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Abstract 
 

The traditional clustering algorithm, K-means, is famous for its simplicity and 

low time complexity. However, the usability of K-means is limited by its 

shortcoming that the clustering result is heavily dependent on the user-defined 

variants, i.e., the selection of the initial centroid seeds and the number of clusters 

(k). A new clustering algorithm, called K-means+, is proposed to extend K-means. 

The K-means+ algorithm can automatically determine a semi-optimal number of 

clusters according to the statistical nature of data; moreover, the initial centroid 

seeds are not critical to the clustering results. The experiment results on the Iris 

and the KDD-99 data illustrate the robustness of the K-means+ clustering 

algorithm, especially for a large amount of data in a high-dimensional space.  

Keywords:  Clustering; K-means; unsupervised learning 

 

1. Introduction 
 

Classification is the process of partitioning a group of existing objects into 

different classes in order to extract desired models for predicting the classes of new 

objects. In other words, it is a learning process that allows us to find models or rules 

for projecting data onto a number of classes. Many classification methods have 
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been proposed for knowledge discovery and pattern recognition. In general, 

classification approaches can be divided into two categories: the supervised 

learning methods and the unsupervised learning methods. The supervised learning 

methods, such as Multilayer Perceptron (MLP) [1], Support Vector Machine (SVM) 

[2], K-Nearest Neighbor [3] and Decision Tree [4], establish models by mapping 

inputs to the known outputs, i.e., mapping objects to the known classes; these 

models can be used for predicting the patterns of new objects.  

Different from the supervised learning methods, the unsupervised learning 

methods, known as clustering methods, do not have the knowledge of the classes to 

which the objects can be mapped. The classes can be attained in the learning 

processes; consequently, models can be established by mapping examples to the 

classes. Clustering divides a collection of objects into different clusters according to 

their similarities. High inter-object similarity within each cluster and low inter-

cluster similarity are desired for the clustering space. K-means is a very 

straightforward clustering algorithm [5]. It partitions a collection of objects into a 

number of clusters by assigning them to their closest clusters. The centroid of each 

cluster is the mean vector of the cluster members. The user usually needs to define 

the number of clusters (k). The similarity between two objects is usually measured 

using Euclidean distance.  

K-means has been used as a popular clustering method due to its simplicity and 

high speed in clustering large data sets. However, K-means has two shortcomings: 

dependency on the initial state and degeneracy [6]. The initial state includes the 

selection of initial centroids and the value of k. Different selections of initial 
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centroids often lead to different clustering results because the algorithms based on 

the mean squared-error often converge to local minima [7]. This is especially true if 

the initial centroids are not well separated. Usually, the better the initial centroids 

are separated, the better the clustering result can be obtained. Additionally, the 

number of clusters (k) is also critical to the clustering result, and obtaining an 

optimal k for a given data set is an NP-hard problem [6]. When the distribution of 

the data set is unknown, the optimal k is hard to attain. The second shortcoming, 

degeneracy, is that the clustering may end with some empty clusters, i.e., K-means 

stops with less k non-empty clusters. This clustering result is not what we expect 

since the classes of the empty clusters are meaningless for the classification.  

Two possible methods can be applied for eliminating the degeneracy: (1) 

deleting the empty clusters, and (2) replacing the empty clusters with newly created 

non-empty clusters. The former solution reduces the number of clusters while the 

latter does not change it. The latter has to search for suitable objects to form a non-

empty clusters to replace the empty ones; afterwards all the objects need to be re-

assigned to their closest clusters until there is not empty cluster and all centroids are 

stable. This method is obviously more complicated and expensive than the former 

method. The H-means+ algorithm, an improved version of K-means, eliminates the 

degeneracy by using the latter method [8]. Whenever an empty cluster is created, H-

means+ removes the global furthest object (GFO), and uses it to create a new 

cluster to replace the empty cluster. Afterwards, all the objects are reassigned to 

their closest centroids the same as the K-means algorithm does. This iteration of 

eliminating empty clusters and reassigning objects will continue until no empty 
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clusters exist. Here, the GFO is one of the local furthest objects (LFOs). A LFO of 

a cluster is defined as the object that has the largest Euclidean distance from the 

centroid comparing to its siblings in the same cluster; therefore, for k clusters, there 

are k LFO: 

Clusters: C1, C2,� , Ci , � , Ck  

local furthest objects:   LFO1, LFO2, � , LFOi,� , LFOk 

Euclidean distances from LFOi to Ci:  d1, d2, � , di, � , dk 

Let dm = max (d1, d2, � , di, � ,dk), then GFO is LFOm. Although, H-means+ can 

prevent the degeneracy by eliminating empty clusters, it still suffers from the 

shortcoming: dependency on the initial state. 

