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Abstract

Spiky neural networks are widely used in neural modeling, due to their biological relevance
and high computational power. In this paper we investigate the usage of spiking dynamics in
embedded arti-cial neural networks, that serve as a control mechanism for evolved autonomous
agents performing a counting task. The synaptic weights and spiking dynamics are evolved us-
ing a genetic algorithm. We compare evolved spiky networks with evolved McCulloch–Pitts
networks, while confronting new questions about the nature of “spikiness” and its contribution
to the neurocontroller’s processing. We show that in a memory-dependent task, network solutions
that incorporate spiking dynamics can be less complex and easier to evolve than networks in-
volving McCulloch–Pitts neurons. We identify and rigorously characterize two distinct properties
of spiking dynamics in embedded agents: spikiness dynamic in:uence and spikiness functional
contribution.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Models of spiking neurons have been extensively studied in the neuroscience litera-
ture, in recent years. Spiky networks have a greater computational power than networks
of sigmoidal and McCulloch–Pitts neurons [8], and are able to model the ability of bi-
ological neurons to convey information by the exact timing of an individual pulse, and
not only by the frequency of the pulses [3,9]. In this paper we investigate the usage of
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spiking dynamics in embedded neurocontrollers, that serve as the control mechanism
for evolved autonomous agents (EAAs) performing a counting task. The spiky neural
networks are developed by a genetic algorithm [10] to maximize a behavioral perfor-
mance measure, and their resulting networks and dynamics are subjected to further
study. EAAs are a very promising model for studying neural processing due to their
simplicity, and their emergent architecture [5,12]. Investigating spiky neural networks
in this framework raises new questions, that were not raised using pre-designed spiky
models. For example, evolutionary robotics studies have previously analyzed whether
the spiking dynamics result in a time-dependent or a rate-dependent computation, and
investigated the eGect of noise on the emerging networks [4,11].
We rigorously address the questions of what is a “spiky” network, and how to de3ne

and measure the spikiness level of each neuron. We observe that a network with spiking
neurons is not necessarily “spiky”, in terms of integration of inputs over time, and of
the spikiness functional contribution. Following this observation, we present two new
fundamental ways by which we de-ne and quantify the spikiness level of a neuron.
The study of spiking neural networks is performed within a counting task, as this task
requires memory, and cannot be solved by a simple sensory-motor mapping. The rest
of this paper is organized as follows: Section 2 describes the network architecture and
the evolutionary procedure; in Section 3 we present two basic properties of spikiness in
embedded agents; Section 4 analyzes the evolved neurocontrollers and their dynamics;
the results and their implications are discussed in Section 5.

2. The model

2.1. The EAA environment

The EAA environment is described in detail in [2]. The agents live in a discrete
2D grid “world” surrounded by walls. Poison items are scattered all around the world,
while food items are scattered only in a “food zone” in one corner. The agent’s goal
is to -nd and eat as many food items as possible during its life, while avoiding the
poison items. The -tness of the agent is proportional to the number of food items
minus the number of poison items it consumes. The agent is equipped with a set of
sensors, motors, and a fully recurrent neurocontroller of binary neurons.
Four sensors encode the presence of a resource (food or poison, without distinction

between the two), a wall, or a vacancy in the cell the agent occupies and in the
three cells directly in front of it (Fig. 1). A -fth sensor is a “smell” sensor which
can diGerentiate between food and poison underneath the agent, but gives a random
reading if the agent is in an empty cell. The four motor neurons dictate movement
forward (neuron 1), a turn left (neuron 2) or right (neuron 3), and control the state of
the mouth (open or closed, neuron 4).
In previous studies [2], eating occurs if the agent stands on a grid cell containing a

resource for one step. Here, we have modi-ed this task to include a delayed-response
challenge: In order to eat, the agent has to stand on a grid-cell containing a resource
for a precise number of steps K , without moving or turning, and then consume it, by
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Fig. 1. The EAA environment. An outline of the grid world and the agent’s neurocontroller. The agent is
marked by a small arrow on the grid, whose direction indicates its orientation. The curved lines indicate
where in the arena each of the sensory inputs comes from.

closing its mouth on the last waiting step. Closing its mouth after standing on a food
item for more or less than K steps does not increase its -tness. Hence, in essence, the
agent has to learn to count to K precisely. The agent’s lifespan, de-ned by the number
of sensorimotor steps available to it, is limited. Waiting steps are not counted as part
of lifespan steps in order to facilitate the evolution of the counting task.

