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Abstract

The paper introduces a modular, hierarchi-
cal evolutionary method to design fuzzy sys-
tems. The method uses genetic algorithms to
evolve a population of rule-based fuzzy mod-
els. For this purpose, three hierarchical mod-
ules are defined namely, partition, population
of granules, and population of fuzzy graphs.
The evolutionary process is designed to find
the best set of fuzzy rules induced by the
granularity required, the form of the member-
ship functions and the inference procedure.
This hierarchical configuration guides to the
implementation of an effective process of co-
operation and competition among rules, re-
sponsible for the small cardinality of the re-
sulting set of rules. Simulation results show
that the method does increase flexibility to
design fuzzy models, preserves the computa-
tional tractability, and improves the descrip-
tive nature of the final solution.

1 INTRODUCTION

In fuzzy set theory, relations induced by if-then rules
are the basic building blocks to represent and process
information [Klir and Forger, 1988]. Key design is-
sues must be carefully considered to develop efficient
rule-based fuzzy models. They include the choice of
relevant input /output variables, granularity of the uni-
verses, number of rules to be used, shape of the mem-
bership functions, and inference method (see Pedrycz
and Gomide [1998] for details). To find the optimal
values of all parameters involved in the design of fuzzy
systems is a very demanding task, even when expert
knowledge on problem domain exists. The situation
becomes more complicated in the case of complex engi-
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neering problems because arbitrary specifications may
result in undesirable solutions.

Genetic algorithms, neural networks, and more re-
cently hybrid systems, have been successfully used to
design fuzzy systems [Pedrycz and Gomide, 1998]. Au-
tomatic design of fuzzy systems constitutes a promis-
ing and challenging research area in which evolution-
ary computation has a significant role. The use of
genetic operators, like reproduction, mutation and
crossover [Holland, 1992], appears as a powerful pro-
cedure to automatically find fuzzy model parameters,
as indicated in Thrift [1991] and Karr [1991]. For in-
stance, in Thrift [1991], genetic algorithms are used
to select adequate fuzzy sets for the consequent part
of if-then fuzzy rules. In this case, each individual
represents a set of fuzzy rules. The shape of the mem-
bership functions is fixed and evolution techniques de-
fine which rules should be part of the model. In Karr
[1991], membership functions and fuzzy rules are both
determined by genetic algorithms. First, mutation and
crossover are applied to discover the number of fuzzy
rules, with the shape of each membership function
maintained fixed. Only at a second stage the shape of
the parameters are tuned using GA. The problem of
membership function definition has also been consid-
ered in Nomura et al. [1992] and Murata et al. [1998].
Here again, the number and the shape of membership
functions are found via evolution. In this case, each
individual is binary-coded to represent a set of fuzzy
rules, but fuzzy sets overlapping is fixed. Concerning
both rules and membership functions, Karr and Gen-
try [1993] applied GA to obtain a set of production
rules for pH control, whereas Takagi and Lee [1993]
used TSK class of fuzzy models as a template model.
In Karr and Gentry [1993], binary-coded chromosomes
represent membership functions that, evolved by GA
techniques, are used by a conventional fuzzy controller.
In Takagi and Lee [1993], triangular membership func-
tions are codified on a three-value string: left base,



right base, and the distance between centers. The out-
put is a linear relationship on the inputs. The chro-
mosome codification is binary and each individual rep-
resents a solution, i.e., a set of rules that models the
system.

Differently, in Valenzuela-Rendon [1991], each individ-
ual represents one fuzzy rule. Antecedents and con-
sequents have a binary coding, which means that the
number of bits determines the number of fuzzy sets for
each variable. The shape of the membership functions
are previously defined, and overlapping between them
are allowed. In an alternative approach, Homaifar and
McCormick [1995] used integer values strings. After
decoding, these strings define the linguistic values of
the input variables and associated membership func-
tions. The modal value of membership functions and
dispersion (or base) of output variables are all fixed.
Membership function overlapping is allowed with a
guaranteed minimal value.

The common feature among these works is the fact
that the codification method treats all model param-
eters at the same level. Therefore, it is impossible
to evaluate (via a fitness measure) the average per-
formance of any specific parameter. An alternative
approach is discussed in Hoffmann and Pfister [1995]
where messy genetic algorithm techniques [Goldberg
et al., 1989] are used to design a fuzzy controller with
hierarchical prioritized structures [Yager, 1993]. Two
different levels (individual rules and prioritized set of
rules) are used in the evolutionary process.

