an incremental
manner instead of building it from scratch whenever a new
set of examples arrives. CVFDT increases the
computational overload vs. VFDT by growing alternate
sub-trees at its internal nodes. The model is modified when
the alternate becomes more accurate than the original.

Last in [5] describes an online classification system that
uses an info-fuzzy network (IFN). The system called OLIN
(On Line Information Network) gets a continuous stream
of non-stationary data and builds a network based on the

latest examples (sliding window). OLIN detects a concept
drift (an unexpected rise in the classification error rate) and
dynamically adjusts the size of the training window and
accordingly, the rate of the model reconstruction. The
calculations of the window size in OLIN are based on the
information theory and statistics. The experimental results
of [5] show that in non-stationary data streams, dynamic
windowing generates more accurate models than the static
(fixed size) windowing approach used by CVFDT.

3. The IFN Algorithm

Many learning methods use information theory to

induce classification rules. One of the methods, developed
by Last & Maimon [6] [7] is the IFN algorithm. IFN, or
Info-Fuzzy Network, is an oblivious tree-like classification
model, which is designed to minimize the total number of
predicting attributes. The underlying principle of the IFN
method is to construct a multi-layered network in order to
test the Mutual Information (MI) between the input and
output attributes. Each hidden layer is related to a specific
input attribute and represents the interaction between this
input attribute and the other ones. The IFN algorithm is
using the pre-pruning strategy: a node is split if this
procedure brings about a statistically significant decrease in
the entropy value (or increase in the mutual information) of
the target attribute. If none of the remaining input attributes
provides a statistically significant increase in mutual
information, the network construction stops. The output of
this algorithm is a network, which can be used to predict
the values of a target attribute similarly to the prediction
technique used in decision trees.

Fig. 1 illustrates a sample structure of an info-fuzzy

network. In this example, the network contains two layers,
which represent two input attributes. The first input
attribute has three values, represented by nodes no. 1, 2,
and 3 in the first layer. Nodes no. 1 and 3 are split by the
network construction procedure. The second layer has four
nodes, which are the combinations of two values of the
second input attribute with two split nodes of the first layer.

Figure 1. Info-fuzzy Network Two Layered
Structure [7]

The target layer represents the target attribute, which gets
three values.

4. Incremental On-Line Information Network

4.1. Algorithm Overview

The online algorithm of Last [5] deals with the concept

drift problem simply by generating a new model for every
new sliding window. On one hand, this regenerative
approach ensures accurate and relevant models over time
and therefore an increase in the classification accuracy. On
the other hand, the OLIN algorithm has a major drawback,
which is the high cost of generating new models. The
regenerative on-line IFN does not take into account the
costs involved in replacing the existing model with a new
one.

In this paper, we present a new algorithm, called
Incremental On-Line Information Network (Incremental
OLIN), which is an extension, to the regenerative OLIN
algorithm of Last [5]. As shown in the evaluation section
below, the incremental algorithm achieves almost the same
and sometimes even higher accuracy rates than the
regenerative algorithm and it is significantly cheaper since
it does not require producing a new model for every new
window of examples. As long as no concept drift is
detected, the Incremental OLIN algorithm is applied
repeatedly to a sliding window in order to update the
current model rather than replace it completely.

The basic intuition behind the incremental approach is
to update the current classification model with the current
training window concept as long as no major concept drift
has been detected and to build a new model in case of a
major concept drift. From applying the regenerative OLIN
[5] to several data sets (in transportation, manufacturing,
and stock market domains) a few phenomena have been
observed. The first one: when there is no concept drift
between two adjacent training windows, the differences
between the new constructed model and the former one are
minor (about 80% of the network structure remains the
same). This means that instead of re-constructing a new
model (in case of no concept drift), the latest model can be
updated in much less time and effort. The second one:
when there is no concept drift between two adjacent
windows, the main differences between the new model and
the former model are in the last hidden layer. The third one:
when a concept drift is discovered between two adjacent
windows, the new model is almost totally different from
the former one (in 90% of the cases the differences
propagate up to the root node). The above phenomena
indicate that in updating an existing model, it is sufficient
to update its last layer and that if a concept drift has been
detected, it is preferable to construct a new model.

