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Abstract. The K-means Fast Learning Artificial Neural Network (KFLANN) is 
a small neural network bearing two types of parameters, the tolerance, δ and the 
vigilance, µ. In previous papers, it was shown that the KFLANN was capable of 
fast and accurate assimilation of data [12]. However, it was still an unsolved 
issue to determine the suitable values for δ and µ in [12]. This paper continues 
to follows-up by introducing Genetic Algorithms as a possible solution for 
searching through the parameter space to effectively and efficiently extract 
suitable values to δ and µ. It is also able to determine significant factors that 
help achieve accurate clustering. Experimental results are presented to illustrate 
the hybrid GA-KFLANN ability using available test data.  

1 Introduction 

K-Means Fast Learning Artificial Neural Network (KFLANN) has the ability to 
cluster effectively, with consistent centroids, regardless of variations in the data 
presentation sequence [6], [7], [12]. However, its search time on parameters δ and µ 
for clustering increases exponentially compared to the linear increase in the input 
dimension. A Genetic Algorithm (GA) was used to efficiently orchestrate the search 
for suitable δ and µ values, thus removing the need for guesswork. The hybrid model, 
GA-KFLANN, shows that the technique indeed has merit in fast completion as well 
as accurate clustering. Although the δ and µ values obtained provided sub-optimal 
clustering results, these results were still within acceptable clustering tolerance. This 
paper also provides an introduction to the K-means Fast Learning Artificial Neural 
Network (KFLANN) and a description of how the Genetic Algorithm was weaved 
into the algorithm to support the effective search for the required parameters. 

1.1 The KFLANN Algorithm 

The basic architecture of the KFLANN is shown in Figure 1 [3], [4], [5]. It has 2 
layers, the input and output layer, and a set of weight vectors connecting the 2 layers. 
The KFLANN is a fully connected network. 



 
Figure 1. The Architecture of KFLANN 

The number of output nodes can increase according to the classification 
requirements, determined indirectly by the δ and µ parameters. As each new cluster is 
formed, a new output node is created and the weight vectors of the new output node 
are assimilated with the exemplar values. The algorithm of the KFLANN follows. 

1.1.1 Algorithm of KFLANN 
Notation µ: vigilance value 

δi:  tolerance value of the ith attribute 
n:  the number of input attributes 

iI : the ith input node 

jiW : weight connecting the ith input node and the jth output neuron 
D[a] = 1 if a > 0. Otherwise D[a] = 0. 
 

1 

Initialize network with µ between 0 and 1. Determine and set δi for i = 1, 2, 3, 
…, n. The values of µ and δ affect the behaviors of the classification and 
learning process. 
 

2 
Present the next pattern to the input nodes. If there are no output clusters 
present, GOTO 6. 
 
Determine the set of clusters that are possible matches using equation (1). If 
there are no output clusters GOTO 6. 
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Using criteria in equation (2) determine the winning cluster from the match 
set from Step 3. Normalize  and . The following distance is calculated 

between the normalized versions. 
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5 
When the Winner is found. Add vector to the winning cluster. If there are no 
more patterns, GOTO 7. Else GOTO 2. 
 



6 

No match found. Create a new output cluster and perform direct mapping 
from input vector into weight vector of new output cluster. If there are no 
more patterns, GOTO 7. Else GOTO 2. 
 

7 
Re-compute cluster center using K-means algorithm. Find the nearest vector 
to the cluster center in each cluster using equation (2). Place the nearest vector 
in each cluster to the top of the training data and GOTO 2. 

 
After each cycle of clustering with all exemplars, the cluster centers are updated 

using K-means algorithm. This is Step 7 of the KFLANN algorithm. A comparison 
between each cluster center and patterns in respective cluster is then conducted to 
determine the nearest point to each cluster center. The algorithm then assigns this 
point as the new centroid.   

