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Abstract: This paper presents the Hierarchical Fast Learning
Artificial Neural Network (HieFLANN) as a new model for learn-
ing high dimensionality data. The HieFLANN utilizes collaborat-
ing networks of K-Mean Fast Learning Artificial Neural Network
(KFLANN) subnets [9] and a Canonical Covariance Feature Com-
pression (C2FeCom) process. The HieFLANN is an inductive and
unsupervised artificial neural network (ANN) that incorporates a
hierarchical approach to address pattern classification for high
dimensional data. The HieFLANN embeds individual KFLANN
units (subnets) that produce a self-learning hierarchical network.
The individual KFLANN subnet autonomously derives the essen-
tial localized network parameters from the input data and in the
process, builds a hierarchical network that solves the larger prob-
lem. The C2FeCom feature compression process is also discussed
in detail. It provides the HieFLANN with the capability of extract-
ing the independent parameters in compact representations from
subnets, allowing clusters of features to be formed. The proposed
algorithm is experimentally evaluated using benchmark datasets.

1. Introduction

Hierarchical ANN models have been applied in many
areas, ranging from social sciences and biological taxonomy
to computer science and engineering. Some early work by
Fukushima using hierarchical structures, gave rise to the
NEOCOGNITION. A more recent model, the LAMINART
derived from the 6 laminar-layered model of the biological
vision model [6] explores the ability to discriminate varying
orientations in a given scene. The LAMINART accounted
for the complex visual task and was consistent with several
physiological experiments conducted on the Inferior Tem-
poral Cortex. Hierarchical ANN models allow complex
learning problems to be solved by dividing the problems
into a set of sub-problems. Another example is The Grow-
ing Hierarchical Self Organized Map (GHSOM) [2] that
constructed layers automatically. Each network was com-
posed of independent SOMs that adjust their size according
to the requirements of the input space.

Hierarchical ANN models have its roots in biological
systems. The fan out structure of each of the neuron in the
neocortex provides evidence that the human brain processes
information in a massively hierarchical way. The develop-
ment of HieFLANN was motivated by the way brain proc-
esses information and experimental and modeling work
published by other researchers [5], [6]. It utilizes the

KFLANN as a subnet, connected as a hierarchical system to
form a hierarchical framework of KFLANNS. In the pro-
posed HieFLANN, clusters are grouped using similarity
(dissimilarity) distance comparisons that are resident in the
KFLANN clustering process. The topological organization
of HieFLANN draws its architecture from the neurobiologi-
cal layering structure. The inter-cluster correlation is gener-
ated by a canonical correlation profile of the independent
KFLANN subnets in the HieFLANN. The -eigen-
decomposition of canonical correlation profile is the statis-
tical eigen-decomposition on the respective canonical corre-
lation matrix (CCM).

Although the solitary implementation of KFLANN, is
already capable of good clustering results [1], [8], [9] and
[10], the HieFLANN is investigated for the scalability of
the KFLANN to handle higher dimensional problems. The
HieFLANN architecture is shown in Figure 1. The con-
struction of the HieFLANN is not a direct concatenation of
KFLANN networks, but it is necessary to conduct some
unsupervised preprocessing. The major advantages of the
HieFLANN compared to the standard KFLANN are as
follow:

e The individual unsupervised KFLANN subnet pro-
file in the HieFLANN can be used for training
multi-layer perceptron (MLP) learning algorithms.
The overall MLP training time will be reduced
since only the sub-set from the entire input space is
used.

e The HieFLANN is able to uncover the hierarchical
structure of the input space and thus provide more
convenient way to analysis the input space. The ex-
plorative analysis of the small dimensional input
space certainly easier as compared to a larger di-
mensional input space.

e Every subnet layering in HieFLANN produces clus-
ters in small dimensions that ease the cluster analy-
sis.

e  Parallel processing can be implemented for each in-
dependent KFLANN subnet, reducing the computa-
tion load of the processor and improving the speed
of the entire process.

The HieFLANN construction process consists of four
major steps.



Step 1: Divide the input feature space into Homogenous
Feature Subspaces (HFS). This is known as the feature
partitioning stage. It involves the partitioning of the original
feature space into multiple mutually exclusive sets of HFS.
KFLANN is used as partitioning tool implement the Maha-
lanobis similarity measure. This similarity is used since it
able to capture the distance of cluster with elongated vari-
ance with the implicit covariance. The HFS formed contains
a set of features that are more likely to exhibit similar char-
acteristic. An inherent property of the feature partitioning
stage is the automated feature extracting capability.

