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Abstract

Commonsens&ausal reasoning occupies cantral
position in humarnreasoning. It plays an essentiale
in both informal and formal humandecision-making.
Causality itself as well as humamderstanding ofau-
sality is imprecise, sometimesiecessarilyso. Our
commonsenseunderstanding ofhe world tells us that
we have todealwith imprecision,uncertaintyand im-
perfectknowledge. Adifficulty is striking a good bal-
ancebetween preciséormalism and commonsense im-
precisereality. Clearly, an algorithmic ethod of han-
dling imprecision isneeded.Today, data nining holds
the promiseof extractingunsuspecteéhformation from
very largedatabases. Imany ways, the interest is the
promise (orillusion) of causal, or at leaspredictive
relationships. However, thmost commordatamining
rule forms onlycalculate ajoint occurrencefrequency;
they do notexpress a causatlationship. Without un-
derstanding the underlying causaligynaive use oflata
mining rules can lead to undesirable actions.

1. Introduction

Commonsense&ausal reasoning occupies cantral
position in humanreasoninglt plays an essentiable
in human decision-making. Considerable effort besn
spent examining causatiohilosophers, mathemati-
cians, computer scientists, cognitive scientists, psy-
chologists, and othefsaveformally exploredquestions
of causation beginning at leasree thousand years ago
with the Greeks.

Whethercausalitycan berecognized a@ll has long
been a theoreticapeculation okcientistsand philoso-
phers. At the sameme, in ourdaily lives, weoperate
on the commonsense belief that causality exists.

Causal relationships exist in theommonsense
world. If anautomobile fails tostop at aredlight and
there is an accident, it can be said that the failustdp
was theaccident'scause. Howeverconversely, failing
to stop at a red light is not eertain cause od fatal ac-
cident; sometimes no accident of any kind occ8rs. it
can be saidhat knowledge ofsome causal effects is

imprecise. Perhaps, compléteowledge ofall possible
factorsmight lead to acrisp description ofwhether a
causal effect will occuHowever, inour commonsense
world, it is unlikely that all possiblefactors can be
known. What is needed & method to model imprecise
causal models.

Another way to think of causal relationshipsun-
terfactually. For example, if a drivelies in an accident,
it might be said thabadthe accidentnot occurred;they
would still be alive.

Our commonsenseunderstanding ofhe world tells
us that wehave todeal with imprecision, uncertainty
andimperfect knowledgeThis is also thecase of our
scientific knowledge ofthe world.Clearly, weneed an
algorithmicway of handlingimprecision if weare to
computationallyhandlecausality. Mvdelsare needed to
algorithmically considercauses.These models may be
symbolic or graphic. A difficulty is striking good bal-
ancebetween preciséormalismand conmonsense im-
precise reality.

1.1 DataMining, Introduction

Datamining is anadvancedool for managingarge
masses oflata. It analyzedatapreviouslycollected. It
is secondaryanalysis.Secondaryanalysisprecludes the
possibility of experimentally varying the data to identify
causal relationships.

There areseveraldifferent data nining products. The
most common areonditional rulesor association rules
Conditional rulesare most often drawn from induced
trees while association rules are most ofeamnedfrom
tabulardata. Ofthese, the most commastata mining
product is association rules; for example:

« Conditional rule:

IF Age < 20
THEN Income < $10,000
with {belief = 0.8}

« Association rule:
Customers who
buy beer and sausage
also tend to buy mustard
with {confidence = 0.8}
in {support = 0.15}
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At first glance, these association rules seefimioly
a causal orcause-effectelationship. That is:A cus-
tomer’s purchase ofboth sausageand beer causesthe
customer to also buy mustald.fact, all that isdiscov-
ered is theexistenceof a statistical relationshijpetween
the items.The natureof the relationship is nospeci-

fied. We do not know whether the presence of an item or

sets of items causes tpeesence ofnotheritem or set
of items; or the converse, or soeother phenomenon
causes them to occur together.

