Discovering Fuzzy Classification Rules with Genetic
Programming and Co-Evolution

Roberto R. F. Mendes Fabricio de B. Voznika Alex A. Freitas Julio C. Nievola

PUC-PR
PPGIA - CCET
Av. Imaculada Conceicdo, 1155
Curitiba - PR, 80215-901 Brazil
{al ex, nievol a} @pgi a. pucpr. br
http://www.ppgia.pucpr.br/~alex
+55 41 330-1669

Abstract. In essence, data mining consists of extracting knowledge from
data. This paper proposes a co-evolutionary system for discovering fuzzy
classification rules. The system uses two evolutionary agorithms: a genetic
programming (GP) agorithm evolving a population of fuzzy rule sets and a
simple evolutionary algorithm evolving a population of membership function
definitions. The two populations co-evolve, so that the final result of the co-
evolutionary process is a fuzzy rule set and a set of membership function
definitions which are well adapted to each other. In addition, our system also
has some innovative ideas with respect to the encoding of GP individuals rep-
resenting rule sets. The basic idea is that our individual encoding scheme in-
corporates several syntactical restrictions that facilitate the handling of rule
sets in disjunctive normal form. We have a so adapted GP operators to better
work with the proposed individual encoding scheme.

1 Introduction

In the context of machine learning and data mining, one popular way of expressing
knowledge consists of IF-THEN rules. Thisis due to the fact that they are intuitively
comprehensible to a human being [5]. In addition, they represent independent units
of knowledge, so that alterations can easily take place in their contents. IF-THEN
rules are composed of two parts. The first part (IF component, or rule antecedent)
corresponds to a conjunction of conditions that, if verified true, imply that the con-
dition contained in the second part (THEN component, or rule consequent) is also
considered true.

Rulesin their classic format are appropriate when their conditions are constituted
by discrete or categorical variables. However, the presence of continuous variables
creates situations that thwart the common sense. Let's consider the rule: “IF age <
25 THEN safe_driver = no”. The problem here is the sudden and unnatural transi-
tion between categories: an individual can be classified as not being a safe driver



today but, in the following day, he might have completed 25 years and thus be clas-
sified as being a safe driver. This could lead a data mining system to completely
different predictions in the interval of a single day. One promising alternative to
work with continuous variables and to overcome this inconvenience is the use of
fuzzy logic. Besides expressing knowledge in a more natural way, fuzzy logic is
also aflexible and powerful method for uncertainty management [13], [6].

In the literature several techniques have been used for discovery of fuzzy IF-
THEN rules. Several recent projects have proposed the use of evolutionary ago-
rithms for fuzzy rule discovery [2], [10], [11], [19], [21], [17], because it allows a
global search in the state space, increasing the probability of converging to the glob-
ally-optimal solution.

The main characteristic of our proposed system that makes it different from the
above systems it that our system is based on the co-evolution of fuzzy rule sets and
membership function definitions, using two separate populations, whereas in general
the above projects are based on the evolution of a single population. The population
of fuzzy rule setsis evolved by a Genetic Programming (GP) algorithm, whereas the
population of membership function definitions is evolved by a simple evolutionary
algorithm.

In addition, our system also has some innovative ideas with respect to the encod-
ing of GP individuals representing rule sets. The basic idea is that our individual
encoding scheme incorporates several syntactical restrictions that facilitate the han-
dling of rule setsin digunctive normal form. We have also adapted GP operators to
better work with the proposed individual encoding scheme.

The remainder of this paper is organized as follows. Section 2 describes in detail
our proposed co-evolutionary system. Section 3 discusses computational results.
Finally, section 4 concludes the paper.

2 The Proposed Co-Evolutionary System for Fuzzy Rule Discovery

2.1 An Overview of the System

This section presents an overview of our CEFR-MINER (Co-Evolutionary Fuzzy
Rule Miner) system. CEFR-MINER is a system developed for the classification task
of data mining. It consists of two co-evolving evolutionary algorithms. The first one
is a Genetic Programming (GP) algorithm where each individual represents a fuzzy
rule set. A GP individua specifies only the attribute-value pairs composing the rule
conditions of that individual’s rule set. The definitions of the membership functions
necessary to interpret the fuzzy rule conditions of an individual are provided by the
second population. The second algorithm is a simple evolutionary agorithm, which
works with a “population” of a single individual. This population evolves via the
principle of natural selection and application of mutation, but not crossover. This
single individual specifies definitions of all the membership functions for all attrib-
utes being fuzzified (all originally continuous attributes). These definitions are used



by the first population of GP individuals, as mentioned above. Note that categorical
attributes are not fuzzified — their values are handled only by the GP population.

