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Abstract: This paper presents the Hierarchical Fast Learning 
Artificial Neural Network (HieFLANN) as a new model for learn-
ing high dimensionality data. The HieFLANN utilizes collaborat-
ing networks of K-Mean Fast Learning Artificial Neural Network 
(KFLANN) subnets [9] and a Canonical Covariance Feature Com-
pression (C2FeCom) process. The HieFLANN is an inductive and 
unsupervised artificial neural network (ANN) that incorporates a 
hierarchical approach to address pattern classification for high 
dimensional data. The HieFLANN embeds individual KFLANN 
units (subnets) that produce a self-learning hierarchical network. 
The individual KFLANN subnet autonomously derives the essen-
tial localized network parameters from the input data and in the 
process, builds a hierarchical network that solves the larger prob-
lem. The C2FeCom feature compression process is also discussed 
in detail. It provides the HieFLANN with the capability of extract-
ing the independent parameters in compact representations from 
subnets, allowing clusters of features to be formed. The proposed 
algorithm is experimentally evaluated using benchmark datasets. 

1.   Introduction 

Hierarchical ANN models have been applied in many 
areas, ranging from social sciences and biological taxonomy 
to computer science and engineering. Some early work by 
Fukushima using hierarchical structures, gave rise to the 
NEOCOGNITION. A more recent model, the LAMINART 
derived from the 6 laminar-layered model of the biological 
vision model [6] explores the ability to discriminate varying 
orientations in a given scene. The LAMINART accounted 
for the complex visual task and was consistent with several 
physiological experiments conducted on the Inferior Tem-
poral Cortex. Hierarchical ANN models allow complex 
learning problems to be solved by dividing the problems 
into a set of sub-problems. Another example is The Grow-
ing Hierarchical Self Organized Map (GHSOM) [2] that 
constructed layers automatically. Each network was com-
posed of independent SOMs that adjust their size according 
to the requirements of the input space.  

Hierarchical ANN models have its roots in biological 
systems. The fan out structure of each of the neuron in the 
neocortex provides evidence that the human brain processes 
information in a massively hierarchical way. The develop-
ment of HieFLANN was motivated by the way brain proc-
esses information and experimental and modeling work 
published by other researchers [5], [6]. It utilizes the 

KFLANN as a subnet, connected as a hierarchical system to 
form a hierarchical framework of KFLANNs. In the pro-
posed HieFLANN, clusters are grouped using similarity 
(dissimilarity) distance comparisons that are resident in the 
KFLANN clustering process. The topological organization 
of HieFLANN draws its architecture from the neurobiologi-
cal layering structure. The inter-cluster correlation is gener-
ated by a canonical correlation profile of the independent 
KFLANN subnets in the HieFLANN. The eigen-
decomposition of canonical correlation profile is the statis-
tical eigen-decomposition on the respective canonical corre-
lation matrix (CCM).   

Although the solitary implementation of KFLANN, is 
already capable of good clustering results [1], [8], [9] and 
[10], the HieFLANN is investigated for the scalability of 
the KFLANN to handle higher dimensional problems. The 
HieFLANN architecture is shown in Figure 1. The con-
struction of the HieFLANN is not a direct concatenation of 
KFLANN networks, but it is necessary to conduct some 
unsupervised preprocessing. The major advantages of the 
HieFLANN compared to the standard KFLANN are as 
follow:  

• The individual unsupervised KFLANN subnet pro-
file in the HieFLANN can be used for training 
multi-layer perceptron (MLP) learning algorithms. 
The overall MLP training time will be reduced 
since only the sub-set from the entire input space is 
used.  

• The HieFLANN is able to uncover the hierarchical 
structure of the input space and thus provide more 
convenient way to analysis the input space. The ex-
plorative analysis of the small dimensional input 
space certainly easier as compared to a larger di-
mensional input space.  

• Every subnet layering in HieFLANN produces clus-
ters in small dimensions that ease the cluster analy-
sis.  

• Parallel processing can be implemented for each in-
dependent KFLANN subnet, reducing the computa-
tion load of the processor and improving the speed 
of the entire process. 

 
The HieFLANN construction process consists of four 

major steps.  



Step 1: Divide the input feature space into Homogenous 
Feature Subspaces (HFS). This is known as the feature 
partitioning stage. It involves the partitioning of the original 
feature space into multiple mutually exclusive sets of HFS. 
KFLANN is used as partitioning tool implement the Maha-
lanobis similarity measure. This similarity is used since it 
able to capture the distance of cluster with elongated vari-
ance with the implicit covariance. The HFS formed contains 
a set of features that are more likely to exhibit similar char-
acteristic. An inherent property of the feature partitioning 
stage is the automated feature extracting capability.  

