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An associative memory retrieval in a pulse neural network composed of the FitzHugh-Nagumo

neurons is investigated. The memory is represented in the spatio-temporal firing pattern of the
neurons, and the memory retrieval is accomplished using the fluctuation in the system. The storage
capacity of the network is investigated numerically. It is demonstrated that this pulse neural net-
work is capable of an alternate retrieval of two patterns.
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I. INTRODUCTION

Recently, there is a considerable attraction of attentions to the associative memory in neural networks composed
of model neurons which change their dynamical states temporally, such as, chaotic neurons, oscillator neurons, or
spiking neurons [1–14]. They not only arouse the theoretical interests, but also may have a lot to do with the problem
of information coding in the brain [15].

Among them, numerous authors investigate the coupled phase oscillators [3–9], which are the general reduced
model of the coupled limit-cycle oscillators. All the neurons are oscillating with the almost same period, and the
memory is represented in the relative phase differences of oscillators, so they can store the analog-valued patterns.
And this model has an advantage that the usual techniques for the theoretical analysis of associative memory [16,17]
are applicable.

On the other hand, neural networks composed of spiking neurons also show the properties of associative memory
[11–13]. In those systems, following models are often used as spiking neurons, namely, the Hodgkin-Huxley equation
which describes the dynamics of squid giant axons, the FitzHugh-Nagumo equation which is the reduced model of
the Hodgkin-Huxley equation, or the leaky integrate-and-fire model which has the internal state described by a linear
differential equation and a spiking mechanism with a threshold. The couplings among those neurons are accompanied
with the time delay which models the time for a pulse to propagate on the axon from the pre-synaptic neuron to the
post-synaptic neuron, and the memory is represented in the spatio-temporal firing pattern of the neurons.

Meanwhile, the physiological environment where neurons operate is thought to be highly noisy [18,19], so the effect of
the fluctuation may not be neglected. Generally, stochastic resonance (SR) is a well-known phenomenon where a weak
input signal is enhanced by its background fluctuation and observed in many nonlinear systems [20–22]. Particularly,
SR in a single neuron is well investigated by numerous researchers both experimentally [23,24] and theoretically
[25–31], and it is proposed that the biological sensory system may utilize SR to improve the sensitivity to the external
input signal. Recently, the effect of SR in spatially extended systems, or neural networks, is investigated, and some
new features are reported [32–34]. Concerning SR in the coupled FitzHugh-Nagumo equation, we proposed that the
background fluctuation may play a functional role like a parameter of the dynamical system [34].

In the present paper, the associative memory composed of the FitzHugh-Nagumo neurons with the fluctuation is
treated, and SR-like effects in this system are considered. In Sec. II, a coupled FitzHugh-Nagumo equation and
some quantities are defined. In Sec. III, the results of numerical simulations are presented. The memory retrieval by
adding the fluctuation into the system and its dependence on the fluctuation intensity are examined, and an SR-like
phenomenon is observed. The basin of the attraction and the storage capacity of the system are also investigated
numerically. In Sec. IV, theoretical analyses for the fluctuation-induced memory retrieval are presented. In Sec. V,
the simultaneous retrieval of two patterns is observed as the alternate firings of the particular neurons. Conclusions
and discussions are given in the last section.

II. ASSOCIATIVE MEMORY COMPOSED OF SPIKING NEURONS

In the following, as a model of associative memory, we treat a coupled FitzHugh-Nagumo (FN) equation written as
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τu̇i = −vi + ui − u3
i /3 + Ii(t) + ηi(t) +

N
∑

j=1

Jij(uj(t − dp) − ueq), (1)

v̇i = ui − βvi + γ, (2)

〈ηi(t)ηj(t
′)〉 = Dδijδ(t − t′), (3)

where β = 0.8, γ = 0.7, τ = 0.1, ueq = −1.2, dp = 3, ui and vi denote the internal states of the i-th neuron, Ii(t) is
the external input, ηi(t) is the Gaussian white noise which represents the fluctuation in the system. Note that a single
FN neuron shows the characteristic of the spiking neuron, namely, it has a stable rest state, and with an appropriate
amount of disturbance it generates a pulse with a characteristic magnitude of height and width, ueq is the equilibrium
value of ui for Ii(t) = 0, ηi(t) = 0, and Jij = 0 (i, j = 1, 2, · · · , N ), and that dp is the uniform propagational time
delay.