As aresult, the system simultaneously evolves both fuzzy rule sets and member-
ship function definitions specifically suited for the fuzzy rule sets. The main advan-
tage of this co-evolutionary approach is that the fitness of a given set of membership
function definitions is evaluated across several fuzzy rule sets, encoded into severa
different GP individuals, rather than on a single fuzzy set. Thisimproves the robust-
ness of that evaluation.

This basic idea of co-evolution for fuzzy-rule discovery has been recently pro-
posed by [4]. The main differences between this work and our system are as follows.
(a) Delgado et al.’s work uses three co-evolving populations and our work uses only
two; (b) Delgado et al.’s work uses genetic algorithms for evolving two of its three
populations. By contrast, we use genetic programming to evolve the rule set popu-
lation; (c) our work addresses the classification task of data mining, whereas Del-
gado et a.’swork addresses the problem of numeric function approximation.

2.2 The Genetic Programming Population

2.2.1 Rule Representation
Our system follows the Pittsburgh approach [7] and thus each individual represents a
set of rules. Each rule has the form: IF conditions THEN prediction. The prediction
of the rule has the form: “goal attribute = class’, where class is one of the values
that can be taken on by the goal attribute. In each run of the system all individuals
of the GP population are associated with the same prediction. Therefore, there is no
need to explicitly encode this prediction into the genome of an individual. Since
each run discovers rules predicting a single class, the system must be run c times,
where ¢ is the number of classes. Although this approach increases processing time,
it has two important advantages. (a) it simplifies individual encoding; and (b) it
avoids the problem of mating between individuals that predict different classes,
which could produce low-quality offspring. Each individual actually corresponds to
a set of rule antecedents encoded in digunctive normal form (DNF), such as. (sore
throat = true AND age = low) OR (headache = true AND NOT temperature = low).

In our system the function set contains the logical operators { AND, OR, NOT}.
Since each individual represents fuzzy rules, a fuzzy version of these logical opera-
tors must be used. We have used the standard fuzzy AND (intersection), OR (union)
and NOT (complement) operators [13]. More precisely, let p,(x) denote the mem-
bership degree of an element x in the fuzzy set A, i.e. the degree to which x belongs
to the fuzzy set A. The standard AND of two fuzzy sets A and B, denoted A AND B,
is defined as W, ,0:(}) = min[p,(X),u,(X)], where min denotes the minimum opera-
tor. The standard OR of two fuzzy sets A and B, denoted A OR B, is defined as |, ..
() = max[,(X),1 5(X)], where max denotes the maximum operator. The standard
NOT of afuzzy set A, denoted NOT A, is defined as o, ,(X) = 1 - p,(X).

The terminal set consists of al possible conditions of the form: “Attr, = Val,”,
where Attr, is the i-th attribute of the dataset. If attribute Attr; is categorical, Val, is



the j-th value of the domain of Attr,. If attribute Attr, is continuous - which means it
is being fuzzified by the system - Val, is alinguistic value in {low, medium, high}.
We use only three linguistic valuesin order to reduce the size of the search space.

In order to produce individual trees with only valid rule antecedents and in DNF
we propose some syntactic restrictions in the tree representation, as follows: (a) the
root node is always an OR node; (b) with the exception of the root node, each OR
node must have asits parent another OR node, and can have as its children any kind
of node; (c) each AND node must have as its parent either an OR node or another
AND node, and can have as its children AND, NOT or terminal nodes; (d) a NOT
node can have as its parent an OR node, an AND node or a NOT node; and it can
have as its child either another NOT node or a terminal node (we allow conditions
of the form “NOT NOT ...” to alow the possibility of a NOT being cancelled by
another NOT as a result of genetic operators) and (€) there cannot be two or more
terminal nodes referring to the same attribute in the same rule antecedent, since this
would tend to produce invalid rule antecedents such as (sex = male AND sex =
female). Fig. 1 shows an individual with five rule antecedents.