Step 2: Processing each subnet assigned by HFS such 
that they occur synchronously and independent of each 
other. This is some form of localized distribution analysis. 
According to the distribution and coverage of the feature 
subset at a particular subnet, KFLANN is able to analysis 
the grouping of the presented data. Each KFLANN per-
forms its independent clustering based on statistically ob-
tained parameters. 

Step 3: KFLANN subnet clustered results are then used 
to converge onto the third step where C2FeCom analysis is 
performed to compress the converging information. The 
goal behind the initial feature partitioning is for each subnet 
to align its feature space in preparation for the C2FeCom 
level. The proposed feature compression C2FeCom is moti-
vated by the Canonical and Covariance analysis. C2FeCom 
feature compression method is purely statistical driven and 
can be viewed as feature extraction for feature dimensional-
ity reduction. Canonical analysis employs the notion of 
elaborating discriminant function between k groups in the 
presented data set. Covariance tends to associate the corre-
lation amongst features so that increase the efficiency of 
discrimination.  

Step 4: The final step is yet another KFLANN clustering 
process, but the input space is now the compressed feature 
spaces obtained from step 3. This is the final adjustment to 
classify the presented data set on the compressed feature 
space.  

HieFLANN can be viewed as unified framework for ap-
proaching problem of machine learning on manifolds of 
classification problem sets. KFLANN clustering subnet 
resident within HieFLANN handles this issue. High dimen-
sionality of classification problems can lead to severe side 
effects, thus it is useful to adopt a divide and conquer ap-
proach to reduce the dimensionality without losing too 
much information. C2FeCom approach is introduced to 
tackle the problem. It extracts intrinsic dimension lying in 
the very high dimensional space of the problem set. 

The organization of the paper is as follow. Section 2 dis-
cusses the HieFLANN algorithm and its architecture. In 
section 3, the KFLANN clustering algorithm is illustrated. 
This is followed by C2FeCom description in section 4. 
Section 5 gives the explanation on experimental evaluation. 
The conclusion is finally given in last section.  

 

2. Hierarchical Fast Learning Artificial 
Neural Network 

The HieFLANN operates on the divide and conquer 
principle. Similar decomposition concepts implemented in 
HieFLANN are often found when dealing with a complex 
task. It is a characteristic of intelligent behaviour to solve a 
complex problems by decomposing it into managable tasks. 
HieFLANN works with the C2FeCom and employs the 
unsupervised clustering method KFLANN that has been 
verified through several studies [1], [9], [10]. 

2.1. HieFLANN Architecture   

The HieFLANN architecture is depicted in Figure 1. It 
is a formation of dynamic subnets made up of KFLANN 
units during the HFS generation. No assumption needs to be 
made on domain knowledge or known specification of pa-
rameters to construct the network model. The only parame-
ter involved in KFLANN is the straight forward statistical 
computation of feature standard deviations as its tolerance 
setting. As these calculations follow a standardized process, 
the network can perform self-configuration of each feature 
tolerance. A detailed investigation of the tolerance setting 
and details can be found in [9].  

The HieFLANN architecture, though seemingly com-
plex, is built using duplicated KFLANN components. A 
parallel implementation of the network is therefore possible. 
KFLANN subnets act as independent processing modules 
that break the input space into smaller dimensions. These 
smaller dimensions allow the problem to be partitioned and 
later combined through a hierarchical network.  
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Figure 1. HieFLANN Architecture 



2.2.   HieFLANN Algorithm   

The algorithm of HieFLANN follows.  

Step 1 Create homogenous feature subspace 
Step 2 Perform KFLANN clustering on every ho-

mogenous feature subspace created 
Step 3 Form canonical correlation matrix 
Step 4 Perform eigen-decomposition on the canonical 

correlation matrix 
Step 5 Compress feature space 
Step 6 Perform KLFANN clustering using the com-

pressed feature space in Step 5 
 
Preprocessing 

In Step 1, the HFSs are created based on the similarity 
profile amongst the features. This is done by similarity 
computation on the feature space and it produces the feature 
similarity matrix. The Mahalanobis similarity is used with 
the equation: 

( , ) | | * cov( ) * | |T
i j i j i jD X X X X X X X= − −  (1) 

* |a| denote the absolute value of a. iX is the ith feature. 