Then let us make the above N neurons store p random patterns ξµ
i (i = 1, 2, · · ·, N , µ = 1, 2, · · · , p), generated

according to the probability density function

P (ξµ
i ) = (1 − a)δ(ξµ

i ) + aδ(ξµ
i − 1), (4)

where δ(x) denotes the delta function and a (0 ≤ a ≤ 1) is the average of ξµ
i . Following Yoshioka and Shiino [13], the

connection coefficients Jij are defined as

Jij =
w

Na(1 − a)

p
∑

µ=1

ξµ
i (ξµ

j − a), (5)

where the parameter w scales the strength of Jij and is fixed at w = 0.15 in the following. Note that the matrix
Jij ∝

∑

µ ξµ
i (ξµ

j − a) is used instead of usual Jij ∝
∑

µ(ξµ
i − a)(ξµ

j − a) so as not to give the negative input to the

neurons which store 0’s, because the FN neuron can fire even with the negative input due to the rebound effect [35].
The external input Ii(t) is defined as

Ii(t) = IxiΘ(t) (xi ∈ {0, 1}), (6)

where I is the strength of the external input, xi is the binary factor which determines whether the input is injected
to the i-th neuron or not, and Θ(t) is Heaviside’s step function which takes 1 for t ≥ 0 and otherwise takes 0. In the
following, I is fixed at I = 0.1, which is so small that each neuron can not fire without the fluctuation η i(t). Using
the binary factor xi, the input-overlap mµ

in, which measures the correlation between the pattern ξµ = (ξµ
1 , ξµ

2 , · · · , ξµ
N)

and the external input I(t) = (I1(t), I2(t), · · · , IN (t)), is defined as

mµ
in =

1

Na(1 − a)

N
∑

i=1

(ξµ
i − a)(xi − a). (7)

III. FLUCTUATION-INDUCED MEMORY RETRIEVAL

Following the above configurations, numerical simulations are carried out for N = 200, p = 3, and a = 0.5. Without
loss of generality, the pattern ξ1 can be defined as

ξ1
i =

{

1 1 ≤ i ≤ 100
0 otherwise

, (8)

and the pattern ξ2 and ξ3 are determined randomly following the probability density function (4). The external input
is derived by determining the binary factors xi randomly so that the input-overlap m1

in with the pattern ξ1 takes 0.5.
A typical time series of u1(t) for the fluctuation intensity D = 0.001 is shown in Fig. 1, where the fluctuation around
ueq and the two firings are observed.
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FIG. 1. A typical time series of u1(t) for N = 200, p = 3, a = 0.5, and D = 0.001. The fluctuation around ueq and the two
firings are observed.

To measure the correlation between the pattern ξµ and the time series ui(t) (i = 1, 2, · · · , N ), ui(t) is transformed
into the binary series yi(t) ∈ {0, 1}. Firstly, let us define the firing time of the i-th neuron as the time when ui(t)
exceeds an arbitrary threshold θ, and we set θ = 0 in the following. Then the time series ui(t) is transformed into the
binary series

yi(t) =

{

1 t < tfi + d
0 otherwise

, (9)

where tfi is the latest firing time of i-th neuron at time t, and the parameter d is set close to the characteristic width
of the output pulse and d = 4 is used in the following. Then the output-overlap mµ

out between the pattern ξµ and the
binary series y = (y1(t), y2(t), · · · , yN(t)) is defined as

mµ
out =

1

Na(1 − a)

N
∑

i=1

(ξµ
i − a)(yi − a). (10)

The firing times of all the neurons for the fluctuation intensity D = 0.001 are shown in Fig. 2 (a), and it is observed
that all the neurons are firing randomly.

mout
1

(a)

(b)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

time

0

50

100

150

200

0 20 40 60 80 100

in
de

x 
of

 n
eu

ro
n

time

3



FIG. 2. The result of numerical simulation, (a) the firing times of all the neurons and (b) the output-overlap m1

out with the
pattern ξ1, for N = 200, p = 3, a = 0.5, and D = 0.001. All the neurons are firing randomly, so the retrieval of the pattern ξ1

fails.

The output-overlap m1
out with the pattern ξ1 obtained from the time series in Fig. 2 (a) is shown in Fig. 2 (b). It

is observed that m1
out fluctuates around 0, so it can be concluded that the retrieval of the pattern ξ1 fails.

