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Abstract

An associative memory has been discussed of neural networks consisting of spiking N (= 100)
Hodgkin-Huxley (HH) neurons with time-delayed couplings, which memorize P patterns in
their synaptic weights. In addition to excitatory synapses whose strengths are modified after
the Willshaw-type learning rule with the 0/1 code for quiescent/active states, the network
includes uniform inhibitory synapses which are introduced to reduce cross-talk noises. Our
simulations of the HH neuron network for the noise-free state have shown to yield a fairly
good performance with the storage capacity of αc = Pmax/N ∼ 0.4− 2.4 for the low neuron
activity of f ∼ 0.04−0.10. This storage capacity of our temporal-code network is comparable
to that of the rate-code model with the Willshaw-type synapses. Our HH neuron network is
realized not to be vulnerable to the distribution of time delays in couplings. The variability
of interspace interval (ISI) of output spike trains in the process of retrieving stored patterns
is also discussed.
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I. INTRODUCTION

The Hopfield-type neural networks have been intensively investigated as a model for
the learning and memory of brain [1]. In this type of models the information is stored as
a content-addressable memory in which synaptic strengths are modified after the Hebbian
rule. Its retrieval is made when the network with the symmetric couplings works as the
point-attractor with the fixed points. These models have been analyzed by the method
of statistical mechanics of spin glasses [2]. Such analysis provides us with most important
information of storage capacity, role of noise and recall performance. The Hopfield-type
models, however, are an extreme abstraction of real neural networks and they have the
following issues from the biological viewpoint.

(i) The dynamical variable in the Hopfield-type model is the firing rate of neurons (rate
coding). However, the importance of a precise timing of firing (temporal coding) is currently
realized in many experiments: sonar processing of bats [3], sound localization of owls [4],
electrosensation in electric fish [5], visual processing of cats [6] [7], monkeys [8] and human
[9].

(ii) The synaptic weight Wjk for a given synapse between the pre-synaptic neuron k and
the post-synaptic neuron j in the Hopfield-type models is usually assumed to be given by
[1]

Wjk =
P∑

µ=1

(ξ
(µ)
j − a) (ξ

(µ)
k − b), (1)

where P stands for the number of patterns to be stored, ξ
(µ)
j = -1/1 (or 0/1) for quies-

cent/active states and a = b = f ≡< ξ
(µ)
j >, the average activity. Equation (1) shows

that a given synapse may be positive (excitatory) or negative (inhibitory) depending on the
covariance of the pre- and post-synaptic activities. This is not biologically realized because
the synapse is either excitatory or inhibitory with little exception. Furthermore, Eq.(1)
shows that the potentiation of the synaptic strength of a given synapse is possible even in
the absence of pre- and post-synaptic activities (ξ

(µ)
j = ξ

(µ)
k = −1 or 0). The potentiation

without the brain activity again contradicts the biological evidence.
In recent years some theoretical studies have been reported of the learning and memory

in terms of the temporal coding with the use of spiking neurons [10]- [16] or oscillating
neurons [17]- [21]. It has been shown that spiking neurons such as the spike-response and
integrate-and-fire neurons with a correlation-based Hebbian learning rule can operate very
fast in the order of ten milliseconds [10] [11]. Mueller and Herz [15] showed that the networks
consisting of spiking integrate-and-fire (IF) neurons possess the storage capacity similar to
those of rate-code neurons. Their model, however, adopts the leaning rule given by Eq.(1) for
storing patterns in synapse weights, and then it has the second issue raised above. Based on
spiking FitzHugh-Nagumo (FN) neurons with time-delayed couplings, Yoshioka and Shiino
[13], and Kanamuru and Okabe [16] discussed the associative memory with the use of the
leaning rule given by Eq.(1) but with a = 0 and b = f for the 0/1 code. Their approach
has the second issue because their Wjk may be positive for negative depending on whether

ξ
(µ)
k = 1 or 0 for ξ

(µ)
j = 1.

Among spiking neuron models having been proposed so far, the Hodgkin-Huxley (HH)
model is expected to be the most realistic in the biological sense. Since the HH model was
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proposed in 1952 [22], its property has been intensively investigated. Its responses to applied
dc [23] and sinusoidal currents [24], and spiking impulses [25] have been studied. The HH
model has been generalized with modifications in ion conductances and widely adopted for
a study of biological systems such as hippocampus [26] and thalamus [27].

