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Abstract 

 
 How to formulate models that work well in explanation, prediction and 
policy-making is a central problem in all fields of science. In this presentation, I 
shall explain the strategy, our Structural Econometric Modeling, Times Series 
Analysis  (SEMTSA) approach that my colleagues and I have employed in our 
efforts to produce a macroeconomic model that works well in point and turning 
point forecasting, explanation and policy-making. Data relating to 18 
industrialized countries over the years, taken from the IMF-IFS data base have 
been employed in estimation and forecasting tests of our models using fixed 
and time varying parameter models, Bayesian posterior odds, model combining 
or averaging, shrinkage, and Bayesian method of moments procedures. 
Building on this past work, in recent research economic theory and data for 11 
sectors of the U.S. economy have been employed to produce models for each 
sector. The use of sector data and models to forecast individual sectors’ output 
growth rates and from them growth rates of total U.S. output will be compared 
to use of aggregate data and models to forecast growth rates of total U.S. 
output. As will be seen, IT PAYS TO DISAGGREGATE in this instance. Last, 
a description of some steps underway to improve and complete our Marshallian 
Macroeconomic Model of an economy will be described. 
 
I. Introduction 
 When Ham Bozdogan invited me to present a lecture at the U. of 
Tennessee, C Warren Neel Conference on Statistical Data Mining and 
Knowledge Discovery, he mentioned that he had attended my presentation of 
our modeling and forecasting work at the June 2000 International Society for 
Bayesian Analysis (ISBA, website: www. Bayesian.org) and Eurostat meeting 
in Crete and that he thought it was a good example  of data mining. This was 
news to me since I did not have a good definition of data mining and was 
unsure about how it represented what we were doing in our work with a large 
data set relating to 18 industrialized countries over a period of about 50 years. 
After attending this U. of Tennessee Conference, I believe that I have a better 
understanding of data mining and believe that it is useful to relate it to general 
views of scientific methodology and some past work in statistics and 
economics, which I shall do in Section II. I provide a brief overview of 
scientific methodology and its objectives and indicate where, in my opinion, 
data mining fits into the overall process and what some of its unique features 
are. 
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 Then in Section III, I  shall describe what Ham called our past data 
mining efforts with special emphasis on methodological tools that may be 
useful in other data mining efforts. These include the Structural Econometric 
Modeling, Time Series Analysis (SEMTSA) approach put forward by F.C. 
Palm and myself, Zellner and Palm (1974,1975) and pursued further by many 
over the years; see papers by leading workers in Zellner and Palm (2003). In 
this approach, the value of keeping it sophisticatedly simple (KISS) is 
emphasized for “obvious” reasons…see e.g. Zellner, Kuezenkamp and McAleer 
(2001) for further consideration of simplicity and complexity issues. In addition 
to the overall SEMTSA approach, there is a brief discussion of new results in 
information processing, including a new derivation of the Bayesian learning 
model, Bayes’ Theorem and generalizations of it; see, Soofi (2000) and Zellner 
(1997, 2002). One special learning approach is the Bayesian method of 
moments (BMOM) that permits researchers to derive post data moments and 
post data densities for parameters and future observations without use of 
samp ling assumptions for the given data, likelihood functions and prior 
densities. Since, as I learned at this Conference, there is often great uncertainty 
regarding the forms of likelihood functions and prior densities in data mining, 
an approach, such as the BMOM approach, that permits individuals to perform 
inverse inference without specifying the form of the likelihood and using a 
prior density, will probably be useful. Examples will be provided to illustrate 
general principles. For more on the BMOM and applications of it see, e.g. 
Green and Strawderman (1996), Mittelhammer et al. (2000), van der Merwe et 
al. (1998,2001), Zellner (1994,1997a, b, 2002) and Zellner and Tobias (2001). 
 

 In Section IV, some details regarding the models and methods employed 
in analyzing, modeling and forecasting data for 18 industrialized countries will 
be described. Also, considerations regarding aggregation/disaggregation issues 
will be briefly discussed along with an example involving alternative methods 
for forecasting the median growth rate of 18 countries’ real output growth rates, 
that illustrates that in this instance, it pays to disaggregate; see Zellner and 
Tobias (2000). Further, disaggregation by industrial sectors using Marshallian 
models for each sector will be described and some results, taken from Zellner 
and Chen (2001), of the use of sector models in forecasting aggregate outcomes 
will be provided and compared to those derived from models implemented with 
aggregate data. Last, in Section V considerations regarding the form of a 
complete Marshallian Macroeconomic Model will be presented along with 
some thoughts regarding future research will be presented. 
 
II. Brief Comments on Scientific Method and Data Mining 
 As discussed in Jeffreys (1937,1998) and Zellner (1984,1996,1997), it is 
the case that scientific work in all areas involves induction, deduction and 
reduction. Induction involves (a) measurement and description and (b) use of 
given models or subject matter generalizations to explain features of past data, 
predict as yet unobserved data and to help solve private and public decision 
problems. As regards reduction, in Zellner (1996, p. 5) it is pointed out that the 
famous physicist C.S. Pierce commented that “reduction suggests that 
something may be; that is, it involves studying facts and devising theories to 
explain them. For Pierce and others the link of reduction with the unusual fact 
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is emphasized.” And of course, deduction, that is  logical or mathematical 
proof or disproof plays a role in induction and reduction but is inadequate 
alone to serve the needs of scientists. As emphasized by Jeffreys (1937,1998), 
scientists need to be able to make statements less extreme than “proof,” 
“disproof” and “I don’t know.” They generally make statements such as  “A 
probably causes B” or “Theory I is probably better than Theory II” or “The 
parameter’s value probably lies between 0.40 and 0.50.” Fortunately, Bayesian 
methods are available to quantify such statements, to update such probabilities 
as more data become available and to provide predictions that can be checked 
with additional data; for a survey of Bayesian analysis with many references, 
some to downloadable, free software for performing Bayesian calculations, see 
Berger (2000). That Bayesian methods permit updating of probabilities 
representing degrees of confidence in models is a very important capability. In 
this connection, note that causality has been defined as predictability according 
to a law or set of laws, that is a dependable, subject matter model or set of 
models that have performed well in past work and thus have high probabilities 
associated with them. See, e.g., Feigl (1953), Aigner and Zellner (1988), and 
Zellner (1984), for further discussion of the concept of causality, empirical 
tests of causality and its relation to applied data analysis and modeling. 