The firing times of all the neurons for D = 0.002 are shown in Fig. 3 (a).
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FIG. 3. The result of numerical simulation, (a) the firing times of all the neurons and (b) the output-overlap m1

out with the
pattern ξ1, for N = 200, p = 3, a = 0.5, and D = 0.002. The retrieval of the pattern ξ1 is successful.

It is observed that all the neurons seem to fire randomly at small t, but at t ∼ 40, the neurons which store 1’s for
the pattern ξ1 start to fire periodically and synchronously. And in Fig. 3 (b), the output-overlap m1

out increases to
about 0.8 at t ∼ 40, so in this case the retrieval of the pattern ξ1 is successful.

The results of the simulation for D = 0.004 are shown in Fig. 4.
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FIG. 4. The result of numerical simulation, (a) the firing times of all the neurons and (b) the output-overlap m1

out with the
pattern ξ1, for N = 200, p = 3, a = 0.5, and D = 0.004. The neurons which store 0’s for pattern ξ1 fire with high firing rates
due to the large fluctuation intensity, so the output-overlap is lower than the case of D = 0.002.

The periodic and synchronous firings are observed again, but the neurons which store 0’s for pattern ξ1 also fire
with high firing rates due to the large fluctuation intensity, so the output-overlap is lower than the case of D = 0.002.

In Fig. 5, the output-overlap m1
out at a sufficient large t is plotted against the fluctuation intensity D for the

input-overlap m1
in = 0.8, 0.6, and 0.1.
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FIG. 5. The output-overlap m1

out against the fluctuation intensity D for m1

in = 0.8, 0.6, and 0.1 with N = 200, p = 3, and
a = 0.5. Stochastic resonance-like phenomenon is observed for m1

in = 0.8 and 0.6.

The other parameters are identical with the previous cases. For m1
in = 0.8 and 0.6, the output-overlap m1

out

increases with the increase of the fluctuation intensity D, and it decreases with the increase of D over the optimal
intensity D0 ∼ 0.0015. This phenomenon is similar to so-called stochastic resonance, where a weak input signal is
enhanced by its background fluctuation and observed in many nonlinear systems [20–22]. For m1

in = 0.1, the retrieval
of pattern ξ1 fails for any value of D.

For the fixed fluctuation intensity D = 0.002, the numerically obtained basin of attraction is shown as a function
of the loading rate α = p/N in Fig. 6.
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FIG. 6. The basin of attraction for N = 200, D = 0.002, and a = 0.5. The error bar denotes the standard deviation for ten
samples. The storage capacity is estimated to be about 0.02.

For each loading rate α, two points are plotted, namely, the upper is the equilibrium value of the output-overlap
m1

out, and the lower is the minimum input-overlap m1
in which gives the successful memory-retrieval. For α < 0.02,

the standard deviations shown by the error bars are relatively small, but for α ≥ 0.02, they take larger values, that
is, the memory-retrieval states are destabilized. So it can be concluded that the storage capacity αc is about 0.02.
For further discussions, theoretical analyses of the associative memory [16,17] are needed.

IV. THEORETICAL ANALYSIS OF FLUCTUATION-INDUCED MEMORY RETRIEVAL

A. Fluctuation-induced memory retrieval

In this section, we give the qualitative explanation for the fluctuation-induced memory retrieval. In the following,
the system with p = 1 is considered for simplicity. Let us define the set of indices of neurons which store 0’s in the
pattern ξµ = (ξµ

1 , ξµ
2 , · · · , ξµ

N) as Gµ(0), and the set of indices of neurons which store 1’s in the pattern ξµ as Gµ(1).
The input Ki injected to the i-th neuron is written as

Ki = ηi for i ∈ G1(0), (11)

Ki =
w

Na(1 − a)

N
∑

j=1

(ξ1
j − a)(uj − ueq) + I + ηi, (12)

=
w

Na(1 − a)





∑

j∈G1(0)

(ξ1
j − a)(uj − ueq) +

∑

j∈G1(1)

(ξ1
j − a)(uj − ueq)



 + I + ηi, (13)

= w



−
1

N (1 − a)

∑

j∈G1(0)

(uj − ueq) +
1

Na

∑

j∈G1(1)

(uj − ueq)



 + I + ηi, (14)

= w
(

−〈uj − ueq〉j∈G1(0) + 〈uj − ueq〉j∈G1(1)

)

+ I + ηi for i ∈ G1(1), (15)

where 〈·〉j∈A denotes the ensemble average over the set A. Note that the external input I(t) is injected only to the
neurons in G1(1) for simplicity. Because noises for different neurons are statistically independent, the neurons in G1(0)
fire randomly and independently. On the other hand, the neurons in G1(1) have the common input w〈uj−ueq〉j∈G1(1),
so their firings may be correlative each other. In the following, we treat this dynamics.

