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Abstract

We discuss the �rst few stages of olfactory processing in the framework of a

compartmental neural network. Our model consists of inhibitory and excitatory

formal neurons with dendrodendritic interactions. We explore the computational

properties of this neural network, and point out its possible functional role in the

olfactory bulb. We show that in a noisy background the network functions as an

associative memory, in spite of the fact that the network operates in an oscillatory

mode. When receiving a complex input that is composed of several odors, the

network segments it into its components. This is done in two stages. First,

multiple odor input is decomposed via a decorrelation mechanism that relies on

the temporal independence of odor information originating from spatially distant

sources. Secondly, as the recall process of one pattern consists of associative

convergence to an oscillatory attractor, multiple inputs are identi�ed by alternate

dominance of memory patterns during di�erent sni� cycles. This may give new

insight into the rapid sni�ng behavior of highly olfactory animals. When one

of the odors is much stronger than the rest, the network converges onto it, thus

displaying odor masking.
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1 INTRODUCTION

Being an outgrowth of the forebrain, the olfactory bulb provides us with an open window

to the brain(Davis & Eichenbaum 1991) (Shepherd 1979). It receives all of the chemical

sensory input from the olfactory epithelium, and projects a processed transformation of it to

the cortex. Although thoroughly explored experimentally, the functionality of the synaptic

organization, and the computational properties of the bulb are yet unclear. In this work,

we model the bulb using a compartmental approach and combine computational models of

neural networks that can be viewed as describing the neural structure and elements of the

bulb. By doing that, we establish a description of the whole prospect of the olfactory-bulb

circuitry. We propose learning rules that account for the formation of synapses, and adaptive

mechanisms that are biologically feasible and enable various computational tasks.

Chemical sensory information enters the bulb via the olfactory nerve that converges

onto the glomeruli structures. In the glomeruli, axons of sensory cells terminate on the

distal dendrites of excitatory mitral/tufted1 cells(Shepherd 1992), that in turn project their

output to the olfactory cortex and other processing centers. Building on the models of

(Hop�eld 1991) and (Hendin et al. 1994) we construct a model of the glomerular layer that

is capable of performing multiple odor separation from odor signals entering the bulb. This

separation is based on temporal independence of the olfactory inputs from di�erent sources.

The result is fed into the next layer where comparison with learned memories can take place.

The second computational stage in our model is the external plexiform layer. In a

recent study (Hendin et al. 1995), we have addressed the form of information processing that

takes place in this layer via interactions of projection mitral cells with inhibitory granule

cells. These interactions are dendrodendritic in nature, and are mediated by reciprocal

synaptic connections. It was shown that the connectivity between cells in this layer may

allow for the construction of an associative memory, in spite of the dominance of inhibitory

interactions. Here we extend that model into the oscillatory domain, i.e., we show that

memory retrieval takes place also under conditions that resemble the oscillations observed

experimentally(Laurent & Davidowitz 1994).

We combine the various processing stages while following the layered architecture of the

bulb. The gross features of experimentally observed electrical activity are obtained. We show

how the neuronal circuitry in the bulb may give rise to sub-threshold oscillations in mem-

brane potential of projection neurons, while maintaining associative memory as well. We

also show how these oscillations enable pattern segmentation(Malsburg & Schneider 1986)

(Malsburg & Buhmann 1992), thus we indicate a possible role for their existence.

In the next section we describe the models that are used at each computation stage.

Section 3 is concerned with the construction of a comprehensive neural network based on

these models using a compartmental approach. We discuss oscillations and segmentation in

section 4, and present numerical results that support our theory.