Covariance encapsulate in Mahalanobis similarity is a 
measurement of the relationship between two ranges of 
data. The rational of having this step is to create HFSs that 
mitigate the effect of possible redundant features. KFLANN 
is then used to cluster the feature similarity matrix to form 
the Homogenous Feature Subspaces (HFSs). Features that 
are more similar bear higher changes to be grouped in the 
same HFS. Pictorial view is depicted in Figure 2, the raw 
data set at the bottom left hand side contributes to the fea-
ture similarity matrix as shown in right hand side. Equation 
(1) determines the similarity element of the feature similar-
ity matrix. KFLANN clustering uses the feature similarity to 
partition the subnet space resulting the clusters denoted as 
HFSs. 
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Figure 2. HFS Construction Process 

Local Distribution Analysis 
In step 2, the KFLANN is used to cluster the assigned 

input features within the localized HFS. The KFLANN 
subnet clustering process may executed simultaneously as 
every HFS grouping is independent. Section 3 provides 
detail description of KFLANN clustering process. Feature 
analysis is performed by KFLANN subnet on the HFS. The 
competitive learning of KFLANN using the properties of 
nearest neighborhood and vigilance properties of the Adap-
tive Resonance Theory (ART) are used to analyze the regu-
larities of the feature subset. The KFLANN is able to analy-
sis the grouping of the presented HFS data according to the 
subspace of the data distribution 

The combinations of the input features by competitive 
layer ensure the feasibility of the higher order encoding of 
input features. The individual competitive neuron learns to 
specialize on a set of similar patterns and thus become “fea-
ture detectors”. 

 
Feature Compression 

Feature compression is performed through the proposed 
Canonical Covariance Feature Compression (C2FeCom), 
the canonical correlation matrix (CCM) is formed up using 
all HFSs and their corresponded clusters resolution. Eigen-
decomposition is used to extract the eigenvectors from 
CCM which are the canonical vectors used for feature com-
pression. Step 3 generates the CCM and step 4 extracts the 
canonical variates using the eigen-decomposition method. 
This is followed by feature compression process in step 5. 
The detail is given in section 4. 

 
Clustering 

Step 6 is the final step of the HieFLANN algorithm is the 
use of yet another KFLANN to cluster the compressed 
feature space. This portion can be supervised to provide the 
correct cluster label so that the label identity is independent 
of the feature compression clustering in the KFLANN sub-
nets. 

3. K-Mean Fast Learning Artificial Neural 
Network  

KFLANN is used as the clustering algorithm that re-
trieves the localized salient information. Every KFLANN 
subnet of HieFLANN plays the role as categorizer cluster-
ing the inputs feeding the specific HFS. The KFLANN 
subnets have been designed as networks that categorize 
clusters within the HFS input space. 

FLANN [3] was designed with concepts found in ART 
but imposed the Winner Take All (WTA) property within 
the algorithm. Further improvement was done to take in 
numerical continuous value in FLANN II [8]. The original 
FLANN II was restricted by its sensitivity to the pattern 
sequence. This was later overcome by incorporating the K-

KFLANN 

HFS1, HFS2, …., HFSs 



Means centroid location which gave rise to KFLANN [1]. 
The KFLANN improves the sensitivity to pattern sequence 
but still did not have a solution for cluster stability.  

The latest improvement on KFLANN [9] includes data 
point reshuffling which resolves the data sequence sensitiv-
ity that creates stable clusters. Clusters are said to be stable 
if the cluster formation is complete after some iterations and 
the cluster centroids remain consistent. The KFLANN is an 
unsupervised clustering algorithm that is 

 
• A self-organized clustering ANN model. 
• Autonomous in the determination of optimal clus-

ter number. This enables it to generate new catego-
ries from the training exemplars dynamically. 

• Not reliant of calibrated data set and there is no 
side effect from random data presentation se-
quences. 

• Able to deal with stability-plasticity dilemma.  
• Using competitive learning that favours the fault 

tolerance ability. 
• Trained within a small definite number of epochs. 

 
The above characteristics contribute to the merits of 

KFLANN clustering algorithm. 
 

3.1. KFLANN Architecture 

The KFLANN architecture is shown in Figure 3. 
KFLANN consists of a single input layer that integrates the 
source of the patterns. The output layer grows dynamically 
as new groups are formed during the clustering process. 
The weight connections between the input node and output 
node are the direct mapping of each element of input vec-
tors. The dynamic formation of output nodes yield 
KFLANN is a self-organized clustering ANN model. 
 

