
Abteilung Neuroinformatik
Universität Ulm

Synchronization and pattern separation in
spiking associative memories and

visual cortical areas.

Dissertation zur Erlangung des Doktorgrades
Dr.rer.nat. der Fakultät für Informatik der Universität Ulm

von

Andreas Knoblauch

aus Geislingen an der Steige

2003

ii

Amtierender Dekan : Prof. Dr. Friedrich von Henke
1. Gutachter : Prof. Dr. Günther Palm
2. Gutachter : Priv.-Doz. Dr. Friedrich Sommer
3. Gutachter : Prof. Dr. Ulrich Rückert
Tag der Promotion : 29. Oktober 2003

iii

meiner Familie

iv

Danksagung

An dieser Stelle möchte ich allen jenen danken, die zum Entstehen dieser Arbeit beigetragen
haben.

Besonders verbunden fühle ich mich hierbei meinem Betreuer und langjährigen Lehrer Pro-
fessor Dr. Günther Palm. Ihm danke ich für das Vertrauen und die freie Hand, die ich bei der
Auswahl und Bearbeitung der behandelten Themen hatte, sowie für das große Interesse, das
er meiner Arbeit entgegengebracht hat. Seine Kompetenz, sein hintergründiger Humor, seine
Freundschaft und die stetige Bereitschaft zu anregenden Diskussionen waren eine reiche Quelle
aus der ich Wissen und Motivation schöpfen konnte.

Dann möchte ich ganz herzlich Priv.-Doz. Dr. Fritz Sommer danken für die Freundschaft, pro-
duktive Zusammenarbeit und die vielen hintergründigen Ratschläge und Diskussionen welche
mir den Einstieg in den Wissenschaftsbetrieb enorm erleichtert haben. Außerdem danke ich ihm
für viele konstruktive Kritik und die Bereitschaft meine Arbeit zu begutachten.

Ein herzliches Dankeschön für die jahrelange Zusammenarbeit und Freundschaft möchte ich
auch Professor Dr. Thomas Wennekers aussprechen. Ein wesentlicher Anteil der dieser Arbeit
zugrundeliegenden Veröffentlichungen profitierte von seiner scharfsinnigen und kompetenten
Kritik. Tatsächlich formten seine Vorarbeiten und seine Eigenschaft als Betreuer meiner Diplom-
arbeit wesentlich die Thematik der vorliegenden Dissertation. Insbesondere danke ich ihm für
das von ihm entwickelte und mir zur Verfügung gestellte Simulationswerkzeug Felix welches
die Grundlage der in dieser Arbeit durchgeführten Simulationen war. Besonders danken möchte
ich ihm auch für das akribische Korrekturlesen dieser Arbeit und die konstruktive Kritik an Stil
und einigen spekulativen Behauptungen. Die eventuelle Nicht-Beseitigung dieser Mängel gehen
natürlich weiterhin zu Lasten der Sturheit des Autors.

Den Professoren Dr. Ulrich Rückert, Dr. Heiko Neumann, Dr. Friedrich von Henke und Dr.
Enno Ohlebusch danke ich für ihre Bereitschaft zur Begutachtung meiner Arbeit und/oder für
ihre Mitwirkung als Prüfer in meinem Promotionskolloquium. Ihre sehr positiven Urteile haben
mir eine große Freude bereitet.

Für das Zustandekommen dieser Arbeit hat auch die freundliche und konstruktive Atmo-
sphäre an der Abteilung Neuroinformatik beigetragen. Allen Kolleginnen und Kollegen wäh-
rend dieser Zeit sei herzlich für ihren Anteil daran gedankt, besonders meinen Mit-Doktorand-
Innen Marcus Borst, Michael Borth, Christian Dietrich und Rebecca Fay, den Assistenten und
ehemaligen MitarbeiterInnen Pierre Bayerl, Dr. Andrea Bibbig, Dr. Friedhelm Schwenker, Priv.-
Doz. Dr. Alfred Strey und Dr. Andreas Wichert, sowie unserer Sekretärin Birgit Lonsinger-Miller.

Die vorliegende Arbeit enstand im Rahmen verschiedener Gemeinschaftsprojekte zwischen
der Abteilung Neuroinformatik der Universität Ulm unter Leitung von Professor Dr. Günther
Palm, dem Centre for Hybrid Intelligent Systems der University of Sunderland unter Leitung
von Professor Dr. Stefan Wermter, der Speech and Language Group am Medical Research Coun-
cil Cambridge unter Leitung von Professor Dr. Friedemann Pulvermüller, dem Dipartimento di
Neurofisiologia der Universita degli Studi di Parma unter Leitung von Professor Dr. Giacomo
Rizzolatti, dem CORTEX-Team am INRIA Lorraine/LORIA-CNRS Nancy unter Leitung von Dr.
Frederic Alexandre, der Arbeitsgruppe Neuroakustik der Technischen Universität Darmstadt
unter der Leitung von Professor Dr. Gerald Langner, dem Speziallabor Nicht-Invasive Bildge-
bung am Leibniz-Institut für Neurobiologie in Magdeburg unter der Leitung von Professor Dr.

v

vi

Henning Scheich, Dr. Birgit Gaschler-Markefski und Priv.-Doz. Dr. Peter Heil, und der Abteilung
Akustik, Lernen, Sprache am Leibniz-Institut für Neurobiologie in Magdeburg unter der Leitung
von Dr. Holger Schulze. Ich danke den jeweiligen Leitern für die Initiierung der Projekte und
die einmalige Gelegenheit an den Projekten mitwirken zu dürfen. Insbesondere danke ich Pro-
fessor Dr. Friedemann Pulvermüller, Dr. Olaf Hauck, Dr. Vittorio Gallese, Dr. Cornelius We-
ber, Dr. Christo Panchev, Wolfgang Schmidle, Mark Elshaw, Professor Dr. Gerald Langner und
Michael Ochse für viele anregenden Debatten über neurobiologische und linguistische Sachver-
halte sowie ihre Modellierung. Der Europäischen Union, der Stiftung Volkswagenwerk, sowie
der DFG und dem Land Baden-Württemberg danke ich für die Finanzierung der Projekte und
meiner Arbeit.