 
There is no doubt but that data miners are involved in inductive, 

deductive and reductive scientific work involving measurement, description, 
modeling, explanation, prediction and decision-making. What appears to be 
rather unique about the current data mining area are the large samples of data 
utilized and the powerful computers and algorithms that are available for 
analyzing them.  However, as has been recognized by many, there are the old 
issues of data quality, appropriate measurement procedures and good statistical 
descriptive measures that are obviously very important. Further, given a 
tentative model for a very large data set, say a multivariate regression or time 
series model, the use of appropriate estimation, testing, model evaluation and 
other inference procedures is critical. For example, use of inappropriate testing 
and model evaluation methods, e.g. the 5% level of significance in Neyman-
Pearson test procedures, can lead to costly errors when sample sizes are very 
large; see, e.g. Zellner (1996, p 302, ff.) and references cited therein for further 
discussion of this important problem. Further, the accept-reject framework 
often used is many times not as good as the use of techniques that permit a set 
of models to be identified and to use them in model averaging to obtain 
estimates and predictions. Further, in making decisions or producing forecasts, 
it has been emphasized that model uncertainty as well as other types of 
uncertainty should taken into account, as for example in formal model 
combining and averaging procedures (See Zellner (1997, Part V), for 
procedures for model-combining and applications to forecasting problems that 
appear readily applicable to modeling and forecasting in some data mining 
problems.) 
 
 As regards reduction, that is studying data and devising models to explain 
them, there is the issue of simplicity versus complexity. Some advise 
researchers to start with a sophisticatedly simple model and complicate it if 
necessary. Note that a sophisticatedly simple modeling approach involves 
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taking account of what is already known about a problem in order to avoid 
making stupid errors.  In industry, there is the saying, “Keep it simple stupid” 
(KISS).  Since some simple models are stupid, I changed the interpretation of 
KISS to “Keep it sophisticatedly simple,” which is in line with Einstein’s 
advice to make models as simple as possible, but no simpler. On the other hand 
there are those who advocate starting with a large, complicated, 
“encompassing” model and testing downward to discover a useful model. Of 
course, it is impossible to prove deductively whether it is better to KISS or to 
use an “encompassing” approach. However, it is relevant to note that there are 
many, many complicated encompassing models and if one chooses the wrong 
one, all that follows will be unsatisfactory. While there are many successful 
sophisticatedly simple models in the sciences, e.g. s= 21 / 2gt , F =ma, PV=RT, 

E= 2mc , etc., it is difficult to find one successful large, complicated model in 
any area of science. For additional consideration of these simp licity/complexity 
issues and some measures of the complexity of models , see Zellner, 
Kuezenkamp and McAleer (2001). 
 
 Since, as mentioned above, recognition of unusual facts is many times 
very important in leading to new insights and models, it occurred to me that 
there must be ways of producing unusual or surprising facts. After some 
thought, I developed a list of eight such procedures, see Zellner (1984, pp. 9-
10), many of them quite obvious, namely, study unusual groups, e.g. the very 
poor or the very rich, unusual historical periods, e.g. hyperinflations, or great 
depressions, produce extreme data that are inconsistent with current models’ 
predictions, etc. Also, with large data sets, there is a tendency to throw away 
“outlying” observations rather than try to explain why they are “outlying.” As 
is well known, “outlying “ points may be evidence that assumed functional 
forms  for relations, e.g., linear forms, and/or assumed distributions for error 
terms are incorrect. Thus “outlying” or “unusual” data points deserve much 
attention and explanation, if possible. For brevity, I shall not review analyses 
that have been adversely affected by deleting rather than explaining, outlying 
data points. 
 
 When the available data, say time series data, include many, many 
variables, as in data relating to the world’s numerous economies, and include 
many unusual features, e.g. similar, but not exactly the same upward and 
downward movements in growth rates of output and other variables, etc., there 
is the problem of how to formulate explanatory models that explain past 
variation and are helpful in predicting new data and in policy-making. Many 
researchers and governmental units worldwide have approached this problem 
by building complicated, multi-equation, linear and non-linear, stochastic 
models, so-called structural econometric models. Unfortunately, not many of 
these models, if any, have performed satisfactorily in explanation and 
prediction. Others, have resorted to large statistical models, usually vector 
autoregressive (VAR) models in attempts to get good forecasting models. 
These attempts, too, have not been successful in the sense that their point and 
turning point forecasts have not been very good. Faced with these problems 
and approaches, years ago, Franz Palm and I put forward a combined structural 



 5 
econometric modeling, time series analysis  (SEMTSA) approach that 
attempted to integrate the best features of earlier approaches. See Zellner and 
Palm (1974, 1975, 2003) and Zellner (1984, 1997) for descriptions of the 
approach and applications of it to a variety of problems. The approach involves 
starting simply with models for individual variables, determining forms for 
them that reflect past subject matter information, fit the data reasonable well 
and forecast satisfactorily. Then these tested components are combined to form 
a multivariate model and its performance in explaining variation in past data 
and in forecasting future data is studied and continually improved. Throughout 
the process, subject matter theory is used in attempts to “rationalize” or 
“explain” why the empirical models work in practice and in an effort to 
produce a “structural” or “causal” model rather than just an empirical, 
statistical forecasting model that does not explain outcomes or possible causal 
relations very well. See below for further discussion of the SEMTSA 
approach’s properties and some experiences in applying it in our efforts to 
produce a structural macroeconomic model that works well in explaining past 
data, predicting new data and in policy-making. 
 
III. The Structural Econometric Modeling, Time Series Analysis (SEMTSA) 
Approach  
 In the mid-twentieth century, impressive theoretical and empirical 
developments occurred in the statistical time series analysis area in the work of 
Quenouille (1957), Box and Jenkins (1970), and others. The univariate and 
multivariate autoregressive, moving average (ARMA) models employed in this 
statistical time series analysis approach, seemed very different from the causal, 
dynamic, structural econometric models formulated and estimated by the Nobel 
Prize winners, Tinbergen, Klein, and Modigliani and many others and used by 
many governmental units world-wide. Since many were confused about the 
relationship of these two classes of models, in Zellner and Palm (1974), we 
clarified the relationship and pointed to some unusual features of multivariate 
statistical time series and structural econometric models. This led to a strategy 
of model-building that we called the SEMTSA approach and first applied in a 
paper, Zellner and Palm (1975) to evaluate a monetary model of the U.S. 
economy  and utilized in other works included in Zellner and Palm (2003).  
 