Quite recently, Lytton [12] has proposed the feedfoward hetero-associative memory net-
work of spiking 40 HH neurons, by employing the notion of the Anderson-Kohonen network.
The weight of the excitatory synapses is assumed to be given by the conventional Hebbian
rule:

Wjk =
P∑

µ=1

ξ
(µ)
j ξ

(µ)
k , (2)

with ξµ
j = 0/1 for quiescent/active states. In addition to the excitatory synapses, Lytton has

included inhibitory synapses whose weights are determined by a feedfoward rule depending
on input patterns, in order to suppress the cross-talk noises arising from the non-orthogonal
inputs. Equation (2) shows that the synapse is strengthen only when both pre- and post-
synapses are active, in agreement with biological experiments. It is shown, however, that the
retrieval of the HH network is only possible in the narrow parameter ranges of conductances
of excitatory and inhibitory synapses [12].

Since a naive transplant of the Hebbian rule given by Eq.(2) to HH neuron networks
yields the poor performance in retrieving memorized patterns, as was shown by Lytton [12],
we adopt, in this paper, the Willshaw rule given by [28]

Wjk = Θ(
P∑

µ=1

ξ
(µ)
j ξ

(µ)
k ), (3)

where Θ(x) = 1 for x > 0 and 0 otherwise, and ξ
(µ)
j = 0/1 for quiescent/active states. The

synaptic weight given by Eq.(3) is either one or zero, in contrast with that given by Eqs.
(1) and (2). Such a dramatic reduction is not biologically justifiable except under some
conditions when the postsynaptic membrane of a dendritic spine is active [30]. It has been,
however, reported that the Willshaw rule given by Eq.(3) improves the storage efficiency
of Hopfield-type neural networks [28]- [33]. Equation (3) shows that the synaptic weight is
potentiated only for the simultaneous firings of the pre- and post-synaptic neurons, which
is in accord with biological results.

Theoretical studies on memory have extensively pursued the analytical approach, requir-
ing simplified tractable models, which do not necessarily reflect the aspect of the biological
reality. As an alternative approach, we may take a simulation method for a better under-
standing of functioning of real, biological systems to which an analytical method cannot
applied.

It is the purpose of the present paper to construct biologically plausible model for an as-
sociative memory. We propose HH neuron networks with excitatory and inhibitory synapses,
weights of the former are modified by the Willshaw-type learning rule. Simulations of the
memory function of the network are performed for sparse coding with the low firing activity
(f � 1) because neurophysical evidences indicate that only a small fraction of neurons are
active at a given time [34]. Our simulations demonstrate that our HH neuron networks
works fairly well in memory function within the temporal coding.
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Our paper is organized as follows: In the next Sec. II, we describe a neural system
consisting of N HH neurons which are fully connected with time-delayed couplings. The
results of simulations are presented in Sec. III. The retrieval of the stored patterns by perfect
and imperfect input patterns are studied in Sec. 3.1 and Sec. 3.2, respectively, and the effect
of the distribution of the time delay in couplings is discussed in Sec. 3.3. The final Sec.
IV is devoted to discussions concerning the relevant rate-code model and the variability of
interspike intervals (ISI) of output spike trains.

II. ADOPTED NETWORK MODEL

We adopt a network of N HH neurons which stores and retrieves sparsely coded P
patterns. HH neurons described by identical parameters, are fully coupled by synapses with
time-delayed couplings. The input information is assumed to be stored in the synaptic
plasticity as will be discussed shortly [Eq.(11)].

Dynamics of the membrane potential Vj of the HH neuron j (= 1, .., N) is described by
the non-linear delay-differential equations given by

C dVj(t)/dt = −I ion
j (Vj, mj , hj, nj) + Iext

j + I int
j , (4)

where C = 1 µF/cm2 is the capacity of the membrane. The first term of Eq.(4) expresses
the ion current given by

I ion
j (Vj, mj , hj, nj) = gNam

3
jhj(Vj − VNa) + gKn4

j (Vj − VK) + gL(Vj − VL). (5)

Here the maximum values of conductivities of Na and K channels and leakage are gNa =
120 mS/cm2, gK = 36 mS/cm2 and gL = 0.3 mS/cm2, respectively, and the respective
reversal potentials are VNa = 50 mV, VK = −77 mV and VL = −54.5 mV. The dynamics
of gating variables of Na and K channels, mj , hj and nj , are described by linear-differential
equations, whose explicit expressions have been given (for example see [25]).