1Henceforth we shall refer to mitral cells only, since mitral and tufted cells are similar in their behavior
and function.
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2 Autonomous Models of the Bulb Layers

2.1 Glomerular Layer

The �rst synapse of the olfactory sensory neurons is in the glomeruli structures. There,

sensory axons terminate on the distal dendrites of mitral/tufted cells. The latter are taken

to represent odor space. Following (Hop�eld 1991) we assume that the mitral cells, whose

membrane potential will be denoted by uj, undergo the dynamics

duj

dt
= �

uj

�
�

X
k

Tjkuk + Ij(t): (1)

Tjk describes an e�ective dendro-dendritic interaction between excitatory mitral cells

induced by inhibitory periglomerular cells, with a speci�c structure to which we will return

later. Ij represents the synaptic input that reaches cell number j. This input is composed of

signals from q = 1; � � � ;K di�erent sources that are assumed to have independent temporal


uctuations aq(t):

Ij(t) =

KX
q=1

S
q
j aq(t) (2)

The parameters S
q
j represent the composition of odorant number q in a vector space

spanned by the mitral cells. Given an appropriate learning rule for the coupling matrix

T , (Hop�eld 1991) has shown that this network can perform the task of "blind separation"

of odors by rapid adaptation. Assuming that the lateral connections between neigbhoring

glomeruli are weak, we shall consider each glomerulus as an independent unit. This implies

that the matrix T has block-diagonal structure, i.e. it connects only mitral cells that be-

long to the same glomeruli. Mathematically this is equivalent to the \model of horizontal

replicas" in (Hendin et al. 1994). The result is that within each group of cells belonging to

a glomerulus, only K neurons remain active. They correspond to the leading components

in all K odors of the input that reaches this glomerulus. Over the whole layer we will then

�nd a single (winning) neuron per each 
uctuating odor for each glomerulus.

In the compartmental approach that will be developed below, ui represents membrane

potential in the distal part of the dendritic tree. The leading dendritic potentials feed into

the following stages of computation.

2.2 External Plexiform Layer - EPL

The second processing stage is related to a section of mitral cell dendrites that are located

in the proximity of the soma, and interact with inhibitory granule cells. Following our

mathematical formulation in (Hendin et al. 1995), we denote the membrane potential of

mitral dendrites at the external plexiform layer by continuous variables m, and that of a

granule cell by g. Their dendrodendritic interactions will be denoted by matrices:

J - granule synapse on mitral cells,

W - mitral synapse on granule cells,

K - granule synapse on granule cells,

excluding any excitatory-excitatory couplings. In order to induce oscillations, we incor-

porate into the granule cells a special class gn that has local interactions with mitral cells,
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as well as local excitatory feedback currents ji = �mi to the mitral cell. The resulting set

of equations is:

Mi = �(mi) with
dmi

dt
= �

mi

�m

�

X
j

JijGj � �gmG
n
i + Ii + ji (3)

Gi = �(gi) with
dgi

dt
= �

gi

�g

+
X
j

WijMj �

X
j

KijGj

G
n
i = �(gni ) with

dg
n
i

dt
= �

g
n
i

�g

+ �mgMi

The variablesM (G,Gn) denote the rates of neurotransmitter release from a mitral (granule)

cell with membrane potential m (g,gn). We assume that these rates are sigmoid functions

of the membrane potentials, thus introducing the nonlinearity that is essential for the asso-

ciative memory that we construct. For simplicity, we choose in the present work to use the

limited linear threshold approximation of the sigmoid function:

�(x) � L(x) =

8>>><
>>>:

�~x x � ~x

�x 0 < x � ~x

0 x � 0

(4)

Memory patterns will be de�ned on the mitral cells, since they are the ones that project

to higher layers of the cortex. With the learning rules that will be described later, this

network performs retrieval of learned activity patterns when presented with a partial input

Ii.

The models which describe the Glomerular layer and EPL relate to di�erent parts of den-

dritic trees that belong to one type of neurons, the excitatory mitral cells. We next introduce

a comprehensive model network whose cells are described as compartmental compositions

of dendritic elements.