Let us consider an ensemble of N neurons with the uniform coupling term w〈uj(t − dp) − ueq〉j and the external
input I +ηi, namely, Eqs. (1) and (2) with Jij = w/N and Ii(t) = I. Note that this model approximates the dynamics
of neurons in G1(1), and that the term 〈uj − ueq〉j∈G1(0) in Eq. (15) is neglected for simplicity. Then let us consider
the number of neurons which fire in the narrow time interval [t, t + ∆] and denote it by Nzn. If an output pulse of
FN neuron has width d and height M , the perturbation with width ∼ d and height ∼ wMzn is injected to all the
neurons with the delay dp. Let us denote the number of neurons which fire with this perturbation in the time interval
[t + dp, t + dp + ∆] by Nzn+1, and assume the relation zn+1 = g(zn). If the FN neuron acts like a threshold device
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with the threshold I0, g(zn) for noise intensity D = 0 is a step function which takes 1 for wMzn + I ≥ I0 and takes
0 otherwise. It is difficult to derive g(zn) for D 6= 0, but it is expected to be a monotonic increase function of zn.

Numerically obtained g(zn) for D = 0.0005, 0.001, and 0.0012 with N = 100 and I = 0.1 is plotted in Fig. 7.
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FIG. 7. Numerically obtained g(zn) for D=0.0005, 0.001, and 0.0012 with N = 100 and I = 0.1. A saddle-node bifurcation
at D ∼ 0.001 is observed.

The width ∆ of time interval is set at the same size with d of output pulse. It is observed that the number of
intersecting points of y = g(z) with y = z is 3 for D < D0 ∼ 0.001, and 1 for D > D0, the intersecting point z ∼ 1 is
always stable for any D, and that the other intersecting points are generated by a saddle-node bifurcation at D = D0.
The schematic diagram is shown in Fig. 8.
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D=D0

D>D0

FIG. 8. Schematic diagram of bifurcation of g(z).

Thus, for D > D0, any zn converges to the stable fixed point zn ∼ 1, which means that all the neurons fire
synchronously and periodically with the period dp for D > D0.

B. The dependence of mout on D

In this section, the dependence of mout on D is investigated for D > D0. Assume that the neurons in G1(1) fire
synchronously and periodically with the period dp and that the neurons in G1(0) are firing randomly with firing rate
depending on D as rG0 = r0 exp(−C/D), where r0 and C are constants. Note that this firing rate is the inverse of
the first passage time for a particle in a double well potential to cross the potential barrier [36], and introduced only
for simplicity.

The distribution of the ratio k of the neurons in G0(0) which fire in a time interval of width d, and its average 〈k〉
are written as

7



P (k) = N(1−a)CN(1−a)k(1 − exp(−rG0d))N(1−a)k(exp(−rG0d))N(1−a)(1−k), (16)

〈k〉 = 1 − exp(−rG0d). (17)

With 〈k〉, mout is approximately given by

m1
out =

1

Na(1 − a)

∑

i

(ξ1
i − a)(yi − a), (18)

=
1

Na(1 − a)
((1 − a)(1 − a)Na + (−a)(1 − a)N (1 − a)〈k〉

+(−a)(−a)N (1 − a)(1 − 〈k〉)), (19)

= exp

(

−r0d exp

(

−
C

D

))

. (20)

Note that Eq. (20) decreases monotonically with the increase of D. This gives the quantitative description of the
decrease of mout for D ≥ D0.

V. ALTERNATE RETRIEVAL OF TWO PATTERNS

In our network, the memory is represented by the synchronized periodic firings of the neurons which store 1’s, and
this period is determined by the propagational time delay dp. So the system has a large degree of freedom along the
time axis for the large dp, that is, during the time between the firings by one pattern, the system can retrieve other
patterns, in other words, this system can process some “tasks” simultaneously.