These syntactic constraints are enforced both when creating individuals of the
initial population and when modifying individuals due to the action of a genetic
operator. This approach can be regarded as a kind of strongly-typed GP [16] pro-
posed specifically for the discovery of rule sets in digunctive normal form, which
makes it attractive for data mining applications.

® & @ *
A=Y AV AR D Ay
A=y ﬁ.ﬂ A=Y BV AW
A=
Fig. 1. A tree representing five rule antecedents

The main advantage of working with the DNF directly into the tree representa-
tion, rather than converting a rule set into DNF after GP has evolved, is that this
makes it easier to fulfil the aforementioned restriction (€). Because of the hierarchi-
cal position of the nodes, it is easy to collect the terminal nodes of an individua
rule, as shown in Fig. 1, in order to check whether or not a condition can be inserted
into that rule.

Another possible approach to assure that the GP will run only with syntactically
valid individuals would be to use a context-free grammar to implement the afore-
mentioned syntactic restrictions. The drawback of this approach would be the diffi-
culty in checking syntactic restriction (€), which would lead to an explosion of the



number of production rules in the grammar. To avoid this, a logic grammar could
be used [20], but this would introduce some complexity to the system. Thus, we
have preferred the above-described direct implementation of syntactic constraints.

2.2.2 Selection and Genetic Operators

We use the tournament selection method, with tournament size 2 and with a simple
extension: if two individuals have the same fitness, the one with smaller complexity
is selected. Complexity is measured by the following formula[12]:

complexity = 2 x number_of_rules + number_of _conditions. Q)

This extension was motivated by observations in our experiments: sometimes the
two individuals competing in the tournament had the same fitness value, even
though they were different individuals.

Once two individuals are selected crossover is performed in a similar way to con-
ventional GP crossover, with the difference that in our case the crossover operator
respects the above-discussed syntactic restrictions, in order to guarantee that cross-
over always generates syntactically-valid offspring. (If crossover cannot produce
syntactically-valid individuals, the crossover operation fails and no children are
produced.)

The current version of the system uses a crossover probability of 80%, a rela-
tively common setting in the literature. However, in our system the offspring pro-
duced by crossover is not necessarily inserted into the population. Our population
updating strategy is as follows. Once all crossovers have been performed, all the
produced offspring are added to the population of individuals. Therefore, the popu-
lation size is provisionally increased by 80%. Then all individuals are sorted by
fitness value, and the worst individuals are removed from the population. The num-
ber of removed individuals is chosen in such a way that the number of individuals
left in the population is always a constant population size, set to 250 individuals (an
empirically-determined setting) in our experiments. We chose this population-
updating strategy mainly because it increases selection pressure, in comparison with
a conventional generational-replacement strategy. This is analogous to the (U+A)-
strategy employed in the second EA of this system, described in Section 2.3.2. The
main difference is that here we use a (U+A) strategy on top of tournament selection,
whereas the classic (u+A) strategy uses no such scheme.

Our system uses a mutation operator where a node is randomly chosen and then
the subtree rooted at that node is replaced by another randomly-generated subtree. In
the current version of the system an individual undergoes mutation with a probabil-
ity of 20% (an empirically-determined setting), with just one exception. The best
individual of each generation never undergoes mutation, so that its fitness will never
be worsened.

2.2.3 Fitness Function
In order to calculate the fitness of a GP individual, the first step is to compute the
following counters:



= TP (true positives) is the number of examples that are covered by at least one of
the individua’s rules and have the class predicted by those rules;

» FP (false positives) is the number of examples that are covered by at least one of
the individual’s rules but have a class different from the class predicted by those
rules,

= FN (false negatives) isthe number of examples that are not covered by any of the
individual’s rules but have the class predicted by those rules;

= TN (true negatives) is the number of examples that are not covered by any of the
individual’s rules and do not have the class predicted by those rules.

Note that the true positives and true negatives correspond to correct predictions
made by the individual being evaluated, whereas the false positives and the false
negatives correspond to wrong predictions made by that individual. In our system
the fitness of a GP individual is computed by the following formula[9]:

(TP/(TP+FN)) x (TN/(FP+TN)). 2

In the data mining literature, in general it isimplicitly assumed that the values of
TP, FP, FN and TN are crisp. This very commonplace assumption is invalid in our
case, since our system discovers fuzzy rules. In our system an example can be cov-
ered by a rule antecedent to a certain degree in the range [0..1], which corresponds
to the membership degree of that example in that rule antecedent. Therefore, the
system computes fuzzy values for TP, FP, FN and TN.