3.1 The SEMTSA Approach  
 
 The initial problems considered in the SEMTSA approach were (1) the 
implications of the basic multiple time series or multivariate ARMA model put 
forward by Quenouille (1957) and others for properties of processes for 
individual variables and (2) its relationship to dynamic structural econometric 
models. In this connection, Quenouille’s and others’ multiple time series model, 
that includes a vector autoregression as a special case, for an mx1 vector of 
variables at time t, z(t) is: 
(1)    ( ) ( ) ( ) ( )H L z t F L e t=   t = 1,2,…, T 

where 1( ) ... p
pH L I H L H L= + + +  and 
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1( ) ... q
o qF L F F L F L= + + +  are matrix lag operators with L the lag operator 

such that, ( ) ( )rL z t z t r= − , the H’s and F’ s given matrices and e(t) is  a zero 
mean white noise error vector with covariance matrix I. 
  
 Is the model in (1) a good one for modeling and forecasting? As Palm and 
I suggested, a relevant issue is what are the implied processes for individual 
variables in the vector z(t). If H(L) is invertible, it is straightforward to derive 
the marginal processes for individual elements of z(t). In general these turn out 
to be very high order autoregressive-moving average processes, not at all like 
the models for individual variables identified by many time series workers. 
Thus the general model in (1) has implications that are not in agreement with 
empirical findings indicating a need for modifications of it, say imposing 
restrictions, or introducing non -linearities, etc. 
  
 As mentioned above, the relation of (1) to dynamic linear structural 
econometric models (SEMs), discussed in most past and current econometrics 
textbooks, was unclear to many. Here we pointed out that if the vector of 
variables, z(t) is partitioned into a sub vector of “endogenous” variables, y(t) 
and a sub vector of “exogenous” variables, x(t), that is ( ) [ ( ) , ( ) ]z t y t x t′ ′ ′= , the 
relation would be clear. Note that endogenous variables are variables whose 
variation is to be explained by the model whereas exogenous variables, e.g. 
weather variables, etc. are input variables to the model.  The assumption that 
the sub vector x(t) is a vector of exogenous variables leads to a sub matrix of 
H(L) being identically zero and F(L) being block diagonal, very important 
restrictions on the general model in (1). When these restrictions are imposed, 
the system becomes: 
 
(2a)  11 12 11 1( ) ( ) ( ) ( ) ( ) ( )H L y t H L x t F L e t+ =  

(2b)  22 22 2( ) ( ) ( ) ( )H L x t F L e t=  
 
where 11 12( ), ( )H L H L  and 22( )H L  are sub matrices of ( )H L  and the 

assumption that x(t) is exogenous implies that the sub-matrix 21( ) 0.H L ≡  

Also, 11( )F L  and 22( )F L  are sub matrices of ( )F L  with the assumption that 

x(t) is exogenous implying that the off diagonal matrices 12( ) 0F L ≡  and 

21( ) 0F L ≡ . 
  
 Equation system (2a) is in the form of a linear dynamic SEM while (2b) 
is the system assumed to generate the exogenous or input variables. Thus there 
is compatibility between the multiple time series model in (1) and the linear 
dynamic SEM. Further, as emphasized in our SEMTSA approach, it is 
important to check the implications of (2a) for the forms of the processes for 
individual variables in y(t).  Given that the matrix lag operator 11( )H L  is 

invertible, that is 1
11 11 11/aH H H− = where the dependence on L has been 

suppressed, 11
aH  is the adjoint matrix and 11H is the determinant of 11H , a 
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polynomial in L,   it is direct to solve for the transfer function system 
associated with (2a), namely: 

(3)  11 11 12 11 1 1 1( ) ( ) ( )a aH y t H H x t H F e t= − +  

  
Note that since the same lag operator 11H hits all the elements of y(t) and if 

there is no canceling of common roots, this implies that the autoregressive part 
of the transfer functions for the elements of y(t)  should be IDENTICAL, a 
restriction that can be and has been tested in applied work. Further, restrictions 
on the coefficients in (2a) imply testable restrictions on the parameters of the 
transfer functions in (3) that can be and have been tested. Last, empirical 
procedures for obtaining or identifying forms of transfer functions from 
information in data are available in the literature and have been applied to 
determine whether the forms of the transfer function equations derived 
analytically in (3) are the same as those determined or identified empirically. 
See Zellner and Palm (1975, 2003) for examples in which these procedures are 
applied to a variety of problems and revealed that the information in the data 
was in conflict with the implications of models in many cases. 
 
 In our initial empirical work to formulate good models to explain and 
predict macroeconomic variables, in Garcia-Ferrer et al. (1987), we decided to 
start with analysis of models for a key macroeconomic variable, the rate of 
growth of real output, as measured by real GDP, of an economy. After 
determining that simple time series models, e.g. autoregressive models did not 
work well in forecasting and with the form of (3) in mind, we  formulated the 
following model for the output growth rate of economy i in year t, denoted by 
the scalar ( )iy t , 
 

(4a) 1 2 3

4 5 6 7

( ) ( 1) ( 2) ( 3)
( 1) ( 1) ( 2) ( 1) ( )

i oi i i i i i i

i i i i i i i

y t y t y t y t
M t SR t SR t WSR t e t

β β β β
β β β β

= + − + − + − +
+ − + − + − + − +

  

 or 
 (4b) ( ) ( ) ( )i i i iy t x t e tβ′= +  
t= 1,2,…,T and i = 1,2,…, N 
 
where M = growth rate of real money, SR = growth rate of real stock prices 
and WSR = the median of the countries’ growth rates of real stock prices. The 
form of (4) was rationalized as follows: (a) The AR(3) assumption allowed for 
the possibility of having complex roots leading to oscillatory movements (see 
Hong (1989) for supporting empirical evidence). (b) Burns and Mitchell (1946) 
had established that money and stock prices lead in the business cycle using 
pre World War II data going back to the 19th century for France, Germany, 
U.K., and U.S. (c) The variable WSR was included to model common shocks 
hitting all economies. The model in (4) was named an autoregressive, leading 
indicator (ARLI) model and implemented with data for 9 and then 18 
industrialized countries in point and turning point forecasting experiments with 
encouraging results.  
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 Later (4) was modified to include a current measure of world output, 
w(t), the median of 18 countries’ growth rates in year t , and an ARLI model for 
w(t) was introduced, namely,  
 