3 Compartmental Model of Mitral Cells

The layered structure of the olfactory bulb (shown schematically in �gure 1) is traversed by

the dendrites of projection mitral cells. This fact makes them good candidates for piecewise

modeling of the di�erent layers in terms of functional units. Making practical use of this

architecture, we divide each mitral cell into three compartments. A distal compartment that

stands for the dendritic tree that resides in the glomerular layer, the proximal compartment

describing the inner part of the dendritic tree that passes through the external plexiform

layer and reaches the soma, and a third compartment that describes mitral cell bodies and

their axonal outputs (�gure 2).

Each of the compartments is used as a building block for a local network responsible

for a processing task. The compartments are then joined to give a full description of the

individual neuron. The result is a network of complex neurons with well de�ned roles for

the di�erent compartments.
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Figure 1: Illustration of the Olfactory Bulb layered architecture.

ONL - Olfactory Nerve Layer, GL - Glomeruli Layer, EPL - External Plexiform Layer,

MCL - Mitral Cell Layer, GCL - Granule Cell Layer.

Cell body

compartment
Distal

Proximal
compartment

compartment

Figure 2: Schematic diagram of a compartmental division of a mitral cell.

3.1 De�nitions

We rede�ne the various variables to be used in the compartmental model.

Distal Compartment This has a similar structure to the one de�ned by equations 1 and

2 using the notation:

� ui - membrane potential of the i'th distal compartment.

� Ii - synaptic input from the olfactory nerve to the i'th distal compartment.

� Tij -e�ective synaptic conductance between the j'th and the i'th compartments of

mitral cells of the same glomerulus.

Proximal Compartment

Here we will rely on equations (3) where dendrites of mitral cells interact with those of

granular cells. Keeping our notation, we set:



6

� mi - membrane potential of the i'th proximal compartment.

� gj - membrane potential of the j'th granule cell.

� g
n
i - membrane potential of the i'th granule cell that is nearest to mitral cell mi.

� Jij,Wij,Kij - synaptic conductance between cells in the EPL.

� ji - feedback current to a mitral cell.

Note that the number of granule cells is much larger than that of the mitral cells in

the OB and in our model. We have pointed out (Hendin et al. 1995) the signi�cance

of this di�erence and its importance in facilitating a larger memory capacity (see also

(Frolov & Muraviev 1988)).

Cell Body Compartment

At the cell body, we assume that leaky integration of the dendritic potential takes place.

This integration process stops when the threshold for spike generation is crossed. An "inte-

grate and �re" function describes this process.

The argument s stands for the membrane potential at the soma, that integrates the

currents derived from the dendrites of the cell:

si =

Z t

ts

�
�

si

�s

+ �sm

mi

�s

�
dt

0 (5)

After a spike is released, the soma potential is reset to zero and following that, the

integration process resumes. ts denotes the time of the latest spike release. We neglect

refractory periods in the present discussion.

3.2 Complete Cells and Network

Let us now construct the neural network of the olfactory bulb using a compartmental descrip-

tion of the functional layers (see Appendix). ui is identi�ed with the membrane potential

of the �rst compartment, mi with the second, and si with the third. We shall neglect any

leakage current other than the capacitor. The incoming currents will be replaced by synap-

tic currents in all compartments, while in the �rst compartment we include also external

sensory inputs. The resulting set of equations is the following:

dui

dt
= �

ui

�m

�

X
j

Tijuj + �um

mi

�m

+ Ii(t) (6)

dmi

dt
= �

2mi

�m

�

X
j

JijGj � �mgG
n
i + �mu

ui

�m

+ �ms

si

�m

+ ji (7)

dgi

dt
= �

gi

�g

+
X
j

WijMj �

X
j

KijGj (8)

dg
n
i

dt
= �

g
n
i

�g

+ �mgMi (9)
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dsi

dt
= �

si

�s

+ �sm

mi

�s

(10)

The constants � denote conductivity (coupling) of di�erent currents to the compartments.

The nonlinearity of these equations is weak, and is brought about by setting lower and upper

limits (that are not necessarily reached) on the values of the membrane potential at the

di�erent compartments2. The last equation is valid only when the potential of the soma si
is below its �ring threshold. After �ring si is reset to 0.