Step 2: Processing each subnet assigned by HFS such
that they occur synchronously and independent of each
other. This is some form of localized distribution analysis.
According to the distribution and coverage of the feature
subset at a particular subnet, KFLANN is able to analysis
the grouping of the presented data. Each KFLANN per-
forms its independent clustering based on statistically ob-
tained parameters.

Step 3: KFLANN subnet clustered results are then used
to converge onto the third step where C2FeCom analysis is
performed to compress the converging information. The
goal behind the initial feature partitioning is for each subnet
to align its feature space in preparation for the C2FeCom
level. The proposed feature compression C2FeCom is moti-
vated by the Canonical and Covariance analysis. C2FeCom
feature compression method is purely statistical driven and
can be viewed as feature extraction for feature dimensional-
ity reduction. Canonical analysis employs the notion of
elaborating discriminant function between k groups in the
presented data set. Covariance tends to associate the corre-
lation amongst features so that increase the efficiency of
discrimination.

Step 4: The final step is yet another KFLANN clustering
process, but the input space is now the compressed feature
spaces obtained from step 3. This is the final adjustment to
classify the presented data set on the compressed feature
space.

HieFLANN can be viewed as unified framework for ap-
proaching problem of machine learning on manifolds of
classification problem sets. KFLANN clustering subnet
resident within HieFLANN handles this issue. High dimen-
sionality of classification problems can lead to severe side
effects, thus it is useful to adopt a divide and conquer ap-
proach to reduce the dimensionality without losing too
much information. C2FeCom approach is introduced to
tackle the problem. It extracts intrinsic dimension lying in
the very high dimensional space of the problem set.

The organization of the paper is as follow. Section 2 dis-
cusses the HieFLANN algorithm and its architecture. In
section 3, the KFLANN clustering algorithm is illustrated.
This is followed by C2FeCom description in section 4.
Section 5 gives the explanation on experimental evaluation.
The conclusion is finally given in last section.

2. Hierarchical Fast
Neural Network

Learning Artificial

The HieFLANN operates on the divide and conquer
principle. Similar decomposition concepts implemented in
HieFLANN are often found when dealing with a complex
task. It is a characteristic of intelligent behaviour to solve a
complex problems by decomposing it into managable tasks.
HieFLANN works with the C2FeCom and employs the
unsupervised clustering method KFLANN that has been
verified through several studies [1], [9], [10].

2.1. HieFLANN Architecture

The HieFLANN architecture is depicted in Figure 1. It
is a formation of dynamic subnets made up of KFLANN
units during the HFS generation. No assumption needs to be
made on domain knowledge or known specification of pa-
rameters to construct the network model. The only parame-
ter involved in KFLANN is the straight forward statistical
computation of feature standard deviations as its tolerance
setting. As these calculations follow a standardized process,
the network can perform self-configuration of each feature
tolerance. A detailed investigation of the tolerance setting
and details can be found in [9].

The HieFLANN architecture, though seemingly com-
plex, is built using duplicated KFLANN components. A
parallel implementation of the network is therefore possible.
KFLANN subnets act as independent processing modules
that break the input space into smaller dimensions. These
smaller dimensions allow the problem to be partitioned and
later combined through a hierarchical network.
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Figure 1. HieFLANN Architecture



2.2. HieFLANN Algorithm
The algorithm of HieFLANN follows.

Step 1 Create homogenous feature subspace

Step 2 Perform KFLANN clustering on every ho-
mogenous feature subspace created

Step 3 Form canonical correlation matrix

Step 4 Perform eigen-decomposition on the canonical
correlation matrix

Step 5 Compress feature space

Step 6 Perform KLFANN clustering using the com-
pressed feature space in Step 5

Preprocessing
In Step 1, the HFSs are created based on the similarity
profile amongst the features. This is done by similarity
computation on the feature space and it produces the feature
similarity matrix. The Mahalanobis similarity is used with
the equation:
DX, X)=1X,—X;|"cov(X)*IX,-X,I (D

*lal denote the absolute value of a. X ,is the i" feature.