 
 
 
 

 

Figure 3. KFLANN Architecture 

3.2. KFLANN Algorithm 

The algorithm of KFLANN is as follow: 
Step 1 Initialize the network parameters 
Step 2 Present the pattern to the input layer. If there 

is no output node, GOTO Step 6 
Step 3 Determine all possible matches output node 

using   

( ) ( )2
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d T

i ij i ij i
i
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D is the discriminant function 
Step 4 Determine the winner from all matches 

output nodes using    

( ) ( )
1

min *cov( )*
d T

ij i ij i
i

winner W X X W X
=

� �= − −� �
� �
�

 

 
Step 5 Match node is found. Assign the pattern to 

the match output node GOTO Step 2 
Step 6 Create new output node. Perform direct 

mapping of the input vector into weight 
vectors 

Step 7 If complete a single epoch compute centroids  
     If centroid points of all clusters un-
changed  
          Terminate  
     Else     

    GOTO Step 8 
     End if 
Else 
      GOTO Step 2 
End if 

Step 8 Find closest patterns to the centroids and re-
shuffle them to the top of the dataset list. 
GOTO Step 2 

 
 δi is the tolerance for ith feature of the input space, Wij used to denote the 
weight connection of jth output to the ith input, Xi represent the ith feature 
of the current pattern . d is feature dimensionality.� is vigilance. 

 
Apart from the initialization, the KFLANN clustering 

algorithm comprises of the following iterative steps. 
 
Initialization  

The input neurons at KFLANN’s input layer integrate 
with input vector directly and no data set manipulation is 
required. 

The initialization phase in Step 1, prior to the clustering 
process is needed to determine the vigilance � and tolerance 
δ. The computation complexity is dependent on the size of 
the data set and the dimensionality of the input space. Vigi-
lance setting is usually set between 0.5 and 1.0. Since the δ 
value determines the ratio between the number of features 
to be within tolerance and the total number of features, the  
clustering transformation becomes more stringent as the 
vigilance setting approaches 1. The Tolerance setting � for 
a feature is the measurement of the allowable fluctuations. 
Several methods were investigated to deal with this toler-
ance setting [9] and the standard deviation computation was 
amongst the most optimal method. 
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Competitive Learning  
The clustering process begins with the sequential presen-

tation of data patterns. The tolerance filtering procedure is 
then performed on each input feature and an overall pattern 
vigilance screening is incorporated within Step 3.  

Tolerance filtering can be viewed as localized screening 
that determines if the feature is within acceptable tolerance. 
It is implemented using the discriminating function D[a] in 
Step 3. If this discriminating function D[a] returns a value 
1, it indicates that the particular input attribute is within the 
bounds of the corresponding attribute of the cluster in ques-
tion.  

The vigilance screening, also known as global screening 
determines the number of features within the localized input 
space that have passed the tolerance screening. The vigi-
lance screening is important as it enables the network to 
possess fault tolerance to missing value, outliers or noise 
feature.  

After satisfying the screening criteria, there are still pos-
sibilities of exemplar matches that map into multiple clus-
ters. The final decision of ownership is decided using the 
WTA competitive selection found in Step 4. Eventually, 
only the cluster centroid bearing the strongest weight will 
absorb the exemplar into its cluster. The winning neuron is 
chosen based on the closest distance from the data point to 
cluster centroid.   

Step 5 is the Cluster Membership Assignment (CMA) 
that assigns the exemplar as a new cluster member of the 
selected winner centroid.  

If a new exemplar pattern does not meet the two screen-
ing criteria, a new output centroid is created to represent the 
new cluster (Step 6).  

  
Cluster Stability Checking 

After an epoch (a full list of pattern has been processed), 
the cluster stability is checked. This is to determine if the 
cluster centroids represent the exemplars in the cluster. The 
algorithm has a dual way of creating cluster centroids. The 
first is a straight assignment when the exemplar is not repre-
sented in any available cluster, while the second is a delib-
erate shuffling of the data point to the top of the list in Step 
7 of the KFLANN algorithm. The data point reshuffling 
process is performed only if cluster stability is not achieved. 
Re-shuffling the data points closest to cluster centroids to 
the top of pattern list create new pattern sequence for the 
subsequent clustering process (Step 8). KFLANN iterative 
process is limited to 5 iterations [9]. It has been shown 
experimentally that the cluster stability stabilizes after 3 
iterations. 

4. Feature Compression Using Canonical 
Covariance Analysis 

Apart from the KFLANN, the feature compression 
method known as Canonical Covariance Feature Compres-
sion (C2FeCom) is key to the operation of the network. The 
C2FeCom is used to prepare salient features for clustering 
at final stage. It produces a combination of the input space 
with the purpose of maximizing the spread of data for dif-
ferent categories and minimizing the dispersion amongst 
similar categories. 