When typically developed,association rules do not
necessarilydescribe causality. Also, the strength of
causaldependencynay bevery different from a respec-
tive association value. All thatan be said ishat asso-
ciations describethe strengthof joint co-occurrences.
Sometimes, the relationship migh¢ causal; foexam-
ple, if someone eats salty peanaisithen drinks beer,
there isprobably acausalrelationship. On theother

hand, it is unlikely that a crowing rooster causes the su

to rise.

1.2 Naive AssociationRulesCan Lead To Bad
Decisions

One of thereasonawvhy association ruleare used is
to aid in making retail decisions. However, simp§so-
ciation rules may lead to errors. It is common fdoad
store to put one item on sad@dthen toraisethe price

of anotheritem whosepurchase is assumed to be asso-

ciated. This may worlf the itemsaretruly associated;
but it is problematic if association rulaseblindly fol-
lowed [Silverstein, 1998].

Example: At a particular store, a customer buys:
*hamburger 33%bf the time
*hot dogs33% of the time
« bothhamburgerandhot dogs33% of the time
« sauerkraut only if hot dogsare also purchased

This would produce the transaction matrix:

| hanbur ger hot dog sauerkraut
t, 1 1 1
t, 1 0 0
t, 0 1 1

This would lead to the associations:
 (hamburger, hot dog) = 0.5
» (hamburger, sauerkraut) = 0.5
* (hot dog, sauerkraut) = 1.0

If the merchant:
*Reduced price of hamburger (as a sale item)

«Raised price of sauerkrath compensate (as the
rule hamburger [/ sauerkraut has a high
confidence.

* The offsetpricing compensatiomould not work
as the sales afauer-kraut wouldhot increasewith
the sales of haburger. Most likely, the sales of
hot dogs (and consequently,sauer-kraut)would
likely decrease abuyerswould substitute ham-
burger for hot dogs.

1.3 False Causality

Complicatingcausalrecognitionarethe manycases
of false causatecognition. For example, eoach may
win a game whenwearing a particulapair of socks,
Wen always wear the sarsecks to games. Moriater-
esting, is theoccasional falseausality betweenmusic
and motion. For example, LilliaBchwartzdeveloped a
series of computegeneratedmages, sequencedhem,
and attached a sound trgcisually Mozart). Whilethere
were some connections between one image anadekig
the music was noscored tothe images;however, a
person viewinghe assemblageiewing them, the mu-
sic appeared to beonnected.All of the connections
were observer supplied.

An example of non-computdfusionary causality is
the choreography oMerce Cunningham. To him, his
work is non-representationand without intellectual
meaning. He often worked with John Cageaadomist
composer. Cunninghamvould rehearsehis dancers,
Cagewould createthe music; only at the time of the
performancewould music and motion come together.
However, the audienceusually conceived of a causal
connection between music and motion and sawacture
in both.

1.4 Recognizing Causality Basics

A commonapproach taecognizing causatelation-
ships is by manipulatingariables byexperimentation.
How to accomplishcausaldiscouvery inpurely obser-
vational data isnot solved.(Observationaldata is the
most likely to beavailable fordatamining analysis.)
Algorithms for discouvery inobservationaldata often
use correlationand probabilistic independence. If two
variables arestatisticallyindependent, it can basserted
that they are not causaliglated. The reverse not nec-

* Sauerkraut is a form of pickled cabbage. Some peopleessarily true.

greatly enjoy using sauerkraut as a garnish with

Real worldeventsare often affected by darge num-

sausages. However, it is rarely consumed as a garnisier of potential factors. For example, with plant

with hamburger. For more about sauerkraut, see:
http://www.sauerkraut.com/

growth, many factors such semperature, chemicals in
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the soll, types ofcreaturespresent, etc.can all affect
plant growth. What is unknown is whatausalfactors
will or will not be present inthe data;and,how many
of the underlying causal relationships candiszouvered
among observational data.