Leonid Portnoy proposed a new clustering algorithm based on K-means [9]. 

Similarly, Portnoy’s algorithm also uses Euclidean distance to determine the 

similarity between objects. The value of k is automatically defined by Portnoy’s 

algorithm. But this method requires the user to define the upper bound of the cluster 

widths (W) and the initial value of k before clustering. During the clustering, each 

object needs to find its closest centroid; if the distance between the object and its 

closest centroid is less than W, it joins the cluster; otherwise, it forms a new cluster, 

and the value of k increases. Note that, k increases monotonically, and its final value 

still heavily depends on its initial value as well as the value of W. A small W usually 

leads a large increment of k, and a large W leads a small or even no increment of k. 

When the distribution of a data set is unknown, a proper value of W is difficult to 

obtain. 
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In [10] a new genetic clustering heuristic, called CLUSTERING, is proposed. 

This heuristic integrates the genetic strategy into the nearest-neighbor algorithm. It 

is proposed to find a proper number as the number of clusters automatically. 

However, it still needs the user to specify two variables: the threshold, d, and the 

variable, w; and their values are critical to the clustering results. The number of 

generations specified by the user also affects the result significantly. On the other 

hand, the randomly generated initial strings at its initialization step and the 

randomly selected position for substring crossover make the performance of 

CLUSTERING show a random feature according to our experiments. 

This paper introduces a new clustering method, named K-means+. It is 

developed based on the K-means algorithm. Different from the latter, K-means+ 

adjusts the value of k autonomously by exploiting the statistical nature of the data. 

In other words, K-means+ partitions the data into an appropriate number of clusters 

rather than an ad hoc fixed number of clusters; moreover, the initial clustering state 

is not critical to the final clustering results. K-means+ also eliminates the 

shortcoming of degeneracy by removing the empty clusters. Additionally, K-

means+ uses multi-centered instead of mono-centered clusters to obtain better 

performances. 

The rest of this paper is organized as follows. In Section 2, the K-means+ 

heuristic of clustering is introduced. Section 3 presents comparative computational 

results on the Iris [11] and the KDD-99 data [12]. The paper is concluded in Section 

4. 

 
2.  Proposed Heuristic 
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Being developed from the K-means algorithm, K-means+ is an implementation 

of sum-square-error minimization as well. The main difference between the two 

algorithms is that the number of clusters in K-means+ is a self-defined variable 

instead of a user-defined constant. The user-defined k cannot always guarantee an 

appropriate partition of objects with an arbitrary distribution. An improper value of 

k usually leads to a poor clustering. One solution to this problem is to find an 

appropriate number of clusters by trying all the possible values of k. However, this 

approach suffers from a large time complexity as much as O(mnk k
nC ), where n is 

the number of objects to be partitioned, and m is the number of iterations of the loop 

for stabilizing cluster centroids. Obviously, this approach is unpractical for a large 

data set. Our approach to this problem is to obtain a semi-optimal k according to the 

statistical properties of the data. For instance, if the granularities of clusters are too 

'coarse' (i.e., the initial value of k is too small), we split the 'coarse' clusters to make 

them finer. On the other hand, if the clusters are too 'fine' (i.e., the initial value of k 

is too large), we merge some contiguous clusters to form larger clusters. Even 

without knowledge of the objects' distribution, the K-means+ algorithm can 

determine an appropriate value of k by splitting and merging clusters.  

The K-means+ algorithm uses the Euclidean distance to calculate the similarity 

between two objects. In order to avoid some attributes (features) dominating other 

attributes in calculating Euclidean distance the data must be normalized. The initial 

value of k is chosen from the set {2, 3, � , n}. First, these data are partitioned into k 

clusters in the same way as K-means does, then the K-means+ algorithm splits 

clusters by removing outliers from existing clusters to form new clusters. An outlier 
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is an object that is far from the majority of the objects in a cluster. At the splitting 

stage, outliers are removed from their current clusters, and are assigned as new 

centroids. These new centroids may attract some objects from adjacent clusters to 

form new clusters. In this way, the coarse clusters are split into fine clusters, and the 

value of k is increased. During the process of splitting clusters, the module of 

eliminating degeneracy will be frequently revisited in case of empty clusters occur. 

