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1 Introduction

Correlation Matrix Memories are feed-forward static binary associative neural networks equivalent to a single
layer fully connected feed—forward network with binary weights. Their simplicity has allowed extensive theo-
retical analysis as well as numerous industrial applications in areas as diverse as symbolic reasoning (Kustrin
and Austin 1999), molecular structure matching (Turner and Austin 1997) and financial forecasting (Kustrin
and Austin 1998). Originally, CMMs were inspired by biological neuronal constructions but as many other
biologically-inspired models they were modelled and constructed as mathematically continuous abstractions;
the natural coding strategy of using spikes was abandoned for more understandable and amenable to analysis
continuous models. CMMs, unlike most other models, remained in the binary input binary output domain
but the internal workings were very much non-spiking. This paper looks at construction of CMMs as purely
spiking entities.

2 Correlation Matrix Memory

Correlation Matrix Memories are simple binary sum-and-threshold memories (Austin 1995). Each output from
a CMM is generated by computing a (binary) weighed sum of inputs which is then thresholded at some value to
produce a binary output. Since thresholding is used to select which outputs will be present in the final output
vector, a number of techniques have been developed to suit various applications. Fixed-weight thresholding
is the simplest in which an output is selected if its sum is greater then some fixed value; maximum-activation
technique thresholds all the outputs at the level of the maximal activation of all output neurons; k-point
thresholding sets the threshold level so that at least £ outputs are present in the output vector; Willshaw
thresholding sets the cut-off point at the same level as the number of bits set in the input vector (Casasent
and Telfer 1987). Current implementations of SCMM exist for both fixed-weight and Willshaw techniques
and maximum-activation is currently being tested.

The basic CMM operations are very simple. Given a set of binary input—output pairs represented in
form I - O, I —- 02 ... I, — O, training can be expressed as a simple binary disjunction of inner
products of the input—output column vectors (a form of Hebbian learning): M° = 0, M* = M ! v O;IF.
Training can be viewed as construction of a mapping from the input to the output vector space and hence
the CMM can be viewed as a simple mapping operator. In this framework, recall becomes simple projection
of the input pattern from the input vector space to the output space:

o(I) = e (MI) (1)

where O is some threshold (transfer) function and I is some input. The need for the threshold function is
intuitive: unless the input is orthogonal and of unit length, the output vector would not be a binary vector,
but would contain output multiplied with the square of the input vector length.

3 Spiking Correlation Matrix Memory

The spiking correlation matrix memory is a direct implementation of the CMM recall equation (eq. 1): firstly
a weighed sum of the inputs is computed which is then thresholded at some set value. These operations are
best explained using the spike-response model (Gerstner 1999). Each neuron i is described by a state variable
u; which is a linear superposition of it’s own output history negative contributions and the contribution from
it’s pre-synaptic neurons:
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where tgf ) it the time when the neuron i fires an output spike, I'; is the set of all pre-synaptic neurons for
neuron ¢, w;; is the weight between neurons ¢ and j, n and € are kernels describing self and pre-synaptic
neuron contributions respectively and F; = {t|u;(t) =9 A u;(t) > 0} is the set of all firing times for neuron
i. The self-contribution refractory kernel, n, is usually modelled by the following equation:

ni(s) = —aexp (—;) H (s) (3)

with a being the value the state will have at the moment of firing (ie u;(t) = —a), 7 a time constant and
H (s) the Heaviside function. If a neuron has a maximum of N inputs then the maximal EPSP it receives will
be N X €(s). This suggests that the refractory kernel should be similarly scaled to ensure that spikes are not
produced during the excitatory potential. This is achieved by modifying the refractory kernel in eq. 3 to be

(o) = —Nexp (=225 ) 3y ) (4)

Tm

where S,,q2 is the time the sum of all EPSEs would reach N ((Ts/Tm)fTS/TFTm — (Ts/Tm)iTm/TsiTm) which

is its maximum.
The response to inputs in form of excitory post-synaptic potentials (EPSPs) is usually modelled with the

following equation:
_ AAX _ AAX
€;(s) = [exp (—87> — exp (—87>] H(s— AAX) (5)
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where 7, and 7, are time constants and A4¥ is the axonal transmission delay. Spike-response model for-
mulation indicates that all pre-synaptic spike inputs are summed (albeit in a nonlinear fashion) and that the
timing of the incoming spikes will have a large impact on the nonlinearity of the sum.