Covariance encapsulate in Mahalanobis similarity is a
measurement of the relationship between two ranges of
data. The rational of having this step is to create HFSs that
mitigate the effect of possible redundant features. KFLANN
is then used to cluster the feature similarity matrix to form
the Homogenous Feature Subspaces (HFSs). Features that
are more similar bear higher changes to be grouped in the
same HFS. Pictorial view is depicted in Figure 2, the raw
data set at the bottom left hand side contributes to the fea-
ture similarity matrix as shown in right hand side. Equation
(1) determines the similarity element of the feature similar-
ity matrix. KFLANN clustering uses the feature similarity to
partition the subnet space resulting the clusters denoted as
HFS:s.

HFS1, HES2, ...., HFSs
T

KFLANN
Data Similarity Matrix
X1 X2 X1d DX1,X2)  D(X1,X3) D(X1,Xq)
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Figure 2. HFS Construction Process

Local Distribution Analysis

In step 2, the KFLANN is used to cluster the assigned
input features within the localized HFS. The KFLANN
subnet clustering process may executed simultaneously as
every HFS grouping is independent. Section 3 provides
detail description of KFLANN clustering process. Feature
analysis is performed by KFLANN subnet on the HFS. The
competitive learning of KFLANN using the properties of
nearest neighborhood and vigilance properties of the Adap-
tive Resonance Theory (ART) are used to analyze the regu-
larities of the feature subset. The KFLANN is able to analy-
sis the grouping of the presented HFS data according to the
subspace of the data distribution

The combinations of the input features by competitive
layer ensure the feasibility of the higher order encoding of
input features. The individual competitive neuron learns to
specialize on a set of similar patterns and thus become “fea-
ture detectors”.

Feature Compression

Feature compression is performed through the proposed
Canonical Covariance Feature Compression (C2FeCom),
the canonical correlation matrix (CCM) is formed up using
all HFSs and their corresponded clusters resolution. Eigen-
decomposition is used to extract the eigenvectors from
CCM which are the canonical vectors used for feature com-
pression. Step 3 generates the CCM and step 4 extracts the
canonical variates using the eigen-decomposition method.
This is followed by feature compression process in step 5.
The detail is given in section 4.

Clustering

Step 6 is the final step of the HieFLANN algorithm is the
use of yet another KFLANN to cluster the compressed
feature space. This portion can be supervised to provide the
correct cluster label so that the label identity is independent
of the feature compression clustering in the KFLANN sub-
nets.

3. K-Mean Fast Learning Artificial Neural
Network

KFLANN is used as the clustering algorithm that re-
trieves the localized salient information. Every KFLANN
subnet of HieFLANN plays the role as categorizer cluster-
ing the inputs feeding the specific HFS. The KFLANN
subnets have been designed as networks that categorize
clusters within the HFS input space.

FLANN [3] was designed with concepts found in ART
but imposed the Winner Take All (WTA) property within
the algorithm. Further improvement was done to take in
numerical continuous value in FLANN II [8]. The original
FLANN II was restricted by its sensitivity to the pattern
sequence. This was later overcome by incorporating the K-



Means centroid location which gave rise to KFLANN [1].
The KFLANN improves the sensitivity to pattern sequence
but still did not have a solution for cluster stability.

The latest improvement on KFLANN [9] includes data
point reshuffling which resolves the data sequence sensitiv-
ity that creates stable clusters. Clusters are said to be stable
if the cluster formation is complete after some iterations and
the cluster centroids remain consistent. The KFLANN is an
unsupervised clustering algorithm that is

e A self-organized clustering ANN model.

e  Autonomous in the determination of optimal clus-
ter number. This enables it to generate new catego-
ries from the training exemplars dynamically.

e Not reliant of calibrated data set and there is no
side effect from random data presentation se-
quences.

e Able to deal with stability-plasticity dilemma.

e Using competitive learning that favours the fault
tolerance ability.

e Trained within a small definite number of epochs.

The above characteristics contribute to the merits of
KFLANN clustering algorithm.

3.1. KFLANN Architecture

The KFLANN architecture is shown in Figure 3.
KFLANN consists of a single input layer that integrates the
source of the patterns. The output layer grows dynamically
as new groups are formed during the clustering process.
The weight connections between the input node and output
node are the direct mapping of each element of input vec-
tors. The dynamic formation of output nodes yield
KFLANN is a self-organized clustering ANN model.