Sone define cause-effeatelationships as: Wen o
occurs,3 alwaysoccurs.This is inconsistent with our
commonsensenderstanding oausality. A simple en-
vironment example: Wen a hammehits a bottle, the
bottle usually breaks. A morecomplex environment
example: When a plant receives wateusitiallygrows.

An important part ofdatamining is understanding
whether there is aelationship between data items.
Sometimes, data items magcur in pairs but may not
have a deterministic relationship; for exampleyrecery
store shopper may buy both breattl nilk at the same
time. Most of the time, the milk purchase is matised
by the breadpurchasenor is thebreadpurchasecaused
by the milk purchase.

Alternatively, if someone buysstrawberries,this
may causallyaffect the purchase ofwhipped cream.
Somepeople who buy strawberries wamhippedcream
with them; of these, théesirefor the whipped cream
varies. So, we have a conditional primary effect
(whipped cream purchase) modified bgexcondaneffect
(desire). How to represent all of this is open.

A largely unexplored aspect ofined rules ishow to
determine when onevent causeanother.Given thata
and 3 arevariablesandthere appears to be satistical
covariability betweena and 3, is this covariability a
causal relation? ®re generally, when is any paela-
tionship causal?Differentiation between covariability
and causality is difficult.

Some problems with discouvering causality include:

» Adequately defining a causal relation
*Representing possible causal relations

« Computing causal strengths

* Missing attributes that have a causal effect

gent computesystems habeenrelatively uninterested
in groundingbased orhumanperceptions otategories
and causality. Thispaper isconcernedwith developing
commonsenseaepresentationghat are compatible in
several domains.

2. Causality

Centuries ago, in theiquest to unravethe future,
mystics aspired to deciphehe cries of birds, thepat-
terns of the starandthe garbled utterances of oracles.
Kings and generals wouldffer preciousrewardsfor the
information soothsayerirnished. Today, though pre-
dictive methodsare differentfrom those of theancient
world, the knowledgethat dependencyrecognition at-
tempts toprovide is highly valued. From weather re-
ports to stockmarket prediction,and from medical
prognoses to socidbrecasting, superiansights about
the shape of things to come are prized [Halpern, 2000].

Democritus, thé&reekphilosopher,once said‘Eve-
rything existing inthe universe ighe fruit of chance
andnecessity.”This seemsself-evident.Both random-
nessand causationare inthe world. Democritusused a
poppy example. Whether the poppy seed landfedite
soil or on a barren rodk chance. lfit takesroot, how-
ever, it will grow into a poppy, not a geranium or a Si-
berian Husky [Lederman, 1993].

Beyond computational complexity and holistic
knowledge issues, thesppear to bénherentlimits on
whether causality can be determined. Among them are:

«QuantumPhysics: In particular, Heisenberg’suncer-
tainty principle

*Knowledge ofthe world might never becomplete be-
causewe, asobserversareintegral parts of what we
observe

* Godel's Theorem:Which showed inany logical for-
mulation of arithmetic thatthere wouldalways be
statements whose validityas indeterminateThis

« Distinguishing between association and causal values strongly suggests thaherewill always be inherently

«Inferring causes and effects from the representation.
Beyond data mining, causality a fundamentally in-
terestingareafor workers inintelligent machinebased

unpredictable aspects of the future.

 Turing Halting Problem:Turning (aswell asChurch)
showedthat any problem solvable by step-by-step

systems. It is an area where interest waxes and wanes; iprocedurecould be solvedusing a Turingmachine.
part because oflefinitional and complexity difficulties. However, there are many routines where you cannot as-
The decline incomputational interest in cognitiveci- certain ifthe programwill take afinite, or an infinite
ence also plays a part. Activities in both philosophy and number of steps. Thus, there is a curtagétween what

psychology [Glymour,2001] overlap and illuminate
computationally focusedork. Often, the work impsy-
chology is moranterested inhow peopleperceivecau-
sality asopposed to whetherausality actuallyexists.
Work in psychology and linguistics [Lakoff, 1990]
[Mazlack, 1987] show thatategories are oftelinked to
causaldescriptionsFor the most partwork in intelli-

can and cannot be known mathematically.