The second term in Eq.(4) denotes the external input current given by

Iext
j = gsyn (Va − Vc)

∑

n

α(t − tin), (6)

which is induced by the pre-synaptic spike-train input applied to the neuron i, given by

Ui(t) = Va

∑

n

δ(t − tin). (7)

In Eqs.(6) and (7), tin is the n-th firing time of the spike-train inputs, gsyn and Vc denote the
conductance and the reversal potential, respectively, of the synapse, τs is the time constant
relevant to the synapse conduction, and α(t) is the alpha function given by

α(t) = (t/τs) e−t/τs Θ(t). (8)

where Θ(t) is the Heaviside function.
When the membrane potential of the j-th neuron Vj(t) oscillates, it yields the spike-train

output, which may be expressed by
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Uoj(t) = Va

∑

m

δ(t − tojm), (9)

in a similar form to Eq.(7), tojm being the m-th firing time when Vj(t) crosses Vz = 0.0 mV
from below.

The third term in Eq.(4) expresses the interaction between neurons:

I int
j = G(

∑

k(6=j)

∑

m

(gexc
jk − ginh

jk )(Va − Vc) α(t − τjk − tokm)). (10)

with

gexc
jk = gexc Θ(

P∑

µ=1

ξ
(µ)
j ξ

(µ)
k ), (11)

G(x) = x Θ(x), (12)

In Eqs.(10)-(12) the self-interaction (j = k) is forbidden, gexc
jk denotes the conductance of the

excitatory synapse, ginh
jk that of the inhibitory synapse, and the time delay τjk (= τkj = τd)

is the sum of conduction times for currents from the neurons k to j through the axon and
dendrite. The excitatory synaptic strength gexc

jk in Eq.(11) takes either the value of 0 or gexc

after Willshaw et al. [28] [29]. The synaptic plasticity occurs only when both the pre- and
post-synaptic neurons fire simultaneously, in accord with biological findings. The uniform
inhibition ginh

jk = ginh is included to reduce the cross-talk noise.
The function G(x) in Eq.(12) represents the dendrite processing of postsynaptic currents,

and its uni-directional form is adopted such that neurons do not fire for resultant inhibitory
inputs [35]. It is well known that an HH (and FN) neuron can fire even for an inhibitory input
with the inhibitory rebound process [36], whereas an IF neuron cannot. Figure 1(a) and
1(b) show responses of a single HH neuron to excitatory and inhibitory inputs, respectively,
which are calculated by setting I int

j = 0 in Eq.(4). With an application of an excitatory
input, a HH neuron is depolarized to fire at 2.8 msec after the trigger, and it recovers to the
rest state with the refractory period of about 10 msec. When an inhibitory input is applied,
on the other hand, a HH neuron is once hyper-polarized and then depolarized to fire after
14.6 msec of the input injection. Because the firing of neurons for inhibitory inputs is not
appropriate for the memory retrieval, we introduce the uni-directional function G(x) given
by Eq.(12), which suppresses the negative (inhibitory) input, related discussions being given
in Sec.IV.

Patterns to be stored are expressed by a vector of ξ(µ) = {ξ
(µ)
j | j = 1 − N} where

µ = 1−P and ξ
(µ)
j = 0(1) for the quiescent (firing) state of the neuron j. We randomly create

the patterns to be stored such as to satisfy the condition for a given number of unit-codes,
M (= fN):

M = M (µ) =
∑

j

ξ
(µ)
j . (13)

Without a loss of the generality, we take for the µ = 1 pattern that ξ
(1)
j = 1 for j ≤ M and

ξ
(1)
j = 0 for j > M . Simulations have been repeated for ten samples, each of which includes
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P patterns. The standard deviations in the calculated results are shown by error bars in
figures of the following sections.

The retrieval of the first pattern of ξ(1) is made by injecting a proper input pattern of
ζ to our network at t = 0. The input pattern may be ζ = ξ(1) (perfect input) or ζ 6= ξ(1)

(imperfect input). Differential equations given by Eqs.(4)-(12) are solved by the forth-order
Runge-Kutta method by the integration time step of 0.01 msec with double precision. We
assume that all HH neurons are in the same initial conditions given by

Vj(t) = −65 mV, mj(t) = 0.0526, hj(t) = 0.600, nj(t) = 0.313, for j = 1, 2 at t = 0, (14)

which are the rest-state solution of a single HH neuron (I int
j = 0). The initial function for

Vj(t) of all HH neurons is given by

Vj(t) = −65 mV for j = 1, 2 at t ∈ [−τd, 0). (15)