The proposed feature compression process embedded in 
HieFLANN employs the canonical and covariance analysis. 
With the use of CCM, commonly studied in classical statis-
tics, it is possible to extend the KFLANN clustering subnets 
into a hierarchical structure for a more complex, but robust 
ANN computation model. The theory of Canonical Analysis 
was originally developed to analyze relationship of a set of 
predictors to the presented set of criterion variable. The 
reasons of using the canonical analysis for feature compres-
sion method were because it was the only multivariate ap-
proach that is able to handle more than one metric criteria 
(dependent) variable and it was the only multivariate 
method that works with both criteria and predictor (inde-
pendent) variables simultaneously.  

The covariance analysis is attached to impress the fea-
ture variation in the compression process. Covariance be-
tween ith feature ( iX ) and jth feature ( jX ) is as follow: 

( ) ( )
( )
1

1 1

1
c o v ( , )

1
c o v ( )

i j

a

n

i j i a X j a X
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With d is the feature dimensionality and n as the number of sam-

ples. 
aXµ is the mean of  feature aX spanning over n data pat-

terns. 
 
Notations used to describe the C2FeCom explained as 

follow. In this example, let � ={x1, x2, x3, x4, x5}, be the 
input feature space of dimensionality 5. Assume that the 
input feature space is divided into 2 HFSs namely HFS1 
and HFS2. HFS1 may consist of X1={x1, x2, x3} and HFS2 
consists of X2 ={x4, x5}. As the inputs of each HFS are clus-
tered by the KFLANN algorithm, the transformed clustering 
output � is generated, such that �  is transformed into �. In 
this example the two KFLANN subnets produce output the 
clustering outcome, where the first subnet deals with HFS1 
(X1) resulting Y1, (represent the cluster index) while second 
subnet handles HFS2 (X2) output Y2.  



4.1. Formation of Canonical Correlation Matrix 

If � and � are matrices, the CCM of 2 HFSs are showed in 
Table 1. The computation equation is given in (3), (4), (5) 
and (6) respectively.  
 
Table 1. (a) CCM  (b) Example of predictor sets �  and criteria set 

� for 2 HFSs 
 X1, X2 Y1, Y2 

X1, X2 Rxx Rxy 
Y1, Y2 Ryx Ryy 

 (a)  
 

x1 x2 x3 Y1  x4 x5 Y2 
1 0.4 1.1 2  0.6 0.7 2 
0.5 0.8 0.4 1  0.5 0.2 1 
0.4 0.5 0.3 1  0.1 0.2 1 
0.7 1.0 0.8 2  0.8 0 3 
0.8 0.2 0.2 2  0.7 0.3 1 
    (b)    
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1 1 2 2
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(3) 

(4) 

(5) 
 

(6) 

Rxx, Ryy, Rxy and Ryx are in matrix form. The inter-
correlation between predictor variables is given in Rxx, the 
cross-correlation between predictor and criteria variables is 
represented by Rxy and its transpose Ryx, and the inter-
correlation between criteria variables is Ryy. To obtain the 
maximum correlation between the set of variables in HFSs, 
eigen-decomposition on the CCM is involved. 

4.2. Eigen-decomposition of Canonical Correlation 
Matrix 

Let U and V be the canonical variates to be determined such 
that the correlation between � ‘ = UT

� and �’=VT
� is 

maximized. The canonical variate is the eigenvector of the 
CCM. It is the principal component of the respective ma-
trix. Eigenvectors obtained from eigen-decomposition proc-
ess are the decorrelated principal axes of the data set and 
grouping transformation. U is the canonical variate that 
exhibits the principal component of the feature variables, �. 
V is the canonical variate for the subnet cluster representa-
tion variables, �. This forms up a pairwise canonical variate 
matrix contain of U and V. 

4.3. Canonical Covariance Feature Compression  

The combination of canonical analysis and covariance 
form the proposed feature compression method in this pa-
per. The feature compression equation is given as follow: 

C2FeCom (� ) = cov (� ) * �  * U (7) 

* is the multiplication symbol 
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Figure 4. C2FeCom Process 

Figure 4 depicts the feature compression process together 
with the formulation of CCM. 

Diagonal elements of covariance matrix represent the 
feature variance. The covariance term used here is a factor 
loading in the compression process similar to the beta 
weights in a multiple regression equation.  