(5a)  ( ) ( ) ( ) ( )i i i i iy t w t x t e tγ β′= + +  
and 

(5b)  1 2 3

4 5 6

( ) ( 1) ( 2) ( 3)
( 1) ( 1) ( 2) ( )

ow t w t w t w t
MM t MSR t MSR t u t

α α α α
α α α

= + − + − + − +
− + − + − +

    

 
where MM and MSR are the median growth rates of real money and real stock 
prices, respectively, and u is an error term. We called this two equation model 
the ARLI/WI model and showed in Zellner and Hong (1989) that it performed 
somewhat better in forecasting experiments with data for 18 countries than the 
one equation ARLI model, shown above in (4), using various Stein-like 
shrinkage estimation and forecasting techniques. Also, the RMSE’s of forecast 
compared favorably with those associated with large, structural OECD 
forecasting models. In addition, variants of the ARLI and ARLI/WI models 
performed well in forecasting turning points in countries’ growth rates with 
70% or more of 211 turning points correctly forecasted for 18 countries with 
the “downturn” and “no downturn” forecasts being somewhat better than the 
“upturn” and “no upturn” forecasts; see Zellner and Min (1999) for these and 
additional  results with references to earlier analyses. And very important, the 
ARLI/WI model was shown to be compatible with various macroeconomic 
theoretical models, e.g.,  a Hicksian IS/LM model in Hong (1989), a 
generalized real business cycle models in Min (1992) and an aggregate supply 
and demand model in Zellner (1999) . This is  a fundamental aspect of the 
SEMTSA approach, namely a fruitful interaction between data analysis and 
subject matter theoretical models. Some additional variants of these models 
will be discussed in Sect. IV. 
 
3.2 Statistical Inference Procedures 
With respect to inference procedures for the ARLI and ARLI/WI models, 
mentioned above, various procedures were employed including least squares 
(LS), maximum likelihood (ML), traditional Bayesian(TB) and the recently 
developed Bayesian method of moments (BMOM). For these time series 
models, while LS and ML procedures readily yielded point estimates, they did 
not  provide, among other things, finite sample standard errors, confidence and 
predictive intervals, probabilities relating to various models’ forms and 
probability statements regarding possible downturns or upturns in countries’ 
growth rates. In contrast, TB procedures readily provided finite sample results 
including intervals for parameters and future observations,  shrinkage estimates 
and forecasts, probabilities associated with alternative model forms, etc. given 
the traditional inputs to TB analyses, namely, a prior density, a likelihood 
function and Bayes’ theorem. As is well  known, Bayes’ theorem yields the 
important general result that a posterior density for the parameters is 
proportional to the prior density for the parameters times the likelihood 
function, with the factor of proportionality being a normalizing constant that 
can be evaluated analytically or numerically. 
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 Thus given the inputs, a prior density and a likelihood function, it is direct 
to obtain a posterior density for the parameters and also a predictive density for 
future observations. In an effort to relax the need for such inputs,  the Bayesian 
method of moments ( BMOM ) was introduced in Zellner (1994); see also 
Zellner (1997) and the references cited in Section I for further results and 
applications. The BMOM approach permits investigators to obtain post data 
moments and densities for the parameters and future observations without using 
prior densities, likelihood functions and Bayes’ theorem and may be useful to 
data miners in performing statistical inference. 
 
 To illustrate the BMOM approach, consider time to failure given 
observations that are assumed to satisfy, ( ) ( )y i u iθ= + , i= 1,2,…,n where θ  is 
a parameter of interest with an unknown value. On summing both sides of this 
relation and dividing by n, we have the given mean of the observations 
y uθ= +  and on taking a subjective expectation of both sides, y E Euθ= + , 

where it is to be recognized that y  has a given observed value, e.g. 3.2, 
whereas θ  and u  have unobserved values that are considered subjectively 
random. Now if we assume that there are no outliers or left out variables and 
the form of the above relationship is appropriate, we can assume that the 
subjective mean of u is zero, that is, 0Eu = that implies E yθ = . Thus we 
have a post data mean for θ  without introducing a prior density and a 
likelihood function. Also, as is well known, the mean is an optimal estimate 
relative to a quadratic loss function. Further, the maximum entropy or most 
spread out proper density for θ  with given mean = y , is easily derived and 

well known to be the exponential density, that is, ( ) (1/ )exp( / )g D y yθ θ= −  

with 0 θ< < ∞  and where D denotes the given observations and background 
information. This post data density can be employed to make inverse 
probability statements regarding possible values of θ , e.g. Pr{1.2 2.3 }Dθ< < , 

the objective of Bayes’ (1763) original paper and thus the name Bayesian 
method of moments. This is one example of the BMOM. 
  
 To apply the BMOM to equation (4) above, express the equation in  
standard regression form, y X eβ= +  where y is a vector of given 
observations, X a matrix of observations on the input variables, β  a 
coefficient vector and e a vector of realized error terms. The elements of β  
and of e are treated as parameters with unknown values, as previously  done in 
the TB literature in Chaloner and Brant (1988) and Zellner (1975). Assuming 
that X is of full column rank, we can write: 

1 1( ' ) ( )b X X X y E X X XEeβ− −′ ′ ′≡ = + ,  where E   represents the subjective 

expectation operator. Assuming that the functional form of the relation is 
satisfactory, i.e. no left out variables, and no outliers, no errors in the variables,  
etc., we can make Assumption I:   ' 0X Ee =  which implies from the relation 
above that 1( )E b X X X yβ −′ ′= = , that is the post data mean for β  is the least 
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squares estimate. Further, we have y XE Eeβ= +  and thus Assumption I 
implies that y is the sum of two orthogonal vectors, XEβ  and Ee . In 

addition, ˆEe y XE eβ= − = , the least squares residual vector. On making a 
further assumption regarding the post data covariance matrix of the realized 
error vector, see, e.g. Zellner (1997, p. 291ff) and Zellner and Tobias (2001), 
the second moment matrix of β  is shown to be: 

1 2( )( ) ( )E E E X X sβ β β β −′ ′− − =  with 2 ˆ ˆ /s e e v′=  and v T k= − , the “degrees 

of freedom” parameter, where T is the number of observations and k is the 
number of elements of β .  Note that all these post data moments have been 
derived without using a likelihood function and a prior density. However, more 
prior information can be introduced via use of a conceptual sample and in other 
ways, as shown in Zellner et al (1999), and other papers cited above. 
  
