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Abstract

How to formulate models that work well in explanation, prediction and
policy-making is a central problem in al fields of science. In this presentation, |
shall explain the strategy, our Structural Econometric Modeling, Times Series
Analysis (SEMTSA) approach that my colleagues and | have employed in our
efforts to produce a macroeconomic model that works well in point and turning
point forecasting, explanation and policy-making. Datarelating to 18
industrialized countries over the years, taken from the IMFIFS data base have
been employed in estimation and forecasting tests of our models using fixed
and time varying parameter models, Bayesian posterior odds, model combining
or averaging, shrinkage, and Bayesian method of moments procedures.
Building on this past work, in recent research economic theory and datafor 11
sectors of the U.S. economy have been employed to produce models for each
sector. The use of sector data and modelsto forecast individual sectors' output
growth rates and from them growth rates of total U.S. output will be compared
to use of aggregate data and models to forecast growth rates of total U.S.
output. Aswill beseen, IT PAYSTO DISAGGREGATE in thisinstance. Last,
a description of some steps underway to improve and complete our Marshallian
Macroeconomic Model of an economy will be described.

I. Introduction

When Ham Bozdogan invited me to present alecture at the U. of
Tennessee, C Warren Neel Conference on Statistical Data Mining and
Knowledge Discovery, he mentioned that he had attended my presentation of
our modeling and forecasting work at the June 2000 International Society for
Bayesian Analysis (ISBA, website: www. Bayesian.org) and Eurostat meeting
in Crete and that he thought it was a good example of data mining. This was
newsto mesince |l did not have a good definition of data mining and was
unsure about how it represented what we were doing in our work with alarge
data set relating to 18 industrialized countries over aperiod of about 50 years.
After attending this U. of Tennessee Conference, | believethat | have a better
understanding of datamining and believethat it isuseful to relateit to general
views of scientific methodology and some past work in statistics and
economics, which | shall doin Section I1. | provide abrief overview of
scientific methodology and its objectives and indicate where, in my opinion,
data mining fitsinto the overall process and what some of its unique features
are.
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Thenin Section I1, | shall describe what Ham called our past data
mining efforts with special emphasis on methodological tools that may be
useful in other data mining efforts. These include the Structural Econometric
Modeling, Time Series Analysis (SEMTSA) approach put forward by F.C.
Palm and myself, Zellner and Palm (1974,1975) and pursued further by many
over the years; see papers by leading workersin Zellner and Palm (2003). In
this approach, the value of keeping it sophisticatedly simple (KISS) is
emphasized for “obvious’ reasons...see e.g. Zellner, Kuezenkamp and McAleer
(2001) for further consideration of simplicity and complexity issues. In addition
to the overall SEMTSA approach, thereis abrief discussion of new resultsin
information processing, including a new derivation of the Bayesian learning
model, Bayes' Theorem and generalizations of it; see, Soofi (2000) and Zellner
(1997, 2002). One special learning approach isthe Bayesian method of
moments (BMOM) that permits researchersto derive post data moments and
post data densities for parameters and future observations without use of
sampling assumptions for the given data, likelihood functions and prior
densities. Since, as | learned at this Conference, there is often great uncertainty
regarding the forms of likelihood functions and prior densities in data mining,
an approach, such asthe BMOM approach, that permitsindividualsto perform
inverse inference without specifying the form of the likelihood and using a
prior density, will probably be useful. Exampleswill be provided to illustrate
general principles. For more on the BMOM and applications of it see, e.q.
Green and Strawderman (1996), Mittelhammer et al. (2000), van der Merwe et
al. (1998,2001), Zellner (1994,1997a, b, 2002) and Zellner and Tobias (2001).

In Section 1V, some detailsregarding the models and methods employed
in analyzing, modeling and forecasting data for 18 industrialized countries will
be described. Also, considerations regarding aggregation/disaggregation issues
will be briefly discussed along with an example involving alternative methods
for forecasting the median growth rate of 18 countries' real output growth rates,
that illustrates that in thisinstance, it paysto disaggregate; see Zellner and
Tobias (2000). Further, disaggregation by industrial sectors using Marshallian
models for each sector will be described and some results, taken from Zellner
and Chen (2001), of the use of sector models in forecasting aggregate outcomes
will be provided and compared to those derived from models implemented with
aggregate data. Last, in Section V considerations regarding the form of a
complete Marshallian Macroeconomic Model will be presented along with
some thoughts regarding future research will be presented.

I1. Brief Comments on Scientific Method and Data Mining

Asdiscussed in Jeffreys (1937,1998) and Zellner (1984,1996,1997), it is
the case that scientific work in all areas involves induction, deduction and
reduction. Induction involves (a) measurement and description and (b) use of
given models or subject matter generalizations to explain features of past data,
predict as yet unobserved data and to help solve private and public decision
problems. Asregardsreduction, in Zellner (1996, p. 5) it is pointed out that the
famous physicist C.S. Pierce commented that “reduction suggests that
something may be; that is, it involves studying facts and devising theories to
explain them. For Pierce and othersthe link of reduction with the unusual fact



isemphasized.” And of course, deduction, that is logical or mathematical

proof or disproof playsarole in induction and reduction but isinadequate
alone to serve the needs of scientists. As emphasized by Jeffreys (1937,1998),
scientists need to be able to make statements | ess extreme than “ proof,”
“disproof” and “1 don’t know.” They generally make statementssuch as “A
probably causes B” or “Theory | is probably better than Theory 11" or“ The
parameter’ s value probably lies between 0.40 and 0.50.” Fortunately, Bayesian
methods are available to quantify such statements, to update such probabilities
as more data become available and to provide predictions that can be checked
with additional data; for a survey of Bayesian analysis with many references,
some to downloadabl e, free software for performing Bayesian calculations, see
Berger (2000). That Bayesian methods permit updating of probabilities
representing degrees of confidence in modelsisavery important capability. In
this connection, note that causality has been defined as predictability according
to alaw or set of laws, that is a dependable, subject matter model or set of
models that have performed well in past work and thus have high probabilities
associated with them. See, e.g., Feigl (1953), Aigner and Zellner (1988), and
Zellner (1984), for further discussion of the concept of causality, empirical
tests of causality and its relation to applied data analysis and modeling.

