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Abstract - We have been building an auto/hetero-
associative spiking neural network combined with a
working memory model. In this model, a state-
driven forward sequence and a goal-driven backward
sequence on the associative network are respectively
represented by a sequence of synchronous firing in
a particular gamma subcycle during a theta oscilla-
tion. These forward and backward sequence firings
are transmitted to the working memory, temporarily
maintained, and integrated based on a competition
principle to make a plan. This paper shows that our
system can learn forward and backward sequences si-
multaneously and a plan is incrementally synthesized
by repeating their recall and integration.

I. INTRODUCTION

Working memory is an active system necessary for exe-
cution of goal-seeking cognitive tasks and it provides tem-
porary storage and manipulation of information retrieved
from a long-term memory [1], [2]. Planning is considered
as one of tasks for which working memory is necessary.
We assume that planning is executed in working memory
through integrating a state-driven forward sequence asso-
ciation with a goal-driven backward sequence association
under attention control. As one of neural network mod-
els of sequence association, Jensen and Lisman proposed
a biologically plausible auto/hetero-associative network
model [3], [4], in which an auto-associative network in the
cortex encodes individual items and hetero-associative
network in the hippocampus encodes their forward se-
quence that is time series of their occurrences. However
in our assumption, a goal-driven backward sequence, that
is retrospective time series of occurrences, must be in-
volved in planning process in addition to a state-driven
forward sequence.

We have been building an auto/hetero-associative spik-
ing neural network combined with a working memory
model [5], in which a state-driven forward sequence and
a goal-driven backward sequence on the associative net-
work are integrated in the working memory to make a
plan. In this paper, we extend the sequence integration

algorithm proposed in [5] and then show that our sys-
tem can learn forward and backward sequences simulta-
neously and a plan is incrementally synthesized through
repetition of their recall and integration, by using dis-
crete pulse-driven neural network simulations of a route
planning problem.

II. THE MODEL

A. Representation

In our model, a state-driven forward sequence and a goal-
driven backward sequence are respectively represented by
a sequence of synchronous firing in a particular gamma
subcycle during a theta oscillation (Fig. 1).
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Fig. 1. Sequence representation.

This representation is supported by findings that the
hippocampus and some regions of cortex involved in
memory storage show dual oscillations in which a low-
frequency theta oscillation is subdivided into subcycles
by a high-frequency gamma oscillations, and that each
different information is encoded by a subset of neurons
that fire synchronously and stored in different gamma
subcycles [3], [4]. For example, it is suggested that
dual oscillations serve as a multiplexing mechanism by
which multiple short-term memories can be actively
maintained [6]. Also it is discovered that a firing sequence
of place cells during gamma-frequency recall corresponds
to a prediction of expected positions during rat’s move-
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ment over time [7].
In planning in our model, these forward and backward

sequence firings are transmitted to working memory, tem-
porarily maintained, and integrated based on a competi-
tion principle.

B. Neural Network Architecture

The neural network architecture is shown in Fig. 2. The
network is composed of the auto/hetero-associative net-
work ”CNET” that is a model of the cortex, the hetero-
associative network ”HNET” that is a model of the hip-
pocampus, and the working memory.
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Fig. 2. The neural network architecture: SEQAINET (SE-
Qence Association and Integration NETwork). Param-
eters applied to the CNET are as follows. As for auto-
associative recurrent collaterals, τax = 2 msec, τ+

sr =
τ−sr = 2 msec, and τsp = 1 msec. As for hetero-associative
recurrent collaterals, τax = 10 msec, τ+

sr = 2 msec,
τ−sr = 20 msec, and τsp = 10 msec. As for lateral inhibi-
tion, wI=0.9 for learning and 0.4 for recall, τsp=14 msec
for learning and 2 msec for recall, and τax = 2 msec.
Parameters applied to the HNET are as follows. As for
hetero-associative recurrent collaterals, τax = 20 msec,
τ+

sr = 20 msec, τ−sr = 2 msec, and τsp = 30 msec. As
for lateral inhibition, wI=0.9 for learning and 0.8 for re-
call, τsp=12 msec for learning and 10 msec for recall, and
τax = 4 msec. For all associative neurons in the CNET
and the HNET, τabs = 125 msec and θ = 0.45. A con-
duction time from the CNET to the HNET τax = 1 msec
and λ = 0.9.