The adopted model parameters are summarized as follows: N = 100, Va = 30 mV, Vc =
−50 mV, τd = 10 msec, τs = 2 msec [25], gsyn = gexc = 0.3 mS/cm2 and ginh = 0.24 mS/cm2.
The time delays are taken to be a single constant value of τjk = τkj = τd in Sec. 3.1 and 3.2,
while in Sec. 3.3 they are allowed to uniformly distribute in the limited range. We choose
τd = 10 msec such that it not only satisfies the condition of τd > 7 msec, which arises from
the absolute refractory period of a HH neuron [Fig. 1], but also it is witnin the biologically
conceivable values [13]. A choice of gexc and ginh will be discussed shortly. Although the size
of N (and P and M) is not sufficient large because of a limitation of our computer facility,
the calculated results are expected to be useful and meaningful.

III. RESULTS OF SIMULATIONS

3.1 Retrieval by perfect inputs

Firstly we consider, in this subsection, the case in which ζ = ξ(1) is injected for retrieval
of ξ(1) (the perfect input): the retrieval by imperfect-input injection (ζ 6= ξ(1)) will be
discussed in the following subsection 3.2.

We define the initial overlap, mi, between the input pattern ζ and the pattern to be
retrieved ξ(1):

mi = (1/N)
∑

j

[2ξ
(1)
j − 1] [2ζj − 1]. (16)

It is easy to see that mi = 1.0 for ζj = ξ
(1)
j . Similarly the time-dependent overlap, m(t),

between the state of the system and the pattern ξ(1), is defined by

m(t) = (1/N)
∑

j

[2ξ
(1)
j − 1] [2ηj(t) − 1], (17)

where ηj(t) is given by

ηj(t) = 1, if Uoj = 1 at t ∈ [tojm − δt, tojm + δt] ,

= 0, otherwise, (18)
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tojm (m = 1, 2, ..) being the firing time of the neuron j and δt (= 2.45 τsyn ∼ 5 msec)
denoting the margin with a magnitude of a half-width of the alpha function given by Eq.(8).

We hereafter regard firings with the overlap of m(t) = 1.0 at t
>
∼ 50 τd as a successful

retrieval.
An example of an retrieval of of ξ(1) for a given set of patterns, is shown in Fig. 2.

We show the time course of a trigger input Uij, the output Uoj , the pre-synaptic current
Ij (= Iext

j + I int
j ) and the membrane potential Vj of the neuron of j = 1, for an injection

of the input pattern ζ at t = 0 with α = 0.30, f = 0.1, gsys = gexc = 0.30 and ginh =
0.24 mS/cm2. The pre-synaptic current Iext

1 starting from t = 0 is yielded by the trigger
input Uij, while other pre-synaptic currents, for example, starting from t = 12.6 msec, arise
from the interaction term I int

j through the couplings. The firing of the neuron j = 1 is given
by Uo1(t) = 1, and it is compactly depicted in Fig. 3(a), where dots express firings of neurons
numbered by the index j = 1 − 100 in the vertical scale as a function of time [Uoj(t) = 1 in
Eq.(9)]. Figure 3(a) shows a successful retrieval for α = P/N = 0.30 with f = M/N = 0.10,
gexc = 0.30 mS/cm2 and λ = 0.8. The time-dependent overlap m(t) given by Eq.(17) is
always unity: mi = m(t) = 1.0 at t ≥ 0, which is calculated at t = to1m (m = 1, 2, ..), firing
times of the neuron 1, and which is plotted at the upper part of Fig. 3(a). The period
of firings To is determined by To = τd + τr ∼ 12.5 msec where τd denotes the delay time
of couplings and τr ∼ 2.5 msec is the response time of a HH neuron. Figure 3(b), on the
contrary, shows a failed case for a larger α value of α = 0.50, yielding extra firings of neurons
of j > 10 and non-firings of j ≤ 10. We note that mi = m(t) = 1.0 at t = 0 but m(t) quickly
deviates from its initial value at t > 0. Figures 3(a) and 3(b) show that a single trigger
impulse is sufficient to recall the stored pattern.

In order to show the importance of the uniform, inhibitory synapse introduced by ginh

in Eq.(10), we plot, in Fig. 4, the λ (= ginh/gexc) dependence of the critical storage capacity
αc = Pmax/N , above which the retrieval of the input pattern cannot made. We note that
αc decreases as the value of λ decreases. Although the λ dependence of αc with gexc =
0.3 mS/cm2 is slightly different from that with gexc = 0.5 mS/cm2 for f = 0.06, the result
with gexc = 0.3 mS/cm2 is identical with that of gexc = 0.5 mS/cm2 for f = 0.10. We have
decided to adopt gexc = 0.3 mS/cm2 and λ = 0.8 (ginh = 0.24 mS/cm2) for our simulations.