Another important restriction of most of the works dis-
cussed above concerns the consideration of a small part
of the design parameters. In this paper, genetic algo-
rithms are emphasized as powerful design tool to find
an optimal set of parameters for fuzzy systems mod-
els. A modular, hierarchical method is proposed to
evolve a large set of design parameters of fuzzy mod-
els. The method provides the flexibility required to
address complex design problems within the realm of
fuzzy set theory. It also provides the designer the op-
tion to select optimization of the set, or a subset of
the parameters only. Simulation results are included
to show the usefulness of the approach proposed.

2 The EVOLUTIONARY DESIGN
METHOD

The Modular and Hierarchical Evolutionary Fuzzy
System (MHEFS) method aims at higher flexibility to
design the fuzzy rules that best describe a given sys-
tem. Its modular and hierarchical nature was inspired
by an application of GA introduced in Moriarty and
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Miikkulainen [1998] to train one hidden layer neural
networks.

The MHEFS considers simultaneously many impor-
tant aspects that must be addressed when designing a
fuzzy system:

e the system is automatically designed as a whole by
means of GA techniques, providing a way to de-
cide on : membership function parameters (type,
shape and location), overlapping between fuzzy
sets, relation defined by each individual rule, and
the number of rules of the resulting fuzzy model.

e the evolutionary process is structured in a hier-
archical configuration composed of the following
modules: partition set, individual fuzzy rules, and
sets of fuzzy rules.

The basic idea is to develop a fuzzy system as com-
posed of modules (distinct populations) that interacts
during the evolutionary process. The objective is to
obtain, at the final generation, the best set of fuzzy
rules and the associated model parameters. The mod-
ular and hierarchical structure is depicted in figure 1.
The partition set provides the atomic elements (state-
ments or membership functions) to be combined and
used to produce a population of individual rules (gran-
ules). The population of individual rules produces, in
turn, a population of sets of rules (fuzzy graphs).
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Figure 1: Hierarquical relation between different mod-
ules

Function approximation is used as a test problem to
verify the efficiency of the proposed method. Learn-
ing an input-output compact mapping from a set
of examples can be regarded as synthesizing an ap-
proximation of an unknown multidimensional function
G(): Q CR™ - R, with Q a compact region. For
l=1,..,N,let x; € R™ be the input variable, s; € R"
be the respective output, and € € R" be an additive



random variable, with zero mean and known variance.
A sampling process given by s; = G(x;)+e,l=1,...,N
produces an input matrix X € RY¥*™ and a corre-
sponding output matrix S € RV*™ with x and s/,
(I =1,...,N) as their rows. The goal is to use the ma-
trices X and S to construct the best approximation
model G(.) and adopt this model to obtain an esti-
mate §, given any x € €, such that § = G(x). The
numerical example to be considered assumes m = 2,
r =1, N =225 and Q = [—4,4]x[—4,4]. Figure 8(a)
shows the function to be approximated. Notice that
this problem of function approximation represents a
generic description of the mathematical formulation
for:

e control problem: the input-output mapping rep-
resents the control surface to be approximated;

e pattern recognition problem: the input-output
model represents the discriminant surface to be
approximated.

The fuzzy relations associated with each rule are as-
sumed to be fuzzy conjunctions. Therefore, each in-
dividual rule is a granule and the fuzzy relation,
defined by a specific set of rules, is a fuzzy graph
[Pedrycz and Gomide, 1998]. Figures 2 and 3 show the
ideas of a granule and fuzzy graph, in the context of
function approximation.
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Figure 2: Fuzzy Point or Granule

Each granule represents only one fuzzy rule that re-
lates antecedent and consequent parts. In function ap-
proximation, the antecedent has the variables x and y
(m = 2) and the consequent has the variable z (r = 1).
The i** rule R; is defined by: R;: IF x is A; AND y
is B; THEN z is C;, and the set of rules [R;...R,]
represents a fuzzy graph (fig. 3) in R space.