The input to this system is given by the external currents Ii in equation (6). The output

is composed of spike trains of the mitral cells projected through their axons to the cortex.

These spikes, generated whenever si reach their thresholds, are not represented explicitely

in the above set of equations.

3.3 Adaptive Behavior and Learning

Learning follows di�erent rules in the �rst two compartments. In the glomeruli, where the

�rst compartment resides, learning is assumed to be rather rapid and to occur whenever a

new input is presented. This is much like an adaptation process, and it is governed by the

following learning rule (Hop�eld 1991):

�Tij = �ui �uj [� + �( �ui � 
 �uj)] (11)

The bar notation refers to high-pass �ltering of the potentials. The matrix element

Tij changes with time according to equation 11 but is not allowed to turn negative. This

form of synaptic modi�cation gives rise to a temporary weight adjustment rather than a

prolonged change of the weights. In our model this rule is supposed to be valid for the

efective interaction between mitral cells that belong to a single glomerulus.

In the proximal compartment, we assume that learning takes place during training peri-

ods (see, e.g., (Hasselmo 1993), (Hasselmo & Bower 1993)) when the connection matrices of

the proximal compartment change according to the following Hebb and anti-Hebb learning

rules:

�Jij =
�

N
(1�Mi)Gj (12)

�Wij =
�

N
GiMj

�Kij =
�

Ng

[(1� Gi)Gj +Gi(1�Gj)]

The constants �, �, and �, de�ne the learning rates. Learning takes place by presenting

ui inputs to the EPL network after it has been initialized with random connectivity. With

each new pattern presented, the membrane potentials of the cells are set to small random

values, in order to remove the trace of the last pattern of activity. They are then allowed

2Due to the "realistic" aspiration of this description, we may not disregard the fact that membrane
potential of neurons can normally assumes arbitrary value, but is rather bounded. We mark these bounds

with Vmin ; Vmax and shall refer to the speci�c values when discussing simulations.
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to evolve to their asymptotic activity. The resulting M and G values are then used for

updating the connectivity matrices.3

No learning is assumed between mitral cells and their associated local granule cells (gn).

This interaction is assumed to regulate the subthreshold oscillatory behavior of the network

(discussed later) that is known to be almost independent of the stimulus strength.

4 Oscillations and Segmentation

4.1 Oscillations in the EPL Network

We have previously shown, (Hendin et al. 1995), that the EPL model network without the

local granular cells gn is an associative memory that converges to a stationary attractor

(�xed point). This was done using the Heavyside step function as an approximation to the

nonlinear relation Mi = �(mi). In the present paper, we use the limited linear threshold

approximation that may be closer to reality. As a result, Mi are continuous variables,

and the network possesses oscillatory transients while converging to its �nal steady state

attractor. The dissipative character of the interactions still leads to a stationary state.

In order to avoid dissipation into �xed points and replace it by oscillatory behavior, one

has to incorporate into the network local excitatory feedback currents and local interactions

with granule cells. Then we can reach a regime where constant input gives rise to sustained

oscillations that last for the duration of the input. Once the input is turned o�, the oscilla-

tions die out, and the activity returns to random (background) activity. It is important to

note that the frequency of oscillations is chie
y determined by the constants �gm and �mg ,

however, the coupling to granule cells that is mediated via Jij has an e�ect of broadening

the spectral curve of the oscillatory response.

4.2 Simulation results

We have simulated a network composed of 300 mitral cells mi, 300 local granule cells g
n
i and

300 other granule cells gj. In general it is preferrable to allow for much more granule cells in

order to improve the capacity of the network. In the present section we wish to demonstrate

oscillations and segmentation into two patterns, therefore a restricted structure of granule

cells will work as well. We refer to (Hendin et al. 1995) for a discussion of the capacity.