The membership degree of record r into the rule set encoded by the individual | is
computed as follows. For each rule of |, the system computes the membership de-
gree of r into each of the conditions of that rule. Then the membership degree for
the entire rule antecedent is computed by a fuzzy AND of the membership degrees
for al the rule conditions. This process is repeated for all the rules of the individual
I. Then the membership degree of the entire rule set is computed by a fuzzy OR of
the membership degrees for all the rules of 1.

For instance, suppose a training example has the class predicted by the individual
I's rules. Ideally, we would like that example to be covered by at least one of I's
rules to a degree of 1, so that the entire rule set of | would cover that example to a
degree of 1. Suppose that | has two rules, and that the current training example is
covered by those rules to degrees of 0.6 and 0.8. Then the fuzzy OR would return a
membership degree of 0.8 for the entire rule set. This means that the prediction
made by the individual is 80% correct and 20% wrong. As a result, this example
contributes a value of 0.8 for the number of true positives and a value of 0.2 for the
number of false negatives.

2.2.4 Tree Pruning

Rule pruning is important not only in data mining [3] but also in GP, due to the
well-known effects of code bloat [14], [1]. Code bloat has greatly affected our sys-
tem’s performance. In our initial experiments, with no pruning at all, some datasets
required an unacceptable amount of running time. Therefore, we have designed an
operator to prune GP trees. The basic idea of this operator is to randomly remove
conditions from a rule with a null coverage — i.e. a rule which does not cover any



record — until it covers at least one record or until al conditions are removed, which

corresponds to removing the entire rule from itsrule set.

More precisely, each rule of the individual is separated and evaluated by itself.
The ones that have a null coverage will have some conditions dropped according to
the following criteria:

» |f arule has more than 7 conditions, some conditions are randomly removed until
the rule has between 5 and 7 conditions (a randomly chosen number). If even af-
ter this step the rule remains with a null coverage, the next criterion will be ap-
plied;

= |f the number of conditions of a rule is less than or equal to 7, its conditions will
be dropped randomly one by one until the rule covers at least one record or al of
its conditions are dropped, removing the rule completely from the individual.
This operator is applied to an individual with a 20% probability. However, as an

individual might be worsened by this operator, it is never applied to the best indi-

vidua of the current generation. The motivation to apply the above operator only to

20% of the individuals is to save processing time, since thisis a relatively computa-

tionally-expensive operator.

After the end of the evolution, the best individual also undergoes a different tree
pruning. This operator removes two kinds of redundant rules: rules with a null cov-
erage and duplicate rules. This final tree pruning does not alter the fitness of the
individual, since the removal of null-coverage/duplicate rules does not alter the set
of examples covered by an individual’srule set.

2.3 The “Population” of Member ship Functions

As mentioned above, in our system the values of all continuous attributes are fuzzi-
fied into three linguistic values, namely low, medium, and high. These linguistics
values are defined by trapezoidal membership functions. Each continuous attribute
is associated with its own membership functions. Hence, the membership functions
are dynamically evolved, modifying a set of parameters defining the membership
functions, to get better adapted to their corresponding attribute. All the parameters
of all membership functions are encoded into a single individual. This individual is
considered as a“ population” (in aloose sense of the term, of course) separated from
the GP population. As mentioned in section 2.1, this single-individual population
co-evolves with the GP popul ation.

2.3.1 Individual Representation

The individua is divided into k parts (or “chromosomes’, loosely speaking), where
k is the number of attributes being fuzzified. Each chromosome consists of four
genes, denoted g1, g2, g3 and g4, which collectively define the three membership
functions (low, medium, and high) for the corresponding attribute, as shown in Fig.
2. Each gene represents an attribute value that is used to specify the coordinate of
two trapezoid vertices belonging to a pair of “adjacent” membership functions. The
system ensuresthat gl < g2 < g3 < g4



This individual representation has two advantages. First, it reduces the search
space of the evolutionary algorithm and saves processing time, since the number of
parameters to be optimized by the evolutionary algorithm is reduced. Second, this
representation enforces some overlapping between “adjacent” membership functions
and guarantees that, for each original value of the continuous attribute, the sum of
its degrees of membership into the three linguistic values will be 1, which is intui-
tively sensible.