The partition set, formed by only one chromosome,
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Figure 3: Fuzzy Graph

evolves by means of simple mutation and its modifica-
tion influences granules and graphs. Each individual
in the population of granules represents a proposition.
So, the population of granules will produce different
arrangements of linguistic terms according to the vari-
ables involved. The population of graphs aggregates
individuals that render specific arrays of rules. The fit-
ness measure of an individual graph is calculated based
on the MSE produced by the presentation of the input
data set. The fitness of each granule is based on the
mean values of the fitness associated with the graphs
in which it takes part. Updating the fitness associated
with the population of graphs results in modifications
on the fitness of the population of granules and so for.

The evolutionary process uses generic purpose opera-
tions for mutation and crossover, and specific purpose
mutation operations as well. Generic purpose opera-
tions employ genetic material chosen by the roulette
wheel (RW) procedure. In this case, the selection is
elitist: the individuals with worst fitness are replaced
by the offsprings generated. In specific purpose op-
erations, parents are selected from a group of best
individuals and replacements are performed on each
individual chromosome. Hence, generic purpose op-
erators simulate the standard process of classic evo-
lution. Specific purpose mutation changes the origi-
nal chromosome and the process of adaptation occurs
along the life of each chromosome. In spite of the type
of operation (generic or specific purpose) used, in the
mechanism of mutation the value of a chosen allele is
changed by another value taken from a set of valid
values. Specifically, in granules and graphs “bad val-



ues” (elements with bad fitness measures) may be sub-
stituted for “good values”. Uniform crossover is used
to manipulate the population of granules, and sim-
ple crossover to manipulate the population of graphs
[Michalewicz, 1996]. Details concerning the implemen-
tation of the algorithm will be given in section 3.

The hierarchical method enables the fitness storage
of the population to be performed separately in each
module. Therefore, the replacement of granules de-
pends on the mean performance, not on the current
performance. Thus, it reduces the risk of suppressing
a granule only because it takes part on an upper-level
population element (graph) with a bad performance.

The details of the structural codification are discussed
in what follows. All linguistic terms (statements)
are represented by membership functions encoded by
strings (genes) of 5 elements. Here, each position
(allele) represents different data of a specific gene or
membership function. Figure 4 provides an example
of the genotype and phenotype of a membership func-
tion.

TypeSet (Tp gene codification
1 2 3 4 5
0 —= Excluded function ‘Tp ‘ L ‘Cl ‘Cz‘ R ‘
1 — Trapezoida function
2 — Triangular function ¢
3 — Gaussian function gene representation
Ci1
1 """"""" ! ;
— ; ‘
Ll ¢ 5 \ R \

Figure 4: Membership function codified as a gene

In figure 4 the value of allele 1 indicates the type of
membership function encoded: trapezoidal, triangu-
lar, and Gaussian functions. Strings or genes of type 0
(excluded function) indicates that the associated lin-
guistic term is not able to appear in any rule of the
whole set of rules. It may be observed that, except
the value of allele 1, all the remaining values are rela-
tive to the pivot element C7, which in turn depends on
the respective origin of the universe. Once defined the
string, a decoding process is required to generate ab-
solute parameters for the membership functions. For
trapezoidal functions, only one step is necessary: al-
leles 2 to 5 are converted to their absolutes values.
For triangular and Gaussian functions some additional
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steps are necessary. In the case of triangular functions,
the center is achieved by the average of C; and Cs,
and the remaining alleles are just converted to their
absolute values. For Gaussian function, the mean is
calculated in the same way as in the triangular case
but another modification is required to calculate stan-
dard deviation: maximum deviation is given by the
following formula: A = (L + R)/2, and standard devi-
ation is given by o = A/3, so that the function limits
will not exceed 3o.

The partition set, codified in a single chromosome, is
formed by linking all the possible membership func-
tions (encoded according to the above description) de-
fined in the associated universes. At the population
of granules, each individual (rule) that aggregates an-
tecedents and consequents is represented by a collec-
tion of integers (indexes concerning terms A;, B; and
C;, for the case of two input variables and one output
variable) representing membership functions that take
part in each rule. The population of graphs is also
defined by a set of chromosomes, where each allele is
an index ¢ that identify the granule (rule) which takes
part in that graph.

Tables 1, 2 and 3 show an example of the genotype
configuration for individuals belonging to the three
modules that compose the system. This is only an
illustrative example, in the real implementation to be
presented in section3, larger population sizes are con-
sidered.