Zuletzt möchte ich meiner Familie und allen meinen Freunden für ihre emotionale Unterstüt-
zung danken. Besonders danke ich meiner Frau Kattia für ihre Liebe und Geduld trotz der vielen
Arbeit. Meiner Schwester Stefanie danke ich weil ich ohne sie vielleicht nicht den Mut zu dieser
Arbeit gehabt hätte. Schließlich empfinde ich meinen Eltern gegenüber tiefe Dankbarkeit für ihre
kompromisslose Liebe und Unterstützung über all die Jahre hinweg.

Contents

1 Overview 1
1.1 Motivation and classification . 1
1.2 Organization . 2

2 Introduction 5
2.1 Neurobiology of the brain . 7

2.1.1 Anatomy of the brain . 7
2.1.2 Neurons, synapses, and Hebbian learning . 8
2.1.3 Architecture of the cerebral cortex . 9
2.1.4 Visual system . 11

2.2 Distributed representations, neural assemblies, and binding 13
2.2.1 Distributed representations . 13
2.2.2 Neural assemblies . 14
2.2.3 The binding problem . 14
2.2.4 The temporal correlation hypothesis . 16

2.3 Associative memory . 19
2.3.1 The Willshaw model . 20
2.3.2 Neural associative memory and technical applications 21
2.3.3 Willshaw associative memory as a model for a cortical column 22
2.3.4 Alternative models of associative memory 24

2.4 Simulation tools and models of neurons and synapses 24

3 Willshaw associative memory 27
3.1 Classical analysis of the Willshaw model . 28

3.1.1 Storing and retrieving patterns . 28
3.1.2 Classical analysis of one-step retrieval . 29

3.2 Matrix compression yields storage capacity 1 . 30
3.2.1 Ultra-sparse patterns . 33
3.2.2 Moderately-sparse patterns . 34
3.2.3 Non-sparse patterns . 34

3.3 Fault tolerance . 35
3.3.1 Missing ones in the address patterns . 35
3.3.2 False ones in the address patterns . 38

3.4 Retrieval efficiency for sequential implementations 39
3.4.1 Look-up-tables with M = nd . 39
3.4.2 Classical Willshaw model . 40
3.4.3 Compressed Willshaw model with ultra-sparse patterns 40
3.4.4 Compressed Willshaw model with moderately-sparse patterns 41

3.5 Retrieval efficiency for parallel implementations . 41
3.5.1 Classical Willshaw model . 42
3.5.2 Parallel implementation of the compressed Willshaw model 42
3.5.3 Compressed Willshaw model with ultra-sparse patterns 43

vii

viii CONTENTS

3.5.4 Compressed Willshaw model with moderately-sparse patterns 44
3.6 A critique of the classical binomial analysis . 45

3.6.1 The binomial approximation of the Willshaw distribution can be bad 45
3.6.2 Oscillatory modulations in the membrane potential distribution 47
3.6.3 Underestimation of the variance of membrane potentials 48
3.6.4 Consequences . 50
3.6.5 An experiment to test the hypothesis of cell assemblies in the brain 51

3.7 Implications . 53
3.7.1 Implications for technical applications . 53
3.7.2 Implications for biological models . 54

4 Spiking associative memory 57
4.1 Addressing with superpositions . 57
4.2 Pattern separation . 59
4.3 Spike counter model . 60
4.4 Analysis of the spike counter model . 63

4.4.1 Single noisy address patterns . 63
4.4.2 Asymptotic analysis . 65
4.4.3 Superpositions of several noisy address patterns 67
4.4.4 Relevance and applicability of the analysis 69
4.4.5 Refined analysis . 71

4.5 Technical implementations of the spike counter model 72
4.5.1 Model extension . 73
4.5.2 Sequential implementations . 75
4.5.3 Parallel implementations . 76
4.5.4 Simulation experiments . 77
4.5.5 Summary . 84

4.6 Biological implementations of the spike counter model 84
4.7 Implications . 88

4.7.1 Summary of the chapter . 88
4.7.2 Why spikes? . 90

5 Model of visual cortical areas 95
5.1 Modeling . 96

5.1.1 Model of the primary visual cortex . 96
5.1.2 Reciprocal connection to a central cortical area 97

5.2 Interaction between two cortical areas . 98
5.2.1 Single stimulus . 98
5.2.2 Multiple stimuli . 99

5.3 Relation to neurophysiological results . 102
5.3.1 Two-bars experiment . 102
5.3.2 Inter-areal synchronization . 103
5.3.3 Synchronization on larger time scales . 105
5.3.4 Attention and biased competition . 107
5.3.5 Synchronization on larger space scales . 108

5.4 Summary of the mechanisms in the model . 111
5.4.1 Local synchronization . 111
5.4.2 Fast oscillations . 111
5.4.3 Intra-areal long-range synchronization . 111
5.4.4 Inter-areal long-range synchronization . 112
5.4.5 Attentional switching between two activation states 112
5.4.6 Binding . 113

CONTENTS ix

6 Binding in the brain 115
6.1 Is there a binding problem in the brain? . 115
6.2 Critique of the strong Temporal Correlation Hypothesis 116

6.2.1 Postulations of the strong TCH and phase coding 116
6.2.2 Critique of phase coding in the gamma range 116
6.2.3 Functional relevance of fine timing . 118
6.2.4 Different time and space scales for binding by synchronization 119

6.3 Sketch of a more global model of binding in cortical areas 120
6.3.1 Classification of different binding problems 120
6.3.2 Possible solutions . 120

7 Conclusions 123
7.1 Contributions to the theory of Willshaw associative memory 123
7.2 Contributions to the theory of cell assemblies . 125

8 Zusammenfassung (in German) 129

A Information theory 135
A.1 Basic information theory . 135

A.1.1 Information of random variables . 135
A.1.2 Transinformation and transinformation rate 135
A.1.3 Channels and channel capacity . 136

A.2 Binary channels . 136
A.3 Optimal compression of sparse bit streams . 137

A.3.1 Huffman codes . 137
A.3.2 Golomb codes . 137

B Analysis of associative memory 141
B.1 Information-theoretical storage capacity . 141
B.2 Auto association and hetero association . 142
B.3 Retrieval and separation quality . 143