The covariance term represents the correlation amongst 
the feature while canonical variates tend to minimize the 
projection within-group variances that have been pooled 
over all groups in each HFS, and maximize the between-
group variances in each HFS. The correlation between 
heterogeneous partitions is then finalized through the CCM.  

This summarizes the rationale of incorporating the co-
variance in the proposed C2FeCom. Other reasons include: 

 
• It accounts for ranges of acceptability betweens fea-

tures (variability). This mitigates the effect of the 
feature value that fall out acceptable range.  

• The features correlation is exhibited thru the covari-
ance term enable the compression atones for the re-
lation amongst features.  

• The covariance imposes weights that are distributed 
in the feature space. This eliminates the co-linearity 
effect of the dataset. 

 
Although canonical analysis has been a decade old solu-

tion for feature reduction purposes, the common practice 
has been to take in the entire input space and perform ca-
nonical analysis to extract significant principal components. 
The proposed feature compression contributes to certain 
merits comparing to the conventional canonical analysis 
feature reduction method. Further explanation follows. 



C2FeCom is considered as a principal component based 
feature reduction approach. In principal component based 
approach, the eigenvectors of either the covariance or corre-
lation matrix is used as the principal component for feature 
transformation. The drawback is that principal component-
based method ignores the different distributions represent-
ing the statistical classes. However this drawback is not 
severe in HieFLANN as the local distribution analysis is 
performed in each HFS. The local distribution analysis of 
KFLANN subnet discovers the different classes distribu-
tion.   

The conventional canonical analysis limits the reduction 
on feature dimensionality to K-1. In actual live data, this 
may not be the optimal cardinality for feature compression 
as the actual compression may vary from the expected fea-
ture. Such a limitation does not occur in the HieFLANN. 
This is because every combination from subnets contributes 
to a final stage compression that yields the dimension of the 
compressed feature.  

If the difference between the means is small, the canoni-
cal analysis will encounter an undesirable situation. This 
issue will eclipse other computations of inter-correlations 
between criteria variables. In HieFLANN, each KFLANN 
subnet eliminates the eclipsing effect as each subnet is lo-
calized and isolated. Each KFLANN subnet contains most 
similar feature subset resulting acceptable range of differ-
ence in mean amongst the HFSs. 

There are other advantageous of C2FeCom that contrib-
ute to its success within the HieFLANN model. The charac-
teristics of C2FeCom benefits from both covariance and 
canonical analysis by becoming invariant to scaling and 
producing a singular transformation�

In other words, linear combination of the basis vectors is 
mapped by the transformation into zero vectors. A vector 
that is mapped into the zero vectors through transformation 
is said to be in the kernel of that transformation. The kernel 
is a subspace of the domain in the transformation form. In 
additional to the properties delineated, there are no stringent 
implicit assumptions made in C2FeCom. 

5. Experiment Result and Analysis   

To verify the performance of the proposed HieFLANN 
and the effectiveness of the C2FeCom feature compression, 
several benchmark datasets were used in this paper. These 
were downloadable from UCI Repository of Machine 
Learning Databases [7]. The data was randomly divided 
into test sets and training sets. The datasets were the do-
nated to the repository from real life datasets. These data-
sets are widely used by other researchers as bench marks. 

In this paper, the Receiver Operating Characteristics 
(ROC) was adopted to organize the performance measure-
ment of the HieFLANN classification model. The average 

errors on each class in the presented data set can be derived 
from ROC [4] using equation (8). 
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Where K is the number of classes, em is the classification error for 
class m and nm is the number of pattern in class m.   

 
There has been an increasing in the use of ROC due to 

its usefulness for domains with skewed class distribution 
(unbalanced classes) and unequal classification error costs. 
Detail information of ROC is described in [4]. Comple-
menting the use of ROC measurement is the Area Under 
Curve (AUC): 

 

1AUC E= −  (9) 

 
AUC can be viewed as the classification accuracy meas-

urement. AUC is used in this paper as the classification 
performance is comparable to the classification accuracy 
adopted by most of researchers.  

Apart from the ROC performance measurement, the 
compression ratio (CR) was also included to indicate the 
efficiency of the proposed feature compression method. 
Actual dimension (AD) is the dimensionality of raw feature 
space while reduced dimension (RD) is dimensionality of 
compressed feature space. Equation in (10) is the compres-
sion ratio used in the experiments represents the degree of 
compression made that is the actual degree of feature di-
mensionalities compressed. The higher the ratio, the better 
the compression but it still depends on the characteristic of 
problem domain. Not all problems can produce high CR 
due to the feature discriminating level. If all features are 
needed in order to provide higher class discrimination 
analysis, then CR will be low and little compression is pos-
sible.  