The calculated storage capacity αc as a function of the mean activity f is plotted in
Fig. 5, where bars express the standard deviations due to the sample dependence. It clearly
shows that αc increases as f decreases. Theoretical analysis based on the Hopfield model
has shown that the storage capacity diverges as αc ∝ (−1/f logf) in the limit of vanishing f
[37]- [41]. Recent calculations of oscillating associative memory made by Aoyagi and Nomura
[19] also support the (−1/f logf) dependence. Although the f values of our simulations for
spiking HH neuron networks are not sufficiently small, our result seems to support it: the
dotted curve expresses 10/(M logM), which is proportional to (−1/f logf) in the limit of
f → 0.

3.2 Retrieval by imperfect inputs

Next we discuss the retrieval of ξ(1) when an imperfect input, ζ 6= ξ(1), is injected.
We assume that an input pattern ζ is similar to ξ(1) but some of its codes are modified,
keeping unit-code number unchanged: M =

∑
j ζj. We adopt ζ whose codes are same as

those of ξ(1) except 1-codes in j ∈ [M −∆M/2, M)] are changed to 0-codes, and 0-codes in
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j ∈ [M + 1, M + ∆M/2] to 1-codes , where even ∆M (≥ 2) is the number of changed codes.
The initial overlap of ζ thus created is mi = 1.0 − 2 ∆M/N .

Figure 6(a) shows an example of the successful retrieval when an input with the initial
overlap of mi = 0.84 is injected for α = 0.10 and f = 0.20. The time dependence of m(t)
plotted in Fig. 7, shows that m(t) = mi = 0.84 just after an input injection and m(t)
gradually approaches unity. The time dependence of m(t) for the case of mi = 0.92 also
successfully approaches unity. On the contrary, when an input pattern has a smaller initial
overlap of mi = 0.68, the retrieval is failed; firings of neurons spread all over the system as
shown in Fig. 6(b) and the overlap m(t) decreases from the initial value of mi = 0.68 as
shown in Fig. 7. The failed case is plotted also for mi = 0.52, whose transient value of m(t)
is not necessary smaller than that for mi = 0.68.

The dashed curves in Fig. 8 show the storage capacity αc against the initial overlap
mi for f = 0.20. It shows the critical, initial overlap is about mi = 0.73 for α = 0.1 and
f = 0.20 (Fig. 7). We note in Fig. 8 that for f = 0.20, the retrieval is effectively possible

for mi
>
∼ 0.6. On the contrary, for f = 0.10, the retrieval is possible only in the restricted

region of 0.92 < mi ≤ 1.0. Figures 7 and 8 reminds us the similar calculation made by
Amari and Maginu for the Hopfield model [42].

3.3 Effect of distributed time delays

So far we have assumed that the time delays are the same for all couplings connecting
neurons: τjk = τkj = τd. It is expected to be not the case in real biological systems. In order
to study the effect of their distributions, we assume that time delays uniformly (randomly)
distribute as

τjk = τkj ∈ [τd − ∆τ/2, τd + ∆τ/2], (19)

where ∆τ is a width of the time-delay distribution.
When the width of the time-delays distribution becomes large, it is difficult for post-

synaptic currents to sustain firings of neurons. The solid curve in Fig. 9, expressing the
critical storage αc for f = 0.06 as a function of ∆τ for the perfect-input retrieval, shows that
the critical storage decreases when the width of the distribution becomes wide, and that αc

vanishes for ∆τ ≥ 6 msec. In the case of f = 0.10, whose result is plotted by dashed curve,
αc vanishes for ∆τ ≥ 9 msec. Although the time-dependent overlap of f = 0.10 deviates
from 1.0 for ∆τ > 9 msec, the oscillating firings may continue with spread firing times. Fig.
10 shows such a case of ∆τ = 10 msec, in which neurons from j = 1 to 10 fire as the pattern
ξ(1) but not in a coherent way. The time dependent overlap defined by Eq.(17) oscillates
with 0.88 ≤ m(t) ≤ 1.0, as is shown in the upper part of Fig. 10.