The principal excitatory spiking neuron in associative
networks is formulated as follows. We call this neuron
an associative neuron. Let tfi be a recent firing time of a
neuron i before time t and taij be a recent time of pulse
arrival from a neuron j to i before time t. The membrane
potential pi(t) of a neuron i at time t is given by

pi(t) =
epi(t)
Ni(t)

+ exti(t)− ipi(t)− r(t− tfi ) (1)

where epi(·) is the sum of EPSPs of recurrent collaterals,
ipi(·) is the sum of IPSPs of lateral inhibition, exti(·)
is an external input, r(·) is the refractory function, and
Ni(·) is a normalization factor. The epi(t) is given by

epi(t) =
∑

j

epij(t) =
∑

j

(kpij(t)× wij(t)) (2)

where epij(·) is an EPSP and wij(·) is synaptic efficacy
from a neuron j to i. The kpij(t) is a kernel function
given by

kpij(t) = kpij(taij)× exp(− t− taij
τsp

) + δij(t) (3)

where τsp is a time constant of synaptic potential and
the δij(t) is a function which takes a value of 1 when a
pulse arrives from a neuron j to i at time t, otherwise 0.
The ipi(t) is given by

ipi(t) =
∑

j

ipij(t) =
∑

j

(kpij(t)× wI) (4)

where ipij(·) is an IPSP from a neuron j to i and wI

is a constant that represents non-plastic synaptic effi-
cacy. The refractory function r(·) takes positive infin-
ity for t − tfi ≤ τabs and otherwise 0, where τabs is the
absolute refractory period. The Ni(t) is calculated by
Ni(t) =

√∑
j kpij(t)2. Since transmission of a pulse

takes a conduction time τax, the relation taij = tfj + τax

holds. An associative neuron fires when pi(t) ≥ θ is sat-
isfied, where θ is a threshold, and then afterhyperpolar-
ization is applied.

Synaptic efficacy of excitatory recurrent collaterals is
modulated by the following Hebbian rule.
(1)when a pulse arrives from a presynaptic neuron j to
a postsynaptic neuron i at time t, the synaptic efficacy
wij(t) is modulated according to

∆wij(t) = λ×W (tfi − t)× (1− wij(t)), (5)

(2)and if a postsynaptic neuron i fires at time t when
a pulse arrives from presynaptic neuron j, all synaptic



efficacy wik on all recurrent collaterals are modulated
according to

∆wik(t) = λ×W (t− taik)× (
kpik(t)
Ni(t)

− wik(t)). (6)

In above formulas, λ is a modulation rate and the W (s)
is a modulation window given by

W (s) =





exp(− s

τ+
sr

) (s ≥ 0)

exp(
s

τ−sr
) (s < 0)

(7)

where τ+
sr and τ−sr are time constants of synaptic modu-

lation.
Main parameters that characterize associative net-

works are a time constant of synaptic modulation for re-
current collaterals, synaptic efficacy and a time constant
of synaptic potential for lateral inhibition, a conduction
time, and the absolute refractory period of associative
neurons. Dependent on different parameter setting, the
CNET acquires feature of auto-association and backward
hetero-association and the HNET acquires feature of for-
ward hetero-association, as described in section III. In
our setup, forward hetero-association in the HNET oc-
curs on gamma cycles and represents a state-driven for-
ward sequence, and backward hetero-association in the
CNET occurs on shorter cycles than firing in the HNET
and represents a goal-driven backward sequence. We call
this cycle a short gamma cycle.

C. Sequence Maintenance and Integration

Principal functions for planning in working memory are
sequence maintenance and sequence integration.