1.1.2 Parameter Search for δ and µ 
The KFLANN algorithm is able to cluster effectively only if the correct δ and µ 
values are used [7]. As illustrated in Figure 2, the δ values indirectly determine the 
clustering behaviour of the algorithm. A larger δ provides lesser clusters (a), while a 
smaller δ provides more clusters (b). Since the characteristic spread of data is 
sometimes unknown, the δ values are still very much a guessing game. The results of 
a brute-force combinatorial exhaustive search [12] are used to compare with the 
results obtained from the GA search presented in this paper. This original brute-force 
algorithm tries all possible combinations of tolerance and vigilance values. For 
example, if there are n attributes in an exemplar and each tolerance has m steps on its 
value range, mn modifications have to be made on tolerance values totally. The high 
price of the exhaustive search provides the motivation for better alternatives. 

 
Figure 2. Different clusters are formed for the same data set when δ is varied 

1.2 The Genetic Algorithm 

Genetic Algorithms are guided, yet random search algorithms for complex 
optimization problems and are based on principles from natural evolutionary theory. 



GAs are computationally simple yet powerful and do not require the search space to 
be continuous, differentiable, unimodal or of a functional form. 

The GA process is illustrated in Figure 3. To obtain solutions, the problem space is 
initially encoded into a relevant format, suitable for evolutionary computation. The 
parameters of the search space are encoded in the form known as chromosomes and 
each indivisible parameter in a chromosome is called a gene. A collection of such 
strings is called a population. Initially, a random population is created, which 
represents different points in the search space. An objective and fitness function is 
associated with each string that represents the degree of goodness of the chromosome. 
Based on the principle of survival of the fittest, a few of the strings are reproduced 
and each is assigned a number of copies that go into the mating pool. Biologically 
inspired operators like crossover and mutation are applied on these strings to yield a 
new generation of chromosomes. The process of reproduction, crossover and 
mutation continues for a fixed number of generations or till a termination condition is 
satisfied. [10] 

Chromosome
Encoding

Initialization

Fitness
Evaluation

Reproduction

Crossover

Mutation

Fitness
Evaluation

No Yes StopTermination
 

Figure 3. The GA process 

GA is useful when a sub-optimal solution is sufficient. The self-evolving nature 
and likeliness to reach a near-optimal condition regardless of dimensionality, is the 
strong motivation for introducing GA into KFLANN. 

1.2.1 Chromosome Encoding 
The chromosomal encoding for the GA-KFLANN consists of two parts: the control 

genes (ConG) and the coefficient genes (CoeG). The ConG are a string of binary 
numbers, which are used to turn on or off the corresponding features to achieve the 
goal of feature selection. Whereas, the CoeG are a sequence of real numbers 
representing tolerance and vigilance values to control the behaviour of KFLANN. The 
ConG may not be used when all features are fully utilized in a clustering problem. For 
the purpose of discussion, the Iris flower dataset is now used as an example to 
illustrate the encoding required for GA computations. The δ and µ are first converted 
into chromosomal equivalents as shown in Figure 4. CoeG shown in shaded pattern 
represent those turned off by their corresponding ConG. 



1.2.2 Population Initialization 
In the 1st generation of the GA, ConG (if used) are randomly assigned to the value 

‘1’ or ‘0’, while CoeG are randomly initialized to values between the upper bound 
and the lower bound of tolerance or vigilance of features from the input data. Since 
tolerance value (δ) is the maximum distance of how far a pattern in a cluster can be 

 

 
Figure 4. Sample Chromosome Encoding for the Iris Dataset  

from the cluster center in each attribute [12] as shown in Figure 2, the upper bound of 
tolerance for each attribute can be set to half of the maximum distance among data 
points in that attribute, while the lower bound can be assigned to the minimum 
distance. For example, assume there are 5 data points: (0, 0), (1, 1), (3, 4), (5, 0), and 
(2, 6). The upper bound for the 1st dimension is (5-0)/2 = 2.5, while the lower bound 
is 1, which is the minimum distance among data points. Therefore, tolerance δ1 shall 
be initialized in the range [1, 2.5]. Similarly tolerance δ2 can be found in the range [1, 
3]. 

1.2.3 Fitness Evaluation 
Fitness evaluation of the clustering results is the key issue for GA. A good fitness 
evaluation can make GA produce proper tolerance and vigilance values and lead 
KFLANN to the optimal clustering, while a poor one can cause GA to converge 
towards a wrong direction and lead to inaccurate clustering. 