B.3.1 Retrieval quality . 143
B.3.2 Separation quality . 143

B.4 Further analysis of Willshaw associative memory 144
B.4.1 Derivatives of memory load, storable patterns, and storage capacity 144
B.4.2 Optimal storage capacity for moderately sparse patterns 144
B.4.3 For non-sparse patterns asymptotic storage capacity is generally zero . . . 147

C Simulation tool Felix++ 149
C.1 Basic architecture of Felix++ . 149

C.1.1 The core modules of Felix++ . 149
C.1.2 Auxiliary modules of Felix++ . 151
C.1.3 Component classes of Felix++ . 152

C.2 Simulation environment and components: Code examples 154
C.2.1 Simulation environment: Class TSimulationEnvironment 155
C.2.2 Components: Class TComponent . 156
C.2.3 Class TSSNeuron: a simple spiking neuron model 157

C.3 Structure of a Felix++ simulation . 159
C.3.1 A skeleton simulation program . 159
C.3.2 The parameter file . 161
C.3.3 Compiling and running simulations . 162

D Symbol reference 165

x CONTENTS

Chapter 1

Overview

1.1 Motivation and classification

Throughout the last decades many representatives of computer science and in particular arti-
ficial intelligence promised that to the end of the twentieth century at the latest we will have
computers and robots taking from us many of the so-called primitive cognitive works such as re-
sponding to telephone calls, driving a car, or cleaning the house. Actually up to date there are at
best some quite primitive solutions to the primitive problems, such as artificial telephone-agents
understanding “yes” or “no”, artificial car drivers that react reliably in about ninety percent of
situations occurring when driving on the highway (but would cause accidents in the remaining
ten percent), and service robots making every effort to navigate in a simple empty environment
(such as the floors of a building) but have great difficulties in finding a cup of coffee on an office
desk crowded with other distracting objects. The apparent underestimation of these primitive
cognitive abilities of humans and animals is one motivation (among others) to investigate the
basics of biological cognitive systems such as the neural networks in the brain.

This interdisciplinary work intends to contribute to several fields in computer science, com-
putational neuroscience, neurophysiology and neuropsychology using methods of computer sci-
ence, computational neuroscience, biomathematics, and neurophysics. The basic assumption is
that the cognitive abilities of humans and animals result from information processing in the neu-
ral networks of the nervous system, and that main aspects of this process can be modeled and
simulated using computers.

In close relation to the classical theory of Hebbian cell assemblies [64, 26, 130, 133] the concept
of neural associative memory [204, 129, 69, 134, 29, 160, 171] is used to model local networks of
the cerebral cortex. A large part of this work contributes to the theory of neural associative mem-
ory. In particular information theoretical methods are used in order to analyze neural associative
memory with respect to storage capacity, fault tolerance, and retrieval efficiency. The analysis of
storage capacity deals with the questions of how much information can be stored in the synaptic
connectivity of a local cortical neuron population; analysis of fault tolerance deals with the de-
crease of storable information if the address patterns used for information retrieval deviate from
the original ones used for storing the information; and analysis of retrieval efficiency deals which
the questions of how fast information can be retrieved.

From the perspective of computer science neural associative memories are simply devices for
rapid access of stored information, for example, the association of pattern vectors. There exist
several alternative algorithms in computer science that can be used in principle instead of neural
associative memory. For example, a look-up table could be used for storing in each line a pattern
vector or the association of two pattern vectors. Alternatively, one could also use indexing and
binary search if the address vector is scalar, or hash-tables if the address vectors used for retrieval
are exactly the same as those used for storing, i.e., if no fault-tolerance is required. While the clas-
sical algorithms are superior in many of the classical applications, the use of neural associative

1

2 CHAPTER 1. OVERVIEW

memory can be advantageous if a large number of patterns have to be stored in a fault tolerant
way.

One focus in this work is on the use of spikes for information processing in local and global
neural networks. Common neuron models often use gradual (even linear) or sigmoidal output
units. This is in contrast to the biological reality where neurons mainly communicate by pulse-
like action potentials or spikes. While many classical models assume that the spike rate is suf-
ficient for describing interactions between neurons, more recent results rather suggest that also
the precise fine timing of individual spikes is important. Neurophysiological recordings indicate
that synchronization of spike activity within the time window of a few milliseconds is involved in
binding distributed neurons representing one common entity [41, 61, 168]. Another phenomenon
observed in neurophysiological experiments are spatio-temporal spike patterns within a neuron
group, so-called synfire-chains [2, 5], which can last tens to hundreds of milliseconds, and which
repeat with a precision corresponding to the millisecond time window.

In this work the function of spikes are investigated on a local and a global level. The local level
corresponds to local cortical networks or neural associative memory, and the focus is on the role
of spikes in the separation of overlaying local representations. On the more global level of the
visual system a model of reciprocally connected cortical areas is designed in order to investigate
aspects of binding by spike-synchronization. In particular the representation, competition, and
separation of multiple objects is investigated.

1.2 Organization

This work can roughly be divided into three parts: The first part (chapter 2) gives an introduction
into the relevant fields, like neurobiology, assembly theory, and the theory of associative mem-
ory. The second part (chapters 3 and 4) contributes to the theory of neural associative memory. In
the third part (chapters 5 and 6) a biologically more realistic model of interacting visual cortical
areas is developed in order to investigate scene segmentation, pattern separation, and binding
between distributed representations, and to compare the simulation results with neurophysio-
logical observations. Finally chapter 7 summarizes and discusses the main results of this work.
Chapter 2 introduces the disciplines relevant for this work, like neurobiology, assembly theory,
theory of neural associative memory, and the modeling and simulation of neurons, and discusses
briefly related work.
Chapter 3 reviews and extends the classical theory of binary Willshaw associative memory [204,
129, 134]. It is shown that optimal compression of the binary memory matrix can yield a storage
capacity of full 100% (normalized to the required physical memory), and that this can be achieved
for a large range of coding parameters. Then aspects of fault tolerance and efficient sequential
and parallel implementations are analyzed. Finally the validity of the classical binomial approx-
imation of the Willshaw model is discussed using a refined analysis technique [29, 171]. It turns
out that the binomial approximation can be qualitatively different to the exact Willshaw distribu-
tion even for very large networks. This difference suggests a neurophysiological experiment to
test the hypothesis of local cell assemblies in the brain.
Chapter 4 investigates an extension of binary Willshaw associative memory using spiking neu-
rons. From simple considerations of the separation of overlaying patterns the so-called spike
counter model is derived as a continuous version of the Willshaw model. The theory of chap-
ter 3 is extended for the spike counter model in order to analyze fault tolerance against false
one-entries in the address patterns, or superpositions of several patterns, and the results of the
analysis are compared to simulation experiments. Then a biologically more realistic model for
a local cortical network is derived from the spike counter model using a more realistic neuron
model, and different implementations of the model are compared in simulation experiments.
Chapter 5 develops a biologically realistic model of two reciprocally coupled visual cortical areas.
The lower area P is modeled as the orientation selective subsystem of primary visual cortex V1,
while the more central area C is modeled as the biological version of spiking associative memory
as described in chapter 4 containing Hebbian learned representations of objects in the visual field.