In sequence maintenance, a firing sequence
C0, C1, . . . , Cn(≡ {Ci}) of a gamma cycle whose
first pulse pattern C0 encodes a given current state and
a firing sequence G0, G1, . . . , Gm(≡ {Gj}) of a short
gamma cycle whose first pulse pattern G0 encodes a
given goal are maintained by filtering firing sequences
transmitted to working memory from the HNET and the
CNET. The {Ci} represents a sequence of pulse patterns
driven by the current state and the {Gj} represents
a sequence of pulse patterns driven by the goal. For
convenience’ sake, Ci and Gj are assumed to be Boolean
arrays, an element of which is true for firing, otherwise
false. At each time a new goal-driven pulse pattern Gk

is filtered, it is checked whether C1 ∧ Gk 6= F , where
F is a Boolean array all elements of which are false.
This condition means that the first pulse pattern C1 in
forward firing and the pulse pattern Gk in backward
firing contain representation of the same object, which

suggests that the backward firing may be suppressed
at that time because backward firing after that time is
irrelevant to integrating a plan. When this condition
holds, the CNET is temporarily inhibited by feedback
not to propagate irrelevant firing, which is exemplified
in section IV.

Forward and backward sequences {Ci} and {Gj} are
maintained for a theta period and sequence integration
is executed on them at the end of the theta period. In
sequence integration, for each pulse pattern of the state-
driven firing sequence C1, C2, . . . , Cn, the following op-
eration is executed between Ci and the goal-driven fir-
ing sequence G0, G1, . . . , Gm in the order of firing time
i = 1, 2, . . . , n. Let T be the maximum index of pulse
patterns to be operated in {Gj}. At the start, T := m.
[Goal-directed competitive selection] For each pulse pat-
tern of a goal-driven firing sequence G0, G1, . . . , GT ,
Pij := Ci ∧ Gj is computed in the order of firing time
j = 0, 1, . . . , T and the first Pi(≡ PiJ) all elements of
which are not false is obtained. If such a Pi is found, it
is regarded as a winning pulse pattern that constitutes a
plan. 2

If Pi equals to G0, sequence integration terminates. Oth-
erwise, let T := J and continue the operation.

This operation is logically interpreted as selection of a
sequence of pulse patterns in forward firing that intersect
backward firing. A firing sequence obtained by applying
the goal-directed competitive selection to C1, C2, . . . , Cn

is regarded as a plan.

D. Problem Specification and an Example

In this paper, we focus on problems in which sequences
are correlated but each pulse pattern, which is an element
of a sequence, is mutually orthogonal. As an example, we
use a route planning problem in which a robot is about
to make a plan to reach a goal.
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Fig. 3. T-maze as an example.
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Fig. 4. Synaptic efficacy matrices of (a)inner recurrent collaterals of the CNET (auto-association), (b)outer recurrent collat-
erals of the CNET (backward hetero-association), and (c)recurrent collaterals of the HNET (forward hetero-association).
A ”Pi-j” denotes a pair of associative neurons which corresponds to a view at a point ”Pi” toward the ”j”-direction ∈
{North, South, East, West}.

Fig. 3 shows a T-maze used in experiments. The T-
maze has 20 landmarks L1-L20. The robot pays attention
to a nearby landmark in right and left walls respectively
at each point P1-P15. Since a landmark can be seen
in one of four directions in each side, we can encode a
view of the robot by using 160 bits that is the number
of landmarks multiplied by the number of directions. As
a result, a view of the robot at each point is expressed
by a code of 160 bits whose two bits are on and others
are off, which satisfies each pulse pattern for a view is
mutually orthogonal but sequences of views are corre-
lated. This code corresponds to an input pulse pattern
to the network, and the CNET and the HNET have 160
associative neurons respectively since they memorize this
view information.

III. SEQUENCE LEARNING

Each input for learning is encoded to a pulse pattern
and repeatedly inserted in theta cycles. Pulse patterns
for different inputs are inserted in different gamma sub-
cycles of the theta cycle. In experiments, a theta cycle
is 250 msec and a gamma cycle is 20 msec. Each pulse
pattern that encodes a view at each point consists of syn-
chronous firing of two neurons and is inserted five times
in a way of partly overlapping with firing of a preceding
pulse pattern. For example, a pulse pattern for a view at
P1 is inserted at 0, 250, 500, 750, and 1000 msec, and a
pulse pattern for a view at P2 next to P1 is inserted at
770, 1020, 1270, 1520, and 1770 msec.