Table 1: Genotype Configuration for three Fuzzy
Graphs
Systems
Graph || Granules or Rules
1 1 7 3 2 5
2 6 7 0 9 10
3 10 6 4 6 9

Table 2: Genotype Configuration for ten Granules

Individual Rules
Rules’ Indexes
Term |[1[2[3[4[5][6]7][8]9]10
A; 11113042324 2
B; 3123|310 |1]|3]|2] 3
C; 4111412142314 1

Null elements indicate parameter exclusion, adopted
to produce three levels of compression: exclusion of a



Table 3: Genotype Configuration for the Partition Set
(with four membership functions associated with each
variable)

| VAR | Ling. Term | T, L Ci Cy R |

1 10 27 13 05 27
x 2 30 06 40 0.1 3.1
3 20 2.7 50 04 28
1 1.0 27 80 05 2.7
1 1.0 24 10 08 27
y 2 30 22 40 05 27
3 10 27 67 05 2.7
1 00 2.7 93 05 27
1 10 22 11 04 22
z 2 10 22 33 04 22
3 00 12 54 04 22
4 10 22 60 04 22

membership function, variable elimination (indicating
irrelevance of the corresponding variable in a specific
individual rule), and exclusion of a rule. The total of
relevant elements in each chromosome is computed in
a different way according to its population level. For
the population of fuzzy graphs, the number of rules
in each graph is determined by computing the total of
elements different from the null one and with the sub-
traction of repeated indexes. For example, at Table 1
the graph 1 is a full graph with 5 rules (no elimina-
tion or repetition), graph 2 has a total of 4 rules (one
rule has been eliminated) and graph 3 is formed by
4 rules (rule 6 appears twice). The variable elimina-
tion is obtained by setting an index of the antecedent
part term to zero. As we can see in Table 2, the 4th
rule indicates the irrelevance of the variable x in this
rule. So we have a compressed rule of the form: Ify
is “3” then z is “2”. Finally, at partition set, we have
a kind of compression that permits the elimination of
a specific linguistic term from the partition set. As
shown in Table 3, the linguistic terms 4 and 3 are not
able to appear in the partition set of universes Y and
Z, respectively. Notice that exclusion in lower levels
determines indirect elimination in higher levels. For
examples, if a specific term has been excluded from
the partition set, all the rules that refer to it perform
as compressed rules, although the index has not been
changed to zero. In the case of granules, if the an-
tecedent part of a specific rule has null values, this
rule has no effect in any graph although its index re-
main fixed in the graph population.

Figure 5 illustrates the details concerning graph 1 of
Table 1.

Graph 1 Corresponding
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Figure 5: Hierarchical Relation Between Modules in
the Fuzzy System

Figure 6 shows the phenotype of genes or linguistic
terms presented in the locus of variable y, in the par-
tition set illustrated in Table 2. It should be noted
that the linguistic term “4”, corresponding to the most
right term is not presented since it is an excluded func-
tion.

Universe Partition

0.9

B(y)

0.1

0 3 -2 2 4

Figure 6: Partition Decoding for Variables y in the
example of Table 3

3 IMPLEMENTATION AND
RESULTS

The evolutionary algorithm uses an intermediate
method between the Michigan and the Pitt approach.
The final solution is made up from some elements
(memberhip functions) from the partition set (neither
the whole set, nor an individual element), some ele-
ments from the population of granules, that will join
to form an individual of the population of fuzzy graphs.



The algorithm presented bellow summarize the main
steps.

ALGORITHM

1. randomly inicialize populations
2. Eval Fitness of all modules
WHILE Best Graph Fit < F AND Generation < G

set operation = specific (ind = s)
execute steps (3.1, 4.1 and 5.1)
set operation = generic (ind = g)
execute steps (3, 4 and 5)
execute step 6

3. operations over Partition Set
3.1 Partiton set mutation
a) choose membership fun. (MF)
b) SubPop = mutation(MF)
c) MedPopPart = POPPart - MF + SubPop
d) Eval fitness of Graphs for MedPopPart
e) IF ExecutionConditions == 0K
NewPopPart = MedPopPart
Update Fitness of all modules