Thereis no doubt but that data miners areinvolved in inductive,
deductive and reductive scientific work involving measurement, description,
modeling, explanation, prediction and decision-making. What appearsto be
rather unique about the current data mining area are the large samples of data
utilized and the powerful computers and algorithms that are available for
analyzing them. However, as has been recognized by many, there are the old
issues of data quality, appropriate measurement procedures and good statistical
descriptive measures that are obviously very important. Further, given a
tentative model for avery large data set, say a multivariate regression or time
series model, the use of appropriate estimation, testing, model evaluation and
other inference proceduresis critical. For example, use of inappropriate testing
and model evaluation methods, e.g. the 5% level of significance in Neyman-
Pearson test procedures, can lead to costly errors when sample sizes are very
large; see, e.g. Zellner (1996, p 302, ff.) and references cited therein for further
discussion of thisimportant problem. Further, the accept-reject framework
often used is many times not as good as the use of techniquesthat permit a set
of modelsto be identified and to use them in model averaging to obtain
estimates and predictions. Further, in making decisions or producing forecasts,
it has been emphasized that model uncertainty aswell as other types of
uncertainty should taken into account, as for example in formal model
combining and averaging procedures (See Zellner (1997, Part V), for
procedures for model-combining and applications to forecasting problems that
appear readily applicable to modeling and forecasting in some data mining
problems.)

Asregards reduction, that is studying data and devising modelsto explain
them, there isthe issue of simplicity versus complexity. Some advise
researchersto start with a sophisticatedly simple model and complicate it if
necessary. Note that a sophisticatedly simple modeling approach involves



taking account of what is already known about a problem in order to avoid
making stupid errors. Inindustry, there isthe saying, “Keep it simple stupid”
(KISS). Since some simple models are stupid, | changed the interpretation of
KISSto “Keep it sophisticatedly simple,” which isin line with Einstein’s
advice to make models as simple as possible, but no simpler. On the other hand
there are those who advocate starting with alarge, complicated,
“encompassing” model and testing downward to discover a useful model. Of
course, it isimpossible to prove deductively whether it is better to KISS or to
use an “encompassing” approach. However, it isrelevant to note that there are
many, many complicated encompassing models and if one chooses the wrong
one, all that follows will be unsatisfactory. While there are many successful
sophisticatedly simple modelsin the sciences, e.g. s= 1/2gt?, F =ma, PV=RT,

E=mc?, etc., it is difficult to find one successful large, complicated model in
any area of science. For additional consideration of these simplicity/complexity
issues and some measures of the complexity of models, see Zellner,
Kuezenkamp and McAleer (2001).

Since, as mentioned above, recognition of unusual factsis many times
very important in leading to new insights and models, it occurred to me that
there must be ways of producing unusual or surprising facts. After some
thought, | developed alist of eight such procedures, see Zellner (1984, pp. 9-
10), many of them quite obvious, namely, study unusual groups, e.g. the very
poor or the very rich, unusual historical periods, e.g. hyperinflations, or great
depressions, produce extreme data that are inconsistent with current models’
predictions, etc. Also, with large data sets, there is atendency to throw away
“outlying” observations rather than try to explain why they are“outlying.” As
iswell known, “outlying “ points may be evidence that assumed functional
forms for relations, e.g., linear forms, and/or assumed distributions for error
terms areincorrect. Thus “outlying” or “unusual” data points deserve much
attention and explanation, if possible. For brevity, | shall not review analyses
that have been adversely affected by deleting rather than explaining, outlying
data points.

When the available data, say time series data, include many, many
variables, asin datarelating to the world' s numerous economies, and include
many unusual features, e.g. similar, but not exactly the same upward and
downward movements in growth rates of output and other variables, etc., there
is the problem of how to formulate explanatory models that explain past
variation and are helpful in predicting new data and in policy-making. Many
researchers and governmental unitsworldwide have approached this problem
by building complicated, multi-equation, linear and non-linear, stochastic
models, so-called structural econometric models. Unfortunately, not many of
these models, if any, have performed satisfactorily in explanation and
prediction. Others, have resorted to large statistical models, usually vector
autoregressive (VAR) modelsin attempts to get good forecasting models.
These attempts, too, have not been successful in the sense that their point and
turning point forecasts have not been very good. Faced with these problems
and approaches, years ago, Franz Palm and | put forward a combined structural



econometric modeling, time series analysis (SEMTSA) approach that
attempted to integrate the best features of earlier approaches. See Zellner and
Palm (1974, 1975, 2003) and Zellner (1984, 1997) for descriptions of the
approach and applications of it to avariety of problems. The approach involves
starting simply with models for individual variables, determining forms for
them that reflect past subject matter information, fit the data reasonable well
and forecast satisfactorily. Then these tested components are combined to form
amultivariate model and its performance in explaining variation in past data
and in forecasting future datais studied and continually improved. Throughout
the process, subject matter theory is used in attemptsto “rationalize” or
“explain” why the empirical models work in practice and in an effort to
produce a“structural” or “causal” model rather than just an empirical,
statistical forecasting model that does not explain outcomes or possible causal
relations very well. See below for further discussion of the SEMTSA
approach’s properties and some experiencesin applying it in our effortsto
produce a structural macroeconomic model that works well in explaining past
data, predicting new data and in policy -making.