Fig. 4 shows synaptic efficacy matrices of recurrent col-
laterals of the CNET and the HNET after 30 routes from

each end point P1, P9, P7, P4, P13, and P15 to all
other end points of T-maze have been learned once in
random order. In these matrices, reinforcement of upper
right elements of the diagonal means that forward hetero-
association is acquired, and reinforcement of lower left
elements of the diagonal means that backward hetero-
association is acquired. We can see the CNET acquires
auto-association of input patterns and backward hetero-
association of them, and the HNET acquires forward
hetero-association of them. Synaptic efficacy for forward
hetero-association and backward hetero-association ex-
hibits symmetry.

Requirements for the CNET to acquire these features
are as follows. As for auto-association, it is necessary
that a conduction time on recurrent collaterals is short
enough in comparison with a gamma cycle, and a modu-
lation window of synapses on recurrent collaterals should
be short that synaptic efficacy is reinforced only when a
pulse arrival and postsynaptic firing rigidly synchronize
in a short interval. As for backward hetero-association,
it is necessary that a conduction time on recurrent col-
laterals is longer than the one for auto-association but
shorter than the gamma cycle, and a modulation win-
dow of synapses on recurrent collaterals should satisfy a
condition that synaptic efficacy is reinforced even when a
pulse arrives with a long delay after postsynaptic firing.
Additionally, in order not to confuse auto- and hetero-
association, a strong and lasting lateral inhibition and
a long period of absolute refractoriness are needed. Re-
quirements for the HNET are as follows. A conduction
time on recurrent collaterals should be nearly equal to a



gamma cycle and a modulation window of synapses on re-
current collaterals should satisfy a condition that synap-
tic efficacy is reinforced even when firing occurs with a
long delay after a pulse arrival. Additionally, in order
not to confuse different hetero-association, a strong and
lasting lateral inhibition and a long period of absolute re-
fractoriness are needed. Parameters used in experiments
to satisfy these requirements are shown in Fig. 2.

IV. GOAL-DIRECTED RECALL
FOR PLANNING

In planning, a current state and a goal are given as
a goal-directed recall cue. That is, pulse patterns that
encode a current state and a goal are inserted into the
network in a certain interval.

To control goal-directed recall, gate control and lat-
eral inhibition adjustment are executed as follows. As
for gate control, gates between the CNET and the HNET
concerned in transmitting firing of the CNET for a goal
cue are closed, and gates on hetero-associative recurrent
collaterals of the CNET concerned in transmitting firing
for a current state cue are closed (Fig. 2). As a result,
pulses that originate in the current state cue are prop-
agated only to the HNET and pulses that originate in
the goal cue are propagated in the CNET. As for lateral
inhibition adjustment, lateral inhibition of the CNET
and the HNET is weakened to activate successive hetero-
associative firing, which was suppressed at learning by
strong lateral inhibition to competitively emphasize a se-
quence to be learned. Concretely in experiments, synap-
tic efficacy wI and a time constant of synaptic potential
τsp for lateral inhibition are modified as shown in Fig. 2.
The balance of lateral inhibition between the CNET and
the HNET is closely related to our way of integration of
forward and backward sequence recall. We adjust lateral
inhibition so that backward sequence is broadly propa-
gated but propagation of forward sequence is restricted
to be narrow. The effect of this adjustment is explained
in experimental results below.