«Chaos TheoryChaotic systemappear to beletermi-
nistic; but are computationallyreducible. If nature is
chaotic at its core, imight be fully deterministic, yet
wholly unpredictable [Halpern, 2000, 139].
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viding a basidor choosing an action that is likely to
lead to adesiredresult. In ourdaily lives, we nake the
commonsense observatitimat causalityexists. Carry-
ing this commonsense observatifurther, theconcern
is how to computationally recognize a causal
relationship.

Datamining holds thepromise ofextracting unsus-
pectedinformation fromvery large databasedlethods
have beerdeveloped tabuild rules. In many ways, the
interest in rules is that thegffer the promisgor illu-
sion) of causal, or at leaspredictive relationships.
However, themost commorform of datamining rules
(association) only calculate a joiatcurrencdrequency,
not acausalstrength. Afundamentafuestion isdeter-

Given determinism’s potentiahcertainty andmpre-  mining whether ornot recognizing anassociation can
cision, we might throw up outtands indespair. It may lead to recognizing a causal relationship.
well be that a precise and complé&tewledge of causal An interestingquestion how tadeterminewhen cau-
events is uncertain. On the oth@nd, we have a com- sality can be said to be stronger or weaker. Either in the
monsense beliefhat causal effects exist in thereal case wher¢he causalstrengthmay bedifferent in two
world. If we can develomodels tolerandf imprecision, independentelationships; orwhere inthe casewhere
it would beuseful. Perhapsthe tools found in soft  two items each have a causal relationship on the other.
computing may be useful. Causality is acentral concept in amy branches of

. . - scienceand philosophy. Ina way, the terni‘causality”
3. Problems With Using Probability is like “truth” -- a word with many meaningmdfacets.
Some ofthe definitionsare extremely preciseSome of
them involve a stylef reasoningoest besupported by
fuzzy logic.

Defining and representing causabnd potentially
causal relationships is necessary to applying algorithmic
methods A graphconsisting of acollection of simple
directededgeswill most likely not offer a sufficiently
rich representatiorRepresentationthat embracesome
aspects of imprecision are necessary.

A deepquestion iswhen anything can be said to
cause anything else. And if it does, what is the nature of
the causality?There is astrong motivationto attempt
causalitydiscouvery inassociation rules. Theesearch

Restricted algorithms [Cooper, 19974ve been sug- concem I3 how to b_esapproacr_th(_e recogn|t|oq otau-
sality or non-causality inassociation ruleOr, if there

gested that might beseful forcausaldiscovery inmar- is,to recognize causality as long as association rules are
ket basket data. However, the restrictions on the data artlﬁi 9 y 9

is?
the assumptions made about the relationshipsverly € result of secondary analysis

* Space-TimeThe malleability of Einstein'space time
that has the effect that what‘isow” and*later” is lo-
cal to a particular observesinother observer mdyave
contradictory views.

* Arithmetic Indeterminism:Arithmetic itself hasran-
dom aspectshat introduceuncertainty as towvhether
equationsmay be solvable. Chatin [1987, 199dik-
coveredthat Diophantineequationsmay or may not
have solutions, depending on tharameterghosen to
form them. Whether a parametdeads to asolvable
equation appears tee random(Diophantineequations
represent well-defined problems, emblematiciofiple
arithmetic procedures.)

There has been significant work in usingvarious
forms of Bayesiannetworks for causal discovery. A
Bayesian networls a combination of a probabilitgis-
tribution and a structural model that idieectedacyclic
graph in which thenodes represeithe variables(attrib-
utes) and thedges (arcs)epresenprobabilistic depend-
ence. Acausal Bayesiametworkis a Bayesian network
wherethe predecessors of a nodee interpreted as di-
rectly causing the variablssociated witta node.How-
ever, Bayesiametworkscan becomputationallyexpen-
sive. Inferring complete causal Bayesiannetworks is
essentiallyimpossible inlarge scaledatamining with
thousands of variables.
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