2.2. The neurocontrollers

All neurocontrollers are fully recurrent with self-connections, containing 10 binary
neurons (out of which 4 are motor neurons), and 5 sensor neurons that are con-
nected to all network neurons. We compare between neurocontrollers with McCulloch
–Pitts (MP) neurons, employed conventionally in most EAA studies, and ones with
spiky integrate-and-3re neurons. In both types of networks, a neuron -res if its volt-
age exceeds a threshold. The spiking dynamics of an integrate-and--re neuron i are
de-ned by

Vi(t) = �i(Vi(t − 1) − Vrest) + Vrest + 1
N

N∑

j=1

Aj(t)W (j; i); (1)

where Vi(t) is the voltage of neuron i at time t, �i is a memory factor of neuron i
(which stands for its membrane time-constant), Aj(t) is the activation (-ring) of neuron
j at time t, W (j; i) is the synaptic weight from neuron j to neuron i, N is the number
of neurons including the input sensory neurons, and Vrest stands for the resting voltage
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(set to zero in all simulations). After -ring, the voltage of a spiky neuron is reset to
the resting voltage, with no refractory period.
The voltage of a spiky neuron results from an interplay between the history of its

inputs and the current input -eld. The memory factor, which ranges between 0 and 1,
determines the amount of integration over time that the neuron performs: The higher the
memory factor, the more important is the neuron’s history (Vi(t−1)), compared to the
current input -eld (the last summand in Eq. (1)). The limit case of �i=0 corresponds to
a MP neuron, in which only the current input -eld determines the voltage. The memory
factor is diGerent for each neuron, as diGerent neurons may have diGerent roles, each
demanding a diGerent amount of integration over time. A genetic algorithm is used
to evolve the synaptic weights W (j; i) and, for spiky neurocontrollers, the memory
factor parameters. Evolution is conducted over a population of 100 agents for 30000
generations, starting from random neurocontrollers, using a mutation rate of 0.2 and
uniform point-crossover with rate of 0.35.

3. The di�erent faces of “Spikiness”

We evolved agents that use spiking dynamics in order to successfully solve the
counting task. But are these agents really spiky, in the sense that they integrate their
inputs over time? First, having encoded the neuronal memory factors in the genome
gives rise to the possibility that the evolution will come out with non-spiky solu-
tions. Second, even if the memory factor is high, it does not ensure that the neuron
indeed utilizes its “integration potential” in its 3ring. For example, a neuron may
receive a large excitatory input -eld in every time step and -re in a very high fre-
quency, without performing any integration over its past input -elds. That is, given
its input -eld, its pattern of -ring would be indistinguishable from a MP neuron.
Third, even if the spikiness is utilized for 3ring, it does not necessarily contribute to
the agent’s performance. Essentially, we aim to distinguish between the observation
that a given neuron has been assigned spiking dynamics by evolution, i.e. obtained a
non-vanishing memory factor, and the true level of its spikiness, i.e., the amount by
which it really “utilizes” its spiking dynamics. In this section we present two methods
for measuring the spikiness level of a neuron, based on two fundamentally diGerent
perspectives.

3.1. Spiking dynamic factor (SDF)

The -rst index of spikiness measures how much do the spiking dynamics of a neu-
ron in;uence its 3ring: If the -ring pattern of a neuron stays the same regardless of
whether it possesses spiking dynamics or not, then we can consider it as non-spiky.
The SDF index is calculated by tracing the -ring pattern of a spiky neuron and com-
paring its actual -ring to that of a MP neuron receiving an identical current input
-eld on each time step (last summand in Eq. (1)). The fraction of time steps in
which there is a diGerence between the activations of the spiky neuron and the corre-
sponding “benchmark” MP neuron quanti-es the average percentage of lifetime steps
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in which the neuron’s spiking dynamics “made a di<erence” in the 3ring of the
neuron.

3.2. Spikiness relevance (SR)

The second measurement for spikiness answers the following question: how much
are the spiking dynamics of a neuron needed for good performance of the agent? In-
tuitively, if while abolishing the spiking dynamics of a neuron, the agent’s performance
deteriorates considerably, then its spiking dynamics contribute to the agent’s behavior.
If, in contrast, the -tness of the agent is maintained, this neuron’s spiking dynamics
are functionally insigni-cant.
To quantify this type of spikiness we lesion the memory factors of neurons by

clamping them to zero (and in fact turning them into MP neurons), leaving the rest of
their dynamics unaltered. Fitness scores are measured when clamping together the mem-
ory factors of each subgroup of neurons. Based on these data, the multi-perturbation
Shapley value analysis (MSA) [6,7] determines the causal importance of the spik-
ing dynamics of each neuron to successful behavior. The SDF and SR measures are
normalized such that the sum over all neurons equals one.

4. Results

4.1. Performance evaluation

Successful agents that solve the counting task were evolved with both MP and spiky
networks. The evolution of the counting task is fairly diLcult, and many evolutionary
runs ended (i.e. the performance has converged) without yielding successful agents. We
measure the diLculty of each task as the average -tness score of the best evolutionary
agent (Fig. 3A). Evidently, the task is harder as the agent has to wait for a longer
waiting period. More important, successful spiky neurocontrollers evolve more easily
than MP networks.