If there are empty clusters after an iteration of clustering, K-means+ simply deletes 

them without creating new non-empty clusters to replace the empty ones, and thus 

avoids the time cost in the iterations of searching GFO and re-clustering. 

After the splitting procedure, K-means+ may merge some adjacent clusters by 

linking them to form larger clusters. The centroids of linked clusters are kept intact 

after linking; therefore, the newly formed clusters are multi-centered, and they can 

be in arbitrary shapes, e.g. spatial chains. These multi-centered clusters are more 

appropriate than the mono-centered spherical clusters for classification. The detail 

of splitting and linking procedures are discussed below. 

 

2.1 Splitting Clusters 
 

An outlier is an object that is quite different from the majority of the objects in a 

cluster. When the Euclidean distance is used to measure the similarity between two 

objects, an outlier is an object that is far from the majority of the objects. One can 

find outliers by comparing the radii of the objects; that is, if the radius of an object 

is greater than a given threshold, it is deemed an outlier. This idea of determining 

outliers comes from the theory of robust regression and outlier detection [13]. As 
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shown in Figure 1, a set of objects are partitioned into k=3 clusters. Let σ denote 

the standard deviation of cluster X. Each object is assigned to its nearest cluster. 

Object c represents the centroid of cluster X. Object p (the square object) is assigned 

to cluster X, since centroid c is the closest cluster that p can be assigned to. 

However, object p is far from the majority of the objects in the cluster and is 

probably a local outlier of cluster X.  Let ts denote a threshold of determining the 

outliers, and r represent the distance between object p and centroid c, i.e., r = ||p, c||.  

A point is deemed an outlier if r > ts. The function of ts of K-means+ is quite similar 

to that of W of Portnoy’s method. The difference is that ts is defined autonomously 

while W is user-defined. 

*** Figure 1 is about here*** 
 
Central Limit Theorem: Let x1, x2, � , xn denote a set of n independent random 

variables with an arbitrary probability distribution P(x1, x2, � , xn) with mean µ  

and a finite variance σ  [14] . Then, the normal form variable as shown in Equation 

(1) has a limiting cumulative distribution function which approaches a normal 

distribution [14]. 

n
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≡ 1

__
 (1) 

“The normal approximation in the Central Limit theorem will be good if n ≥  30 

regardless of the shape of the population. If n < 30, the approximation is good only 

if the shape of the population is not drastically different from a normal distribution” 

[15]. By the central limit theorem, we can infer that many arbitrary distributions are 

close to the normal distribution, i.e., the Gaussian distribution. The closer to the 
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mean, the larger the population of objects can be observed. There is a very 

important proposition regarding the normal distribution known as the Empirical 

Rule [15].  

 
Empirical Rule:  for any normal distribution   

• about 68.26% of the objects will lie within one standard deviation of the mean;  

• about 95.44% of the objects will lie within two standard deviations of the mean;  

• about 99.73% of the objects will lie within three standard deviations of the mean; 

• about 99.994% of the objects will lie within four standard deviations of the mean; 

• about 99.99994% of the objects will lie within five standard deviations of the 

mean. 

Besides the Empirical Rule, Chebyshev's Theorem, which was discovered by the 

Russian mathematician P.L. Chebyshev, shows that the fraction of the 

measurements falling between any two values symmetric about the mean is related 

to the standard deviation [15]. 

Chebyshev's Theorem: for any data distribution, at least (1 - 1/m2) of the objects 

in any data set will be within m standard deviations of the mean, where m is any 

integer greater than one [14]. 

 
By Chebyshev's Theorem, we can see that at least 96% of objects (majority) in a 

cluster lie within the sphare of radius = 5σ (i.e., 5 standard deviations of the mean). 

Chebyshev's Theorem gives the lower bound of the percentage. We might assume 

that the objects of a cluster are approximately in a normal distribution by the 



 

  
- 10 - 

Central Limit Theorem. The Empirical Rule estimates that about 99.99994% of 

objects stay within the sphere of radius = 5σ for a normal distribution. Therefore, 

we can set the threshold ts = 5σ for splitting, i.e., the objects that stay beyond the 

five standard deviations of the cluster centroid can be deemed an outlier. 