1.2. ORGANIZATION 3

In simulation experiments the model is tested using a single stimulus or a superposition of mul-
tiple stimuli, and the results are compared to various neurophysiological observations involving
attentional effects and stimulus-specific spike synchronization in relation to visual feature bind-
ing [168]. In particular the results contradict common phase-coding models [150].
Chapter 6 discusses more generally possible solutions to the binding problem. A classification
of different binding problems is given. For some of them the visual model of chapter 5 suggests
already reasonable solutions contradicting commonly used phase-coding models. For other more
difficult problems possible solutions are discussed in the context of the modeling in this work.
Chapter 7 summarizes and discusses the main results of this work.
Appendix A gives a brief introduction to the main concepts of information theory necessary for
analyzing associative memory. In particular discussed are binary channels for the definition of
storage capacity, and Golomb codes for efficient compression of the memory matrix.
Appendix B explains how information theory can be applied in order to analyze the storage ca-
pacity of Willshaw associative memory. Some quality measures are defined to judge performance
of retrievals. And finally some proofs for propositions in chapter 3 are given.
Appendix C gives an overview over the simulation tool Felix++ used for the simulations in this
work.
Appendix D defines some notational conventions for the use of symbols.

Some parts of the presented work have already been published in journal papers, book chap-
ters, conference proceedings, or in other form. Results from chapter 3 have been published
partially in [87], results from chapter 4 in [89, 90, 86, 95], and results from chapters 5 and 6 in
[91, 92, 96, 89, 90, 86, 97, 98, 101, 93, 94] (in order of relevance).

How to read this work

Depending on background some readers may be interested only in parts of this interdisciplinary
work. For the computer scientist mainly interested in analysis and efficient implementations of
associative memory for technical applications it may be sufficient to read section 2.3, chapter 3,
chapter 4, and section 7.1.

For the biologist interested in neural associative memory as a model for a local cortical net-
work, assembly theory, and binding mechanisms in the brain, but not so much in the theoretical
analysis of associative memory, it is recommended to read chapter 2, section 3.1.1, section 3.6.5,
section 3.7.2, chapter 4 without section 4.4, and chapters 5 - 7.

4 CHAPTER 1. OVERVIEW

Chapter 2

Introduction

Computer scientists contribute to society by creating machines that are supposed to relieve the
burdens of our life and work. These burdens include stereotypic procedures like computing,
accounting, and the administration of large data bases. Many of these problems are well-under-
stood, and it is possible today to implement well-suited and cheap solutions.

However, there are still some problems apparently resisting appropriate algorithmic solu-
tions. On the one hand one can formally prove for some of these problems that we cannot expect
efficient solutions (e.g. the so-called traveling-salesman-problem, and other instances from the
class of NP-hard problems; e.g. [159]). On the other hand there are many problems where we
do not know if efficient solutions exist, and in many instances we are not even in the position
to define the problem appropriately. Ironically many of these problems can be solved easily by
humans, e.g. driving a car, or understanding natural language.

In contrast to the problems where efficient algorithmic solutions have already been found,
many of the hard problems involve a much broader context. For example driving a car involves a
myriad of different situations that have to be identified and that require special behaviors to cope
with. And even worse, understanding natural language would practically involve the whole
context of human life. In contrast, problems where efficient algorithms have been developed
usually require only a very narrow context (e.g., playing chess, or administrating a data base),
and can easily be formalized.

The fact that humans can tackle many of the hard problems (as language understanding and
vision) together with the philosophical conviction that humans are biological organisms subju-
gated to the physical laws (and therefore potentially describable by formal models) has tempted
many computer scientists to ally with biologists, psychologists, and other members of the cog-
nitive neuroscience community to understand how the brain of humans (and animals) accom-
plishes its fabulous performance.

Apart from building intelligent machines a second and probably deeper motivation to inves-
tigate the brain origins from the philosophical questions who we are, where we have come from,
and where we will leave to. Indeed, the question on the relation of the physical body and the
mind occupied many scientists throughout the history of civilization (e.g., [49]). Almost three
thousand years ago old Egyptian writers still favored the heart to be the organ responsible for
sensation and thought. In the fifth century B.C. the Greeks first determined that the brain was
the physical seat of the mind by observations of human patients with brain damage.

For another thousand years the brain itself was considered by many to be a mere package for
the real substance of thought, the cerebrospinal fluid located in the ventricles (the present day use
of the word spirit origins from this idea). This accorded quite well with the dualism of Christian
theology, as the ventricles could be said to contain the soul without hypothesizing an identity
between mind and the physical substrate of brain tissue.

In the seventeenth century, Rene Descartes proposed a simple sensory-motor loop, in which
stimulated nerves caused release of spirits in the ventricles, which, in turn, caused efferent nerves
and muscles to act. For intelligent human action, this loop was modulated by the soul via its

5

6 CHAPTER 2. INTRODUCTION

effects on the pineal gland.
In the eighteenth and nineteenth centuries anatomical knowledge increased. From investiga-

tion of hundreds of skulls of humans (among them sadists and murderers) and beasts Franz Josef
Gall developed his theory of cerebral localization or phrenology stating that basic human facul-
ties (e.g., aggression, memory, vanity, religion, love, etc.) are located at separate skull regions.
This more materialistic view was opposed by holistic theories denying the parcelation of the
mind and the brain into distinct parts and instead emphasizing a unitary soul (e.g., Jean-Pierre
Flourens).