The critical width of the time-delay distribution, ∆τc, above which the retrieval of the
stored patterns is failed, depends on the average time delay of τd. Figure 11 shows ∆τc for
three cases of (f, α)=(0.06, 0.30), (0.06, 0.10) and (0.10, 0.10). We should note that the
time delay has the lower bound of 7 msec below which the retrieval is not possible because
of the absolute refractory period of a HH neuron [Fig.1], while it has no upper bounds. For
both α=0.30 and 0.10, the critical width for f = 0.06 has a maximum value of ∆τc = 13
msec at τd = 15 msec, and ∆τc ∼ 8 msec at τd ≥ 25 msec. The critical width for f = 0.10
is ∆τc = 13 msec at τd

>
∼ 15 msec, which is larger than that for f = 0.06. Our HH neuron

network is fairly robust against the distribution of the time delays in couplings.

8



IV. DISCUSSION AND CONCLUSION

Our simulations have demonstrated that neural networks consisting of spiking HH neu-
rons may show a fairly good performance as an associative memory with the memory capacity
of αc ∼ 0.4 − 2.4 for f ∼ 0.04 − 0.10 [Fig. 5]. It is worth to compare the storage capacity
of our HH neuron networks with that of the rate-code model in which the dynamics of the
firing rate xj(t) is given by

xj(t + 1) = Θ(
∑

k(6=j)

(Wjk − ν) xk(t) − θ). (20)

In Eq.(20) Wjk is determined by the Willshaw-type rule given by Eq.(2), and ν (0 < ν < 1)
and θ are the inhibitory coupling and the threshold, respectively, which are introduced to
suppress cross-talk noises [29]- [33]. The storage capacity αc depends on f , ν and θ. The
calculated αc of this rate-code model is shown as a function of f by the solid curve in Fig.
12, where parameters of N = 100, ν = 0.8 and θ = 0.5 are adopted [43]. We get the memory
capacity of αc ∼ 0.4−3.7 for f ∼ 0.04−0.10, which is comparable to that of our HH neuron
network.

For a comparison, we have repeated calculations of the storage capacity of the rate-

code model mentioned above, employing the conventional Hebb-type rule given by Eq.(2)
instead of the Willshaw-type one given by Eq.(3). The calculated f dependence of the
memory capacity is plotted by the dashed curve in Fig. 12. The storage capacity becomes
αc ∼ 0.2− 1.5 for f ∼ 0.04− 0.10, which is about a half of the values in the rate-code model
with the Willshaw-type synapses. The critical storage capacities in the Hopfield model with
Willshaw-type [Eq.(2)] and Hebb-type synapses [Eq.(3)] increase as the activity f decreases,
which is in agreement with the theoretical analysis [38]- [40].

We now examine the following two assumptions adopted in Eq.(10) for the interaction
term in our HH neuron network:

(i) the Willshaw-type rule for weights of excitatory synapses and the uniform inhibitory
synapses [Eq.(11)], and

(ii) the uni-directional function, G(x) [Eq.(12)] for dendrite processing.
We have employed the assumption (i) to enhance the storage capacity. In order to show this
explicitly, we calculate the f dependence of the storage capacity αc when the Willshaw-type
learning rule given by Eq.(11) in our HH neuron network is replaced by the conventional
Hebb-type one:

gjk = gexc

P∑

µ=1

ξ
(µ)
j ξ

(µ)
k . (21)

The calculated storage capacity αc is plotted by the solid curve in Fig. 13 as a function of
the average activity f . The memory capacity is αc ∼ 0.03− 0.14 for f ∼ 0.04− 0.10, which
is much smaller than the corresponding value of αc ∼ 0.4−2.4 obtained with Willshaw-type
rule [Fig. 5]. This clearly shows that the storage capacity with the Willshaw-type rule
[Eq.(11)] is enhanced by a factor of ten. The reason why the solid curve in Fig. 13 has a
discontinuous change at f ∼ 10, is not clear at the moment. The solid curve loosely follows
the dotted curve expressing 1/(M logM), which is proportional to (−1/f logf) at f → 0.
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The assumption (ii) on G(x) has been introduced to prevent firings for inhibitory (neg-
ative) inputs. This function G(x) may be regarded to mimic the inward rectification of
dendrites [44], which make the response of a neuron to hyperpolarizing outward currents
much worse than that to depolarizing inward currents. If the uni-directional function:
G(x) = x Θ(x) given by Eq.(12) is replaced by the linear one: G(x) = x, HH neurons
fire for both excitatory and inhibitory inputs, and then the neural networks cannot retrieve
the stored patterns. In this case, the weight of inhibitory synapses, ginh

jk , in Eq.(10) is
properly determined by a learning rule depending on the stored patterns, as Lytton [12]
has proposed for the feedforward HH network. Such a procedure, however, yields a poor
performance as an associative memory working only in a narrow parameter range [12]. It
would be necessary that the assumptions (i) and (ii) adopted in our HH neuron network are
examined and sought physiologically.