Within-group variance  for each cluster i and between-group variance  

can be easily computed from the output of KFLANN for each clustering result. And 
the two types of variance satisfy the following equation: 
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where  is the total variance. Since  is fixed for a data set, a natural criterion 

for grouping is to minimize Wσ
2
Bσ, or, equivalently, maximize  [1]. Moreover, the 

clustering with the maximum between-group variance and minimum within-group 



variance means highly dense clusters and good data compression. Thus, a possible 
evaluation criterion can be formed as maximizing the term: 22 / WB σσ . 

It works reasonably well for data sets without overlapping patterns, but not so well 
as expected with overlapping clusters. An additional term used in fitness evaluation is 
a Boolean variable, convergence, representing whether a clustering converges. The 
whole term is expressed as follows: 

 (4) 22 /)1( WBeconvergencfitness σσ×+=

This is to ensure that converged clustering has much higher fitness value and force 
the GA to produce tolerance and vigilance that can make KFLANN converge and 
form consistent centroids. 

1.2.4 Reproduction 
Solution strings from the current generation are copied into a mating pool according 
to the corresponding fitness values. Strings with higher fitness values will likely be 
represented in higher numbers in the mating pool, which means δ and µ generating 
higher clustering accuracy will more likely survive and pass their values to the next 
generation. This is because that there is a higher chance for δ and µ with higher 
clustering accuracy to hit the respective correct settings. Stochastic Universal 
Sampling (SUS) is the most popular reproduction strategy and utilized in this paper. 

1.2.5 Crossover 
Crossover is a probabilistic process that exchanges information between two parent 
chromosomes in the mating pool for generating two child chromosomes, so that 
proper settings of parameters can be grouped together into a single child chromosome. 
For example, one parent has the best setting of sepal length, while another has proper 
petal width value. A better clustering result will be achieved if the 2 good settings can 
be grouped together into just one offspring. 

Two types of crossover operators are implemented in this paper since the ConG 
and CoeG make use of different encoding schemes. Uniform crossover is applied to 
the ConG while convex crossover is applied to the CoeG. In uniform crossover a 
template of the same length as ConG is randomly generated to decide which parent to 
contribute for each bit position. For example, 2 parents are shown in Table 1, one is 
underlined and the other is italic. Bits from parent 1 are passed to offspring 1 if the 
corresponding bits in the template are of value ‘1’; otherwise those bits are passed to 
offspring 2. This rule works in reverse way for parent 2. Therefore, the 1st four and 
last two bits of parent 1 are passed to offspring 1, while the rest goes to offspring 2. 
Similarly, parent 2 contributes different parts to offspring 1 and 2 respectively 
according to the template. 

Table 1. An Example of Uniform Crossover 

 Parent Template Offspring 
1 1001011 1001101
2 0101101 1111001 0101011 

 



If x and y are the CoeG of two parents, then convex crossover is of the following 
form: 

 (5) yxx )1(' λλ −+=

yxy λλ +−= )1('  (6) 

where x’ and y’ are the corresponding CoeG of two children. λ is set to 0.7 in this 
paper. 

1.2.6 Mutation 
Mutation operation randomly picks up a gene in the generated offspring strings and 
changes its value properly in order to allow the GA to escape from a local optimal to 
search for a global optimal. Two types of mutation operators are used in this paper 
like the described crossover above. Normal mutation is applied to the ConG while 
dynamic mutation is applied to the CoeG. 

For a given string, if the gene x is selected for mutation, then the offspring x’ = 1 – 
x if x is a control gene. If x is a coefficient gene, then x’ is selected with equal 
probability from the two choices: 
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r: a random number chosen uniformly from [0, 1] 
t: current generation number 
T: the maximum number of generations 
b: degree of nonuniformity. 

1.2.7 Population Replacement 
It is possible that offsprings become weaker than the parents as some good genes in 
the parents may be lost. Therefore, elitism strategy is used by copying the best or best 
few parents into the next generation to replace the worst children. 

