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Abstract

Commonsense causal reasoning occupies a central
position in human reasoning. It plays an essential role
in both informal and formal human decision-making.
Causality itself as well as human understanding of cau-
sality is imprecise, sometimes necessarily so. Our
common sense understanding of the world tells us that
we have to deal with imprecision, uncertainty and im-
perfect knowledge. A difficulty is striking a good bal-
ance between precise formalism and commonsense im-
precise reality. Clearly, an algorithmic method of han-
dling imprecision is needed. Today, data mining holds
the promise of extracting unsuspected information from
very large databases. In many ways, the interest is the
promise (or illusion) of causal, or at least, predictive
relationships. However, the most common data mining
rule forms only calculate a joint occurrence frequency;
they do not express a causal relationship. Without un-
derstanding the underlying causality, a naïve use of data
mining rules can lead to undesirable actions.

1. Introduction

Commonsense causal reasoning occupies a central
position in human reasoning. It plays an essential role
in human decision-making. Considerable effort has been
spent examining causation. Philosophers, mathemati-
cians, computer scientists, cognitive scientists, psy-
chologists, and others have formally explored questions
of causation beginning at least three thousand years ago
with the Greeks.

Whether causality can be recognized at all has long
been a theoretical speculation of scientists and philoso-
phers. At the same time, in our daily lives, we operate
on the commonsense belief that causality exists.

Causal relationships exist in the commonsense
world. If an automobile fails to stop at a red light and
there is an accident, it can be said that the failure to stop
was the accident’s cause. However, conversely, failing
to stop at a red light is not a certain cause of a fatal ac-
cident; sometimes no accident of any kind occurs. So, it
can be said that knowledge of some causal effects is

imprecise. Perhaps, complete knowledge of all possible
factors might lead to a crisp description of whether a
causal effect will occur. However, in our commonsense
world, it is unlikely that all possible factors can be
known. What is needed is a method to model imprecise
causal models.

Another way to think of causal relationships is coun-
terfactually. For example, if a driver dies in an accident,
it might be said that had the accident not occurred; they
would still be alive.

Our common sense understanding of the world tells
us that we have to deal with imprecision, uncertainty
and imperfect knowledge. This is also the case of our
scientific knowledge of the world. Clearly, we need an
algorithmic way of handling imprecision if we are to
computationally handle causality. Models are needed to
algorithmically consider causes. These models may be
symbolic or graphic. A difficulty is striking a good bal-
ance between precise formalism and commonsense im-
precise reality.

1.1 Data Mining,  Introduction

Data mining is an advanced tool for managing large
masses of data. It analyzes data previously collected. It
is secondary analysis. Secondary analysis precludes the
possibility of experimentally varying the data to identify
causal relationships.

There are several different data mining products. The
most common are conditional rules or association rules.
Conditional rules are most often drawn from induced
trees while association rules are most often learned from
tabular data. Of these, the most common data mining
product is association rules; for example:

• Conditional rule:
IF Age < 20

THEN Income < $10,000
with {belief = 0.8}

• Association rule:
Customers who

buy beer and sausage
also tend to buy mustard

with {confidence = 0.8}
in {support = 0.15}
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At first glance, these association rules seem to imply
a causal or cause-effect relationship. That is: A cus-
tomer’s purchase of both sausage and beer  causes   the
customer to also buy mustard. In fact, all that is discov-
ered is the existence of a statistical relationship between
the items. The nature of the relationship is not speci-
fied. We do not know whether the presence of an item or
sets of items causes the presence of another item or set
of items; or the converse, or some other phenomenon
causes them to occur together.

When typically developed, association rules do not
necessarily describe causality. Also, the strength of
causal dependency may be very different from a respec-
tive association value. All that can be said is that asso-
ciations describe the strength of joint co-occurrences.
Sometimes, the relationship might be causal; for exam-
ple, if someone eats salty peanuts and then drinks beer,
there is probably a causal relationship. On the other
hand, it is unlikely that a crowing rooster causes the sun
to rise.

1.2Naive Association Rules Can Lead To Bad
Decisions

One of the reasons why association rules are used is
to aid in making retail decisions. However, simple asso-
ciation rules may lead to errors. It is common for a food
store to put one item on sale and then to raise the price
of another item whose purchase is assumed to be asso-
ciated. This may work if the items are truly associated;
but it is problematic if association rules are blindly fol-
lowed [Silverstein, 1998].

Example: At a particular store, a customer buys:
• hamburger 33% of the time
• hot dogs 33% of the time
• both hamburger and hot dogs 33% of the time
• sauerkraut* only if hot dogs are also purchased

This would produce the transaction matrix:

       hamburger   hot dog   sauerkraut
t1      1          1           1
t2      1          0           0
t3      0          1           1

This would lead to the associations:
• (hamburger, hot dog)  = 0.5
• (hamburger, sauerkraut)  = 0.5
• (hot dog, sauerkraut)  = 1.0

                                                
* Sauerkraut is a form of pickled cabbage. Some people

greatly enjoy using sauerkraut as a garnish with
sausages. However, it is rarely consumed as a garnish
with hamburger. For more about sauerkraut, see:
http://www.sauerkraut.com/

If the merchant:

• Reduced price of hamburger (as a sale item)

• Raised price of sauerkraut to compensate (as the
rule hamburger ⇒  sauerkraut has a high
confidence.