4.2. Spikiness analysis

We examine the spikiness level of the neurocontrollers evolved with spiking neu-
rons, focusing on two agents: S5 and S7, with a waiting period of 5 and 7 time steps,
respectively. For S5, Fig. 2A compares the SR values of the diGerent neurons with the
contributions of the neurons yielded by the MSA based on all possible multi-lesions of
subgroups of neurons. These contributions quantify how much each neuron contributes
to successful behavior [6,7]. Notably, neurons 1, 4, 9 and 10 contribute signi-cantly to
the agent’s behavior, as shown by their general MSA contributions, while the spikiness
of only neurons 1 and 10 has a signi-cant contribution, according to their SR values.
Fig. 2A also presents the SDF values. Clearly, the two methods for measuring “spiki-
ness” yield diGerent results: Neuron 5 receives a very high SDF score, and a near-zero
SR score. A more pronounced diGerence is apparent in Fig. 2B, which shows both
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Fig. 2. Comparison between spikiness measurements. (A) SR and SDF scores for the neurons of agent S5,
along with their general neuronal contributions. (B) SR and SDF scores for agent S7.

measures for agent S7. In this case, the seventh neuron gets the highest SR value, but
receives a pretty low SDF score. Neurons 5 and 8 are the most spiky ones according
to the SDF measure, but receive low SR values.
The diGerence between the results of the two spikiness measurements originates

in their diGerent nature: The SDF method measures the role that spiking dynamics
play in determining the -ring of a neuron irrespectively of that neuron’s functional
and behavioral role. The SR method is a functional measurement, which considers as
spiky only neurons whose spikiness contributes to behavior. Usually such neurons will
also have high neuronal contributions, and will be generally important to behavior.
Additionally, since in:uencing the -ring pattern of the neuron is a prerequisite of
having a behavioral contribution, these neurons must have a non-zero SDF score. In
the case of agent S7, further analysis of its behavior and activation patterns revealed
that the spikiness of neuron 7 plays a pivotal role in the agent’s counting ability. When
the memory-factor of this neuron is clamped, the agent cannot eat, explaining its very
high SR value. However, since the fraction of steps in which the spiking dynamics
in:uence the activation of neuron 7 is only about 3% (the counting steps), this neuron
receives a low SDF score.
In almost all evolved spiky agents, most of the network’s neurons have low spikiness

functional contributions (SR). Usually, neurons with high SR scores are involved in
the counting process, which utilizes the memory abilities of a spiky neuron. The two
spikiness measurements show that the evolved agents are truly spiky, both in using
past history to determine the activation patterns of some neurons, and in utilizing the
spiking dynamics for successful behavior.

4.3. Counting analysis and processing distribution

It is interesting to compare between the spiky and the non-spiky networks, in terms
of distribution of processing. The distribution index [1] measures how distributed is a
given task in the network, the higher it is, the more the processing is evenly spread in
the network across many neurons. We have already shown that the diLculty of evolving
the counting-task increases with the waiting period (Section 4.1). Is there a correlation
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Fig. 3. (A) Average -tness vs waiting period: The -tness score of the best evolutionary agent averaged
over 30 evolutionary runs, along with the standard deviation of the mean. (B) Distribution index (mean and
standard deviation of the mean across several successfully evolved agents) vs waiting period.

between the diLculty of evolving a network that solves a task, and the distribution level
of the resulting network? Fig. 3B plots the average distribution score, calculated based
on the general MSA contributions, as a function of the waiting period. In both types
of agents, the network’s distribution increases with the length of the waiting period,
and MP agents are more distributed than the spiky ones. Interestingly, the correlation
coeLcient between the distribution index and the average -tness score is high: 0.8 for
the spiky networks, and 0.9 for the MP ones.
The higher distribution levels observed in MP networks compared with the spiky

ones result from a diGerent counting network processing: In order to count to K , an
MP network has to pass through K distinct activation states. In a spiky network, the
same network activation state can be repeated several times during the counting process,
since the state of a neuron consists also of its accumulated voltage. Therefore, a spiky
network can theoretically count with a single neuron, that accumulates voltage over
K − 1 steps, and -res on the K th step. The evolved spiky networks do not posses
such eLcient counting, but usually a small number of neurons use their spikiness to
accumulate voltage and “count” for a few steps, and as a result, less neurons are
needed compared with MP networks. By using incremental evolution techniques we
evolved agents with spiking dynamics that count up to waiting periods of 35! Such
agents utilize a very eLcient counting method that involves only two spiky neurons
with high functional (SR) contributions.

5. Discussion

The simplicity and concreteness of EAA models makes them a promising frame-
work for computational neuroscience research. The study of spiky neural networks in
the context of embedded evolutionary agents brings forward basic questions regarding
spiking dynamics that have not yet been raised. Apparently, the presence of evolved
spiking dynamics does not necessarily transcribe to actual spikiness in the network. We
have presented two ways by which the spikiness level of each neuron can be de-ned
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and quanti-ed. Speci-cally, the spikiness dynamic in:uence (SDF) and the spikiness
functional contribution (SR) each point to diGerent neurons in the neurocontrollers
studied. We have shown that in tasks possessing memory-dependent dynamics network
solutions that involve spiking neurons can be less complex and easier to evolve, com-
pared with MP networks.
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