I11. The Structural Econometric Modeling, Time Series Analysis (SEMTSA)
Approach

In the mid-twentieth century, impressive theoretical and empirical
developments occurred in the statistical time series analysis areain the work of
Quenouille (1957), Box and Jenkins (1970), and others. The univariate and
multivariate autoregressive, moving average (ARMA) models employed in this
statistical time series analysis approach, seemed very different from the causal,
dynamic, structural econometric models formulated and estimated by the Nobel
Prize winners, Tinbergen, Klein, and Modigliani and many others and used by
many governmental units world-wide. Since many were confused about the
relationship of these two classes of models, in Zellner and Palm (1974), we
clarified the relationship and pointed to some unusual features of multivariate
statistical time series and structural econometric models. Thisled to a strategy
of model-building that we called the SEM TSA approach and first applied in a
paper, Zellner and Palm (1975) to evaluate a monetary model of the U.S.
economy and utilized in other works included in Zellner and Palm (2003).

3.1 The SEMTSA Approach

Theinitial problems considered in the SEMTSA approach were (1) the
implications of the basic multiple time series or multivariate ARMA model put
forward by Quenouille (1957) and others for properties of processes for
individual variables and (2) its relationship to dynamic structural econometric
models. In this connection, Quenouille’s and others' multiple time series model,
that includes a vector autoregression as a special case, for an mx1 vector of
variables at timet, z(t) is:

() HLzt)=FLet) t=12,..., T

where H(L)=1+H,L+..+H L" and



F(L) =F,+ RL+...+ F,L" are matrix lag operators with L the lag operator
suchthat, L' z(t) =zt - r),theH’sand F’ sgiven matrices and e(t) is a zero
mean white noise error vector with covariance matrix I.

Isthe model in (1) agood one for modeling and forecasting? As Palm and
| suggested, arelevant issueis what are the implied processes for individual
variablesin the vector z(t). If H(L) isinvertible, it is straightforward to derive
the marginal processes for individual elements of z(t). In general these turn out
to be very high order autoregressive-moving average processes, not at al like
the models for individual variablesidentified by many time series workers.
Thus the general model in (1) has implications that are not in agreement with
empirical findingsindicating aneed for modifications of it, say imposing
restrictions, or introducing non -linearities, etc.

As mentioned above, the relation of (1) to dynamic linear structural
econometric models (SEMs), discussed in most past and current econometrics
textbooks, was unclear to many. Here we pointed out that if the vector of
variables, z(t) is partitioned into a sub vector of “endogenous’ variables, y(t)
and a sub vector of “exogenous’ variables, x(t), that is z(t)¢=[Y) ¢X ) ¥, the
relation would be clear. Note that endogenous variables are variables whose
variation isto be explained by the model whereas exogenous variables, e.g.
weather variables, etc. are input variables to the model. The assumption that
the sub vector x(t) is avector of exogenous variables leads to a sub matrix of
H(L) being identically zero and F(L) being block diagonal, very important
restrictions on the general model in (1). When these restrictions are imposed,
the system becomes:

(28) H, (DY) +H,(DX1)=F,(L)g(®)
(20) H, (D X1) = Fu(L)ey(t)

where H,,(L),H,,(L) and H,,(L) aresub matrices of H(L) and the
assumption that x(t) is exogenous implies that the sub-matrix H,, (L)° 0.
Also, F,(L) and F,(L) aresub matrices of F(L) with the assumption that
x(t) is exogenous implying that the off diagonal matrices F,(L) ® 0 and
F,(L)° 0.

Equation system (2a) isin the form of alinear dynamic SEM while (2b)
isthe system assumed to generate the exogenous or input variables. Thusthere
is compatibility between the multiple time series model in (1) and the linear
dynamic SEM. Further, as emphasized in our SEMTSA approach, it is
important to check the implications of (2a) for the forms of the processes for
individual variablesin y(t). Given that the matrix lag operator H, (L) is

invertible, that is H,, “ = H,,"/|H,;| where the dependence on L has been

suppressed, H,,* isthe adjoint matrix and |H11| isthe determinant of H,,,a



polynomia in L, itisdirectto solvefor thetransfer function system
associated with (2a), namely:

(3) [Hu| v =- Hi'H X0 + Hi'F 800

Notethat since the same lag operator |H11| hitsall the elements of y(t) and if

thereis no canceling of common roots, thisimplies that the autoregressive part
of the transfer functions for the elements of y(t) should be IDENTICAL, a
restriction that can be and has been tested in applied work. Further, restrictions
on the coefficientsin (2a) imply testable restrictions on the parameters of the
transfer functionsin (3) that can be and have been tested. Last, empirical
procedures for obtaining or identifying forms of transfer functionsfrom
information in data are available in the literature and have been applied to
determine whether the forms of the transfer function equations derived
analytically in (3) are the same as those determined or identified empirically.
See Zellner and Palm (1975, 2003) for examples in which these procedures are
applied to avariety of problems and reveal ed that the information in the data
was in conflict with the implications of modelsin many cases.

In our initial empirical work to formulate good models to explain and
predict macroeconomic variables, in Garcia-Ferrer et al. (1987), we decided to
start with analysis of models for a key macroeconomic variable, the rate of
growth of real output, as measured by real GDP, of an economy. After
determining that simple time series models, e.g. autoregressive models did not
work well in forecasting and with the form of (3) in mind, we formulated the
following model for the output growth rate of economy i in yeart, denoted by
the scalar y (t),

4 yi(t) = boi +hyy -1+ szi(t' 2)+ baYi(t' 3+

U3 L baM (- 1+ bySR(t- 1)+ bySR(t- 2) + b,WSR(t- 1)+ (1)
or

(4b) y,(t) = % (1) ®, +e (1)

t=1,2,....Tandi=1.2,..., N

whereM = growth rate of real money, SR = growth rate of real stock prices
and WSR = the median of the countries’ growth rates of real stock prices. The
form of (4) was rationalized as follows: (a) The AR(3) assumption allowed for
the possibility of having complex roots |leading to oscillatory movements (see
Hong (1989) for supporting empirical evidence). (b) Burns and Mitchell (1946)
had established that money and stock prices lead in the business cycle using
pre World War Il data going back to the 19" century for France, Germany,
U.K., and U.S. (c) The variable WSR was included to model common shocks
hitting all economies. The model in (4) was hamed an autoregressive, leading
indicator (ARLI) model and implemented with datafor 9 and then 18
industrialized countriesin point and turning point forecasting experiments with
encouraging results.
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Later (4) was modified to include a current measure of world output,
w(t), the median of 18 countries’ growth rates in year t, and an ARLI model for
w(t) wasintroduced, namely,