Growing layer
of output nodes

Output Layer

Weights
Input Layer

Figure 3. KFLANN Architecture

3.2. KFLANN Algorithm
The algorithm of KFLANN is as follow:

Step 1  Initialize the network parameters

Step 2 Present the pattern to the input layer. If there
is no output node, GOTO Step 6

Step 3 Determine all possible matches output node
using

d

0|8 ~(W, =) *eovx)*(W, - X)) |

i=1 >
p H

1, a>0
» Dla]=
{O, a< O}

D is the discriminant function
Step 4  Determine the winner from all matches
output nodes using

winner = min {ZJJ (W, - x,) #cov(x)*(W, - X, )}

i=1

Step 5 Match node is found. Assign the pattern to
the match output node GOTO Step 2
Step 6 Create new output node. Perform direct
mapping of the input vector into weight
vectors
Step 7 If complete a single epoch compute centroids
If centroid points of all clusters un-
changed
Terminate
Else
GOTO Step 8
End if
Else
GOTO Step 2
End if
Step 8  Find closest patterns to the centroids and re-
shuffle them to the top of the dataset list.
GOTO Step 2

& is the tolerance for i feature of the input space, Wi used to denote the

weight connection of j™ output to the i input, X; represent the i feature

of the current pattern . d is feature dimensionality.y is vigilance.

Apart from the initialization, the KFLANN clustering
algorithm comprises of the following iterative steps.

Initialization

The input neurons at KFLANN’s input layer integrate
with input vector directly and no data set manipulation is
required.

The initialization phase in Step 1, prior to the clustering
process is needed to determine the vigilance 1 and tolerance
6. The computation complexity is dependent on the size of
the data set and the dimensionality of the input space. Vigi-
lance setting is usually set between 0.5 and 1.0. Since the &
value determines the ratio between the number of features
to be within tolerance and the total number of features, the
clustering transformation becomes more stringent as the
vigilance setting approaches 1. The Tolerance setting J for
a feature is the measurement of the allowable fluctuations.
Several methods were investigated to deal with this toler-
ance setting [9] and the standard deviation computation was
amongst the most optimal method.



Competitive Learning

The clustering process begins with the sequential presen-
tation of data patterns. The tolerance filtering procedure is
then performed on each input feature and an overall pattern
vigilance screening is incorporated within Step 3.

Tolerance filtering can be viewed as localized screening
that determines if the feature is within acceptable tolerance.
It is implemented using the discriminating function Dfa] in
Step 3. If this discriminating function D/a] returns a value
1, it indicates that the particular input attribute is within the
bounds of the corresponding attribute of the cluster in ques-
tion.

The vigilance screening, also known as global screening
determines the number of features within the localized input
space that have passed the tolerance screening. The vigi-
lance screening is important as it enables the network to
possess fault tolerance to missing value, outliers or noise
feature.

After satisfying the screening criteria, there are still pos-
sibilities of exemplar matches that map into multiple clus-
ters. The final decision of ownership is decided using the
WTA competitive selection found in Step 4. Eventually,
only the cluster centroid bearing the strongest weight will
absorb the exemplar into its cluster. The winning neuron is
chosen based on the closest distance from the data point to
cluster centroid.

Step 5 is the Cluster Membership Assignment (CMA)
that assigns the exemplar as a new cluster member of the
selected winner centroid.

If a new exemplar pattern does not meet the two screen-
ing criteria, a new output centroid is created to represent the
new cluster (Step 6).

Cluster Stability Checking

After an epoch (a full list of pattern has been processed),
the cluster stability is checked. This is to determine if the
cluster centroids represent the exemplars in the cluster. The
algorithm has a dual way of creating cluster centroids. The
first is a straight assignment when the exemplar is not repre-
sented in any available cluster, while the second is a delib-
erate shuffling of the data point to the top of the list in Step
7 of the KFLANN algorithm. The data point reshuffling
process is performed only if cluster stability is not achieved.
Re-shuffling the data points closest to cluster centroids to
the top of pattern list create new pattern sequence for the
subsequent clustering process (Step 8). KFLANN iterative
process is limited to 5 iterations [9]. It has been shown
experimentally that the cluster stability stabilizes after 3
iterations.

4. Feature Compression Using Canonical
Covariance Analysis

Apart from the KFLANN, the feature compression
method known as Canonical Covariance Feature Compres-
sion (C2FeCom) is key to the operation of the network. The
C2FeCom is used to prepare salient features for clustering
at final stage. It produces a combination of the input space
with the purpose of maximizing the spread of data for dif-
ferent categories and minimizing the dispersion amongst
similar categories.