Once an outlier is found, it is removed from its current cluster and is assigned as 

the centroid of a new cluster. Then, all the data are partitioned again into k+1 

clusters as illustrated in Figure 1.  

The split procedure makes the cluster-granularities finer and the objects within 

the same cluster more similar to each other. On the contrary, if the initial k is too 

large, we may need to merge some close clusters to reduce the number of clusters. 

 
2.2 Linking Clusters 
 

In the merge procedure, we also need to set a threshold (tm) for linking clusters. 

Using Chebyshev's theorem, we observe that when m = ≈2 1.414, there are at 

least 50% of the objects within m = 1.414 standard deviations of the mean, which 

suggests that the objects in a cluster are approximately in a normal distribution. Let 

tm denote the threshold of linking and defined as 

 
 tm = m (σx+σy) = 1.414 (σx+σy)   (2) 

 
Let d represent the Euclidean distance between two cluster centroids. If d < tm, as 

shown in Figure 2, some objects of cluster X are probably closer to the centroid of 

the cluster Y than some objects of cluster Y are. Thus, we may merge them into one 

cluster. In Figure 2, cx and cy represent the centroids of clusters X and Y respectively; 

and σx and σy denote their corresponding standard deviations.  
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There are two possible approaches to merge close clusters: fusing and linking. 

The first approach is to fuse two cluster centroids into a new centroid. The new 

centroid is set to the mean vector of the two ex-centroids. The standard deviation of 

the new cluster must be greater than the two former standard deviations. The 

threshold for merging this new cluster with its neighbors is enlarged. It probably 

leads to further merging until no neighbors are close enough to merge with.  

There are two disadvantages of fusing clusters. Since each cluster can only have 

one centroid, the cluster can only be in spatial sphere-shape. However, the spatial 

spherical clusters may not properly reflect the arbitrary distribution of the real data. 

In the real world, objects can form clusters in arbitrary shapes, such as spatial 

concave or convex, or even a chain. The other disadvantage is that each merging 

may lead to expensive iterations for re-assigning all the objects to the updated 

centroids. 

***Figure 2 is about here*** 
 

K-means+ uses the second approach of merging: linking close clusters. Their 

centroids will be kept intact and no new centroid is created. The merged cluster has 

multi centers. It is not required to re-assign data after linking. Another advantage is 

that the clusters can be in arbitrary shapes such as a chain.  

 

3. Tests and Discussion 
 

K-means+ is tested with the Iris data and the KDD-99 data. The results obtained 

by K-means+ are compared with those obtained by other well-known classification 

methods, such as K-means and Self-Organized Map (SOM) [16]. 
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3.1 Performance Measures 
 

Unsupervised learning methods, such as clustering algorithms, normally do not 

use the data labels for classification. However, the labels can be used for evaluating 

the performance of partition result; that is, a cluster can be labeled according to the 

majority data inside. For example, if the data with label “X”  has the largest 

population in a cluster, the cluster will be labeled “X”. During the test, each datum 

will be assigned to the closest cluster, and identified with the same label of the 

cluster. 

Confusion matrix is a common measure of the performance of a classification 

method. It contains the information of the actual and predicted classification results 

[17]. For comparing and analyzing the performances of classification methods, 

accuracy (AC) is often used as the primary indicator.  The accuracy is the 

proportion of the total number of correct classification, and is defined as, 

 

instances of number total

instances labeledcorrectly  of number
  AC =   (3) 

  
AC is not sufficient to evaluate the classifier's performance when the number of 

instances of one class is overwhelmingly greater than the other [18]. For example, 

there are 10 000 instances, 9 990 of which are negative and 10 of which are positive. 

If all of them are classified as negative, the accuracy is 99.9% even though all of the 

positive instances are misclassified. For binary classifiers, true positive rate (TP), 

and false positive rate (FP), are also used to reinforce the accuracy [18]. True 
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positive rate is the proportion of positive instances that were correctly classified, 

and it is defined as, 

 

instances  positive  of  number  total

 instances  positive  labeled correctly  of  number
  TP=  (4) 

The false positive rate is the proportion of negative instances that are incorrectly 

classified as positive, and it is defined as, 

  instances  negative  of  number

  instances  negative  labeled-mis  of  number
 FP =   (5) 

  
The confusion matrix is used to calculate accuracy, true positive rate and false 

positive rate. 