In 1861 Paul Broca described a brain lesion of a late patient who had suffered from speech
loss confirming earlier suggestions for the location of a speech center in the frontal lobe. In
the following decade these results encouraged further investigations of the relation of cognitive
deficits to brain lesions. Carl Wernicke discovered a second language area and proposed a model
of representations in different sensory and language centers connected by specific pathways. This
type of theorizing came to be known as associationism or connectionism, and was quickly extended
to explain other disorders.

With the advent of computers in the 1940s it became possible to implement ideas of logicians
and mathematicians how the mind may work. The new field now generally recognized as Arti-
ficial Intelligence (AI; e.g., [156]) developed from three sources: Knowledge of basic physiology
and function of neurons in the brain; the formal analysis of propositional logic; and Turing’s the-
ory of computation. In particular the work of McCulloch and Pitts [117] who proposed a model
of two-states (on/off) neurons can be seen as the common forerunner of both the logicist tradi-
tion in AI and the connectionist tradition. In 1943 they proposed a model of two-state neurons
(on/off or 1/0) where a neuron enters the on-state (or 1-state) if it obtains sufficient input from
neighboring neurons. They showed that any computable function could be computed by some
network of connected neurons. In 1949 Donald Hebb contributed a neural learning rule that ex-
plained how such networks could be learned, and even more important, founded the theory of
cell assemblies [64, 26, 130] intended to explain how thoughts are represented in the brain.

After Minsky’s proof in 1969 that a single layer neural network cannot compute certain logi-
cal functions [119] the connectionist AI practically died out in the 1970s, while the early success
of logicist AI led to enthusiasm and great expectations. However, the promises of logicist AI
were not fulfilled in the following decades. While many ideas worked quite well for small closed
worlds (e.g., block-world), the implemented systems bumped into complexity problems when
faced with real-world-problems since, for example, no efficient algorithms are known to derive
efficiently the truth of a proposition given a large knowledge base of facts and rules. Other se-
vere problems are learning and the handling of uncertainty. Even for problems where nowadays
computers are better than most humans, e.g., playing chess, it turned out that the strategies of
computers are quite different from those of the humans. To find out the best move a chess pro-
gram has to generate millions of alternatives most of which are completely irrelevant. In contrast,
human players choose from only very few but very relevant alternatives by conscious and log-
ical reasoning, where the set of alternatives seems to be the result of unconscious, intuitive, or
associational processes.

After the return of neural networks in the 1980s the two disciplines, logicist and connection-
ist AI, have been seen each other rather as rivals, unfortunately. Representatives of the logicist
(or classical cognitive) AI proposed that “... mind/brain architecture is not connectionist at the
cognitive level [...] (but) may provide an account of the neural [...] structures in which classical
cognitive architecture is implemented.“ [51], which states essentially that the neural machinery
of the brain serves rather exclusively to implement conscious logical reasoning, and thus that
human cognition can be described completely on the logical level of classical AI. This argumen-
tation is based on the assumption that connectionist architecture cannot adequately implement
composite structures in a dynamic fashion facing for example the problem of dynamic variable-
binding.

In the 1980s and 1990s refined connectionist models were suggested that can handle the repre-
sentation of rules, variables, and dynamical bindings, typically using temporal synchrony (e.g.,
[191, 165]) inspired by recent neurobiological findings of synchronized neural activity [41, 61,

2.1. NEUROBIOLOGY OF THE BRAIN 7

168]. These models intend to be more than the neural substrate of the classical cognitive ideas.
For example Shastri and Ajjanagadde [165] distinguish between reflexive and reflective reasoning.
While the latter corresponds to the classical cognitive ideas requiring “ reflection, conscious de-
liberation, and often an overt consideration of alternatives and weighing of possibilities “, the
model intends to implement rather reflexive reasoning accounting for the human ability to “ draw
a variety of inferences rapidly, spontaneously, and without conscious effort “ (similarly to the hu-
man chess player obtaining the relevant alternatives for a move, see above). Although inspired
by neurophysiological observations these models are typically far from the reality of the brain,
however.

In this work we will discuss the relation between neural architectures and different versions
of the binding problem [192, 168]. Starting from simple abstract models for neural associative
memory [204, 129, 69, 134] and neural assemblies [64, 26, 130, 133] we will develop a biological
realistic model using spiking neurons that reproduces many neurophysiological observations,
and that solves very naturally some instances of the binding problem. In chapter 6 binding is
discussed more generally in relation to the ongoing debate between connectionist tradition and
the tradition of classical cognitive logicists AI. The rest of this chapter introduces into the basics
of the relevant fields like neurobiology, assembly theory, and the theory of associative memory,
necessary for understanding this work.

2.1 Neurobiology of the brain

Today it is commonly believed that the main purpose of the nervous system is the information pro-
cessing and communication between different parts of the human body. We can distinguish the
vegetative and animalic nervous systems. While the vegetative nervous system regulates the internal
milieu of the organism via the two antagonists sympathicus and parasympathicus, the animalic
nervous system serves to coordinate interactions with the external environment. The latter means
generation of sensory information, integration to conscious percepts, and generation of adequate
motor output. The animalic nervous system can be further divided into central nervous system
(brain and spinal cord) and peripheral nervous system (nerves of head, trunk, and extremities).

It is relatively easy to investigate the peripheral nervous system in physiological experiments.
For example, the response measured from a sensory nerve will be closely related to a stimulus
in the environment which can be easily controlled in an experiment. Similarly the reaction of a
muscle will be closely related to the stimulation of a motor nerve.

In contrast it is generally much more difficult to investigate functional aspects of the central
nervous system since here responses will not only depend on the stimulus but also on internal
states (e.g., states of memory, expectation, attention, motivation, etc.) which can be very hard to
control.

This work intends to make a contribution to a reasonable theory of the organization of internal
states of the brain [64, 26, 130].