Low Medinm

'L g @ o4

Fig. 2. Definition of 3 trapezoidal membership functions by 4 genes (g1, g2, g3, g4)

2.3.2 Evolutionary Algorithm to Evolve M ember ship Functions

Obvioudly, it is not possible to perform crossover in the single-individual “popula-
tion” of membership functions. Therefore, the evolution of the single individua
representing membership functions is the result of a simple evolutionary algorithm,
which evolves by means of a (u+A)-evolution strategy (more specifically the (1+5)-
strategy), described as follows.

First of al, the individua is cloned 5 times. Each clone is an exact copy of the
original individual. Then the system applies to each clone a relatively high rate of
mutation. Each chromosome (i.e. a block of four contiguous genes, g1, g2, g3 and
04, defining the membership functions of a single attribute) has an 80% probability
of undergoing a single-gene mutation. The mutation in question consists of adding
or subtracting a small randomly-generated value to the current gene value. This has
the effect of shifting the coordinate of the trapezoid vertices associated with that
gene alittle to the right or to the left.

Note that, since a chromosome has four genes and only one of those genes is
mutated, a mutation rate of 80% per chromosome corresponds to a mutation rate of
20% per gene. Our motivation to use this relatively high mutation rate is the desire
to perform a more global search in the space of candidate membership function
definitions. If we used a much smaller mutation rate, say 1% or 0.1%, probably at
most one gene of an entire individual (corresponding to all attributes being fuzzi-
fied) would be modified. This would correspond to a kind of local search, where a
new candidate solution being evaluated (via fitness function) would differ from its
“parent” solution by only one gene, without taking into account gene interactions.
By contrast, in our (1+5)-evolution strategy scheme a new candidate solution being
evaluated differs from its “parent” solution by severa genes, and the effect of al
these gene modifications is evaluated as a whole, taking into account gene interac-
tions. This is important, since the attributes being fuzzified can interact in such a
way that modifications in their membership functions should be evaluated as a



whole. Actually, the ability to take into account attribute interactions can be consid-
ered one of the main motivations for using an evolutionary algorithm, rather than a
local search algorithm.

In any case, once the 5 clones have undergone mutation, the 5 just-generated in-
dividuals are evaluated according to a fitness function — which is discussed in the
next subsection. The best individual is kept and al others are discarded.

The number of clones (5) used in our experiments was empirically determined as
a good trade-off between membership-function quality and processing time.

2.3.3 Fitness Function

Recall that the individual of the membership-function population represents defini-
tions of membership functions to be used for defining rule antecedents being
evolved by the GP population. Hence, the quality of the individual of the former
population depends on the predictive accuracy of individuals of the latter popula
tion. More precisely, in our co-evolutionary scheme the fitness value of the mem-
bership-function individual is computed as the sum of the fitness values of a group
of individuals of the GP population. To compute the fitness, the system uses only a
small portion of the GP population — for the experiments reported in this paper we
used the best five individuals—, in order to reduce processing time.

2.4 Classifying New Examples

Recall that a complete execution of our system generates one rule set for each class
found in the data set. These rule sets are then used to classify the examples of the
test set. For each test example the system computes the degree of membership of
that example to each rule set (each one predicting a different class). Then the exam-
ple is assigned the class of the rule set in which the example has the largest degree
of membership. The accuracy rate on the test set is computed as the number of cor-
rectly classified test examples divided by the total number of test examples, as usual
in the classification literature.

3 Computational Results

We have evaluated our system across four public-domain data sets from the UCI
(University of California at Irvine) data set repository. These data sets are available
from http://www.ics.uci.edu/~mlearn/MLRepository.html. Some of these data sets
had a small number of records with unknown values. Since the current version of
our system cannot cope with this problem, those records were removed. All the
results reported below were produced by using a 10-fold cross-validation procedure
[9].

In order to evaluate the performance of our system we have compared it to two
other evolutionary systems found in the literature: ESIA [15] and BGP [18]. Both
ESIA and BGP discover crisp rules. They were chosen for comparison because they
have been applied to some of the data sets used in our experiments and because they



have obtained good results in comparison with other data mining systems. The re-
sults for ESIA and BGP reported here are taken directly from the above-mentioned
papers. The results for ESIA were also produced by 10-fold cross-validation,
whereas the results for BGP were produced by generating 30 training and test sets.