The proposed feature compression process embedded in
HieFLANN employs the canonical and covariance analysis.
With the use of CCM, commonly studied in classical statis-
tics, it is possible to extend the KFLANN clustering subnets
into a hierarchical structure for a more complex, but robust
ANN computation model. The theory of Canonical Analysis
was originally developed to analyze relationship of a set of
predictors to the presented set of criterion variable. The
reasons of using the canonical analysis for feature compres-
sion method were because it was the only multivariate ap-
proach that is able to handle more than one metric criteria
(dependent) variable and it was the only multivariate
method that works with both criteria and predictor (inde-
pendent) variables simultaneously.

The covariance analysis is attached to impress the fea-
ture variation in the compression process. Covariance be-

tween i" feature ( X,) and j" feature ( X ;) is as follow:
1 n
COV(Xi’XJ)zzz (xm_/lx,)(x,,a_ﬂx,) &
a=1

cov(X )= }11—2 zn: (xub - ﬂx‘,)
a=1 b=1

With d is the feature dimensionality and n as the number of sam-
ples. [y is the mean of feature X o Spanning over n data pat-

terns.

Notations used to describe the C2FeCom explained as
follow. In this example, let .2'={x;, x, x3 x4, X5}, be the

input feature space of dimensionality 5. Assume that the
input feature space is divided into 2 HFSs namely HFS1
and HFS2. HFS1 may consist of X;={x;, x,, x3} and HFS2
consists of X, ={x,, xs/. As the inputs of each HFS are clus-
tered by the KFLANN algorithm, the transformed clustering
output ) is generated, such that .’ is transformed into ). In
this example the two KFLANN subnets produce output the
clustering outcome, where the first subnet deals with HFS1

(X)) resulting Y,, (represent the cluster index) while second
subnet handles HFS2 (X;) output Y.



4.1. Formation of Canonical Correlation Matrix

If ’and ) are matrices, the CCM of 2 HFSs are showed in

Table 1. The computation equation is given in (3), (4), (5)
and (6) respectively.

Table 1. (a) CCM (b) Example of predictor sets ." and criteria set

Y for 2 HFSs
X1, X5 Y, Y,
le X.’ R)cx ny
Y, Y, Ry, Ry,
(a)
X X2 X3 Y, X4 Xs Y,
1 0.4 1.1 2 0.6 0.7 2
0.5 0.8 0.4 1 0.5 0.2 1
04 0.5 0.3 1 0.1 0.2 1
0.7 1.0 0.8 2 0.8 0 3
0.8 0.2 0.2 2 0.7 0.3 1
(b)
Rxxzz(X]_ﬂxl)(XZ_ﬂXZ)T (3)
R, = Z ¥, =, ), _'u)‘Z)T (€]
Ry=> (X —u)¥-u) (3)
R_vx = nyT (6)

Rxx» Ryy, Rxy and Ryx are in matrix form. The inter-
correlation between predictor variables is given in Ryx, the
cross-correlation between predictor and criteria variables is
represented by Ryy and its transpose Ryx, and the inter-
correlation between criteria variables is Ryy. To obtain the
maximum correlation between the set of variables in HFSs,
eigen-decomposition on the CCM is involved.

4.2. Eigen-decomposition of Canonical Correlation
Matrix

Let U and V be the canonical variates to be determined such
that the correlation between & < = U'.¥ and y’:va is
maximized. The canonical variate is the eigenvector of the
CCM. 1t is the principal component of the respective ma-
trix. Eigenvectors obtained from eigen-decomposition proc-
ess are the decorrelated principal axes of the data set and
grouping transformation. U is the canonical variate that

exhibits the principal component of the feature variables, .
V is the canonical variate for the subnet cluster representa-
tion variables, ). This forms up a pairwise canonical variate

matrix contain of U and V.

4.3. Canonical Covariance Feature Compression

The combination of canonical analysis and covariance
form the proposed feature compression method in this pa-
per. The feature compression equation is given as follow:

C2FeCom () =cov(A)* ¥ *U @)

* is the multiplication symbol

X1 X2 Y1 Y2

X2 Rxx Rxy

—

Nt

Ryx Ryy

HE = |
U U
U U

| C2FeCom = Cov(X) * X* U |

SIRX

HFS1

Clustering
Transformation
2S4H
UOlJBWIO}SUB ]
Burieisn|o

S

Figure 4. C2FeCom Process

Figure 4 depicts the feature compression process together
with the formulation of CCM.