 With the mo ments of β  as given in the previous paragraph, the least 

informative, maxent density for β   is a multivariate  normal density with mean 

b, the least squares estimate of β , and covariance matrix 1 2( )X X s−′  . This 
density can be employed to make probability statements regarding possible 
values of the elements of β  and functions of them quite readily. Also, for 

future, as yet unobserved values of y, assumed to satisfy, f f fy X eβ= + , given 

fX , if we make assumptions regarding the moments of fe , the moments of 

fy  can be  easily derived. For example, if it is assumed that 0,fEe =  then 

f f fEy X E X bβ= = , the least squares forecast vector.  With a further 

assumption regarding the second moment of fe  the second moments of the 

elements of fy are available and these moments can be used as side conditions 

in deriving a proper maxent predictive density for fy . For some computed 

examples involving these and other assumptions  with applications to 
forecasting turning points, see Zellner et al (1999). 
  
 In addition to providing BM OM post data and predictive moments and 
densities, information theory has been utilized in Zellner (1988, 1997, 2002) to 
produce learning models, including Bayes’ Theorem, in a very direct approach. 
Namely information measures associated with inputs and outputs to an 
information processing problem are considered. In the TB approach there are 
two inputs, a prior and a likelihood function, and two outputs, a posterior 
density for the parameters, and a marginal density for the observations. On 
forming the criterion functional, information out minus information in and 
minimizing it with respect to the form of the output density for the parameters,  
subject to its  being a proper density, the solution is to take the posterior 
density for the parameters equal the prior density times the likelihood function 
divided by the marginal density of the observations, that is the result is  Bayes’ 
theorem and when this is done, the information in = the information out and 
thus this information processing rule is 100% efficient. See comments on these 
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results in Soofi (2000) and by Jaynes, Hill, Kullback and Bernardo in Zellner 
(1997). 
  As pointed out in Zellner (1997,2002), one can input just a likelihood 
function, and no prior, as R. A. Fisher wanted to do in his fiducial approach, 
and solve for an optimal form for the output density for the parameters that is 
proportional to the likelihood function.  Or one can assign given weights to the 
input prior and sample information and solve for an optimal form of the output 
density for the parameters.  Also, when the input information is just in the form 
of given  moments for parameters, the optimal form for the output density  is 
the BMOM solution.  Dynamic problems in which the output of one period is 
the input to the next period, along with additional sample information, have 
been formu lated and solved using dynamic programming techniques. Again 
when the traditional inputs are employed, a prior and a likelihood function, it is 
optimal to update densities using Bayes’ theorem.  Having various information 
processing or learning models “on the shelf” to be used when appropriate is 
important just as is the case with various static, dynamic and other models in 
engineering, physics, economics, business and other fields  
  
 Having presented some discussion of general methods, attention in the 
next section will be focused on these and other methods used in our empirical, 
data mining work.  
 
IV.  Methods Employed in Data Analysis, Modeling and Forecasting  
 In our work since the mid 1980’s, we have used data from the 
International Monetary Fund’s International Financial Statistics database at the 
U. of Chicago, a very large database with data on many variables for over 100 
countries’ economies. Since measures of output may contain systematic biases, 
etc., we thought it wise to log variables and take their first differences to help 
get rid of proportional measurement biases. Further, these growth rate 
measures are of great interest. However, we were not too sanguine about 
inducing covariance stationarity by first differencing given the many different 
kinds of shocks hitting economies, e.g. wars, strikes, financial crises, droughts, 
policy blunders, etc. 
  
 Very important in our work and in presentations was and is the graphical 
presentation of our data using boxplot techniques to display general properties 
of the economic fluctuations for the 18 countries in our sample and for 11 
sectors of the U.S. economy in later work. As we observed, there are somewhat 
regular fluctuations present in the three variables with the money and stock 
price variables showing a tendency to lead, as recognized earlier by Burns and 
Mitchell (1946) in their monumental “data mining” study, Measuring Business 
Cycles in which they used data for France, England, Germany and the U.S. 
going back to the 19th century to characterize properties of economic 
fluctuations in many variables. 
 
 From our plots of the data, we noted that there appear to be some outlying 
points. As yet, we have not formally tested for outliers nor utilized procedures 
for allowing for outliers in estimation and forecasting. Rather than face 
possible charges of “rigging the data” or “massaging the data” by eliminating 
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outliers, etc., we decided to use all the data that relate to periods in which 
unusual events occurred in many countries, e.g. the Korean, Vietnamese and 
Gulf wars, energy crises of the 1970s, institution of wage and price controls, 
some abrupt changes in monetary and fiscal policies, etc. No dummy  variables 
or other devices were used to deal with these unusual historical events. It was 
assumed and hoped that our lagged stock market and monetary variables would 
reflect the impacts of such events on economies. 
 
 With the data described, it was thought important to carry along some 
“benchmark” mo dels in forecasting. In earlier studies, random walk models 
and simple time series models, e.g. third order autoregressive models, AR(3) 
models, or Box-Jenkins ARIMA models had been found to forecast better than 
some large scale models; see, e.g. the discussion of such studies by Christ, 
Cooper, Nelson, Plosser and others in Zellner (1984, 1997a). However, we 
generally  found that such benchmark models, as well as other models, tended 
to make large errors in the vicinity of turning points in economic activity. Thus 
we thought  it very important not just to study point forecasts but also to 
develop methods for making good turning point forecasts.  
 
 With respect to point forecasting, In Zellner and Hong (1989),  we 
estimated the fixed parameter ARLI and ARLI/WI models, discussed above in 
connection with (4)-(5), using data, 1954-1973, for first 9 and then 18 
industrialized countries and made one-year ahead point forecasts with 
parameter estimates updated year by year for the period 1974-1984. In this 
work, our ARLI and ARLI/WI models’ performance was much better than that 
of various benchmark models and competitive in terms of root mean squared 
errors (RMSEs) to that of some large-scale OECD models. Also, the ARLI/WI 
model performed better than the ARLI model.  Similar results were found to 
hold in later studies involving extended forecast periods, e.g. 1974-1997. See, 
e.g., papers in Sect. IV of Zellner (1997) and Zellner and Palm (2003) for some 
of these results.  
   