4. operations over Granules Population
4.1 Granules mutation
a) choose set of rules (RL)
b) SubPop = mutation(RL)
c) MedGn(s) = POPGn - RL + SubPop
MedGn(g) = POPGn - worst_rules + SubPop
d) Eval fitness of Graphs for MedGn(ind)
e) IF ExecutionConditions == 0K
NewPopGn = MedGn(ind)
Update Fitness of all modules

4.2 granules crossover

a) choose rules(RL1,RL2)

b) SubPop = crossover(RL1,RL2)

c) MedGn = POPGn - worst_rules + SubPop

d) Eval fitness of Graphs for MedGn

e) IF ExecutionConditions == 0K
NewPopGn = MedGn
Update Fitness of all modules

5. operations over Graphs Population
5.1 Graph mutation
idem 4.1
5.2 Graph crossover
idem 4.2

6. Generation = Generation + 1

END

As show in the algorithm, the first step performed in
each generation is the operation of specific purpose
mutation over the partition set and the population of
granules and graphs. This type of search looks for
individuals with the highest fitness measure. After
that, the algorithm performs a less specific search us-
ing generic purpose operations. This type of search
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looks for better offsprings, generated from individuals
selected by roulette wheel. It is important to note that,
in spite of the type of operations performed (specific
or generic), modifications are only carried out if some
conditions of execution are satisfied. There are two
types of conditions: condition type 1, where the best
graph does not degenerate (the fitness of the new best
graph is equal or higher then the fitness of the old best
graph); and condition type 2, where the fitness average
of the involved individuals does not degenerate.

Several tests have been performed, fixing some param-
eters and varying others, such as population size, ini-
tial granularity, probabilities, and the type of execu-
tion test. Best results have been achieved with the
following initial parameters:

e population size: 80 graphs, with a maximum of
35 rules in each graph, 340 granules and 7 linguis-
tic terms for each variable, all of the same type
and uniformly distributed over the corresponding
universe.

e probabilities associated with the genetic opera-
tors:

1. specific purpose mutation:  graph(0.01),
granules(0.05), partition set(0.07).

2. generic purpose mutation: graph(0.08), gran-
ules(0.08)

3. crossover: graphs(0.2), granules(0.1).
e execution test: condition 1 and 2 applied together

e compression taxes: graph(0,2), granules(0), par-
tition set(0).

e inference mechanism: 1) Antecedent aggrega-
tion operator: AND = min, 2) Meaning of
each rule:min (Mamdani Conjunction function)
3) Rule Aggregation: maz 4) Decoding Process
(Defuzzyfication): CoG. The defuzzyfied output
is used to calculate the MSE for each graph, and
the fitness measure is: fit =1/MSE.

At the last generation the best individual results in a
graph built up from 30 fuzzy rules based on a partition
set illustrated in Figure 7, that brings a comparison of
the partitions initially defined to the final partitions
obtained. Figure 8 illustrates the approximation per-
formance. Figure 8(a) shows the original function to
be approximated, figure 8(b) illustrates the final sur-
face obtained at the last generation, and figure 8(c)
shows the date evolution along generations. Since the
best graph is preserved or improved from generation
to generation, the fitness measure never decreases.
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4 CONCLUSIONS

The paper has introduced a modular, hierarchical evo-
lutionary method to design fuzzy systems using ge-
netic algorithms to evolve a population of rule-based
fuzzy models. The method solved a function approxi-
mation example to demonstrate its potential in system
modeling problems. Simulation results show that the
method provides a computationally tractable proce-
dure to design fuzzy systems. Specific purpose oper-
ators are implemented to control population diversity
along generations.

The hierarchical structure is a fundamental aspect of
the design because it provides an effective way to de-
fine the fitness of low-level modules. That is, the fit-
ness value measures the potential of a module to con-
tribute to the final solution, not the current perfor-
mance of the module. Therefore, if a high-level mod-
ule has a poor performance as a candidate to represent
a fuzzy model, this does not necessarily mean a bad
fitness for all the rules involved, because they may be
part of other high-level modules of better performance.
This is a form of evolutionary memory. A low-level
module has a small (high) probability of survival if
its performance, in average, decreases (increases). De-
spite its potential to deal with systems of high com-
plexity, the method can obviously be useful to refine
existing solutions to simpler engineering problems.
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