The 300 mitral cells are divided among 12 glomeruli, each containing 25 of them that

interact with one another in the distal compartment. The result of this interaction leads

to approximately one active ui per glomerulus for each odor. Starting with the single odor

problem we show in �gures (3) and (4) results for the EPL network in which the memory

patterns are composed of a fraction of f = 0:025 active mitral cells(Stewart et al. 1977)

(Sharp et al. 1977). As input we have used constant ui that formed a distorted version of

one of the stored patterns, in which 2 bits were randomly 
ipped. The dynamics of the

network was simulated during one second, in which the response to a stationary input that

lasted for 350ms was observed. The di�erential equations that govern the dynamics were

integrated using the Runge-Kutta method. A list of the parameters that were used is given

in Table 1 below.

3This algorithm was proposed in (Hendin et al. 1995) within the nonoscillatory mode, with inactive gn

neurons. We have veri�ed that it works also in the oscillatory network described here.
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Figure 3: Membrane potential of one of the active neurons (top), and its power spectrum

(bottom). The bar on top represents the duration of the signal.

Figure (3) shows the membrane potential of one of the active neurons, and its power

spectrum. We see that the oscillatory response to the constant input is dominated by a

frequency of about 35Hz. The relatively broad power spectrum is due to the e�ect of long

range interactions (Jij).

The activity of the whole EPL network is presented in Fig. (4). The lower box shows the

input, that contained two super
uous bits removed by the associative recall process. The

upper box shows rapid convergence into the correct pattern. Each pixel represents an activity

peak of a single neuron, as shown above in Fig. (3). The synchronous rhythmic activity of

relatively high amplitudes continues for the duration of the input. Neurons that are not

part of the memory are either quiescent or are randomly active, but never in phase with the

pattern. That is, the convergence and recall properties of the network are maintained even

though the membrane potentials of single neurons undergo oscillations. Once the input is

turned o�, the amplitude decreases and spontaneous background activity resumes.

4.3 Segmentation

When the input is composed of a few odorants, each of which is known to the system,

we expect the neural response to indicate that we face few di�erent odors. In the �rst

compartment of our model we perform blind separation of these odors, a process that is based

on the assumption that the di�erent sources have temporal variations that are independent
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�m = 20ms �mg = 0:53 � = 5

�g = 10ms �um = 0:2 � = 1

�s = 20ms �ms = 0:1 � = 1

� = 0:25 �mu = 0:2 vmin = �0:25

Table 1. Values of the various parameters that were used in the simulation

0 50 100 150 200 250 300
N

0

500

1000

tim
e 

(m
s)

Figure 4: One second of simulated activity in the external plexiform layer evoked in response

to a short stimulus (from t = 150ms to t = 500ms) that is constant in time.

Top box: Activity of mitral membrane potential. Dark pixels represent values of mi > 0.

The x-axis represents the index i = 1; � � �300 of the neuron, and the y-axis is time. The

duration of the input pattern is denoted by the bar in the left box.

Lower box: Input pattern de�ned on the 300 mitral cells.

of one another. This leaves at most one active input for each odor in each glomerulus. When

fed to the second compartment, the EPL model, we have a competition between these inputs,

since each odor corresponds to a di�erent memory of this neural network. The question is,

then, how does the EPL cope with this situation.

In our oscillatory model of associative memory, spurious states do not exist. By that we

mean that only one cell assembly can be coherently active while performing error correction

and pattern completion. It is true, however, that a complex input that is composed of more

than one pattern, may still lead to higher than spontaneous activity in some of the neurons,

that will typically be out of phase and of lower frequency and amplitude than the dominant

memory pattern . In other words, this process is a winner-take-all mechanism in which only

one memory pattern can be coherently active at a time.

This leads then naturally to the interpretation that in every inhalation period only

one pattern is perceived. It su�ces for its input to be stronger for a brief interval of few

milliseconds in order that this pattern will survive as the only coherently active memory in

the EPL. The exhalation provides for a reset 4 of the neural system, that makes it perfectly

4It is known (Lazard et. al. 1991) that odorantmolecules stimulating the olfactory epitheliumare rapidly
removed by intrinsic mechanisms. It follows that during the exhalation phase of the breathing cycle, the
olfactory nerve is almost not inervated. We regard this period as a recovery time for the internal activity,

in which the system may return to spontaneous activity.
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possible for another odor to be the dominant component in the next inhalation. Thus one

can obtain random alternation between convergence to each of the memories, leading to

perfect temporal segmentation of the input.