(53) (1) =g,w(t) +x(t)db, +e (t)

and

- wt) =a, +ta,w(t- D+ amw(t- 2 +amw(t- 3)+
(50) a,MM (t- )+a,MR(t- 1) +a,MSR(t- 2) +u(t)

where MM and M SR are the median growth rates of real money and real stock
prices, respectively, and uisan error term We called this two equation model
the ARLI/WI model and showed in Zellner and Hong (1989) that it performed
somewhat better in forecasting experiments with data for 18 countries than the
one equation ARLI model, shown abovein (4), using various Stein-like
shrinkage estimation and forecasting techniques. Also, the RMSE’s of forecast
compared favorably with those associated with large, structural OECD
forecasting models. In addition, variants of the ARLI and ARLI/WI models
performed well in forecasting turning pointsin countries growth rates with
70% or more of 211 turning points correctly forecasted for 18 countries with
the “downturn” and “no downturn” forecasts being somewhat better than the
“upturn” and “no upturn” forecasts; see Zellner and Min (1999) forthese and
additional results with referencesto earlier analyses. And very important, the
ARLI/WI model was shown to be compatible with various macroeconomic
theoretical models, e.g., aHicksian ISLM model in Hong (1989), a
generalized real business cycle modelsin Min (1992) and an aggregate supply
and demand model in Zellner (1999) . This is afundamental aspect of the
SEMTSA approach, namely afruitful interaction between data analysis and
subject matter theoretical models. Some additional variants of these models
will be discussed in Sect. 1V.

3.2 Statistical Inference Procedures

With respect to inference procedures for the ARLI and ARLI/WI models,
mentioned above, various procedures were employed including least squares
(LS), maximum likelihood (ML), traditional Bayesian(TB) and the recently
developed Bayesian method of moments (BMOM). For these time series
models, while LS and ML procedures readily yielded point estimates, they did
not provide, among other things, finite sample standard errors, confidence and
predictiveintervals, probabilities relating to various models' forms and
probability statements regarding possible downturns or upturnsin countries'
growth rates. In contrast, TB procedures readily provided finite sample results
including intervals for parameters and future observations, shrinkage estimates
and forecasts, probabilities associated with alternative model forms, etc. given
the traditional inputs to TB analyses, namely, a prior density, alikelihood
function and Bayes' theorem. Asiswell known, Bayes' theorem yieldsthe
important general result that a posterior density for the parametersis
proportional to the prior density for the parameters times the likelihood
function, with the factor of proportionality being a normalizing constant that
can be evaluated analytically or numerically.
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Thus given the inputs, aprior density and alikelihood function, it is direct
to obtain a posterior density for the parameters and also a predictive density for
future observations. In an effort to relax the need for such inputs, the Bayesian
method of moments ( BMOM ) was introduced in Zellner (1994); see also
Zellner (1997) and the references cited in Section | for further results and
applications. The BMOM approach permits investigators to obtain post data
moments and densities for the parameters and future observations without using
prior densities, likelihood functions and Bayes' theorem and may be useful to
data minersin performing statistical inference.

Toillustrate the BMOM approach, consider timeto failure given
observations that are assumed to satisfy, y(i) =q +u(i), i= 1,2,...,nwhere q is
a parameter of interest with an unknown value. On summing both sides of this
relation and dividing by n, we have the given mean of the observations
Yy =@ +U and on taking a subjective expectation of both sides, y = Fq + ET,
whereit isto be recognized that ¥ has agiven observed value, e.g. 3.2,
whereas q and U have unobserved values that are considered subjectively
random. Now if we assume that there are no outliers or left out variables and
the form of the above relationship is appropriate, we can assume that the
subjective mean of Uiszero, thatis, EU=0 thatimplies B =y . Thuswe
have a post datamean for g without introducing a prior density and a
likelihood function. Also, asis well known, the mean is an optimal estimate
relative to a quadratic loss function. Further, the maximum entropy or most
spread out proper density for q with given mean =, iseasily derived and

well known to be the exponential density, that is, g(q |D) =V y)exp(-q/V)
with 0<q <¥ and where D denotes the given observations and background
information. This post data density can be employed to make inverse
probability statements regarding possible valuesof g, e.g. Pr{1.2<q < 2.3| D},

the objective of Bayes (1763) original paper and thus the name Bayesian
method of moments. Thisis one example of the BMOM.

To apply the BMOM to equation (4) above, express the equation in
standard regression form, y=Xb +e wherey isavector of given
observations, X amatrix of observations on theinput variables, b a
coefficient vector and e avector of realized error terms. The elements of b
and of e are treated as parameters with unknown values, aspreviously donein

the TB literature in Chaloner and Brant (1988) and Zellner (1975). Assuming
that X isof full column rank, we can write:

bo (X'X)*X¢=Eb+(XX)'XEe, where E representsthe subjective
expectation operator. Assuming that the functional form of therelation is

satisfactory, i.e. no left out variables, and no outliers, no errors in the variables,
etc., we can make AssumptionI:  X'Ee=0 which implies from the relation

abovethat Eb =b = (X&) !X ¢, that isthe post datameanfor b istheleast
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sguares estimate. Further, we have y= XEb + Ee and thus Assumption |

impliesthat y isthe sum of two orthogonal vectors, XEb and Ee. In
addition,Ee=y- XEb =&, theleast squares residual vector. On making a

further assumption regarding the post data covariance matrix of the realized
error vector, see, e.g. Zellner (1997, p. 291ff) and Zellner and Tobias (2001),
the second moment matrix of b isshown to be:

E(b - Eb)(b- Eb)¢= (X&) 's> with s>’=&& v and v=T - k, the“degrees
of freedont parameter, where T isthe number of observations and k isthe
number of elementsof b . Notethat all these post data moments have been
derived without using alikelihood function and a prior density. However, more

prior information can be introduced via use of a conceptual sample and in other
ways, as shown in Zellner et al (1999), and other papers cited above.