  
3.2 Tests with the Iris data 
 

The Iris data, which is created by R.A. Fisher, is a well-known dataset for 

classification.  It has been used for testing many classification methods. This dataset 

contains 3 classes: Setosa, Versicolor, and Virginica [19]. Each class has 50 

instances and refers to a type of Iris flower. Figure 3 illustrates the Iris data 

distribution in 3-dimensional space. There are totally 3
4C  = 4 combinations of three 

attributes of the Iris data. The graphs show that the Setosa class can be linearly 

separated from the Versicolor and Virginica classes, and the latter two classes are 

overlapping so that they are not linearly separable.  

*** Figure 3 is about here*** 

Two-fold cross-validation is used for evaluating the classification methods. The 

Iris data are divided into two halves. One half is used for training data while another 
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half for testing. Each of the both data sets has 25 Setosa data, 25 Versicolor data 

and 25 Virginica data. After the training data are partitioned into clusters, each 

cluster is identified according to the majority of the data inside. For example, if the 

Setosa data in a cluster has the largest population, the cluster is identified Setosa. 

During the test, each datum was assigned to its closest centroid, and identified with 

the same label of the closest cluster. 

We run K-means with different values of k and different initial centroids, and 

obtained different clustering results. The best one when k = 3 is shown in Table 1.  

The SOM toolbox from Matlab 6.1 is used to classify the Iris data. The 

configuration of SOM used in our simulation is:  

 
net = newsom(PR,[1 3],'hextop', 'linkdist', 0.9, 1000, 0.05,1) (6) 

 
It means that the network has 1 layer, which has 1 × 3 dimension; the function is 

'hextop', which calculates the neuron positions for layers whose neurons are 

arranged in a multi-dimensional hexagonal pattern. The distance function is 

'linkdist', which is a layer distance function used to find the distances between the 

layer's neurons. The learning rate is 0.9. The number of the ordering phase steps is 

1000.  The tuning phase learning rate is 0.05. The tuning phase neighborhood 

distance = 1. The confusion matrix of the simulation is shown in Table 1. 

Hereinafter, Se denotes Setosa; Ve denotes Versicolor; and Vi denotes Virginica. 

Attempting with different initial number of clusters from set {2, 3,� , 75}, K-

means+ classified the testing data after the training with the training data, and 

produced 74 confusion matrices. All of them are quite similar to each other, and 
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most of them are the same as Table 1. Even the initial centroids are randomly 

selected from Iris data; the results are still the same. Obviously, the initial number 

of clusters and the initial centroids are no longer critical to the clustering result. 

That is, K-means+ does not have the shortcomings of dependency on the initial 

state for the classification of the Iris data. 

 
 Predictions with clustering algorithms 

 K-means (k=3) SOM (1 × 3) K-means+ 

 Se Ve Vi Se Ve Vi Se Ve Vi 

Se 25 0 0 25 0 0 25 0 0 

Ve 1 23 1 0 24 1 0 0 25 

Vi 0 5 20 0 2 23 0 0 25 

 Table 1: Confusion Matrices for the Iris data 

 
Since the Versicolor and Virginica classes are not linearly separable, without the 

knowledge of the classes, K-means+ always identifies them as one class.  Actually, 

no classification methods based on the unsupervised learning to date can separate 

the Versicolor and Virginica classes well without the knowledge of their classes. 

 

3.3 Tests with KDD-99 data 
 

The log data are the footprints of activities on computers and networks. Intrusion 

log data are usually different from normal log data. Therefore, clustering methods 

may be used to distinguish them by partitioning intrusion data and normal data into 

different clusters. We assess the applicability of K-means+ in intrusion detection 

using KDD-99 dataset [12].   
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The KDD-99 dataset was used for The Third International Knowledge Discovery 

and Data Mining Tools Competition, which was held in conjunction with KDD-99, 

the fifth International Conference on Knowledge Discovery and Data Mining [12]. 

The competition task was to build a network intrusion detector. This database was 

acquired from the 1998 DARPA intrusion detection evaluation program. An 

environment was set up to acquire raw TCP/IP dump data for a local-area network 

(LAN) simulating a typical U.S. Air Force LAN, which was operated as if it was a 

true environment, but blasted with multiple attacks. There are totally 4 898 431 

connections recorded, of which 3 925 650 are attacks. For each TCP/IP connection, 

41 various quantitative and qualitative features were extracted [12].  