 

RD
1

AD
CR = −  (10) 

 
Classification performance of HieFLANN on different 

data set is given in Table 2. The first column in Table 2 lists 
the type of real life domain extracted from UCI Repository.  

The second column represents the actual dimension of 
problem set while third column is the reduced dimension 
using C2FeCom. The fourth column is the compression 
ratio computed using equation (10).  

The compression ratios of greater than 0.4 were obtained 
for all problem sets except the Waveform data set. This is 
shown in Table 2. This discovery shows that the C2FeCom 



method is able to map the given problem set into a compact 
representation.  The Iris, Wisconsin Breast Cancer and 
ionosphere problem sets achieved greater than 75% com-
pression. This is followed by two columns list the AUC for 
training set and test set respectively.   

 
Table 2. HieFLANN classification performance 

Data set AD RD CR Train 
AUC 

Test 
AUC 

KFLANN 
Accuracy 

Iris 4 1 0.7500 0.9361 0.9524 0.9500 
Thyroid 5 3 0.4000 0.8781 0.9500 0.9067 

DB 8 4 0.5000 0.7503 0.7213 0.7300 
WBC 9 2 0.7778 0.8634 0.9723 0.9657 
Wine 13 5 0.6154 1.0000 0.9667 0.9651 
Heart 13 5 0.6154 0.8493 0.8753 0.7833 
WF 21 13 0.3809 0.9079 0.8196 0.7328 
Iono 33 7 0.7878 0.9564 0.8340 0.7712 
DM 34 19 0.4412 0.8333 0.8540 0.8915 

DB: diabetes, WBC: Wisconsin breast cancer, WF: waveform, 
Iono: ionosphere, DM: dermatology.  

 
The AUC for training refers to the performance of the 

HieFLANN classifier when the training set was used, while 
AUC on test set represents its prediction ability. From the 
experimental testing, it is shown that problem domains 
either obtained better AUC value on training set than test 
set or comparable AUC value between training and test set.  

The Iris dataset achieved an AUC value (in percentage) 
of 93.61% on training set and 95.24% on the test set. WBC 
data set however had the best predictor amongst all others. 
The training AUC was 86.34% and test set AUC was 
97.23%. The results indicate that HieFLANN is an accept-
able architecture that is able to split the input space into 
smaller independent modules and later combine the results 
to yield acceptably accurate results.   

Last column indicates the KFLANN classification accu-
racy on test set using actual dimensionality feature space. 
Comparison between the accuracy obtained on KFLANN 
and HieFLANN (AUC on test set) revealed that classifica-
tion on compressed feature space significantly better if not 
comparable to the classification on actual dimensionality 
feature space. Most of the tested problem domains achieved 
better classification accuracy on compressed feature space 
than actual dimensionality feature space except for Diabetes 
and Dermatology data set. Classification accuracy for Dia-
betes data set in compressed feature space is 72.13%, only 
slightly differ from the accuracy on the actual dimensional-
ity feature space that is 73%. Dermatology data set dis-
played the comparable classification accuracy on both the 
actual dimensionality feature space (85.4%) and com-
pressed feature space (89.15%). 

Experimental results demonstrate the merits of the pro-
posed HieFLANN for pattern learning on large dimension-
ality problem domains. With the overall compression de-
gree of minimum 40% on the tested problem domain verify 
the feasibility of the compression method proposed. Classi-

fication using the compressed feature space reduces the 
computational workload, minimize memory usage and 
shorten the computational time. 

Table 3 summarizes the class distribution of the bench-
mark datasets used in experiments. They are listed in in-
creasing order of feature dimensionality. All datasets con-
tain continuous feature values. The dimensionality ranges 
from 4 to 34. All feature values were standardized with 
maximum normalization. The normalized values range 
between –1 and 1. Missing values in problem domains were 
excluded from the experiment. It is important to note that 
Class labels were not provided during training process and 
used only for evaluation on the experimental testing.  

 
Table 3. Datasets description for the benchmarks datasets used. 
Numbers enclosed in parentheses represent the number of pattern 
samples for that particular class 

Data 
set 

Description 

Iris 3 classes of Iris flowers, Class 1-Setosa  
(50), Class 2-Virginica (50) and Class 3-Versicolor 
(50). The length and width of flower’s petal and 
sepal determine the flower type. 

 
Thyroid 2 classes of thyroid disease, Class 1- (49), Class 2- 

(91) comprise of laboratory test indicators as the 
attributes information. 