1.3 Hybrid Model of GA-KFLANN 

The architecture of the GA-KFLANN is illustrated in Figure 5. The original 
KFLANN takes tolerance and vigilance values produced by the GA to cluster the 
input data set with selected features by GA. After the KFLANN converges or a 
predefined number of cycles have been reached, the fitness values of the clustering 
results are evaluated and fed back to GA to generate the next population of better 
parameters. This process continues until a preset number of generations of GA have 
been reached or no much improvement on the fitness value can be observed. 
 

 
 



2 Experiments and Results 

2.1 Iris Data Set 

Fisher's paper [8] is a classic in the field and is referenced frequently to this day. The 
data set contains 150 random samples of flowers from the Iris species: Setosa, 
Versicolor, and Virginica. From each species there are 50 observations with 4 
attributes each in centimeters. 
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Figure 5. The Architecture of GA-KFLANN 

2.1.1 Results without Control Genes (ConG) 
Test results of data mining are exercised without ConG on the Iris data, which means 
that feature selection is turned off, and the best 4 outcomes of a run are shown in 
Table 2. 

Table 2. The Best 4 Results of a Run of Iris Data Clustering without ConG 

# Of Clusters Fitness Accuracy 
4 3.95417 85.3% 
3 3.85691 88.0% 
3 3.52583 86.7% 
2 3.32374 66.7% 

 
There is a nonlinear relation between fitness and accuracy because Versicolor and 

Virginica are not linearly separable from each other. This makes the fitness evaluation 
as mentioned previously function poorly since maximizing the between group 
variance B does not work properly. Therefore, clustering with higher fitness may not 
have higher accuracy. Row No. 2 has the clustering with the highest accuracy and 
desired number of clusters. 

Table 3 shows the comparison between the GA-KFLANN and the exhaustive 
search on Iris data set. The highest accuracy considered here includes not only 
accuracy itself in Table 2 but also the number of clusters. 



Table 3. Comparison between GA-KFLANN and Exhaustive Search on Iris Data Clustering 

 Accuracy Completion Time 
GA-KFLANN 88.0% < 1 minute 
Exhaustive Search 96% 5 minutes 
 
The exhaustive search yielded better accuracy but required more processing time 

on Iris clustering. Another consideration is that the exhaustive search actually did 
feature selection as well but the GA-KFLANN did not. Therefore, the exhaustive 
search is expected to have higher accuracy but the GA-KFLANN has greater potential 
in both completion time and accuracy. 

2.1.2 Results with Control Genes (ConG) 
Table 4 shows the best 4 results in a run of Iris data clustering with ConG and the 
table is sorted according to the fitness of clustering. The attributes with a tick “√” 
indicate the presence of the attribute to achieve the accuracy. The number of clusters 
is recorded in the first column. 

Table 4. The Best 4 Results of a Run of Iris Data Clustering with ConG 

# Of 
Clusters Fitness Accuracy Sepal 

Length 
Sepal 
Width 

Petal 
Length 

Petal 
Width 

6 20.7 72.7% √    
4 13.5 86.7%   √  
3 12.5 89.3%    √ 
3 10. 8 96%   √ √ 

 
It is clear that the last two rows have higher accuracy and the desired number of 

cluster. Petal width provides most information in clustering comparing to other 
features of Iris. Therefore, petal width is a main factor in determination of the Iris 
classification and the GA-KFLANN was able to perform well in both feature 
selection and clustering on the Iris data. 

Table 5 shows the comparison among the GA-KFLANN, the exhaustive search and 
K-Nearest Neighbour (K-NN) on Iris data set. All 3 methods achieved pretty high 
accuracy, but the GA-KFLANN showed superior potential on effective and efficient 
search because it took much less time for completion. 

Table 5. Comparison of Different Clustering Algorithms on Iris Data 

 Accuracy Completion Time Reference 
GA-KFLANN 96% < 1 minute  
Exhaustive Search 96% 5 minutes [12] 
K-NN 95.1%  [9] 



2.2 Wine Data 

This data was obtained from a chemical analysis of wines grown within the region of 
Italy, but were derived from three different cultivators. The analysis determined the 
quantities of 13 constituents found in each of the three types of wines. There were 178 
instances of wine samples in the data set. 