 The methodological tools utilized in this forecasting work included the 
following: 
 
(1) Finite sample posterior densities for para meters of relations were employed 
in estimation of parameters, analyses of the realized error terms  and study of 
the properties of dynamic relations, such as (4)-(5) above. For example, in 
Hong (1989) using data for each of 18 countries, draws were made from the 
trivariate Student t marginal posterior density of the autoregressive parameters 
of the ARLI   model in (4)  and for each draw, the three roots of the process 
were computed. It was found that in a large fraction of the draws, about .85,  
that there were two complex roots and one real root associated with the model. 
Also, the computed posterior densities for the periods of the cycle associated 
with the complex roots were found to be centered at about 3 to 5 years and 
those for the  amplitudes were centered at values less than one for both the real 
and complex roots. Note that in this work,  there was no need to rely on 
asymptotic approximate results, usually employed in non-Bayesian work with 
time series models. 
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(2) Means of predictive densities for future observations were employed as 
point forecasts that are optimal relative to a quadratic predictive loss function. 
With use of diffuse priors and usual likelihood functions or by use of BMOM 
predictive means, these forecasts were identical to least squares forecasts when 
fixed parameter models were employed but not in cases involving use of 
random parameter models  and shrinkage assumptions. Recall that a usual 
predictive density for a future vector of observations, fy  is given by 

( ) ( ) ( )f fh y D q y g D dθ θ θ= ∫ , where D denotes the given data 

and ( )g Dθ  is  the posterior density for the vector of parameters θ .  

  
(3) Predictive densities were employed to compute optimal turning point 
forecasts. For example, given a definition of a turning point, e.g. given two 
previous growth rates below the third, that is  y(T-2), y(T-1)< y(T), where T 
denotes the current period,  if y(T+1) <y(T),  this is defined to be a downturn 
(DT), while if y(T+1)  is not below y(T),  this  outcome is defined to be no 
downturn (NDT). Given such a sequence of outcomes up to period T and a 
predictive density for y(T+1),  it is direct to compute the probability that  
y(T+1) is less than y(T), that is the probability of a downturn, P, and that of no 
downturn, 1-P. Then on considering a two by two loss structure associated the 
acts, forecast DT and forecast NDT and the possible outcomes, namely DT or 
NDT, it is direct to derive the forecast that minimizes expected loss. For 
example, if the 2x2 loss structure is symmetric, it is optimal for forecast DT 
when P>1/2 and NDT when P<1/2. Similar analysis applies to forecasting 
upturns and no upturns. Using such simple turning point forecasting procedures 
with a number of alternative models, about 70 per cent or more of 211 turning 
points for 18 countries were forecasted correctly. Also, such turning point 
forecasts were better than those provided by a number of benchmark 
procedures, e.g. coin tossing, or systematic optimistic or systematic pessimistic 
forecasts, etc. Such fine performance in turning point forecasting was a 
pleasant surprise! See Zellner and Min (1999) for results using many variants 
of the models in (4) and (5). 
 
(4) Posterior odds were employed in variable selection, model comparison and 
model combining. As regards model selection, several researchers using our 
data and their model identification procedures determined forms for our ARLI 
model, given in (4) above, that differed from ours in terms of lag structures, 
etc. One group reported mo dels that forecasted much, much better than our 
models, so much better that I suspected something must wrong. Indeed it 
turned out that they had used all the data to fit their model and then used a 
portion of the sample for forecasting experiments. When this error was 
corrected, the improved performance of their model disappeared. On the other 
hand several others using their model identification procedures did produce 
models that are competitive with ours. This prompted our use of posterior odds 
to compare various variants of our model. We employed 8 input variables, the 
7 shown in connection with (4) and an eighth, the money variable lagged two 
periods for a total of 8 possible input variables and thus 82 = 256 possible 



 14 
linear models that included our model and those of our two “competitors.” 
Fortunately, our model compared favorably with the 255 alternative models, 
including those of our competitors that also performed reasonably well. For 
methods and specific results, see Zellner and Min (1993) and  Zellner (1997). 
These methods are applicable to many other model selection problems  and 
involve a correction for the possibility that on considering so many different 
models, one may have fit the data well just by chance, a “model selection” 
effect that has been discussed by Jeffreys (1998, p. 253 and p. 278) and in our 
paper. 
  
 Also, posterior odds have been very useful in comparing fixed parameter 
and time varying parameter models, showing a slight preference for time 
varying parameters. As regards time varying parameters, they have been 
widely employed in engineering state space modeling. In our context, there are 
many reasons why parameters, e.g. those in (4) above, might be time varying, 
including aggregation effects, changes in technology and/or tastes and 
preferences, effects of changes in economic policies, i.e. Lucas effects, etc. Our 
earliest work involved use of the assumption that the coefficient vector in (4) 
followed a vector random walk, ( ) ( 1) ( )i i it t v tβ β= − +  with ( )iv t  a white 
noise error vector and of Bayesian recursive methods to update parameter and 
predictive densities. Later, other variants were employed, namely  
(i) ( ) ( )i it u tβ θ= + , 

(ii) ( ) ( ) ( )i it t u tβ θ= +  and ( ) ( 1) ( )t t tθ θ η= − + , etc. 
Here we are introducing dynamic Stein-like assumptions that the 
 individual country coefficient vectors are distributed about a mean vector that 
may be a constant, as in (i) or may be generated by a random vector random 
walk process, as in (ii). These and other models both for our ARLI and 
ARLI/WI models  were implemented with data and found to perform better 
than models that did not incorporate Stein-like shrinkage effects, both for fixed 
and time varying parameter versions. Posterior odds for such time varying 
parameter models versus fixed parameter models were derived and computed. 
They indicated some support for the use of time varying parameters and much 
support for the use of shrinkage assumptions. For example, using shrinkage, 
the median RMSE of forecast for the 18 countries annual forecasts, 1974-87, 
was 1.74 percentage points while without shrinkage it was 2.37 percentage 
points. For more on these empirical results, derivations of posterior odds and 
use of them in combining models, see Min and Zellner (1993) and Zellner 
(1997). In this work involving combining models and their forecasts, 
comparisons were made with results of non-Bayesian combining methods of 
Bates, Granger and others. In these calculations, the Bayesian combining 
techniques performed slightly better than non-Bayesian combining techniques 
but did not result in much improvement relative to uncombined forecasts. 
 