It has been reported that a large variability (cv = 0.5 ∼ 1.0) is observed in spike trains
of non-bursting cortical neurons in visual V1 and MT of monkey [45], which is in strong
contrast with a small cv (= 0.05 ∼ 0.1) in motor neurons [46]. There have been much
discussions how to understand the observed large variability [47]- [52]: a balance between
excitatory and inhibitory inputs [47], the high physiological gain in the plot of input current
vs. output frequency [48], correlation fluctuations in recurrent networks [49], the active
dendrite conductance [50], input ISIs with the distribution of a slow-decreasing tail [51], and
input ISIs with large cv [25] [52]. Based on our simulations, we discuss the behavior of the
interspike interval (ISI) of output spike trains which is defined by

Tojm = tojm+1 − tojm, (22)

where tojm (m = 1, 2, ..) is the firing time of the neuron j [Eq.(9)]. Histograms shown in
Figs. 14(a)-14(c) express the distribution of ISIs of all HH neurons for 0 ≤ t ≤ 500 msec.
Figure 14(a) denotes the distribution of output ISIs of a successful retrieval with the initial
overlap of mi = 0.84, which have been discussed in Sec. 3.2: the time course of its firings of
neurons is plotted in Fig. 6(a) with parameters of f = 0.20, α = 0.10 and τd = 10 msec. The
mean and root-mean-square (RMS) values of the output ISI are µo = 11.98 and σo = 1.42
msec, which yield the dimensionless variability of cv ≡ σo/µo = 0.12. The histogram of
Fig. 14(b), on the other hand, shows the distribution of ISI for a failed retrieval case with
a smaller initial overlap of mi = 0.68: the time course of neuron firings are plotted in Fig.
6(b). We note that ISIs distribute up to 30 msec, obtaining µo = 13.98, σo = 5.69 msec,
and cv = 0.41. The histogram of Fig. 14(c) expresses also a failed case with more smaller
mi = 0.56, which leads to µo = 16.17, σo = 17.76 msec and cv = 1.10. Note that there is
a small distribution of ISI even at 30 < To < 60 msec, where plotted result is magnified by
a factor of ten. Repeating these calculations, we obtain, in Fig. 15, the mi dependence of
µo, σo and cv (for f = 0.20, α = 0.10 and τd = 10 msec). For mi > 0.9, we get µo = 11.76
and σo ∼ 0 msec, then cv ∼ 0. When mi is more reduced, µo is increased because ISIs with
To > 20 msec appear, which make σo and cv increase. Figure 15 shows that cv is larger
for smaller mi, and that the variability becomes considerable (cv ∼ 0.5) even for successful
retrievals with mi > 0.7 [Fig. 6]. The situation is similar when a retrieval is worsen because
of spread distributions of time delays in couplings. For example, in the case having been
shown in Fig. 10, where we plot the time course of firings for ∆τ = 10 msec with the
parameters of f = 0.10, α = 0.10, τd = 10 msec and mi = 1.0, a considerable value of
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cv = 0.45 is obtained which arises from µo = 18.61 and σo = 8.31 msec. Our simulations
show that the variability of ISIs may be considerable while neurons are trying to retrieve
the stored memory. We hope that results of our simulations might have some relevance to
the observed large variability.

To summarized, taking account of the two issues on the Hopfield-type neural networks
raised in the Introduction, we have proposed the biologically plausible network consisting
of spiking HH neurons with the Willshaw-type synapses, whose simulations demonstrate its
storage capacity to be comparable to that of the rate-code network. We may extend and
modify our model into various directions. For example, it is straightforward to apply our
method to the feedforward hetero-associative memory of temporal-code Anderson-Kohonen-
type networks. When the excitatory synapse given by Eq.(11) is changed as

gexc
jk = gexc Θ(

P−1∑

µ=1

ξ
(µ+1)
j ξ

(µ)
k ), (23)

the patterns of µ = 1 − P can be retrieved in a temporal sequence. This shows a pos-
sibility of the storing and retrieval of temporal patterns. The synapse given by Eq.(23)
corresponds to the asymmetric coupling in the Hopfieled model [53]. It has been shown
that the Hopfieled model with asymmetric couplings shows intrigue dynamics like chaos.
In the present paper, we have taken no account of noises. Quite recently, Kanamaru and
Okabe [16] have investigated the effect of noises on an associative memory of the FN neuron
network, showing that a retrieval of the stored patterns may be improved by noises, just like
the stochastic resonance. It would be the case also in our HH neuron network. We cannot,
however, draw any definite conclusion until performing simulations because their leaning
rule given by Eq.(1) with a = 0 and b = f is different from ours given by Eq.(11). It is well
known that temporal-code neurons are more efficient in data processing than the rate-code
neurons because the former can carry much information than the latter [54]. It is expected
to be true also in the memory function. We suppose that there could be alternative, more
efficient mechanisms, by which real temporal-code networks might be operating for learning
and memory.
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FIGURES