Several operations for updating the model can be
applied. One of them is to check the split validity on each

node starting from the root and downwards the network.
This check is made in order to ensure that the current split
of a specific node actually contributes to the mutual
information calculated from the current training set. The
elimination of non-relevant splits should decrease the error
rate. Another operation is to check which attribute is more
appropriate to correspond to the last (terminal) layer: the
attribute that is already associated with the last layer or the
second best attribute for the last layer of the previous
model. The attribute selected for the last layer of the new
model will be the one with the greater conditional mutual
information based on the current training window. The last
operation is attempting to split the nodes of the last layer
on attributes, which are not yet participating in the updated
network.

4.2. Detailed Description

Following is the pseudo-code outline of the Incremental

OLIN algorithm.
The IFN_Control procedure is responsible for

managing the application. It gets as input a continuous
stream of examples (S). The initial size of the training
window Winit is calculated by using an equation developed
by Last in [5]. Afterwards, the initial IFN model is
produced by applying the IN algorithm to the initial
window of examples.

IFN_Control (S)
Calculate the initial size of the training window Winit
Set W = Winit
Obtain IFN model by applying the IN algorithm to the

sliding window (W)
While S is not finished
 IFN model = Incremental_IFN (W, IFN model)
 Return IFN model

The algorithm will run till the end of the data stream. If
the data stream is infinite, the algorithm will keep running
and producing IFN models for classification.

The Incremental_IFN procedure is responsible for
calculating both error rates of the training and validation
examples after running the current model on those data
sets. In addition, the maximum expected difference
between those errors Max_Diff is calculated at the 99%
confidence level using a Normal Approximation to the
Binominal distribution (as shown in [5]). It is important to
mention that we assume immediate availability of correct
classifications for the window of validation examples. This
is a reasonable assumption in stock prediction, traffic
control, web usage mining, and other real-time data mining
domains [2], [5].

A stable concept is observed if the actual difference
between the validation and training errors is smaller than
the maximum expected difference Max_Diff. In this case,

operations for updating the network are applied. If a
concept drift occurs, we are forced to create a new
network.

Incremental_IFN (W, IFN model)
Calculate the training error rate Etr of IFN model
Calculate the validation error rate Eval of IFN model
Find the maximum expected difference between the last

training and the validation errors Max_Diff
If (Eval - Etr) < Max_Diff //concept is stable

Update_Current_Network (IFN_Model, W)
Else

Obtain new IFN model by applying the IN algorithm to
the sliding window (W)

Calculate New_Training_Window_Size (W) [5]
Return updated IFN_Model

The Update_Current_Network procedure gets as inputs
the current network structure and a sliding window. This
procedure activates another procedure
(Check_Split_Validity) for checking the split validity of the
current network. Afterwards, it replaces the last layer of the
network if needed. Finally, it activates the
New_Split_Process procedure performing a new split
process on the last layer (whether it was replaced or not).

Update_Current_Network (IFN_Model, W)
Check_Split_Validity (IFN_Model, W) on the last layer of
the current model
Calculate the conditional MI of Sec_Best_Attr based on the
current training set (W)
IF (conditional MI of the current last layer < conditional
MI of Sec_Best_Attr)

Replace last layer with Sec_Best_Attr
New_Split_Process (IFN) on the last layer of the
current model

Check_Split_Validity is responsible to check if the

current split of each node actually contributes to the
conditional mutual information calculated from the current
training set.

Check_Split_Validity (IFN_Model, W)
For i = total_number_of_layers-1 to i = 1

For j = 1 to j = number of nodes in hidden layer i
If node j is split

Calculate the estimated conditional MI of j and
the target attribute [6]
Calculate the Likelihood-ratio statistic of j [6]
If the Likelihood-ratio statistic of j is significant

Leave the node split
Else

Remove the splitting and make j a terminal
node

New_Split_Process is responsible for splitting the nodes
of the last layer on attributes, which are not yet included in
the updated network.