Withthemo mentsof b asgiven in the previous paragraph, the least
informative, maxent density for b isamultivariate normal density with mean
b, the least squares estimate of b , and covariance matrix (X&) 's? . This

density can be employed to make probability statements regarding possible
values of the elementsof b and functions of them quite readily. Also, for

future, as yet unobserved values of y, assumed to satisfy, y, = X ;b +e,, given
X , if we make assumptions regarding the moments of e; , the moments of

y; canbe easily derived. For example, if it isassumed that Ee, =0, then

Ey; = X;Eb =X,b, theleast squares forecast vector. With afurther
assumption regarding the second moment of e; the second moments of the
elements of y, are available and these moments can be used as side conditions
in deriving a proper maxent predictive density for y, . For some computed

examples involving these and other assumptions with applications to
forecasting turning points, see Zellner et al (1999).

In addition to providing BM OM post data and predictive moments and
densities, information theory has been utilized in Zellner (1988, 1997, 2002) to
produce learning models, including Bayes’ Theorem, in avery direct approach.
Namely information measures associated with inputsand outputsto an
information processing problem are considered. In the TB approach there are
two inputs, aprior and a likelihood function, and two outputs, a posterior
density for the parameters, and a marginal density for the observations. On
forming the criterion functional, information out minus information in and
minimizing it with respect to the form of the output density for the parameters,
subject to its being aproper density, the solution isto take the posterior
density for the parameters equal the prior density timesthe likelihood function
divided by the marginal density of the observations, that isthe resultis Bayes’
theorem and when thisis done, the information in = the information out and
thus thisinformation processing rule is 100% efficient. See comments on these
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results in Soofi (2000) and by Jaynes, Hill, Kullback and Bernardo in Zellner
(1997).

As pointed out in Zellner (1997,2002), one can input just alikelihood
function, and no prior, asR. A. Fisher wanted to do in hisfiducial approach,
and solve for an optimal form for the output density for the parametersthat is
proportional to the likelihood function. Or one can assign given weights to the
input prior and sample information and solve for an optimal form of the output
density for the parameters. Also, when the input information isjust intheform
of given moments for parameters, the optimal form for the output density is
the BMOM solution. Dynamic problems in which the output of one period is
the input to the next period, along with additional sample information, have
been formu lated and solved using dynamic programming techniques. Again
when the traditional inputs are employed, a prior and alikelihood function, itis
optimal to update densities using Bayes' theorem. Having various information
processing or learning models “on the shelf” to be used when appropriateis
important just asis the case with various static, dynamic and other modelsin
engineering, physics, economics, business and other fields

Having presented some discussion of general methods, attention in the
next section will be focused on these and other methods used in our empirical,
data mining work.

IV. Methods Employed in Data Analysis, Modeling and Forecasting

I'n our work since the mid 1980’ s, we have used data from the
International Monetary Fund’s International Financial Statisticsdatabaseat the
U. of Chicago, avery large database with data on many variables for over 100
countries’ economies. Since measures of output may contain systematic biases,
etc., we thought it wise to log variables and take their first differencesto help
get rid of proportional measurement biases. Further, these growth rate
measures are of great interest. However, we were not too sanguine about
inducing covariance stationarity by first differencing given the many different
kinds of shocks hitting economies, e.g. wars, strikes, financial crises, droughts,
policy blunders, etc.

Very important in our work and in presentations was and is the graphical
presentation of our data using boxplot techniques to display general properties
of the economic fluctuations for the 18 countries in our sample and for 11
sectors of the U.S. economy in later work. As we observed, there are somewhat
regular fluctuations present in the three variables with the money and stock
price variables showing atendency to lead, as recognized earlier by Burns and
Mitchell (1946) in their monumental “data mining” study, Measuring Business
Cyclesin which they used data for France, England, Germany and the U.S.
going back to the 19" century to characterize properties of economic
fluctuations in many variables.

From our plots of the data, we noted that there appear to be some outlying
points. Asyet, we have not formally tested for outliers nor utilized procedures
for allowing for outliersin estimation and forecasting. Rather than face
possible charges of “rigging the data” or “massaging the data’ by eliminating
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outliers, etc., we decided to use all the data that relate to periodsin which
unusual events occurred in many countries, e.g. the Korean, Vietnamese and
Gulf wars, energy crises of the 1970s, institution of wage and price controls,
some abrupt changesin monetary and fiscal policies, etc. No dummy variables
or other devices were used to deal with these unusual historical events. It was
assumed and hoped that our lagged stock market and monetary variables would
reflect the impacts of such events on economies.

With the data described, it was thought important to carry along some
“benchmark” modelsin forecasting. In earlier studies, random walk models
and simple time series models, e.g. third order autoregressive models, AR(3)
models, or BoxJenkins ARIMA models had been found to forecast better than
some large scale models; seeg, e.g. the discussion of such studies by Christ,
Cooper, Nelson, Plosser and othersin Zellner (1984, 1997a). However, we
generally found that such benchmark models, aswell as other models, tended
to make large errorsin the vicinity of turning pointsin economic activity. Thus
we thought it very important not just to study point forecasts but also to
develop methods for making good turning point forecasts.

With respect to point forecasting, In Zellner and Hong (1989), we
estimated the fixed parameter ARL| and ARLI/WI models, discussed abovein
connection with (4)-(5), using data, 1954-1973, for first 9 and then 18
industrialized countries and made one-year ahead point forecasts with
parameter estimates updated year by year for the period 1974-1984. In this
work, our ARLI and ARLI/WI models’ performance was much better than that
of various benchmark models and competitive in terms of root mean squared
errors (RM SEs) to that of some large-scale OECD models. Also, the ARLI/WI
model performed better than the ARLI model. Similar results were found to
hold in later studies involving extended forecast periods, e.g. 1974-1997. See,
e.g., papersin Sect. 1V of Zellner (1997) and Zellner and Palm (2003) for some
of theseresults.