• The offset pricing compensation would not work
as the sales of sauer-kraut would not increase with
the sales of hamburger. Most likely, the sales of
hot dogs (and consequently, sauer-kraut) would
likely decrease as buyers would substitute ham-
burger for hot dogs.

1.3 False Causality

Complicating causal recognition are the many cases
of false causal recognition. For example, a coach may
win a game when wearing a particular pair of socks,
then always wear the same socks to games. More inter-
esting, is the occasional false causality between music
and motion. For example, Lillian Schwartz developed a
series of computer generated images, sequenced them,
and attached a sound track (usually Mozart). While there
were some connections between one image and the next,
the music was not scored to the images; however, a
person viewing the assemblage viewing them, the mu-
sic appeared to be connected. All of the connections
were observer supplied.

An example of non-computer illusionary causality is
the choreography of Merce Cunningham. To him, his
work is non-representational and without intellectual
meaning. He often worked with John Cage, a randomist
composer. Cunningham would rehearse his dancers,
Cage would create the music; only at the time of the
performance would music and motion come together.
However, the audience usually conceived of a causal
connection between music and motion and saw structure
in both.

1.4 Recognizing Causality Basics

A common approach to recognizing causal relation-
ships is by manipulating variables by experimentation.
How to accomplish causal discouvery in purely obser-
vational data is not solved. (Observational data is the
most likely to be available for data mining analysis.)
Algorithms for discouvery in observational data often
use correlation and probabilistic independence. If two
variables are statistically independent, it can be asserted
that they are not causally related. The reverse is not nec-
essarily true.

Real world events are often affected by a large num-
ber of potential factors. For example, with plant
growth, many factors such as temperature, chemicals in



Mazlack: BISC FLINT-CIBI International Joint Workshop On Soft Computing For Internet And Bioinformatics, December, 2003

the soil, types of creatures present, etc., can all affect
plant growth. What is unknown is what causal factors
will or will not be present in the data; and, how many
of the underlying causal relationships can be discouvered
among observational data.

Some define cause-effect relationships as: When α
occurs, β   always   occurs. This is inconsistent with our
commonsense understanding of causality. A simple en-
vironment example: When a hammer hits a bottle, the
bottle usually breaks. A more complex environment
example: When a plant receives water, it usually grows.

An important part of data mining is understanding
whether there is a relationship between data items.
Sometimes, data items may occur in pairs but may not
have a deterministic relationship; for example, a grocery
store shopper may buy both bread and milk at the same
time. Most of the time, the milk purchase is not caused
by the bread purchase; nor is the bread purchase caused
by the milk purchase.

Alternatively, if someone buys strawberries, this
may causally affect the purchase of whipped cream.
Some people who buy strawberries want whipped cream
with them; of these, the desire for the whipped cream
varies. So, we have a conditional primary effect
(whipped cream purchase) modified by a secondary effect
(desire). How to represent all of this is open.

A largely unexplored aspect of mined rules is how to
determine when one event causes another. Given that α
and β are variables and there appears to be a statistical
covariability between α  and β, is this covariability a
causal relation? More generally, when is any pair rela-
tionship causal? Differentiation between covariability
and causality is difficult.

Some problems with discouvering causality include:

• Adequately defining a causal relation

• Representing possible causal relations

• Computing causal strengths

• Missing attributes that have a causal effect

• Distinguishing between association and causal values

•Inferring causes and effects from the representation.
Beyond data mining, causality is a fundamentally in-

teresting area for workers in intelligent machine based
systems. It is an area where interest waxes and wanes; in
part because of definitional and complexity difficulties.
The decline in computational interest in cognitive sci-
ence also plays a part. Activities in both philosophy and
psychology [Glymour, 2001] overlap and illuminate
computationally focused work. Often, the work in psy-
chology is more interested in how people perceive cau-
sality as opposed to whether causality actually exists.
Work in psychology and linguistics [Lakoff, 1990]
[Mazlack, 1987] show that categories are often linked to
causal descriptions. For the most part, work in intelli-

gent computer systems has been relatively uninterested
in grounding based on human perceptions of categories
and causality. This paper is concerned with developing
commonsense representations that are compatible in
several domains.

2. Causality

Centuries ago, in their quest to unravel the future,
mystics aspired to decipher the cries of birds, the pat-
terns of the stars and the garbled utterances of oracles.
Kings and generals would offer precious rewards for the
information soothsayers furnished. Today, though pre-
dictive methods are different from those of the ancient
world, the knowledge that dependency recognition at-
tempts to provide is highly valued. From weather re-
ports to stock market prediction, and from medical
prognoses to social forecasting, superior insights about
the shape of things to come are prized [Halpern, 2000].