New_Split_Process (IFN)
Repeat for every candidate input attribute i’ which is still

not an input attribute
Repeat for every node z of the final hidden layer

Calculate the estimated conditional MI of i’ and the
target attribute given z
Calculate the Likelihood-ratio statistic of i’ and the
target attribute given z
If the Likelihood-ratio statistic of i’ is significant

Split z on i’ and increment the conditional MI of
the candidate input attribute i’ and the target

The time complexity of the suggested incremental

algorithm depends on the number of detected concept
drifts. As long as no concept drift has been detected, the
major computational cost is to add a new layer to the
existing network. Checking the split validity of the nodes
in the network is relatively cheap (O(n) where n is the
number of nodes in the network). In case of concept drift, a
new network should be constructed from scratch, and the
cost of the network construction procedure is linear in the
number of records, linear in the number of distinct attribute
values, and quadratic in the number of candidate input
attributes [6].

5. Evaluation

The Regenerative OLIN reconstructs a new model with

every new sliding window of training examples. According
to the results presented [5], the classification models
produced by this algorithm are relatively accurate but the
total processing time is very long due to high frequency of
constructing a new model. The Incremental OLIN
algorithm presented in this paper is aimed at decreasing the
processing time per each new example. The Incremental
OLIN was evaluated in comparison to the original
Regenerative OLIN on several real-world data streams.

5.1. Traffic Data

The first set of data streams includes traffic flow

information on a signaled three-way intersection in
Jerusalem. The traffic data is recorded by lane sensors. The
vehicles can cross the intersection in five different
directions. The five data streams obtained for directions 1
to 5 included the hourly incoming traffic volumes for 24
hours a day, seven days a week during a period of more
than 3 years.

Each original data stream has been converted into a data
set, where a record contains twelve candidate attributes
representing the exact time (date, hour, day in week, etc.)

when the traffic volume was measured and traffic volumes
at earlier points of time (the previous hour, the same hour
of the previous day, etc.). The target attribute represented
the volume of traffic during a given hour. Due to the fact
that the target attribute is continuous we have manually
discretized it to three intervals of high, medium, and low
traffic volume. The traffic data was divided into five
separate data tables for the five directions. Each table
corresponding to a given direction contained about 30,000
hourly records.

5.2. Stock Data

The second set we used was a stock market data. This

data set was also used in [5] for the evaluation of the
Regenerative OLIN. The raw data represents the daily
stock prices of 373 companies from the Standard & Poor’s
index [10], over a 5-year period (from 8/29/94 to 8/27/99).
The data was obtained from the Microsoft™ MoneyCentral
web site [11]. An average of 15.64 intervals (with distinct
trends) per company have been identified and the
classification problem has been defined as predicting the
correct length of the current interval based on the known
characteristics of the current and the preceding intervals.
The data table contains 5,462 records with six candidate
attributes, which include the duration, the slope and the
fluctuation measured in each interval as well as the sector
of the corresponding stock. The target attribute which is the

duration of the second interval in an interval-pair, has been
discretized to five intervals of nearly equal frequency.

5.3. Initial Results

The runs of both algorithms were carried out on a

Pentium ∇Ι processor with 256 MB of RAM. In the
experiments, the online learning on the traffic data starts
after inducing the initial model from the first 500 records,
which leaves the system to work with about 30,000 records
for each direction. For the stock data, the online learning
starts after the first 462 records, which are used for
inducing the initial model. Tables 1 and 2 show the results
after applying the regenerative and the Incremental OLIN
to the traffic data sets and the stock data set respectively.

From the results on the traffic data, it can be seen that
the Incremental OLIN has reduced the run time by at least
20% and at most by 87% (the average run time saving was
75%). At the same time, the accuracy rate decreased by 4%
in the worst case while the average accuracy loss was only
2%. One can also see that the incremental algorithm has
increased the classification rate from 55 to 139 records per
second. In the case of the stock data, the incremental
version reduced the run time by 72.25% while increasing
the error rate by 1.3% only. In addition, the classification
rate increased from 47.97 to 172.85 records per second,
when we used the incremental version.

Table 1. Summary of Experiments Using the Regenerative OLIN

Total
Number of
Records

Run Time
(sec.)

Average
Classification Rate
(records/second)

Error Rate Number of Observed
Concept Drifts

Direction1 28,761 487.68 58.975 0.107 55
Direction2 30,480 466.38 65.354 0.215 55
Direction3 30,480 1354.42 22.5 0.103 17
Direction4 30,480 1829.57 16.66 0.114 7
Direction5 30,480 271.96 112.075 0.111 51

Traffic Average 30,136 882 55.11 0.13 37

Stock Market 5462 113.87 47.97 0.415 8

Table 2. Summary of Experiments Using the Incremental OLIN

Total
Number of
Records

Run Time
(sec.)