2.1.1 Anatomy of the brain

The brain can be roughly divided into six parts (see Figure 2.1). The (1) medulla oblongata is the
transition region to the spinal cord and is dedicated to elementary vital functions such as con-
trol of digestion, breathing, and control of the heart beat. The (2) pons deals with interchange
of motion-related information between the cerebral cortex and the cerebellum. The (3) cerebel-
lum regulates strength and extension of motor actions, and plays a role for learning of motor
capabilities. The (4) mesencephalon controls elementary sensory and motor functions, such as
eye-movements, and the coordination of visual and auditory reflexes. The (5) diencephalon lies
between the two hemispheres of the cerebrum and contains the thalamus and the hypothalamus.
The thalamus constitutes the interface between the cerebral cortex and the remaining parts of
the central nervous system, and the hypothalamus regulates autonomous, endocrine and vis-
cerale functions. Finally the (6) cerebrum consists of the cerebral cortex and below three addi-

8 CHAPTER 2. INTRODUCTION

tional structures: The basal ganglia (control of motor activity), the hippocampus (memory), and
the amygdala (emotions, motivation and reward).

Figure 2.1: Illustration of the human brain (Modified from [79].)

2.1.2 Neurons, synapses, and Hebbian learning

There are two cell types in the nervous system: Neurons and glia. A typical neuron can be divided
into four morphologically defined regions (see Fig.2.2): (1) The soma is the metabolic center of the
cell. It gives rise to two types of processes called dendrites and axons. The (2) dendrites are the
’sensors’ of the neuron branching out in a tree-like fashion. They serve to receive signals from
other neurons. While a neuron usually has many dendrites, only a single (3) axon origins from
the axon hillock, a specialized region of the cell soma. It serves to convey information from the
neuron to other distant cells. The axon can make complex arborizations and run to different
distant locations where it makes (4) synapses on the target cells.

In this work we will simulate the electrophysiology of a large number of neurons. For this we
use simple mathematical models for the electrical properties of individual neurons (see section
2.4). They can be explained as follows. Between the soma and the extra-cellular space there is
an electrical potential, the so-called transmembrane potential: In the resting state of the neuron the
voltage difference between the inner and outer medium is about−60mV (i.e., negative inside the
cell). Synaptic input from other cells generate postsynaptic potentials (PSPs) in the dendrite at the
synaptic location which are electrotonically transmitted to the soma. If the cell receives many
excitatory PSPs within a small time window (e.g., 10msec) then they will superpose additively. If
the depolarization at the axon hillock exceeds a critical value (firing threshold, roughly −50mV)
then a spike is generated and transmitted along the axon to the synapses on target neurons.

It is believed that synapses play an important role for long-term memory. In 1949 Donald
Hebb proposed his theory of neural assemblies [64] postulating the strengthening of synapses
between coactivated neurons (see also [76]). Since then it has been confirmed in many neuro-
physiological experiments that simultaneous activation of two neurons can strengthen the effi-
cacy (i.e., the PSP amplitudes) of the synapses connecting the two neurons [19, 1]. Recent results

2.1. NEUROBIOLOGY OF THE BRAIN 9

Figure 2.2: Illustration of a cortical pyramid neuron. (Modified from [80].)

even suggest that a synapse is specifically strengthened if the presynaptic spike precedes the
postsynaptic spike [112, 15, 53].

In addition to the neurons there are about 10-50 times more glial cells [80]. Despite their large
number it is believed that glial cells play no direct role in the fast (electrical) transmission of
signals. This seems to be exclusively the domain of the neurons. Instead it is believed that glial
cells serve rather as supporting elements, for example in order to provide firmness and structure
to the brain, regulate the concentration of ions, isolate axons to accelerate transmission of signals
(myelin sheath), or remove debris after injury or neuronal death.

2.1.3 Architecture of the cerebral cortex

The cerebral cortex is the gray matter below the surface of the hemispheres of the cerebrum. It
contains the cell bodies, the dendrites, and local axons of the neurons. Below the cortex we
find the white matter constituted by the myelinated axons connecting cortical areas with distant
cortical or sub-cortical regions.

The architecture of cortex is remarkably constant between different species of different size
all sharing the same layered architecture and pattern of afferents (input fibers) and efferents (output
fibers). Most amazing is the constance of synaptic density (≈ 0.5−1 ·109 synapses/mm3) over dif-
ferent animals and brain regions (cf. Table 1.5.4. in [3]) suggesting that the limiting factor for local
cortical connectivity is the packing density of the synapses. Also the thickness of cortex is remark-
ably constant between different species. For example, the mouse cortex has a thickness of about
0.8mm while the thickness of human or elephant cortex is about 2.5mm or 4mm (although the
weight of a human or an elephant brain is about 3400 or 13000 times the weight of a mouse brain;
cf. Fig. 1.1.3 in [3]; cf. [83]). There is a tendency for higher neuron densities in smaller animals.
For example the cell density in mouse, human, or elephant motor cortex has been estimated to be
about 143, 10.5, or 7 ·103/mm3 where the data varies significantly between investigators (factor
1-3), cortical regions (factor 3 for visual cortex), and cortical layers (cf. Table 1.5.1 in [3]). It has
been claimed that the number of cells below a small patch of cortex surface is quite constant (e.g.
105 per 1mm2) in all mammals where the lower cell density would compensate for the thicker
cortices in larger animals [152, 27, 3]. Another functional relevant parameter is the speed of ax-
onal transmission which depends mainly on the diameter of the axon and if the axonal sheath is

10 CHAPTER 2. INTRODUCTION

myelinated (by glia cells) or not. The axonal transmission speed can vary over several orders of
magnitude for different neurons even within one local cortical region of the same species [179].
Since larger cells (corresponding to a lower cell density) are assumed to have also thicker axons
this may also compensate to a certain degree for the larger distances in larger animals. Despite
the described differences it is reasonable to assume that all cortical regions in all animals process
information locally according to the same principles.