The methodological tools utilized in this forecasting work included the
following:

(1) Finite sample posterior densities for parameters of relations were employed
in estimation of parameters, analyses of the realized error terms and study of
the properties of dynamic relations, such as (4)-(5) above. For example, in
Hong (1989) using datafor each of 18 countries, draws were made from the
trivariate Student t marginal posterior density of the autoregressive parameters
of the ARLI model in (4) and for each draw, the three roots of the process
were computed. It was found that in alarge fraction of the draws, about .85,
that there were two complex roots and one real root associated with the model.
Also, the computed posterior densities for the periods of the cycle associated
with the complex roots were found to be centered at about 3to 5 years and
those for the amplitudes were centered at values less than one for both the real
and complex roots. Note that in thiswork, there was no need to rely on
asymptotic approximate results, usually employed in non-Bayesian work with
time series models.
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(2) Means of predictive densities for future observations were employed as
point forecasts that are optimal relative to a quadratic predictive loss function.
With useof diffuse priors and usual likelihood functions or by use of BMOM
predictive means, these forecasts were identical to least squares forecasts when
fixed parameter models were employed but not in cases involving use of
random parameter models and shrinkage assumptions. Recall that a usual

predictive density for afuture vector of observations, y; isgiven by
h(y, |D) =00(y; [9)9(@|D)dq , where D denotes the given data

and g |D) is the posterior density for the vector of parameters q .

(3) Predictive densities were employed to compute optimal turning point
forecasts. For example, given adefinition of aturning point, e.g. given two
previous growth rates below the third, that is y(T-2), y(T-1)<y(T), where T
denotes the current period, if y(T+1) <y(T), thisisdefined to be a downturn
(DT), whileif y(T+1) isnot below y(T), this outcome is defined to be no
downturn (NDT). Given such a sequence of outcomes up to period T and a
predictive density for y(T+1), it isdirect to compute the probability that
y(T+1) islessthan y(T), that isthe probability of adownturn, P, and that of no
downturn, 1-P. Then on considering atwo by two loss structure associated the
acts, forecast DT and forecast NDT and the possible outcomes, namely DT or
NDT, it isdirect to derive the forecast that minimizes expected loss. For
example, if the 2x2 loss structure is symmetric, it is optimal for forecast DT
when P>1/2 and NDT when P<1/2. Similar analysis appliesto forecasting
upturns and no upturns. Using such simple turning point forecasting procedures
with anumber of alternative models, about 70 per cent or more of 211 turning
points for 18 countries were forecasted correctly. Also, such turning point
forecasts were better than those provided by a number of benchmark
procedures, e.g. coin tossing, or systematic optimistic or systematic pessimistic
forecasts, etc. Such fine performance in turning point forecasting was a
pleasant surprise! See Zellner and Min (1999) for results using many variants
of the modelsin (4) and (5).

(4) Posterior odds were employed in variable selection, model comparison and
model combining. As regards model selection, several researchers using our
data and their model identification procedures determined forms for our ARLI
model, given in (4) above, that differed from ours in terms of lag structures,
etc. One group reported mo dels that forecasted much, much better than our
models, so much better that | suspected something must wrong. Indeed it
turned out that they had used all the datato fit their model and then used a
portion of the sample for forecasting experiments. When this error was
corrected, the improved performance of their model disappeared. On the other
hand several others using their model identification procedures did produce
models that are competitive with ours. This prompted our use of posterior odds
to compare various variants of our model. We employed 8 input variables, the
7 shown in connection with (4) and an eighth, the money variable lagged two
periods for atotal of 8 possible input variables and thus 28 = 256 possible
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linear models that included our model and those of our two “ competitors.”
Fortunately, our model compared favorably with the 255 alternative models,
including those of our competitors that also performed reasonably well. For
methods and specific results, see Zellner and Min (1993) and Zellner (1997).
These methods are applicable to many other model selection problems and
involve acorrection for the possibility that on considering so many different
models, one may have fit the datawell just by chance, a“model selection”
effect that has been discussed by Jeffreys (1998, p. 253 and p. 278) and in our

paper.

Also, posterior odds have been very useful in comparing fixed parameter
and time varying parameter models, showing a slight preference for time
varying parameters. As regards time varying parameters, they have been
widely employed in engineering state space modeling. In our context, there are
many reasons why parameters, e.g. thosein (4) above, might be time varying,
including aggregation effects, changes in technology and/or tastes and
preferences, effects of changesin economic policies, i.e. Lucas effects, etc. Our
earliest work involved use of the assumption that the coefficient vector in (4)
followed avector randomwalk, b, (t)=b, (- ) +v (t) with v,(t) awhite
noise error vector and of Bayesian recursive methods to update parameter and
predictive densities. Later, other variants were employed, namely
(i) by(t)=q +u(t),

(i) b, t)=q(t) +u(t) and q(t) =q(t- D +h(t),etc.

Here we are introducing dynamic Stein-like assumptions that the

individual country coefficient vectors are distributed about a mean vector that
may be aconstant, asin (i) or may be generated by a random vector random
walk process, asin (ii). These and other models both for our ARLI and
ARLI/WI models were implemented with data and found to perform better
than modelsthat did not incorporate Stein-like shrinkage effects, both for fixed
and time varying parameter versions. Posterior odds for such time varying
parameter models versus fixed parameter models were derived and computed.
They indicated some support for the use of time varying parameters and much
support for the use of shrinkage assumptions. For example, using shrinkage,
the median RM SE of forecast for the 18 countries annual forecasts, 1974-87,
was 1.74 percentage pointswhile without shrinkage it was 2.37 percentage
points. For more on these empirical results, derivations of posterior odds and
use of them in combining models, see Min and Zellner (1993) and Zellner
(1997). In this work involving combining models and their forecasts,
comparisons were made with results of non-Bayesian combining methods of
Bates, Granger and others. In these cal cul ations, the Bayesian combining
techniques performed slightly better than non-Bayesian combining techniques
but did not result in much improvement relative to uncombined forecasts.