Diagonal elements of covariance matrix represent the
feature variance. The covariance term used here is a factor
loading in the compression process similar to the beta
weights in a multiple regression equation.

The covariance term represents the correlation amongst
the feature while canonical variates tend to minimize the
projection within-group variances that have been pooled
over all groups in each HFS, and maximize the between-
group variances in each HFS. The correlation between
heterogeneous partitions is then finalized through the CCM.

This summarizes the rationale of incorporating the co-
variance in the proposed C2FeCom. Other reasons include:

e [t accounts for ranges of acceptability betweens fea-
tures (variability). This mitigates the effect of the
feature value that fall out acceptable range.

e The features correlation is exhibited thru the covari-
ance term enable the compression atones for the re-
lation amongst features.

e The covariance imposes weights that are distributed
in the feature space. This eliminates the co-linearity
effect of the dataset.

Although canonical analysis has been a decade old solu-
tion for feature reduction purposes, the common practice
has been to take in the entire input space and perform ca-
nonical analysis to extract significant principal components.
The proposed feature compression contributes to certain
merits comparing to the conventional canonical analysis
feature reduction method. Further explanation follows.



C2FeCom is considered as a principal component based
feature reduction approach. In principal component based
approach, the eigenvectors of either the covariance or corre-
lation matrix is used as the principal component for feature
transformation. The drawback is that principal component-
based method ignores the different distributions represent-
ing the statistical classes. However this drawback is not
severe in HieFLANN as the local distribution analysis is
performed in each HFS. The local distribution analysis of
KFLANN subnet discovers the different classes distribu-
tion.

The conventional canonical analysis limits the reduction
on feature dimensionality to K-/. In actual live data, this
may not be the optimal cardinality for feature compression
as the actual compression may vary from the expected fea-
ture. Such a limitation does not occur in the HieFLANN.
This is because every combination from subnets contributes
to a final stage compression that yields the dimension of the
compressed feature.

If the difference between the means is small, the canoni-
cal analysis will encounter an undesirable situation. This
issue will eclipse other computations of inter-correlations
between criteria variables. In HieFLANN, each KFLANN
subnet eliminates the eclipsing effect as each subnet is lo-
calized and isolated. Each KFLANN subnet contains most
similar feature subset resulting acceptable range of differ-
ence in mean amongst the HFSs.

There are other advantageous of C2FeCom that contrib-
ute to its success within the HieFLANN model. The charac-
teristics of C2FeCom benefits from both covariance and
canonical analysis by becoming invariant to scaling and
producing a singular transformation

In other words, linear combination of the basis vectors is
mapped by the transformation into zero vectors. A vector
that is mapped into the zero vectors through transformation
is said to be in the kernel of that transformation. The kernel
is a subspace of the domain in the transformation form. In
additional to the properties delineated, there are no stringent
implicit assumptions made in C2FeCom.

5. [Experiment Result and Analysis

To verify the performance of the proposed HieFLANN
and the effectiveness of the C2FeCom feature compression,
several benchmark datasets were used in this paper. These
were downloadable from UCI Repository of Machine
Learning Databases [7]. The data was randomly divided
into test sets and training sets. The datasets were the do-
nated to the repository from real life datasets. These data-
sets are widely used by other researchers as bench marks.

In this paper, the Receiver Operating Characteristics
(ROC) was adopted to organize the performance measure-
ment of the HieFLANN classification model. The average

errors on each class in the presented data set can be derived
from ROC [4] using equation (8).

RS ®)
E=—
K;em

o = number of pattern misclassified in class m

m

n

m

Where K is the number of classes, e,, is the classification error for
class m and n,, is the number of pattern in class m.

There has been an increasing in the use of ROC due to
its usefulness for domains with skewed class distribution
(unbalanced classes) and unequal classification error costs.
Detail information of ROC is described in [4]. Comple-
menting the use of ROC measurement is the Area Under
Curve (AUC):

AUC=1-E 9)

AUC can be viewed as the classification accuracy meas-
urement. AUC is used in this paper as the classification
performance is comparable to the classification accuracy
adopted by most of researchers.