To see this ability, numerical simulations are performed for N = 200, p = 3, a = 0.5, and d p = 6.5. Note that the
propagational time delay dp is about twice as long as dp = 3 used in above sections. For simplicity, the pattern ξ1

and ξ2 are defined as

ξ1
i =

{

1 1 ≤ i ≤ 100
0 otherwise

, (21)

ξ2
i =

{

1 51 ≤ i ≤ 150
0 otherwise

, (22)

respectively, and the pattern ξ3 is determined randomly following the probability density function (4). The external
input I(t) is defined so that the binary factor xi suffices

xi=

{

1 51 ≤ i ≤ 100
0 otherwise

. (23)

Note that both input-overlaps m1
out and m2

out take 0.5.
For the fluctuation intensity D = 0.001, the firing times of all the neurons and the output-overlaps m1

out and m2
out

are plotted in Fig. 9 (a) and Fig. 9 (b) respectively.
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FIG. 9. The results of numerical simulation, (a) the firing times and (b) the output-overlaps, for N = 200, p = 3, a = 0.5,
D = 0.001, and dp = 6.5. The retrievals of both pattern ξ1 and pattern ξ2 fail.

It is observed that the retrievals of both pattern ξ1 and pattern ξ2 fail with this fluctuation intensity.
The firing times of all the neurons for the fluctuation intensity D = 0.002 are plotted in Fig. 10 (a).
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FIG. 10. The results of numerical simulation, (a) the firing times and (b) the output-overlaps, for N = 200, p = 3, a = 0.5,
D = 0.002, and dp = 6.5. The alternate retrieval of two patterns is observed as the anti-phase oscillations of two output-overlaps.

It is shown that the two patterns ξ1 and ξ2 are retrieved alternatively, accompanied with the time difference dp/2.
The output-overlaps m1

out and m2
out derived from the data in Fig. 10 (a) are shown in Fig. 10 (b). The alternate

retrieval of two patterns is observed as the anti-phase oscillations of two output-overlaps.
The results of the numerical simulation for D = 0.004 are shown in Fig. 11.
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FIG. 11. The results of numerical simulation, (a) the firing times and (b) the output-overlaps, for N = 200, p = 3, a = 0.5,
D = 0.004, and dp = 6.5. All the neurons are firing with high firing rates, so the retrievals of both pattern ξ1 and pattern ξ2

fail.

In Fig. 11 (a), it is observed that all the neurons are firing with high firing rates, so the retrievals of both pattern
ξ1 and pattern ξ2 fail as in Fig. 11 (b).

From above results, it can be concluded that our system has an ability to retrieve two patterns simultaneously
as the alternate firings of particular neurons, and the fluctuation intensity D plays a significant role to realize this
dynamics.

VI. CONCLUSIONS AND DISCUSSIONS

The associative memory in a pulse neural network composed of the FitzHugh-Nagumo neurons with the propaga-
tional time delay is investigated. In this network, the memory is represented by the synchronous periodic firings of
the particular neurons. It is found that the memory retrieval in this system is achieved by adding the fluctuation,
and there exists an optimal fluctuation intensity for the memory retrieval. This phenomenon is similar to so-called
stochastic resonance (SR), where the weak input signal is enhanced by its background fluctuation. Though there is no
time-dependent input in our model, the mechanism of associative memory is driven and enhanced by its background
fluctuation. The basin of attraction of this system is investigated numerically, and its storage capacity is found to
be αc ∼ 0.02. Note that this storage capacity is smaller than those of previous models, for example, 0.138 for the
Hopfield model [37], and 0.038 for the coupled phase oscillators [38]. But our network has an ability that the previous
models do not have, that is, an ability to retrieve two patterns as the alternate firings of the particular neurons. While
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such dynamics as utilizes the degree of freedom along the time axis is proposed by Wang et al. for the network of
bursting neurons [14], our model has the properties that the component of the memory is the single pulse of each
neuron, and that the fluctuation in the system is indispensable.

As for the fluctuation in the neural system, SR in a single neuron is often investigated, and it is proposed that
the sensory system may utilize SR in order to improve the sensitivity to the external input. Our results show that
the fluctuation can play more functional role in higher order dynamics in the brain, like the memory retrieval in the
associative memory. Though Collins et al. propose that the regulating of the fluctuation intensity is not required for
the network of large number of neurons [33], but in our dynamics, it is required to regulate the fluctuation intensity
to the optimal intensity (see Fig. 5). It might be difficult to regulate the fluctuation intensity if the fluctuation in
our model is considered to be the thermal noise in the neural system, but that might be naturally performed if the
fluctuation in our system represents the sum of enormous pulses from the pre-synaptic neurons [29–31]. In such case,
the dynamics of the system might be controlled by its background fluctuation [34].
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