(5) Asmentioned earlier, our empirical forecasting models were shown to be
compatible with certain theoretical macroeconomic models. While this
compatibility with economic theoretical models was satisfying, there was still
the need to improve the explanatory and forecasting performance of our
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models and to include additional variablesto be forecast. How thiswasto be
done and what was done is the subject of the next section.

IV. Disaggregation and the Marshallian Macroeconomic Model

In connection with the need to improve and extend our models, it was
thought advisable to disaggregate the output variable since with disaggregated
data there would be more observations and information that might improve
forecasts and provide better explanations of the variation in total output.
Further, in Zellner and Tobias (2000) the results of an experiment were
published to indicate that disaggregation can be effective in improving
forecasting precision. In particular, (a) equation (5a), was employed to forecast
future values of w(t), median growth rate of 18 countries. These results were
compared to those provided by two other procedures, namely, (b) use of (5a)
and (5b) to forecast individual countries’ growth rates and use of the median of
the 18 forecasts as a forecast and (c) use of just equation (4) to forecast
individual countries’ growth rates and use of the median of these forecastsas a
forecast of the median growth rate. These calculations indicated that method
(b) that involves disaggregation was much better than methods (a) and (c)
indicating that some forms of disaggregation can lead to improved forecasts.
These empirical results suggested that improved forecasts of future, aggregate
output of acountry might be obtained by summing forecasts of its
components, as shown theoretically in papers by de Albaand Zellner (1991) ,
Litkepohl (1986) and others. The main issue was how to disaggregate total
output in a meaningful, fruitful and effective manner.

One morning while shaving, it occurred to me that it might be worthwhile
to disaggregate by industrial sector, e.g. agriculture, mining, construction, retail
trade, etc. using traditional Marshallian demand, supply and firm entry/exit
relations for each sector. While demand and supply relations had appeared in
many earlier macroeconomic models, few, if any, included entry and exit
relations. For example, in real business cycle models, there is the representative
firm and one wonders what would happen should this firm shut down.

Fortunately, in earlier work, Veloce and Zellner (1984), we had derived
and implemented a model of the Canadian furniture industry to show the
importance of taking account of entry and exit of firms and the number of firms
in operation in explaining variations in furniture supply. When the variable,
number of firmsin operation was omitted from the supply equation, asin many
previous studies, very unsatisfactory results were obtained whereas with the
inclusion of this variable, more sensible estimation results were obtained. In
Zellner (2001), aslightly revised version of the original Marshallian sector
model was derived that involved competitive conditionswith N profit
maximizing firms, each with a Cobb-Douglas production function including
neutral and factor augmenting technical change. Assuming that firms maximize
profits, the firm's supply function was derived and multiplied by N(t), the
number of firmsin operation atimet and the real price of output, p(t) to obtain
asupply relation for industry real sales, S(t) = p(t)N(t)q(t) which when
differentiated with respect to time, led to the following dynamic supply
relation:
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(6) (I/S) dS/dt=(UN)dN/dt+ h(1/p)dp/dt+a  SUPPLY

where h isaparameter and a denotes alinear function of exogenous variables

shifting supply, e.g. rates of growth of the real wage rate, the real price of
capital etc.

Further, with a“log-log” demand function for the sector’ s output, Q,
multiplied by the real price of output, real sales demanded is S=pQand log S
isalinear function of the logs of real price, real income, real money balances
and other variables. On differentiating log S with respect to t, the following
relation is obtained:

(7) (1/S)dS/dt = v(1/p)dp/dt + b DEMAND

where v is aparameter and b = alinear function of the rates of change of
variables shifting the demand function, e.g. real income, real money, etc.

Asregardsentry and exit of firms, we assume:
(8) (/N)dN/dt=c(S-F) ENTRY-EXIT

where ¢ and F are positive parameters, the latter associated with a cost of entry.
Also, in this model, Sis proportional to real industry profits.

Thus we have three equations for the three variables, p(t) price, S(t) real
sales and N(t) number of firmsin operation. On substituting from (8) in (6) and
then eliminating the variable (1/p)dp/dt from the remaining two equations, the
final, implied equation for S(t) is:

(9) (1/S)dS/dt=r — SIF +g

wherer isaparameter and g isalinear function of the rates of change of the
input variables shifting the supply and demand relations, e.g. the real wage
rate, the real price of capital services, real income, real money balances, etc.
Notetoo that for g= constant or g = 0, (9) isin the form of the logistic
differential equation with solution the logistic function that has been often used
to model many industries’ output. Showing that such empirical logistic
functions are compatible with atraditional Marshallian model of a competitive
industry is indeed satisfying. See Zellner (2001) for more information
regarding the derivation of this model.

With the above resultsavailable, in Zellner and Chen (2001), discrete
versions of (9) were formulated and fitted using datafor 11 sectors of the U.S.
economy. Before turning to particular models, note that it iswell known that a
discrete version of the homogenous part of (9) isin the form of a chaotic model
that can have quite unusual outputs; see, e.g. Kahn (1990, Ch. 16) and Koop,
Peaaran and Potter (1996) for plots of the outputs of such chaotic models. This
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rai ses the question as to whether the world is better modeled using (1) a
model using continuous time, (2) amodel based on discrete time or (3) amixed
continuous-discrete time model , as for example used in modeling certain
biological populations as mentioned in Zellner (2002) with reference to
Cunningham (1958). While it would be interesting in future work to entertain a
mixed model and to compute posterior odds on it versus a discrete time model,
in recent work, Zellner and Chen (2001), we started with discrete time models,
one of whichis

(1- L)log St =a, +a18t_ l+a2 . 2+a3$t_3+b1(1- L)Ioth

+b2(1- L)log Mt—l + b3(1- L)Iogwt + b4((1- L)log SRt 1Y
where S denotes real sector sales, Y real income, M, real money, w real wage
rate, SR real stock priceindex and u an error term.