Average
Classification Rate
(records/second)

Error Rate Number of Observed
Concept Drifts

Direction1 28,761 222.3 129.38 0.122 79
Direction2 30,480 211.69 143.98 0.256 119
Direction3 30,480 192.23 158.56 0.103 20
Direction4 30,480 242.12 125.89 0.145 25
Direction5 30,480 217.23 140.31 0.119 65

Traffic Average 30,136 217.11 139.62 0.149 61.6

Stock Market 5462 31.6 172.85 0.428 11

6. Conclusions and Future Work

This paper has presented a new, incremental approach to

real-time classification of continuous non-stationary data
streams. The incremental approach applies the
classification algorithm repeatedly to a sliding window of
examples, in order to update the existing model or to
construct a new model. A concept drift is detected by an
unexpected rise in the classification error rate. When the
concept appears to be stable, the system updates the current
classification model by applying several operations to it. If
a concept drift has been detected, the system re-generates a
new model.

The proposed incremental approach was evaluated using

an incremental version of the On-Line Information
Network (OLIN) algorithm, which constructs an oblivious
tree-like classification model. The efficiency of the
Incremental OLIN has been confirmed by experiments on
real-world sets of online data. The data in use included a
set of five traffic data streams, which contained about
30,000 records for each traffic direction and a set of stock
data, which contained 5,462 records. It is clear that the
incremental version of OLIN outperforms the Regenerative
OLIN in terms of processing rate. Another encouraging
finding was the low decrease in accuracy of the
incremental version compared to the regenerative one.

The future work includes implementation of additional
incremental classifiers and evaluating them on more real-
world datasets, as well as on artificially built data streams.
Finding a better trade-off between the accuracy rate and the
processing time can also be examined.

Acknowledgments. We would like to thank the Traffic
Control Center of Jerusalem for granting us the permission
to use their traffic database. This work was partially
supported under a research contract from the Israel
Ministry of Defense.

7. References

[1] D.P Helmbold and P.M. Long, Tracking Drifting Concepts

by Minimizing Disagreements, Machine Learning, No. 14,
pp. 27-45, 1994.

[2] G. Widmer and M. Kubat, “Learning in the Presence of
Concept Drift and Hidden Contexts”, Machine Learning,
Vol. 23, No. 1, pp. 69-101, 1996.

[3] P. Lyman and H. R. Varian, "How Much Information", 2003.
Retrieved from http://www.sims.berkeley.edu/how-much-
info-2003.

[4] M. Black and R. J. Hickey, “Maintaining the Performance of
a Learned Classifier under Concept Drift”, Intelligent Data
Analysis, No. 3, pp. 453-474, 1999.

[5] M. Last, “Online Classification of Nonstationary Data
Streams”, Intelligent Data Analysis, Vol. 6, No. 2, pp. 129-
147, 2002.

[6] M. Last and O. Maimon, “A Compact and Accurate Model
for Classification”, IEEE Transactions on Knowledge and
Data Engineering, Vol. 16, No. 2, pp. 203-215, February
2004.

[7] O. Maimon and M. Last, Knowledge Discovery and Data
Mining - The Info-Fuzzy Network (IFN) Methodology,
Kluwer Academic Publishers, December 2000.

[8] P. Domingos and G. Hulten, “Mining High-Speed Data
Streams”, Proc. of KDD 2000, pp. 71-80, 2000.

[9] P. Domingos and G. Hulten, “Mining Time-Changing Data
Streams”, Proc. of KDD 2001, pp. 97-106, ACM Press,
2001.

[10] Standard & Poor’s Index at http://www.spglobal.com.
[11] The MicrosoftTMMoneyCentral home page at

http://windowsmedia.com/mediaguide/gbhome.
[12] R. Winter and K. Auerbach, “Contents Under Pressure”,

Intelligent Enterprise, May 2004, available at
http://www.intelligententerprise.com/showArticle.jhtml?artic
leID=18902161