 
DB 5 classes of Eryhemato-Squamous Disease, Class 1- 

(112), Class 2- (61), Class 3- (72), Class 4- (49), 
Class5- (20). Individual health factors determine the 
diseases type. 

 
WBC 2 classes indicate benign (241) and malignant (458) 

breast cancer cell. Attributes are the properties of 
cells measured. 

 
Wine 3 types of wine based on the chemical contain. Class 

1- (59), class 2- (71), class 3- (48). 
 

Heart  2 classes indicate heart and non-heart disease based 
on the health factors, class 1- (1399), class 2- (164). 

 
WF 3 classes of waveform with attributes are generated 

from a combination of 2 of 3 "base" waves. Class 1-  
(1657), class 2-(1647), class 3- (1696). 

 
Iono  2 classes of radar reflection from ionosphere to 

detect free electrons in the ionosphere. Class 1-
(225), class 2- (126). 

 
DM  6 classes of skin disease. Class psoriasis (112), class 

seboreic dermatitis (61), class lichen planus (72), 
class pityriasis rosea (49), class cronic dermatitis 
(52), class pityriasis rubra pilaris (20). The clinical 
attributes and histopathological attributes determine 
type of disease. 

 



6. Conclusion   

This paper presents the Hierarchical Fast Learning Arti-
ficial Neural Network (HieFLANN) as a new model for 
learning high dimensionality data. It is a promising hierar-
chical ANN pattern learning model that uses the canonical 
covariance based feature compression as a means to process 
data. The proposed model was tested extensively on several 
benchmark datasets and it yielded promising results. A 
further note to the HieFLANN model is that it can be exe-
cuted in a totally unsupervised mode. 

HieFLANN addresses large problem sets by partitioning 
it into smaller manageable sets for independent processing 
subnets. The inherent attribute relationships can be coded 
between the subnets and the level of significance the input 
sub-space plays in determining the global accuracy. It ini-
tially uses similarity theory to generate the HFSs and subse-
quently using independent KFLANN clustering processing 
on each HFS. The computation of canonical variates thru 
eigen-decomposition on the canonical correlation matrix 
(CCM) is carried out prior to C2FeCom. The principal 
components obtained from the eigen-decomposition on 
CCM together with covariance components of the underly-
ing unknown distribution leads to a convenient representa-
tion for generalization. The KFLANN was used to cluster 
the compressed feature space in the final stage.  

The results indicate that the C2FeCom feature compres-
sion method has been highly reliable in all the experiments 
performed. Experimental obtained results showed that the 
classification performance on test data is generally similar 
to the training set. It was also discovered that the majority 
of the collected benchmark datasets seem to contain redun-
dant, irrelevant features that do not significantly contribu-
tion to the successful classification of the data set. It is 
therefore possible to obtain a compressed representation of 
original feature space with minimal loss of discriminative 
power.  

The HieFLANN is advantageous in that it 
• provides excellent generalization power as showed 

in experiments results.  
• is a facile self-organized neural model that is easy 

to duplicate.  
• Can be fully unsupervised as it does not require 

any parameter settings.  
The proposed HieFLANN is a totally unsupervised 

driven classification neural model provides a novel ap-
proaches. It process the feature transformation and classifi-
cation within a single ANN framework.  

Motivated by the self-organized learning way adopted in 
biological nervous system, the HieFLANN actualizes the 
unsupervised self-learning concept through its self-
organized structure. No intervention is required to set up the 
parameters. Each KFLANN subnet determines the overall 
stability of HieFLANN model. The HieFLANN also takes 

into consideration the plasticity dilemma issue, thus it does 
not suffer from the severe effect of the interference when 
learning new knowledge.   

A further study will be done to determine how inherent 
inter-correlation between subnets can be encoded for rule 
interpretation. This may be useful for extracting rules 
needed for deterministic software environments where use-
ful predictive rules can be incorporated into decision sys-
tems.  

A formalization of the HieFLANN is also needed to de-
termine how the C2FeCom actually assists in the com-
pressed feature space encoding, providing a mathematical 
model for the network. 

Since the HieFLANN is able to provide an effective 
clustering platform that partitions the global problem into 
packet sized local problems, the reduced input feature space 
can be used to train the conventional multilayered percep-
tron (MLP) models. Instead of remaining as a HieFLANN, 
the internal networks can theoretically be replaced by the 
conventional MLP neural networks.  This may proof useful 
as the pre-partitioning of high dimensional problems to 
create a hierarchical structure of minute MLP networks. 
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