It is seen that the rate of change and levels of S enter the equation, a so-
called “ cointegration effect” that follows from the economic theoretical model
presented above. The lagsin the S variable were introduced to represent
possible lagsin the entry equation and in the demand equations. With
parameters allowed to vary over sectors, therelation in (10) wasfitted to 11
sectors’ datafor the U.S. economy, agriculture, mining, construction, etc.
using data, from the early 1950s to 1979 to fit the models and then the relations
were employed to forecast one year ahead with estimates updated year by year,
1980to 1997. With 11 sector forecasts available each year, they were used to
produce forecasts of the rate of change of aggregate real output (GDP) year by
year. Such forecasts were compared to forecasts obtained from aggregate
annual datausing (i) an AR(3) model, (ii) an ARLI model and (iii) an
aggregate one sector Marshallian model in the form of (10) The benchmark
AR(3) model missed all the turning points and yielded a mean absol ute error
(MAE) of forecast = 1.71 percentage points and root mean squared error
(RMSE) = 2.32 percentage points. The aggregate Marshallian model’s MAE =
1.48 and RM SE = 1.72 percentage points are much lower than those
associated with the AR(3) and ARLI models imp lemented with aggregate data.

When atime series AR(3) model was implemented using least squares
methods for each sector and forecasts were aggregated to form forecasts of the
rates of growth of aggregate real GDP, there was not much improvement,
namely aMAE = 1.65and RM SE = 2.26 percentage points. In contrast, the
ARLI model and the Marshallian equation in (10), implemented with the
disaggregated sector data and using least squares estimation and forecasting
methods produced much better annual forecasts of rates of growth of aggregate
GDP with forecast MAE = 1.25 and RM SE = 1.47 percentage points for the
Marshallian model in (10) and MAE =1.32 and RM SE = 1.62 percentage
points for the ARLI model. Thusthis set of experimentsindicatesthat I T
PAY S TO DISAGREGATE for two of the three models considered above.

In other experiments we employed various estimation and forecasting
methods that yielded some improved forecasts relative to those provided by
least squares. For example, using a seemingly unrelated regression approach
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for joint estimation of the 11 sector relationsin the form of (10), taking
account of differing error term variances and their correlations across
equations, and one year ahead forecasting with the 11 sectors’ data, the
aggregate growth rate forecasts had MAE = 1.17 and RM SE = 1.40 percentage
points. Also,, many other estimation and forecasting techniques employed
yielded MAEsranging from1.2 to 1.4and RMSEsranging from 1.4t0 1.6
percentage points thus indicating that it was probably the added information
provided by disaggregation that produced improved forecasting performance.
See Zellner and Chen (2001) for detailed presentation of the data and
forecasting results. Also, it should be noted that forecasts for the highly
variable agricultural, mining , construction and durable goodsindustrial sectors
were not very accurate and need to be improved, e.g. by introduction of
weather variables for the agricultural sector, etc. With such improvements,
there will be improvements not only in sector forecastsbut also probably in
aggregate GDP forecasts. Also, perhapsfitting al threerelations, shownin (6)-
(8) above for each sector may lead to improved sector and aggregate forecasts.

Note that a MAE of about 1.2 percentage points for forecasting annual
real GDP for the U.S., as obtained in the above forecasting experiments,
compares favorably with MAES reported in Zarnowitz (1986, Table 1, p. 23).
As hereports, for the periods, 1969-1976 and 1977-84, the MAE= 1.2
percentage points for the one year ahead forecasts of the rates of growth of real
GNP made by the U.S. Council of Economic Advisors. Of course, “on line’
forecasters have to cope with preliminary data problems not present in our
forecasting experiments. However such on line forecasterstypically use alot of
judgmental, outside information to adjust their models’ forecasts and
sometimes combine models’ and others' forecasts in efforts to get improved
forecasts that we did not do.

In summary, the above results based on our Marshallian sector modelsare
encouraging and further work will be done to get improvements. Along these
lines, it will be useful to add relationsto get a closed model of the economy,
our Marshallian Macroeconomic Model. Thefirst stepsin thisdirection are
described in the next section.

V. A Complete Marshallian Macroeconomic Model

Above, supply, demand and entry relations were formulated for each
sector. Attention was focused on the final product market in which each
sectors’ producers are assumed to sell. To close the model, thereis aneed to
add factor markets, that is labor, capital and money markets as well as an
international sector. Theroles of intermediate goods and inventoriesneed
attention. And the operations of federal, state and local governments have to be
incorporated in the model. Consideration of the birth of new sectors and the
deaths of old sectorsis needed as well as allowance for regulated and
imperfectly competitive sectors. Improvementsin entry and investment
equations are possible. Fortunately, thereis much valuable research on many
of these topicsin the literature, which can be incorporated in our model and
hopefully, improve it. However, what isinitially needed isa“bare bones”
complete model, that isa“Model T” that works reasonably well.
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In our approach to this last problem, we have started analyzing a one
sector closed economy MMM model by adding labor, capital and money
markets to the product market discussed above. From initial analyses, currently
underway with G. Israilevich, when such additions are made, the model is
mathematically tractable and leads to final equations for the variables of the
system that are in forms similar to that presented in (9) above. However, when
we go to atwo sector model, there are interesting interactions between sectors
produced by dependenciesin demand and supply relations that affect properties
of solutions. Elements of stability and instability are encountered for certain
values of strategic parameters. Every effort is being made to keep the model in
aform so that mathematical analyses of its properties are tractable. If not,
computer simulation techniques will be employed to help determine the
properties of the overall model including its responses to changesin policy
variables, e.g. money, tax rates, etc. as has been done in much past work,
including Zellner and Peck (1973). And of course, additional forecasting
experiments will be carried forward using as much new data as possible.

It was a pleasure having an opportunity to discussour work and results
with many at this Conference. | hope that the above account of our modeling
experiences using large data sets will be of interest and value to many data
miners and that our future work will benefit from research that you have done
and are currently carrying forward. Hopefully, we shall all strike gold.
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