Apart from the ROC performance measurement, the
compression ratio (CR) was also included to indicate the
efficiency of the proposed feature compression method.
Actual dimension (AD) is the dimensionality of raw feature
space while reduced dimension (RD) is dimensionality of
compressed feature space. Equation in (10) is the compres-
sion ratio used in the experiments represents the degree of
compression made that is the actual degree of feature di-
mensionalities compressed. The higher the ratio, the better
the compression but it still depends on the characteristic of
problem domain. Not all problems can produce high CR
due to the feature discriminating level. If all features are
needed in order to provide higher class discrimination
analysis, then CR will be low and little compression is pos-
sible.

cr=1-RP (10)
AD

Classification performance of HieFLANN on different
data set is given in Table 2. The first column in Table 2 lists
the type of real life domain extracted from UCI Repository.

The second column represents the actual dimension of
problem set while third column is the reduced dimension
using C2FeCom. The fourth column is the compression
ratio computed using equation (10).

The compression ratios of greater than 0.4 were obtained
for all problem sets except the Waveform data set. This is
shown in Table 2. This discovery shows that the C2FeCom



method is able to map the given problem set into a compact
representation. The Iris, Wisconsin Breast Cancer and
ionosphere problem sets achieved greater than 75% com-
pression. This is followed by two columns list the AUC for
training set and test set respectively.

Table 2. HieFLANN classification performance

Dataset AD RD CR Train Test KFLANN

AUC AUC Accuracy
Iris 4 1 0.7500  0.9361  0.9524 0.9500
Thyroid 5 3 0.4000 0.8781  0.9500 0.9067
DB 8 4 0.5000 0.7503  0.7213 0.7300
WBC 9 2 0.7778  0.8634  0.9723 0.9657
Wine 13 5 0.6154  1.0000 0.9667 0.9651
Heart 13 5 0.6154 0.8493  0.8753 0.7833
WF 21 13 0.3809 0.9079 0.8196 0.7328
Tono 33 7 0.7878  0.9564  0.8340 0.7712
DM 34 19 0.4412  0.8333  0.8540 0.8915

fication using the compressed feature space reduces the
computational workload, minimize memory usage and
shorten the computational time.

Table 3 summarizes the class distribution of the bench-
mark datasets used in experiments. They are listed in in-
creasing order of feature dimensionality. All datasets con-
tain continuous feature values. The dimensionality ranges
from 4 to 34. All feature values were standardized with
maximum normalization. The normalized values range
between —1 and 1. Missing values in problem domains were
excluded from the experiment. It is important to note that
Class labels were not provided during training process and
used only for evaluation on the experimental testing.

Table 3. Datasets description for the benchmarks datasets used.
Numbers enclosed in parentheses represent the number of pattern
samples for that particular class

DB: diabetes, WBC: Wisconsin breast cancer, WF: waveform,
lono: ionosphere, DM: dermatology.

The AUC for training refers to the performance of the
HieFLANN classifier when the training set was used, while
AUC on test set represents its prediction ability. From the
experimental testing, it is shown that problem domains
either obtained better AUC value on training set than test
set or comparable AUC value between training and test set.

The Iris dataset achieved an AUC value (in percentage)
of 93.61% on training set and 95.24% on the test set. WBC
data set however had the best predictor amongst all others.
The training AUC was 86.34% and test set AUC was
97.23%. The results indicate that HieFLANN is an accept-
able architecture that is able to split the input space into
smaller independent modules and later combine the results
to yield acceptably accurate results.

Last column indicates the KFLANN classification accu-
racy on test set using actual dimensionality feature space.
Comparison between the accuracy obtained on KFLANN
and HieFLANN (AUC on test set) revealed that classifica-
tion on compressed feature space significantly better if not
comparable to the classification on actual dimensionality
feature space. Most of the tested problem domains achieved
better classification accuracy on compressed feature space
than actual dimensionality feature space except for Diabetes
and Dermatology data set. Classification accuracy for Dia-
betes data set in compressed feature space is 72.13%, only
slightly differ from the accuracy on the actual dimensional-
ity feature space that is 73%. Dermatology data set dis-
played the comparable classification accuracy on both the
actual dimensionality feature space (85.4%) and com-
pressed feature space (89.15%).

Experimental results demonstrate the merits of the pro-
posed HieFLANN for pattern learning on large dimension-
ality problem domains. With the overall compression de-
gree of minimum 40% on the tested problem domain verify
the feasibility of the compression method proposed. Classi-

Data
set

Description

Iris 3 classes of Iris flowers, Class 1-Setosa
(50), Class 2-Virginica (50) and Class 3-Versicolor
(50). The length and width of flower’s petal and
sepal determine the flower type.
Thyroid 2 classes of thyroid disease, Class 1- (49), Class 2-
(91) comprise of laboratory test indicators as the
attributes information.