(5) As mentioned earlier, our empirical forecasting models were shown to be 
compatible with certain theoretical macroeconomic models. While this 
compatibility with  economic theoretical models was satisfying, there was still 
the need to improve the explanatory and forecasting performance of our 
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models and to include additional variables to be forecast. How this was to be 
done and what was done is the subject of the next section. 
 
IV.  Disaggregation and the Marshallian Macroeconomic Model 
 In connection with the need to improve and extend our models, it was 
thought advisable to disaggregate the output variable since with disaggregated 
data there would be more observations and information that might improve 
forecasts and provide better explanations of the variation in total output. 
Further, in Zellner and Tobias (2000) the results of an experiment were 
published to indicate that disaggregation can be effective in improving 
forecasting precision. In particular, (a) equation (5a), was employed to forecast 
future values of w(t), median growth rate of 18 countries. These results were 
compared to those provided by two other procedures, namely, (b) use of (5a) 
and (5b) to forecast individual countries’ growth rates and use of the median of 
the 18 forecasts as a forecast and (c) use of just equation (4) to forecast 
individual countries’ growth rates and use of the median of these forecasts as a 
forecast of the median growth rate.  These calculations indicated that method 
(b) that involves disaggregation was much better than methods (a) and (c) 
indicating that some forms  of disaggregation can lead to improved forecasts. 
These empirical results suggested that improved forecasts of future, aggregate 
output of a country might be obtained by summing  forecasts of its 
components, as shown theoretically in papers by de Alba and Zellner (1991) , 
Lütkepohl (1986) and others. The main issue was how to disaggregate total 
output in a meaningful, fruitful and effective manner. 
 
 One morning while shaving, it occurred to me that it might be worthwhile 
to disaggregate by industrial sector, e.g. agriculture, mining, construction, retail 
trade, etc. using traditional Marshallian demand, supply and firm entry/exit 
relations for each sector. While demand and supply relations had appeared in 
many earlier macroeconomic models, few, if any, included entry and exit 
relations. For example, in real business cycle models, there is the representative 
firm and one wonders what would happen should this firm shut down. 
  
 Fortunately, in earlier work, Veloce and Zellner (1984), we had derived 
and implemented a model of the Canadian furniture industry to show the 
importance of taking account of entry and exit of firms and the number of firms 
in operation in explaining variations in furniture supply. When the variable, 
number of firms in operation was omitted from the supply equation, as in many 
previous studies, very unsatisfactory results were obtained whereas with the 
inclusion of this variable, more sensible estimation results were obtained. In 
Zellner (2001), a slightly revised version of the original Marshallian sector 
model was derived that involved competitive conditions with N profit 
maximizing firms, each with a Cobb-Douglas production function including 
neutral and factor augmenting technical change. Assuming that firms maximize 
profits, the firm’s supply function was derived and multiplied by N(t), the 
number of firms in operation a time t and the real price of output, p(t) to obtain 
a supply relation for industry real sales, S(t) = p(t)N(t)q(t) which when 
differentiated with respect to time, led to the following dynamic supply 
relation: 
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 (6)  (1/S) dS/dt = (1/N)dN/dt + ( )1/ /p dp dtη + a     SUPPLY 

 
where η  is a parameter and a denotes  a linear function of exogenous variables 
shifting supply, e.g. rates of growth of  the real wage rate, the real price of 
capital etc. 
 
 Further, with a “log-log” demand function for the sector’s output, Q, 
multiplied by the real price of output, real sales demanded is S = pQ and log S 
is a linear function of the logs of real price, real income, real money balances 
and other variables. On differentiating log S with respect to t, the following 
relation is obtained:  
 
(7) (1/S)dS/dt = v(1/p)dp/dt + b        DEMAND 
 
where v is a parameter and b = a linear function of the rates of change of 
variables shifting the demand function, e.g. real income, real money, etc. 
 
As regards entry and exit of firms, we assume: 
 
(8)  (1/N)dN/dt = c (S – F)             ENTRY-EXIT 
 
where c and F are positive parameters, the latter associated with a cost of entry. 
Also, in this model, S is proportional to real industry profits.  
   
 Thus we have three equations for the three variables, p(t) price, S(t) real 
sales and N(t) number of firms in operation. On substituting from (8) in (6) and 
then eliminating the variable (1/p)dp/dt from the remaining two equations, the 
final, implied equation for S(t) is: 

(9) (1/S)dS/dt = r – S/F + g    
 
where r is a parameter and g is a linear function of the rates of change of the 
input variables shifting the supply and demand relations, e.g. the real wage 
rate, the real price of capital services, real income, real money balances, etc. 
Note too that for g= constant or g = 0, (9) is in the form of the logistic 
differential equation with solution the logistic function that has been often used  
to model many industries’ output. Showing that such empirical logistic 
functions are compatible with a traditional Marshallian model of a competitive 
industry is indeed satisfying. See Zellner (2001) for more information 
regarding the derivation of this model.   
  
 With the above results available, in Zellner and Chen (2001), discrete 
versions of (9) were formulated and fitted using data for 11 sectors of the U.S. 
economy. Before turning to particular models, note that it is well known that a 
discrete version of the homogenous part of (9) is in the form of a chaotic model 
that can have quite unusual outputs; see, e.g. Kahn (1990, Ch. 16) and Koop, 
Peaaran and Potter (1996) for plots of the outputs of such  chaotic models. This 
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raises the question as to whether the world is better modeled using (1) a 
model using continuous time, (2) a model based on discrete time or (3) a mixed 
continuous-discrete time model , as for example used in modeling certain 
biological  populations as  mentioned in Zellner (2002) with reference to 
Cunningham (1958). While it would be interesting in future work to entertain a 
mixed model and to compute posterior odds on it versus a discrete time model, 
in recent work, Zellner and Chen (2001), we started with discrete time models, 
one of which is  
 

(10)  
(1 )log (1 )log1 1 2 2 3 3 1

(1 )log (1 )log ((1 )log2 1 3 4 1

L S S S S L Yt o t t t t

L M L w L SR ut t t t

α α α α β

β β β

− = + + + + −− − −

+ − + − + − +− −

 

where S denotes real sector sales, Y real income, M, real money, w real wage 
rate, SR real stock price index and u an error term. 
 