Democritus, the Greek philosopher, once said: “Eve-
rything existing in the universe is the fruit of chance
and necessity.” This seems self-evident. Both random-
ness and causation are in the world. Democritus used a
poppy example. Whether the poppy seed lands on fertile
soil or on a barren rock is chance. If it takes root, how-
ever, it will grow into a poppy, not a geranium or a Si-
berian Husky [Lederman, 1993].

Beyond computational complexity and holistic
knowledge issues, there appear to be inherent limits on
whether causality can be determined. Among them are:

• Quantum Physics: In particular, Heisenberg’s uncer-
tainty principle

• Knowledge of the world might never be complete be-
cause we, as observers, are integral parts of what we
observe

• Gödel’s Theorem: Which showed in any logical for-
mulation of arithmetic that there would always be
statements whose validity was indeterminate. This
strongly suggests that there will always be inherently
unpredictable aspects of the future.

• Turing Halting Problem: Turning (as well as Church)
showed that any problem solvable by a step-by-step
procedure could be solved using a Turing machine.
However, there are many routines where you cannot as-
certain if the program will take a finite, or an infinite
number of steps. Thus, there is a curtain between what
can and cannot be known mathematically.

• Chaos Theory: Chaotic systems appear to be determi-
nistic; but are computationally irreducible. If nature is
chaotic at its core, it might be fully deterministic, yet
wholly unpredictable [Halpern, 2000, 139].
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• Space-Time: The malleability of Einstein’s space time
that has the effect that what is “now” and “later” is lo-
cal to a particular observer; another observer may have
contradictory views.

• Arithmetic Indeterminism: Arithmetic itself has ran-
dom aspects that introduce uncertainty as to whether
equations may be solvable. Chatin [1987, 1990] dis-
covered that Diophantine equations may or may not
have solutions, depending on the parameters chosen to
form them. Whether a parameter leads to a solvable
equation appears to be random. (Diophantine equations
represent well-defined problems, emblematic of simple
arithmetic procedures.)

Given determinism’s potential uncertainty and impre-
cision, we might throw up out hands in despair. It may
well be that a precise and complete knowledge of causal
events is uncertain. On the other hand, we have a com-
monsense belief that causal effects exist in the real
world. If we can develop models tolerant of imprecision,
it would be useful. Perhaps, the tools found in soft
computing may be useful.

3. Problems With Using Probability

There has been significant work in using various
forms of Bayesian networks for causal discovery. A
Bayesian network is a combination of a probability dis-
tribution and a structural model that is a directed acyclic
graph in which the nodes represent the variables (attrib-
utes) and the edges (arcs) represent probabilistic depend-
ence. A causal Bayesian network is a Bayesian network
where the predecessors of a node are interpreted as di-
rectly causing the variable associated with a node. How-
ever, Bayesian networks can be computationally expen-
sive. Inferring complete causal Bayesian networks is
essentially impossible in large scale data mining with
thousands of variables.

Restricted algorithms [Cooper, 1997] have been sug-
gested that might be useful for causal discovery in mar-
ket basket data. However, the restrictions on the data and
the assumptions made about the relationships are overly
limiting. The restrictions are:

• Discrete or continuous data must be reduced to Boolean
values

• There is no missing data

• Causal relationships are not cyclic, either directly or
indirectly (through another attribute)

4. Epilogue

Causality occupies a central position in human com-
monsense reasoning. In particular, it plays an essential
role in common sense human decision-making by pro-

viding a basis for choosing an action that is likely to
lead to a desired result. In our daily lives, we make the
commonsense observation that causality exists. Carry-
ing this commonsense observation further, the concern
is how to computationally recognize a causal
relationship.

Data mining holds the promise of extracting unsus-
pected information from very large databases. Methods
have been developed to build rules. In many ways, the
interest in rules is that they offer the promise (or illu-
sion) of causal, or at least, predictive relationships.
However, the most common form of data mining rules
(association) only calculate a joint occurrence frequency,
not a causal strength. A fundamental question is deter-
mining whether or not recognizing an association can
lead to recognizing a causal relationship.

An interesting question how to determine when cau-
sality can be said to be stronger or weaker. Either in the
case where the causal strength may be different in two
independent relationships; or, where in the case where
two items each have a causal relationship on the other.

Causality is a central concept in many branches of
science and philosophy. In a way, the term “causality”
is like “truth” -- a word with many meanings and facets.
Some of the definitions are extremely precise. Some of
them involve a style of reasoning best be supported by
fuzzy logic.

Defining and representing causal and potentially
causal relationships is necessary to applying algorithmic
methods. A graph consisting of a collection of simple
directed edges will most likely not offer a sufficiently
rich representation. Representations that embrace some
aspects of imprecision are necessary.

A deep question is when anything can be said to
cause anything else. And if it does, what is the nature of
the causality? There is a strong motivation to attempt
causality discouvery in association rules. The research
concern is how to best approach the recognition of cau-
sality or non-causality in association rules. Or, if there
is to recognize causality as long as association rules are
the result of secondary analysis?
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