It is believed that all the synapses of a given cortical neuron release the same neurotrans-
mitters (Dale’s principle) [36, 39]. In particular a given neuron can make either excitatory or
inhibitory connections, but not both types. This seems to be a fact not considered by certain cor-
tex models [69, 150] (see also sections 2.3.3 and 2.3.4). It is commonly accepted that about 80−90%
of the cortical neurons are excitatory, and only 10−20% are inhibitory. Most of the excitatory cells
are pyramidal neurons characterized by the typical shape of the soma and the two types of basal
and apical dendrites (Fig. 2.2). The apical dendrites ascend perpendicular to the cortex surface
towards the upper layers, while the basal dendrites arborize in the local vicinity of the soma.
Indeed it is due to the parallel arrangement of thousands of apical dendrites that we can mea-
sure electrical potentials (e.g., EEG) above the cortical surface [120] (in less regular arrangement
the individual electrical fields would rather average out). Similar to the apical dendrite the axon
of a pyramidal cell typically descends perpendicular to the cortex surface down to deep layers
and then leaves cortex into the white matter while also collaterals of the axon branch in the local
vicinity of the neuron. An important consequence of the apical architecture is that a pyramid cell
can be connected to all other neurons above and below, i.e., within the so-called cortical column.
Moving in parallel to the cortex surface to other neurons the probability of a connection to the
first neuron decreases continually resulting from the limited extension of dendritic and axonal
collaterals reaching only a few millimeters [65, 27].

Along its depth perpendicular to the surface the cortex shows a layered architecture. Usually
six layers can be distinguished in cytological preparations which show differences in cell density,
cell and fiber types, etc. Although the layered structure is evident there is no complete isolation
of the neurons in the individual layers. Rather the axons and dendrites of individual cells make
rich arborizations and connections throughout the local cortex. At least two observations sup-
port the view that the separation of the neuron populations in the different layers should not be
overestimated, i.e., that the layers are rather symmetrically interconnected. First, by local electric
stimulation usually the whole cortical column responds [181, 78]. Second, for fast cortical oscilla-
tions (e.g. at 50Hz) spikes seem to be synchronized over the whole cortical depth [41, 175, 176].
If the inter-layer connections were asymmetric or even uni-directional one would rather expect
systematic shifts in spike correlograms given the significant transmission delays between upper
and lower layers [179].

A local cortical neuron population receives afferents from subcortical (e.g. thalamic) regions
and also from other cortical locations of the ipsilateral hemisphere or via the corpus callosum
from the contralateral hemisphere. It is known that most of the cortico-cortical connections are
reciprocal or bidirectional. I.e., if there is a connection from area A to area B, then it is very likely
that there exists also a connection from area B to area A. Tracer studies revealed that these con-
nections are rather patchy where one local cortical patch (diameter about 1mm) is connected to
5 − 10 other distant cortical patches [182, 27]. An important observation is that almost exclu-
sively excitatory pyramidal cells contribute to the long-range cortico-cortical connections while
inhibitory neurons make only local connections [182, 27].

With the argumentation in this section it is justified to think of a prototypical essentially two-
dimensional cortex architecture as a first approximation. We can argue that local connections
between any two neurons are possible if they are below the same square millimeter of cortical
surface. Below a square millimeter cortex we can assume about 100000 neurons where most
of them are pyramidal cells each receiving about 10000 synapses from other local neurons, and
another 10000 synapses from 5-10 more distant cortical or sub-cortical locations [3, 27]. In section
2.3.3 we will introduce neural associative memory as a model for a small patch of cortex based
on the parameters and arguments derived in this section.

2.1. NEUROBIOLOGY OF THE BRAIN 11

2.1.4 Visual system

Figure 2.3 illustrates the visual system in humans. In the eye sensory cells of the retina (the so-
called rods and cones) translate brightness and color information into electric potentials. From
the retinal ganglion cells the information is conducted through the optical nerve to the chiasm
where the nerves from the two eyes cross. Here axons representing information from the left
and right visual hemifield separate: Information about the left visual hemifield (from the right
parts of the retinae of the two eyes) is processed in the right hemisphere of the brain, whereas
information about the right visual hemifield (from the left parts of the retinae) is processed in the
left hemisphere. From the chiasm the optical nerves run via the optical tract to the LGNs (lateral
geniculate nucleus) in the thalamus, and from there via the optical radiation to the primary visual
cortex V1.

V1

Optical Radiation

Optical Tract

Optical Nerve

Chiasm

LGN

Figure 2.3: Diagram of the retino-geniculo-cortical pathway in the visual system of a higher
mammal. The brain is viewed from below. (Modified from [184].)

Figure 2.4 shows schematically the architecture of primary visual cortex. In cell preparations
of slices orthogonal to the cortex surface one can distinguish the six cortical layers (see section
2.1.3). Layer IV is much thicker than in other cortical areas and can be subdivided into further
sublayers. Here the fibers from the LGN make topographically ordered synaptic connections onto
cortical pyramids and spiny stellates (and also inhibitory cells). The input fibers from the left and
right eyes are separated from each other which results in the ocular dominance bands of layer IV
(width about 0.4mm) [73].

Of particular importance for the modeling in this work are the modularly organized orien-
tation columns: Many cells in primary visual cortex show a preference for oriented stimuli (for
example bars). All the cells in an orientation column or microcolumn (i.e., the volume below
a small patch of cortex surface with perhaps diameter 20-50µm), have preference for the same
orientation. For tangential penetration through the primary visual cortex (in parallel to the cor-
tex surface) the orientation preference changes in possibly discrete but small and mostly ordered
steps (e.g. 0◦, 10◦, 20◦, ...) [73, 184]. Imaging studies of larger (two-dimensional) parts of primary
visual cortex revealed a pinwheel-like architecture, where the orientation preference changes cir-
cularly around discontinuities, the so-called pinwheels (see Fig.5.2; [73, 20, 21, 13]).