Ascan be seenin Table 1, our system and ESIA obtained the same accuracy rate
on the Iris data set. (The numbers between brackets for our system are standard
deviations.) On the other two data sets (CRX and Heart), our system considerably
outperforms ESIA. Our system outperforms BGP on the Iris data set, but BGP out-
performs our system on the lonosphere data set.

A possible explanation for the lower performance of the fuzzy rules discovered
by our system in the lonosphere data set is suggested by the large number (34) of
continuous attributes in that data set. This suggests the possibility that the simple
evolutionary algorithm described in section 2.3 has difficulty in coping with such a
relatively high number of attributes being fuzzified. In other words, in this case the
size of the search space may be too large for such a smple evolutionary algorithm.
This hypothesis will be further investigated in future work.

Table 1. Accuracy rate (on test set), in %, of our system, ESIA and BGP.

Data set Our system ESIA BGP
CRX 84.7 (£3.5) 77.39 N/A
Heart (stat-| 822 (+7.1) 74.44 N/A
log)
|onosphere 88.6 (£6.0) N/A 89.2
Iris 95.3 (£7.1) 95.33 9%4.1

Overall, we consider these results very promising, bearing in mind that, unlike
ESIA and BGP, our system has the advantage of discovering fuzzy rules, which tend
to be more intuitive for a user than the “hard” thresholds associated with continuous
attributes in crisp rules. On the other hand, like most evolutionary algorithms, our
co-evolutionary system needs a good amount of computational time to run. More
precisely, a single iteration of cross-validation took a processing time varying from
a couple of minutes for the Iris data set to about one hour for the CRX data set —
results obtained for a dual-processor Pentium 11 350. Shorter processing times may
be obtained by the use of parallel data mining techniques [8], but this point is left
for future research.

4 Conclusions and Future Research

We have proposed a co-evolutionary system for discovering fuzzy classification
rules. The system uses two evolutionary algorithms. a genetic programming (GP)
algorithm evolving a population of fuzzy rule sets and a simple evolutionary algo-
rithm evolving a population of membership function definitions. The two popula



tions co-evolve, so that the final result of the co-evolutionary processis a fuzzy rule
set and a set of membership function definitions that are well adapted to each other.

The main advantage of this co-evolutionary approach is that the fitness of a given
set of membership function definitions is evaluated across several fuzzy rule sets,
encoded into several different GP individuals, rather than on a single fuzzy set. This
makes that evaluation more robust. In order to mitigate the problem of long proc-
essing times, our system evaluates a set of membership function definitions only
across the few best GP individuals.

In addition, our system also has some innovative ideas with respect to the encod-
ing of GP individuals representing rule sets. The basic idea is that our individual
encoding scheme incorporates several syntactical restrictions that facilitate the han-
dling of rule sets in digunctive normal form. We have also adapted GP operators to
better work with the proposed individual encoding scheme.

We have evaluated our system across four public domain data sets and compared
it with two other evolutionary systems (ESIA and BGP) found in the literature
which used the same data sets. Our results can be summarized as follows:

(8 Our co-evolutionary system considerably outperforms ESIA in two out of
three datasets and equalsit in the other data set, with respect to predictive accuracy.

(b) Our system is competitive with BGP in two data sets. (In one data set our
system outperforms BGP, whereas BGP outperforms our system in the other data
set.)

(c) Our system has the advantage of discovering fuzzy rules, which tend to be
more intuitive for the user than the crisp rules discovered by ESIA and BGP.

There are several directions for future research. For instance, the GP tree pruning
operator currently used in our system is a “blind” operator, in the sense that tree
nodes to be pruned are randomly chosen. It seems that a promising research direc-
tion would be to design a more “intelligent” pruning operator, which would choose
the tree nodes to be pruned based on some estimate of the predictive power of those
tree nodes.

Note that the above suggested research direction concerns improvement in the GP
algorithm used by our system. However it seems that the most important point to
investigate in future research is the performance of the simple evolutionary algo-
rithm for evolving membership function definitions. It is possible that the current
version of this algorithm is not robust enough to cope with data sets having a large
number of attributes being fuzzified. This hypothesis must be further investigated in
the future, which might lead to improvements in the current version of this simple
evolutionary algorithm.

References

1. W. Banzhaf, P. Nordin, R.E. Keller, Francone FD Genetic Programming ~ an Introduc-
tion. Morgan Kaufmann, 1998.



2. P.J. Bentley. “Evolutionary, my dear Watson” - investigating committee-based evolution
of fuzzy rules for the detection of suspicious insurance claims. Proc. Genetic and Evolu-
tionary Computation Conf. (GECCO-2000), 702-709. Morgan Kaufmann, 2000.