  It is seen that the rate of change and levels of S enter the equation, a so-
called “cointegration effect” that follows from the economic theoretical model 
presented above. The lags in the S variable were introduced to represent 
possible lags in the entry equation and in the demand equations. With 
parameters allowed to vary over sectors, the relation in (10) was fitted to 11 
sectors’ data for the U.S. economy,  agriculture, mining, construction, etc. 
using data, from the early 1950s to 1979 to fit the models and then the relations 
were employed to forecast one year ahead with estimates updated year by year, 
1980 to 1997. With 11 sector forecasts available each year, they were used to 
produce forecasts of the rate of change of aggregate real output (GDP) year by 
year. Such forecasts were compared to forecasts obtained from aggregate 
annual data using (i) an AR(3) model, (ii) an ARLI model and (iii) an 
aggregate one sector Marshallian model in the form of  (10) The benchmark 
AR(3) model missed all the turning points and yielded a mean absolute error 
(MAE) of forecast = 1.71 percentage points and root mean squared error 
(RMSE) = 2.32 percentage points. The aggregate Marshallian model’s MAE = 
1.48 and RMSE = 1.72 percentage points  are much  lower than those 
associated with  the AR(3) and ARLI models imp lemented with aggregate data. 
  
 When a time series  AR(3) model was implemented using least squares 
methods for each sector and forecasts  were aggregated to form forecasts of the 
rates of growth of aggregate real GDP, there was not much improvement, 
namely a MAE = 1.65 and RMSE = 2.26 percentage points. In contrast, the 
ARLI model and the Marshallian equation in (10), implemented with the 
disaggregated sector data and using  least squares estimation and forecasting 
methods produced much better annual forecasts of rates of growth of aggregate 
GDP with forecast MAE = 1.25 and RMSE = 1.47 percentage points for the 
Marshallian model in (10) and MAE =1.32 and RMSE = 1.62 percentage 
points for the ARLI model. Thus this set  of experiments indicates that IT 
PAYS TO DISAGREGATE for two of the three models  considered above. 
  
 In other experiments we employed various estimation and forecasting 
methods that yielded some improved forecasts relative to those provided by 
least squares. For example, using a seemingly unrelated regression approach 
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for joint estimation of the 11 sector relations in the form of (10), taking 
account of differing error term variances and their correlations across 
equations, and one year ahead forecasting with the 11 sectors’ data, the 
aggregate growth rate forecasts had MAE = 1.17 and RMSE = 1.40 percentage 
points. Also,, many other estimation and forecasting techniques employed 
yielded MAEs ranging from 1.2 to 1.4 and RMSEs ranging from 1.4 to 1.6 
percentage points thus indicating that it was probably the added information 
provided by disaggregation that produced improved forecasting performance. 
See Zellner and Chen (2001) for detailed presentation of the data and 
forecasting results. Also, it should be noted that forecasts for the highly 
variable agricultural, mining , construction and durable goods industrial sectors 
were not very accurate and need to be improved, e.g. by introduction of 
weather variables for the agricultural sector, etc. With such improvements, 
there will be improvements not only in sector forecasts but also probably in 
aggregate GDP forecasts. Also, perhaps fitting all three relations, shown in (6)-
(8) above for each sector may lead to improved sector and aggregate forecasts. 
  
 Note that a MAE of about 1.2 percentage points for forecasting annual 
real GDP for the U.S., as obtained in the above forecasting experiments, 
compares favorably with MAEs  reported in Zarnowitz (1986, Table 1, p. 23). 
As he reports, for the periods, 1969-1976 and 1977-84, the MAE = 1.2 
percentage points for the one year ahead forecasts of the rates of growth of real 
GNP made by the U.S. Council of Economic Advisors. Of course, “on line” 
forecasters have to cope with preliminary data problems not present in our 
forecasting experiments. However such on line forecasters typically use a lot of 
judgmental, outside information to adjust their models ’ forecasts and 
sometimes combine models ’ and others’ forecasts  in efforts to get improved 
forecasts that we did not do.  
 
 In summary, the above results based on our Marshallian sector models are 
encouraging and further work will be done to get improvements. Along these 
lines, it will be useful to add relations to get a closed model of the economy, 
our Marshallian Macroeconomic Model. The first steps in this direction are 
described in the next section. 
 
V. A Complete Marshallian Macroeconomic Model 
 Above, supply, demand and entry relations were formulated for each 
sector. Attention was focused on the final product market in which each 
sectors’ producers are assumed to sell. To close the model, there is a need to 
add factor markets, that is labor, capital and money markets as well as an 
international sector. The roles of intermediate goods and inventories need 
attention. And the operations of federal, state and local governments have to be 
incorporated in the model. Consideration of the birth of new sectors and the 
deaths of old sectors is needed as well as allowance for regulated and 
imperfectly competitive sectors. Improvements in entry and investment 
equations are possible. Fortunately, there is   much valuable research on many 
of these topics in the literature, which can be incorporated in our model and 
hopefully, improve it. However, what is initially needed is a “bare bones” 
complete model, that is a “Model T”  that works reasonably well. 
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 In our approach to this last problem, we have started analyzing a one 
sector closed economy MMM model by adding labor, capital and money 
markets to the product market discussed above. From initial analyses, currently 
underway with G. Israilevich, when such additions are made, the model is 
mathematically tractable and leads to final equations for the variables of the 
system that are in forms similar to that presented in (9) above. However, when 
we go to a two sector model, there are interesting interactions between sectors 
produced by dependencies in demand and supply relations that affect properties 
of solutions. Elements of stability and instability are encountered for certain 
values of strategic parameters. Every effort is being made to keep the model in 
a form so that mathematical analyses of its properties are tractable. If not, 
computer simulation techniques will be employed to help determine the 
properties of the overall model including its responses  to changes in policy 
variables, e.g. money, tax rates, etc. as has been done in much past work, 
including Zellner and Peck (1973). And of course, additional forecasting 
experiments will be carried forward using as much new data as possible. 
 
 It was a pleasure having an opportunity to discuss our work and results  
with many at this Conference. I hope that the above account of our modeling 
experiences using large data sets will be of interest and value to many data 
miners and that our future work will benefit from research that you have done 
and are currently carrying forward. Hopefully, we shall all strike gold. 
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