DB 5 classes of Eryhemato-Squamous Disease, Class 1-
(112), Class 2- (61), Class 3- (72), Class 4- (49),
Class5- (20). Individual health factors determine the
diseases type.

WBC 2 classes indicate benign (241) and malignant (458)

breast cancer cell. Attributes are the properties of

cells measured.

Wine 3 types of wine based on the chemical contain. Class

1- (59), class 2- (71), class 3- (48).

2 classes indicate heart and non-heart disease based
on the health factors, class 1- (1399), class 2- (164).

Heart

WF 3 classes of waveform with attributes are generated
from a combination of 2 of 3 "base" waves. Class 1-
(1657), class 2-(1647), class 3- (1696).

Iono 2 classes of radar reflection from ionosphere to
detect free electrons in the ionosphere. Class 1-
(225), class 2- (126).

DM 6 classes of skin disease. Class psoriasis (112), class
seboreic dermatitis (61), class lichen planus (72),
class pityriasis rosea (49), class cronic dermatitis
(52), class pityriasis rubra pilaris (20). The clinical
attributes and histopathological attributes determine
type of disease.




6. Conclusion

This paper presents the Hierarchical Fast Learning Arti-
ficial Neural Network (HieFLANN) as a new model for
learning high dimensionality data. It is a promising hierar-
chical ANN pattern learning model that uses the canonical
covariance based feature compression as a means to process
data. The proposed model was tested extensively on several
benchmark datasets and it yielded promising results. A
further note to the HieFLANN model is that it can be exe-
cuted in a totally unsupervised mode.

HieFLANN addresses large problem sets by partitioning
it into smaller manageable sets for independent processing
subnets. The inherent attribute relationships can be coded
between the subnets and the level of significance the input
sub-space plays in determining the global accuracy. It ini-
tially uses similarity theory to generate the HFSs and subse-
quently using independent KFLANN clustering processing
on each HFS. The computation of canonical variates thru
eigen-decomposition on the canonical correlation matrix
(CCM) is carried out prior to C2FeCom. The principal
components obtained from the eigen-decomposition on
CCM together with covariance components of the underly-
ing unknown distribution leads to a convenient representa-
tion for generalization. The KFLANN was used to cluster
the compressed feature space in the final stage.

The results indicate that the C2FeCom feature compres-
sion method has been highly reliable in all the experiments
performed. Experimental obtained results showed that the
classification performance on test data is generally similar
to the training set. It was also discovered that the majority
of the collected benchmark datasets seem to contain redun-
dant, irrelevant features that do not significantly contribu-
tion to the successful classification of the data set. It is
therefore possible to obtain a compressed representation of
original feature space with minimal loss of discriminative
power.

The HieFLANN is advantageous in that it

e provides excellent generalization power as showed
in experiments results.

e s a facile self-organized neural model that is easy
to duplicate.

e Can be fully unsupervised as it does not require
any parameter settings.

The proposed HieFLANN is a totally unsupervised
driven classification neural model provides a novel ap-
proaches. It process the feature transformation and classifi-
cation within a single ANN framework.

Motivated by the self-organized learning way adopted in
biological nervous system, the HieFLANN actualizes the
unsupervised self-learning concept through its self-
organized structure. No intervention is required to set up the
parameters. Each KFLANN subnet determines the overall
stability of HieFLANN model. The HieFLANN also takes

into consideration the plasticity dilemma issue, thus it does
not suffer from the severe effect of the interference when
learning new knowledge.

A further study will be done to determine how inherent
inter-correlation between subnets can be encoded for rule
interpretation. This may be useful for extracting rules
needed for deterministic software environments where use-
ful predictive rules can be incorporated into decision sys-
tems.

A formalization of the HieFLANN is also needed to de-
termine how the C2FeCom actually assists in the com-
pressed feature space encoding, providing a mathematical
model for the network.

Since the HieFLANN is able to provide an effective
clustering platform that partitions the global problem into
packet sized local problems, the reduced input feature space
can be used to train the conventional multilayered percep-
tron (MLP) models. Instead of remaining as a HieFLANN,
the internal networks can theoretically be replaced by the
conventional MLP neural networks. This may proof useful
as the pre-partitioning of high dimensional problems to
create a hierarchical structure of minute MLP networks.
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