4.4 Simulation results
tim

e

0 50 100 150 200 250 300
N

Figure 5: Activity in the EPL network while it is exposed to an input pattern composed of

two memories. The input is represented in the lower box by dash or solid lines that denote

members of one odor pattern or another. The time scale is 1 sec and includes two inhalation

periods in which both odors are presented with the same intensity, yet in each cycle only

one of the odors is retrieved.

In this Section we demonstrate how our network performs odor segmentation. For the sake

of simplicity, we model the olfactory bulb of an animal that completes two breathing cycles

within one second. During this period, we simulate the activity of the network in response

to an input that is composed of two memorized odor patterns. The sni� cycle is simulated

as a simple modulation of the input by the positive phase of a sine wave, while the negative

phase is considered to transfer zero input.

Shown in Fig. 5 are the two input patterns and the resulting excitatory activity in the

EPL. Clearly, the activity in the network converged quickly to one of the stored patterns.

As the input was turned o� (by the simulated process of exhalation), the activity decayed

back to background level. On the following inhalation, the activity converged to the second

odorant in the input which happend to be slightly stronger this time. Traces of the activity

in the previously active cell assembly are still present, but this time they are out of phase,

and of lower amplitude.

Figure 6 displays the overlap of membrane potentials of excitatory mitral cells in the EPL

with each of the stored patterns. This is the same simulation represented in Fig. 5. One

can see that in each inhalation cycle, the activity overlap of one memory pattern dominates.
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Figure 6: The overlap of two odor memories with the activity of the network responding

to a mixed and distorted version of these two odors. The activity converges to one mem-

ory pattern in the �rst inhalation. After relaxation (during exhalation) the other memory

dominates. This is an alternative representation to the simulation in Fig.5

Clearly, we chose a situation in which two successive inhalations are characterized by the

dominance of di�erent patterns. This is not always the case. However, the uncorrelated

temporal structure of the two sources guarantees that the probability of activation of each

of the memories corresponds to its relative abundance in the mixed input.

To demonstrate the coherence between neurons that belong to the same cell assembly, we

compare in Fig. 7 the normalized correlation coe�cients of two neurons that belong either to

the same cell assembly or to two di�erent cell assemblies. A large positive component shows

that neurons in the same memory are in phase, while correlations of neurons from di�erent

memories have negative coe�cients, indicating that the neurons oscillate out of phase.

5 Conclusions

We have developed a compartmental model of the olfactory bulb. Although only gross

features are considered, our simulated neural behavior is in good agreement with the char-

acteristics of experimental results. We view the olfactory bulb as an early stage processor,

and the olfactory input as a 
ow of particularly noisy chemico-temporal information. We

show that the circuitry of the olfactory bulb may play a substantial role in the recognition

of odor input.

We regard the layered architecture of the bulb as composed of di�erent processing stages.

Each stage performs one computational task, and the combination yields results that are

biologically plausible.

The �rst processing stage of our model consists of an adaptive network that performs

blind separation of odors (Hendin et al. 1994) and is assumed to be located at the glomerui.

This helps to sharpen the input to the next computation layers. The active mitral cells are

the ones reacting to odor molecules that are of highest concentration in the stimulus. This
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Figure 7: The normalized correlation coe�cients between two neurons that belong to the

same cell assembly (left box), and to di�erent assemblies (right box).

computational stage is convenient but not really crucial for the rest of the analysis. If the

input is naturally sparse, the rest of the network could perform its tasks without this �rst

�lter.

The second computing stage of the model, the external plexiform layer, possesses a den-

dritic network that is capable of learning through synaptic modi�cation. When performing a

memory recall task, an incoming pattern activates neurons within the basin of attraction of

a known memory. The associative recall mechanism drives the dendritic potential of mitral

cells to match a known activity pattern, while correcting errors in the input.