There are total 42 features of each datum. The first three qualitative features are 

protocol_type, service and flag. Currently, only three protocol types (tcp, udp or 

icmp) are used.  In KDD-99 data, there are 70 different services (such as, http or 

smtp) and 11 flags (such as, SF or S2). We map these three qualitative features into 

quantitative features so as to calculate the similarities of instances. There are also 

some other qualitative features, such as root_shell (“1” if root shell is obtained; “0” 

otherwise), logged_in (“1” if successfully logged in; “0” otherwise), land (“1” if 

connection is from/to the same host/port; “0” otherwise). They are also used as 

quantitative features here because they are in the form of an integer. The rest of the 

features except the last one are positive quantitative features, such as src_bytes 

(number of data bytes from source to destination), urgent (number of urgent 

packets) and serror_rate (percentage of connections that have “SYN” errors). They 

can be used directly to calculate the similarity of instances. The last feature is the 
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label, which indicates the identification of the instance. If the instance is a normal 

instance, the label is “normal”; otherwise it is a string of an attack type. 

 From the KDD-99 dataset, which contains 4 898 431 labeled data, we randomly 

select 101 000 data for training.  Among them, 100 000 are normal and 1 000 are 

intrusive. From the KDD-99 dataset, we also randomly select 200 000 normal data 

and 200 000 intrusive data for test. If a datum has been selected for training, it will 

not be selected for test. 

K-means partitioned the training data into a given number of clusters, and 

labeled each cluster according to the label of the majority data of the cluster. For 

example, if intrusion data form the largest population in a cluster, the cluster is 

labeled 'intrusive'; otherwise, it is labeled 'normal'. During the simulation with the 

testing data, each datum was assigned to its closest centroid, and identified with the 

same label of the closest centroid. The simulation accuracy of K-means varies with 

the value of k. The best accuracy is obtained when k equals to 53. 

The SOM toolbox from Matlab 6.1 is used to classify the KDD-99 data. The 

configuration of SOM used in our simulation is:  

 
net = newsom(minmax, [2 2, 2 2],'hextop', 'linkdist', 0.9, 1000, 0.05,1)        (7) 

 
It means that the network has 2 layers. Each layer has 2 ×  2 dimension; the function 

is 'hextop'. The distance function is 'linkdist'. The learning rate is 0.9. The number 

of the ordering phase steps is 1 000. The tuning phase learning rate is 0.05. The 

tuning phase neighborhood distance is 1.  
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With different initial values of k, K-means+ finally partitioned the 101 000 

training data into 53 multi-centred clusters. During the simulation, each test datum 

is assigned to its closest cluster, and identified according to the label of the cluster. 

As illustrated in Table 2, K-means+ has attained AC = 96.38%, TP = 99.98% and 

FP = 7.22%. This performance is better than the performances of K-means and 

SOM. Almost all the normal data have been correctly classified by K-means+. 

 

 Predictions with clustering algorithms 

 K-means+ K-means SOM 

 Normal Intrusive Normal Intrusive Normal Intrusive 

Normal 199952 48 191202 8798 171021 28979 

Intrusion 14438 185562 82168 117832 36168 163832 

Accuracy 96.38% 77.26% 83.71% 

TP 99.98% 95.60% 85.51% 

FP 7.22% 41.08% 18.08% 

Table 2: Simulation results with 400,000 KDD-99 data after the training 

K-means+ not only has a better performance than the other clustering methods, 

but also has a better usability compared to the other classification methods. The 

user does not need to worry about the initial value of k since it rarely affects the 

result of the classification. For K-means, the user has to choose a value of k before 

clustering. However, the real data are often in an arbitrary distribution and the 

appropriate value of k is hard to obtain. The performances of SOM are heavily 

dependent on the selected topologies and corresponding parameters. To find a 

proper topology and parameters, the user must have enough knowledge of the 

complicated topology of the network. 
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With different initial values of k and randomly selected initial cluster centroids, 

K-means+ partitioned a dataset consisting of 5 000 normal data and 5 000 intrusion 

data. These data are randomly selected from KDD-99 dataset. Figure 4 illustrates 

the relationship curve of the initial number of clusters and the final number of 

clusters. The final number of clusters is almost steadily at 20 when the initial 

number of clusters varies from 2 to 100. Figure 5 shows the curves of accuracy, true 

positive rate and false positive rate vs. the initial number of clusters. All of the three 

curves are nearly horizontal lines, it means that the initial state rarely affect the 

clustering result. 