Although relatively simplistic, spike-response model is a good approximation to the actual neuron be-
haviour; it has also been shown that it is in fact a more general model then integrate-and-fire model which is
it’s special case (Gerstner 1999).

Summing

If n spikes are received simultaneously by a neuron and the threshold level was set at 1, then the time from
receiving the input spike to the time of output spike was generated encodes weighed sum of input spikes. In
a slightly simplified model when 7,,, = 275, threshold value will be reached at

vVn? — 4m9>

S, (s) = A 427,10 (2) — 27, 1n <1 + (6)
n
with the first occurrence being at the positive sum case. It is clear that this is a nonlinear equation in n and

that temporal distances nonlinearly encode summed values.

Thresholding

Equation 6 suggests that timing of the incoming spikes has a great impact on a neuron’s state. This is
manifested by the fact that summing is nonlinear which results in greatest state increase when incoming
spikes are coincidental and lesser impact by spikes that are further apart in time. This effect can be used
to detect (relative) equality of spike encoded data. Consider eq. 2. From the equation it is clear that for
some preset values of the timing constants 75, and 7,,, it is possible to find value for the threshold ¢ which
will allow detection of simultaneity of arrival of two or more spikes with arbitrary error (temporal distance).
For example, if values are set at 7, = 1.0, 7» = 10.0 and ¢ = 0.3, the temporal distance between two spikes
would have to be below (approx) 4.585 time units for their occurrence to be detected as being coincidental,
for ¥ = 0.4 the distance is reduced to approx. 2.197 and for ¢ = 0.5 the distance is zero.

It is clear that coincidence detection can be used for thresholding. In the Willshaw threshold model the
threshold is set to be the number of synchronised spikes on input which is simply the sum of all inputs with
all weights set to one. An auxiliary neuron performing this sum will produce a time coded value which can
then be compared to outputs of other neurons with pre-tuned precision which would result in allowing only
the time-encoded sums with the same value as the auxiliary neuron. Fixed weight thresholding is produced
without the need of coincidence detection by utilisation of inhibitory synapses.
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SCMM Architecture

Different thresholding techniques require slightly different architectures with the summing layer being the
invariant. The Willshaw thresholding is implemented by using coincidence detection layer of neurons and an
auxiliary neuron in addition to the input neurons, with the total of 2n+ 1 neurons. The fixed-weight threshold
architecture uses inhibitory synapses for thresholding and thus requires only n + 1 neurons.
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Figure 1: Willshaw threshold SCMM.

4 Example

As a toy problem that will illustrate SCMM operation the following set of relations, {A — B, B — C,
C — A}, and their binary codings A = [1001], B = [0110], C = [0011], D = [0001] were converted into a
CMM weights matrix
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This weight matrix was then used in construction of a Willshaw threshold SCMMs. All SCMM neurons had
time constants fixed at 7,,, = 27, and 75 = 5.0 with threshold at ¥ = 0.24. The threshold layer neurons had
their timing constants set at 7,,, = 10.0 and 75 = 1.0, to facilitate more accurate discrimination of summed
outputs. The Willshaw SCMM architecture is presented in fig. 2. The architecture is recurrent and by
presenting input vector corresponding to symbol A it should produce the sequence A — B — C' after which
it will enter a cycle of producing vectors [1011] and [0010] due to the nature of the Willshaw method. The
output of the simulation is presented in fig. 3.
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Figure 2: The Willshaw-threshold SCMM architecture used in a the example CMM. All non-thresholding had thresh-
old at 0.25 and timing constants set at 7, = 27, and 7, = 5.0. Thresholding neurons were set at ¢ = 0.5,
Tm = 10.0 and 75 = 1.0. Axonal delay for all neurons was set at 80 time units.
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Figure 3: Spike trains for all neurons in the Willshaw-threshold SCMM used in a the example CMM.