2.2.1 Results without Control Genes (ConG) 
The results in Table 6, of wine clustering without using ConG took only 2 minutes to 
generate. The highest accuracy with the correct number of clusters was however only 
70.2%. In comparison, the exhaustive search on wine data set achieved 95.51% [12]. 
The exhaustive search however yielded this high accuracy at the expense of speed, 
which took 2 weeks to solve 5 attributes. 

Table 6. The Best 5 Results of a Run of Wine Data Clustering without ConG 

# Of Clusters Fitness Accuracy 
3 6.21352 64.6% 
3 5.86033 70.2% 
3 4.42048 65.2% 
4 3.54305 66.9% 
3 2.34613 68.0% 

2.2.2 Results with Control Genes (ConG) 
Table 7 shows the results of wine clustering with ConG enabled to select features. 

Table 7. The Best 4 Results of a Run of Wine Data Clustering with ConG 

Attributes Fitness Accuracy 
1 2 3 4 5 6 7 8 9 10 11 12 13     
√   √     √ √     √ √     1.21 60.11% 
√ √ √     √   √ √       √ 0.765 58.42% 
  √   √ √ √   √           0.716 39.89% 
√     √     √     √ √     0.669 90.44% 
Alcohol (Item 1), Alcalinity of ash (Item 4), Flavanoids (Item 7), Colour intensity (Item 10), 
Hue (Item 11) 

The highest accuracy achieved currently was 90.44% and this was achieved in 2 
minutes. In comparison, the highest accuracy achieved in the exhaustive search was 
95.51% in 2 weeks. Results of a K-NN in [9] achieved 96.7% accuracy. The features 
discovered to be significant using exhaustive search were Flavanoids (Item 7), Colour 
intensity (Item 10) and Proline (Item 13). 

It is clear that the exhaustive search can achieve higher accuracy in clustering and 
locate the most significant factors, while the GA-KFLANN has relatively lower 
accuracy and more factors selected due to its random evolutionary nature. However, 
the exhaustive search also takes unacceptable long time to complete. Therefore, the 
GA-KFLANN shows greater potential in clustering as well as feature selection. 



2.3 Wisconsin Breast Cancer Data 

This breast cancer databases was obtained from the University of Wisconsin 
Hospitals, Madison from Dr. William H. Wolberg [11].  There were 699 patterns 
from 2 classes and 9 attributes. Table 8 shows the results of breast cancer clustering 
sorted according to fitness value. 

Four results out of five have higher than 90% accuracy and the highest one 
achieved is 95.6%. The last row of Table shows the number of appearance for each 
attributes and it is clear that attribute 3, 4, 5 and 9 appear more frequently than others. 

Table 8. The Best 5 Results of a Run of Wisconsin Breast Cancer Data Clustering 

Attributes Fitness Accuracy 
1 2 3 4 5 6 7 8 9     
  √    √ √   √ √  20.3 90.7% 
√   √  √     √     16.8 89.4% 
 √ √ √  √      √ 7.34 91.5% 
 √ √ √ √ √  √ √ 7.34 91.5% 
   √ √  √   √   √ 2.81 95.6% 
1 3 4 4 4 2 2 2 4   

 
Therefore, some evidence from the clustering results supports that the 4 attributes 

likely to be the significant in representing the dataset were, Uniformity of Cell Shape 
(Item 3), Marginal Adhesion (Item 4), Single Epithelial Cell Size (Item 5), Mitoses 
(Item 9). 

The GA-KFLANN seemed to perform well in this data set. As there were too many 
attributes, it was not viable to conduct an exhaustive search. However, a comparison 
was made with K-NN, which achieved 96.6% accuracy on this data set [2]. Both 
performed pretty good clustering. 

3 Conclusions 

Although the data used were from well-known sources which have been investigated 
by many, the emphasis of the experiments was on the technique which was used to 
boost searching, extract the features from the data and get accurate clustering. From 
the 3 data sets, the analysis resulted in the determination of significant factors. This 
information was extracted without the need to have an understanding of the data. 
Further investigations are underway to determine if there is a proper fitness evaluation 
method to guide the search of GA for optimal clustering parameters. 
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