Moreover, the CPU time of these tests with different initial number of clusters is 

quite similar to each other. It means that the initial number of clusters also rarely 

affects the time complexity of K-means+. Therefore, K-means+ does not have the 

shortcomings of dependency on the initial state. 

*** figures 4 and 5 are about here*** 

The K-means+ algorithm, which is implemented in Java, is run on a personal 

computer of Dell Dimension 2300 with a Celeron CUP 1.80 GHz and a RAM of 

256MB. There are two primary parameters in studying the time complexity of K-

means+: the number of initial clusters (k) and the size of data (n). 

The curve in Figure 6 shows that the CPU time of K-means+ does not vary much 

with different initial k when n is a constant. Therefore, k will not be considered as a 

parameter of the time complexity of K-means+. When k is a constant and n is a 

variable, K-means+ classifies a number of subsets of KDD-99 data. The 

relationship of CPU time and n is shown in Figure 7. The curve is the 
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corresponding fitting polynomial. The least-square approximating polynomial of 

degree 2 is: 

 
Y = 3.76 × 10 -3 X 2 + 18.57X -3.3632 (8) 

   
The axis Y is the CPU time of K-means+, and axis X is the number of data for 

clustering. The coefficient of X3 in the least-square approximating polynomial of 

degree 3 is 5.16 ×  10-7, which is too small to consider by comparing with other 

coefficients; thus, the quadratic fitting polynomial is used to express the 

relationship between the CPU time. Thus, the time complexity of K-means+ is 

approximately O(n2). 

In order to avoid the memory overflow when the training data set is very large, 

K-means+ has to use I/O frequently to read in the training data one by one instead 

of reading all of them into memory at once. However, the I/O is very expensive 

time-wisely; it is probably the most expensive portion of K-means+.  

 
4. Discussion and Concluding Remarks 
 

We have introduced a new clustering method based on K-means. The number of 

clusters of K-means+ is a self-defined variable. To the best of our knowledge, it is 

the first time that a method using the standard deviation of clusters for splitting and 

linking clusters according to the statistic nature of data. K-means+ eliminates two 

shortcomings of K-means: degeneracy and dependency on the initial state.  

Empirically, the initial cluster number is no longer critical to the clustering result 

of K-means+; therefore, it can partition data into an appropriate number of clusters 
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without knowing their distribution. This is the primary advantage of K-means+ over 

K-means. 

As an unsupervised classification method, K-means+ does not need pre-define 

any parameter or topology. It is simple yet very powerful method that can be 

implemented easily. The comparative analysis of the test results shows that K-

means+ is a robust method for solving classification problems. For intrusion 

detection, security administrators can use K-means+ to filter out a large amount of 

normal data before searching the database for intrusions [20]. Thus, the workload of 

security administrators can be significantly reduced. K-means+ can also be used for 

classification in many other fields. For medical application, K-means+ can be used 

to group diseases by their symptoms, this could help to find effective treatments. 

For e-commerce, K-means+ can be used to group customers according to the 

customer profile in order to find consumer need and target their advertising 

advertisements efforts more effectively than sending a bulk of spam to everyone.  

Further developments of K-means+ include the following research directions: (i) 

integrating fuzzy clustering techniques into K-means+ to improve its performance 

[21]; (ii) building parallel versions of this heuristic to reduce the time complexity; 

(iii) combining the K-means+ algorithm and meta-heuristics, such as Tabu Search 

[22] and genetic strategy [23], for solving very large instances; and, (iv) applying 

enhanced procedure to more real world problems in pattern recognition, medical 

diagnosis, data mining and e-business.  
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(a) Clusters before splitting 
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(b) Clusters after splitting 

Figure 1: An Example of Splitting Clusters 
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Figure 2: Merging clusters 
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Figure 3: Visualization of the Iris data 

 

Figure 4: Final number of clusters vs. initial number of clusters 

 

Figure 5:  Performance vs. initial number of clusters 
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Figure 6: Initial number of clusters vs. CPU time 

 

Figure 7: CPU Time vs. the number of data 

 

 

 

 