The last stage of the model network is that of the cell body. We model the soma by

a leaky integrator. Characteristically, when a given �ring threshold is crossed, the soma

potential is reset to zero. The spiking output of the soma re
ects all of the computational

processing that takes place in the dendrites, thus it serves as the correct axonal description

of the cortical input from the olfactory bulb.

As a whole, the model presented here shows that the neural network constituting the

olfactory bulb is capable of performing odor discrimination on the basis of temporal inde-

pendence, odor recognition by associative memory principles, and segmentation of complex

odor stimuli. This is implemented using non-linear dendrodendritic interactions between

neurons.

Odor discrimination is an important processing task in olfaction. According to our

scheme, each sni� samples the odor stimulus in a slightly di�erent fashion. In the bulb,

the dendritic output from the glomeruli carries the information of the di�erent odorants

in terms of elevated membrane potentials of the mitral cells. A relatively short, coherent,

temporal dominance in the activity of a group of mitral cells that are part of a memorized

odor pattern, leads to convergence onto a memory attractor. Once a memory cell assembly

is active, all of the other cells in the network are either quiescent or weakly active and out

of phase relative to the recalled memory. In other words, the oscillatory activity coincides

with only one of the input stimuli.

Our model predicts that if a molecular combination of one odorant in a complex odor

input dominates all the others, then the neural response will match that of the strong odor
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and will not re
ect in any signi�cant fashion the existence of the weak odorants. This result

corresponds to the phenomenon of odor masking.

If di�erent odorants in the input are of comparable intensities, the activity of the mitral

cells will correspond at di�erent inhalation periods to di�erent odorants. Due to randomness

in the temporal dominance of an odorant in the input, each sni� may lead to memory recall

of a di�erent component of the input. This may explain the elevated sni� rates that are

observed in animals when they encounter odors in their environment.

In our simulations we have used similar numbers of mitral and granule cells. We have

already shown (Hendin et al. 1995) that using larger ratios of granule/mitral populations

may improve the capacity of the associative memory. Here this larger number of gran-

ule cells was not needed, because all we wanted to demonstrate was that memory learning

and recall can take place in the oscillatory network, and that segmentation of two odors

can be achieved. This may also be generalized to represent segmentation of more odor-

ants, similarly to how blind separation of more than two odors may be computed in the

glomeruli (Hendin et al. 1994).

We conclude that, although our network uses only schematic descriptions of the neural

elements and dendritic currents in the olfactory bulb, it may account for cognitive abili-

ties and behavioral patterns. Its activity resembles electrophysiological results (Skarda &

Freeman 1987), (Laurent & Davidowitz 1994), displaying oscillations and formation of cell

assemblies that are odor speci�c. We hope that future experimental studies will substan-

tiate the associative memory aspect of the olfactory bulb and demonstrate how it uses its

oscillatory activity to achieve odor segmentation.

Appendix

A. Basics of Compartmental Models

The total current imj
leaking out of the membrane of the j'th compartment is the di�erence

of the incoming and outgoing axial currents:

imj
= ij�1;j � ij+1;j (13)

This current also equals:

imj
= Iionj

+ Cmj

dVj

dt
(14)

Every additional current in the radial direction must be added to the right side of this

equation. The longitude current is expressed as the gradient of the potential between two

successive compartments divided by the axial resistance of the two:

ij�1;j =
Vj�1 � Vj

rj�1;j

(15)

So, we can express imj
as a function of the membrane potential:

imj
=

Vj�1 � Vj

rj�1;j

�

Vj � Vj+1

rj;j+1

(16)

For the �rst and last compartment in a chain only one term is present in the right hand

side.
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Figure 8: Equivalent circuit for the compartmental model of a mitral cell. It is composed

of a chain of two successive small cylinder segments (passive dendritic membrane), plus one

compartment to symbol the cell body (active membrane).
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