FIG. 1. Responses of the membrane potentials, V (solid curve), of a HH neuron to (a)

excitatory and (b) inhibitory external currents, Iext (dashed curve): a HH neuron fires not only

by excitatory input but also by inhibitory inputs.

FIG. 2. The time course of (a) input Ui1, (b) output Uo1, (c) the post-synaptic current

I1 (= Iext
1 + Iint

1 ) and (d) the membrane potential V1 of the neuron j = 1 when an input pattern

is injected at t = 0 with α = 0.3, f = 0.10, gexc = 0.30 mS/cm2 and λ = 0.8; the vertical scale is

for V1 only, and Iint
1 , Uo1 and Ui1 are shown in arbitrary units.

FIG. 3. The time course of firings of neurons for (a) α = 0.30 and (b) α = 0.50 with f = 0.10,

gexc = 0.30 mS/cm2 and λ = 0.8; dots express firings of neurons numbered by index shown in the

vertical scale: the upper part shows the relevant overlap of m(t).

FIG. 4. The storage capacity αc as a function of λ (= ginh/gexc) for f = 0.06 and 0.10 with

gexc = 0.3 mS/cm2 (solid curve) and gexc = 0.5 mS/cm2 (dashed curve).

FIG. 5. The storage capacity αc as a function of the average activity f . The solid curve

denotes the calculated results and the dotted curve expresses 10/(M logM), error bars denoting

the standard deviations for ten samples.

FIG. 6. The time course of neuron firings for an injection of imperfect input patterns with

initial overlaps of (a) mi = 0.84 and (b) mi = 0.68 for f = 0.20 and α = 0.10.

FIG. 7. The time dependence of the overlap m(t) for various mi with f = 0.20 and α = 0.1.

FIG. 8. The storage capacity αc as a function of the initial overlap mi for f = 0.10 (solid

curve) and f = 0.20 (dashed curve).

FIG. 9. The storage capacity αc as a function of a width of the time-delay distribution, ∆τ ,

for τd = 10 msec. The solid and dashed denotes the calculated results for f = 0.06 (solid curve)

and f = 0.10 (dashed curve), respectively.

FIG. 10. The time course of firings of neurons for f = 0.10, α = 0.10, ∆τ = 10 and τd = 10

msec: the upper part shows the relevant overlap of m(t) (see text).

FIG. 11. The critical width, ∆τc, of the time-delay distribution as a function of τd for

(f, α) = (0.06, 0.30) (solid curve), (0.060, 0.10) (dotted curve) and (0.10, 0.10) (dashed curve).

Calculations are made with a step of ∆τ = 1.0 msec for a given τd.
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FIG. 12. The storage capacity αc as a function of the average activity f of the rate-code neuron

network with the Willshaw-type synapses (solid curve) and the Hebb-type synapses (dashed curve),

the dotted curve denoting 10/(M logM) (see text).

FIG. 13. The storage capacity αc as a function of the average activity f of the HH neuron

network with the Hebb-type synapses [Eq.(21)]. The solid curve denotes the calculated result and

the dotted curve expresses 1/(M logM).

FIG. 14. Histograms of ISIs of spike-train outputs in a retrieval process with the initial overlap

of (a) mi =0.84, (b) 0.68 and (c) 0.56 for f = 0.20, α = 0.10 and τd = 10 msec, the histogram at

To > 30 msec of (c) being enlarged by a factor of ten. The time course of neurons firings for (a)

and (b) are plotted in Fig. 6(a) and 6(b), respectively.

FIG. 15. The average (µo, thin solid curve) and RMS values of ISIs (σo, dashed curve), and

the variability (cv , bold solid curve) as a function of the initial overlap (mi) for f = 0.20, α = 0.10

and τd = 10 msec, the left (right) vertical scale being for µo and σo (cv). Error bars denote the

standard deviation of cv, and those for µo and σo are not shown for illegibility of the figure.
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