3. L.A. Breslow and D.W. Aha. Simplifying decision trees: a survey. The Knowledge Engi-
neering Review, 12(1), 1-40. Mar. 1997.

4. M. Delgado, F.V. Zuben and F. Gomide. Modular and hierarchical evolutionary design of
fuzzy systems. Proc. Genetic and Evolutionary Computation Conf. (GECCO-99), 180-
187. Morgan Kaufmann, 1999.

5. U.M. Fayyad, G. Piatetsky-Shapiro and P. Smyth. From data mining to knowledge discov-
ery: an overview. In: U.M. Fayyad et a. (Eds.) Advances in Knowledge Discovery &
Data Mining, 1-34. AAAI/MIT, 1996.

6. C.S. Fertig, A.A. Freitas, L.V.R. Arruda and C. Kaestner. A Fuzzy Beam-Search Rule
Induction Algorithm. Principles of Data Mining and Knowledge Discovery (Proc. 3rd
European Conf. - PKDD-99). Lecture Notes in Artificial Intelligence 1704, 341-347.
Springer-Verlag, 1999.

7. A.A. Freitas. A survey of evolutionary algorithms for data mining and knowledge discov-
ery. To appear in: A. Ghosh and S. Tsutsui. (Eds.) Advances in Evolutionary Computa-
tion. Springer-Verlag, 2001.

8. A.A. Freitas and S.H. Lavington. Mining Very Large Databases with Parallel Processing.
Kluwer Academic Publishers, 1998.

9. D.J. Hand. Construction and Assessment of Classification Rules. John Wiley& Sons, 1997.

10. H. Ishibuchi and T. Nakashima. Linguistic rule extraction by genetics-based machine
learning. Proc. Genetic and Evolutionary Computation Conf. (GECCO-2000), 195-202.
Morgan Kaufmann, 2000.

11. H. Ishibuchi, T. Nakashima and T. Kuroda. A hybrid fuzzy GBML algorithm for design-
ing compact fuzzy rule-based classification systems. Proc. 9th IEEE Int. Conf. Fuzzy
Systems (FUZZ |EEE 2000), 706-711. San Antonio, TX, USA. May 2000.

12. C.Z. Janikow. A knowledge-intensive genetic algorithm for supervised learning. Machine
Learning 13, 189-228. 1993.

13. G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice-Hall, 1995.

14. W.B. Langdon, T. Soule, R. Poli and J.A. Foster. The evolution of size and shape. In: L.
Spector, W.B. Langdon, U-M. O'Reilly and P.J. Angeline. (Eds.) Advances in Genetic
Programming Volume 3, 163-190. MIT Press, 1999.

15. JJ. Liu and J.T. Kwok. An Extended Genetic Rule Induction Algorithm. Proc. Congress
on Evolutionary Computation (CEC-2000). La Jolla, CA, USA. July 2000.

16. D.J. Montana. Strongly typed genetic programming. Evolutionary Computation 3(2),
199-230. 1995.

17. C.A. Pena-Reyes and M. Sipper. Designing breast cancer diagnostic systems via a hybrid
fuzzy-genetic methodology. Proc. 8th |IEEE Int. Conf. Fuzzy Systems. 1999.

18. S.E. Rouwhorst and A.P.Engelbrecht. Searching the Forest: Using Decision Tree as
Building Blocks for Evolutionary Search in Classification. Proc. Congress on Evolution-
ary Computation (CEC-2000), 633-638. La Jolla, CA, USA. July 2000.

19. D. Walter and C.K. Mohan. ClaDia: a fuzzy classifier system for disease diagnosis. Proc.
Congress on Evolutionary Computation (CEC-2000), 1429-1435. La Jolla, CA. 2000.

20. M.L. Wong and K.S. Leung. Data Mining Using Grammar Based Genetic Programming
and Applications. Kluwer, 2000.

21. N. Xiong and L. Litz. Generating linguistic fuzzy rules for pattern classification with
genetic algorithms. Principles of Data Mining and Knowledge Discovery (Proc. PKDD-
99) Lecture Notesin Artificia Intelligence 1704, 574-579. Springer-Verlag, 1999.