Planning is executed through repeating forward and
backward sequence recall in the HNET and the CNET
and their maintenance and integration in working mem-
ory during subsequent theta cycles, in which a plan is in-
crementally recognized. Fig. 5 shows backward sequence
firing in the CNET, forward sequence firing in the HNET,
and a result of their integration for planning of a route
from a point P13 to a goal P9, which is drawn with bold
line, after all routes in the T-maze have previously been
learned. A pulse pattern for a view at P13 is inserted at
0 msec as a current state cue and a pulse pattern for a
view at P9 is inserted at 14 msec as a goal cue. Each
pulse pattern that encodes a view at each point consists
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Fig. 5. Goal-directed recall and integration for planning. A
denotation of ”Pi-j” is the same as that in Fig. 4. ”L” de-
notes the left view and ”R” denotes the right view. Bold
bars in the CNET part express firing of a state cue and
a goal cue. Bold bars in the HNET part express winning
firing by the goal-directed competitive selection in work-
ing memory. This firing sequence of bold line represents
a plan.

of synchronous firing of two neurons. We can observe
pulse patterns on gamma cycles of 20 msec in the HNET
and pulse patterns on short gamma cycles of 10 msec in
the CNET.

In the first theta cycle, pulse patterns in the CNET
from 14 msec to 104 msec represent a backward sequence
recall of views toward the goal P9 on all learned routes.
That is, a view at P9 is recalled at 14 msec, a view
at P8 toward P9 is recalled at 24 msec, two views at
P6 and P7 toward P8 are recalled at 34 msec, and in
the same way backward recall of views toward the goal
occurs in succession. In this sequence, we can see that
firing after 104 msec, which corresponds to a view at P15
toward P14, is suppressed and does not occur. This is
caused by feedback inhibition imposed by sequence main-
tenance in working memory as described in section II.
In the HNET, a pulse pattern that encodes a view at the
current point P13 is observed at 1 msec and two pulse
patterns that encode views at a fork P14 next to P13
toward P12 and P15 are observed at 21 msec, but fir-
ing does not continue thereafter in this gamma cycles1.
This represents that only a part of forward sequences
of views on learned routes is recalled. The cause of fir-
ing extinction at a fork is explained as follows. When

1Pulse patterns drawn with dotted line occur in another gamma
cycles with phase shift.



plural views are recalled, the number of associative neu-
rons that fire increases, which makes lateral inhibition
stronger than when one view is recalled, causing firing
extinction. As a result of sequence integration in work-
ing memory, it is observed that one pulse pattern for a
view at P14 toward P12 is selected. This represents a
sub-route P13-P14 and a direction to P12 are planned to
reach P9. This result means that when forward sequence
recall can have several branches, their recall does not
continue in parallel but one of them is selected by atten-
tion control based on the goal-directed competition in se-
quence integration. By the way, we can see that forward
sequence firing stops at a fork but backward sequence fir-
ing does not. This is because of our lateral inhibition ad-
justment as described above, in which lateral inhibition
in the HNET is stronger than that in the CNET, that is,
competition in forward sequence recall is stronger than
that in backward sequence recall. Non-parallel forward
sequence recall and the goal-directed attention control at
a branch point depend on this adjustment.

Planning continues in the second theta cycle by intro-
ducing the winning pulse pattern into the network as if
it is a state cue. We can see in the HNET that a forward
sequence of views is recalled from 251 msec to 311 msec,
two views are recalled at 331 msec, and one of these
views is selected through sequence integration. As a re-
sult, a route P14-P12-P11-P10-P2 and a direction to P3
are recognized as a sub-plan. In subsequent theta cycles,
planning continues in the same way and the whole route
is incrementally planned, that is, the plan is extended
to a sub-route P2-P3-P5 in the third theta cycle, a sub-
route P5-P6-P8 in the forth theta cycle, and a sub-route
P8-P9 in the fifth theta cycle.

V. CONCLUSION

We have presented the auto/hetero-associative spiking
neural network combined with a working memory model,
in which a state-driven forward sequence and a goal-
driven backward sequence on the associative network are
integrated in the working memory to make a plan. By
simulation experiments, we have confirmed firstly that
our associative network can learn forward sequence and
backward sequence simultaneously. Secondly, it has been
confirmed that a plan is incrementally synthesized by re-
peating forward and backward sequence recall on associa-
tive networks and their integration in working memory
during subsequent theta cycles. Especially, it was found
that the goal-directed competition performed attention
control for selecting one of several branches in planning.
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