A larger patch of primary visual cortex comprising all possible orientations is also called a hy-
percolumn (diameter about 0.4-0.5mm; corresponds to the width of the ocular dominance band)
[73, 116, 184, 68]. The hypercolumns are arranged modularly and within a module there are
the so-called blobs (diameter about 0.2mm) which can be seen in cytochrome oxidase prepara-
tions indicating regions with strong metabolic activity. The blobs are related to three processing
streams which already originate in the retina and LGN, and enter the primary cortex in separate

12 CHAPTER 2. INTRODUCTION

Orientation
Columns

L

R

L

R

Ocular Dominance Bands

Blobs

III

I

II

IV

V
VI

Figure 2.4: Architecture of the primary visual cortex, the so-called ice-cube model. (Modified
from [184].)

sub-layers of layer IV [81, 58]. The so-called magno-cellular system (M-System) corresponds to
relatively large cells and is specialized for the identification of movement and spatial relations.
The so-called parvo-cellular system (P-System) consists of relatively small cells and can be further
sub-divided into two sub-systems: The P-blob-system lies within the blobs of V1, and deals mainly
with the processing of color information, whereas the cells of the P-interblob-system lie between
the blobs and deal mainly with the processing of form. It is important to note that the described
separation of the three streams is rather functional than anatomical. In particular cells from one
stream can still make many synaptic connections onto cells of the other streams.

There exists a large number of further visual cortical areas, and attempts have been made
to find a hierarchical order [50, 116, 81]. Many visual cortical areas show more or less a topo-
graphical organization similar to primary visual cortex. The ascent in the hierarchy is usually
accompanied by increased receptive field sizes. The classical receptive field (RF) of a cell is the area
in the visual field where stimulation can evoke a response in the cell. Using simple stimuli (e.g.,
small filled circles) one can determine the RF of a cell. It is known that cells in primary visual
cortex have relatively small RFs and respond to simple stimuli like oriented bars. There is a pre-
cise topographical relation between location of the RF and location of the cell in V1, where a large
area of V1 processes the central part of the visual field at a high resolution, while the peripheral
parts are processed at lower resolution [162]. For higher visual cortical areas the topographical
relation is less precise, the RF size is larger, and the cells have often a preference for more com-
plex stimuli. For example there are cells in IT (infero-temporal cortex, see Fig.2.1) which respond
selectively to faces independently of the location of the face in the visual field [37].

Each of the diverse visual cortical areas in the hierarchy seems to process a special kind of in-
formation. Thus the separation of different processing streams already present in V1 (M-, P-blob,
P-inter-blob systems) is a general principle of the visual system. Best known is the separation of a
dorsal ’where’-stream (actually originating from the M-system in V1) dealing with perception of
motion and location, and a ventral ’what’-stream (originating from the P-systems) dealing rather
with object recognition and visual memory.

Thus visual information is processed in a distributed and hierarchically organized manner.
Information related to the same entity can therefore be distributed over different distant cortical
areas, but also distributed in the same topographically organized area (like V1). The questions
arises how these distributed pieces of information can constitute our apparently unified percep-
tual and conscious states, i.e., how the brain can solve the so-called binding problem of visual
features [191, 192, 168].

2.2. DISTRIBUTED REPRESENTATIONS, NEURAL ASSEMBLIES, AND BINDING 13

The idea of distributed neural representations in the brain, and the complex of the binding
problem was one of the main motivations for this work. The notion of binding in the brain and
different variants of the binding problem are introduced in the next section.

2.2 Distributed representations, neural assemblies, and binding

2.2.1 Distributed representations

In the previous section we have seen that the visual system is roughly organized in a hierarchi-
cal and distributed manner. Primary visual cortical areas are large, organized retinotopically or
topographically (with respect to the visual field), and contain maps of elementary features (like
orientations, contours, local motion direction and speed, etc.). The individual neurons exhibit
only strong spike responses if a matching stimulus is present within a small area in the visual
field, i.e., in the receptive field (RF) of the cell. In contrast, neurons in higher visual cortical areas
have larger RFs, and can respond to more complex stimuli (e.g., faces in IT) where the response
is rather independent from the exact stimulus location [37]. This corresponds to a separation of
’what’ and ’where’ information (see section 2.1.4) and leads to the question how the distributed
pieces of information could be put together to a unified percept.

Neuropsychological as well as anatomical and neurophysiological observations suggest that
a distributed and hierarchical organization is not restricted to the visual system, but constitutes
rather a general organization principle of the brain (cf. [50, 47]; see also section 6.1).

Neuronal representations are distributed in a trivial sense because the elements of the repre-
sentations, i.e., the neurons, are distributed over the brain. If we define, for example, the rep-
resentation of an object as the set of neurons that are activated when the object is present in the
visual field, then of course more than one neuron will get activated along the visual path from
the retina via LGN to the different areas of the cortex.

A popular notion of neural representation that is not really distributed in a non-trivial sense
is that of a feature pyramid (cf. [197]). With the example of a visually perceived object elementary
features (e.g., pixels) of the object would be represented in a large map at the base of the pyramid.
In several processing steps the base map would be transformed to further maps representing fea-
tures of increasing complexity (e.g., contours, edges, complex configurations of lines, etc.). One
can have the notion of a pyramid because the number of active neurons in the maps decreases
with increasing transformation level. In the extreme case a single cell (often called cardinal or
grandmother neuron; cf. [12, 158, 128]) would be activated at the top of the pyramid. This kind of
representation is not really distributed because the representation at each level contains all rele-
vant information of the levels below, i.e., if level i gets activated level i− 1 (and below) becomes
irrelevant. This way of representing is exceedingly inefficient and therefore improbable to occur
in the real brain because the same information would be unnecessarily represented redundantly
at many different levels. Although the number of active cells may decrease with increasing level
of the pyramid, the total number of cells necessary to represent all special configurations explodes
in a combinatorial catastrophe.

In contrast, a really distributed representation would process different feature dimensions (like
form, color, motion, depth, and location) in different streams, similar to the ’where’ and ’what’
streams of the visual system, and therefore avoid the combinatory explosion. For example, we
can recognize objects in the visual field with arbitrary colors (we would have no problem with
recognizing a blue cow), and while combinatory coding each of n forms and m colors would
require n × m representations, we require only n + m representations if the feature dimensions
form and color are processed in separate streams (but also an additional mechanism for binding
if more than one object is represented at the same time; see sections 2.2.3 and 6.1). Such an
architecture would exhibit a separate pyramid for each feature dimension.

14 CHAPTER 2. INTRODUCTION

2.2.2 Neural assemblies

The described observations and arguments support ideas initially postulated by Donald Hebb
[64] (but see also [76]) that objects and thoughts are represented in the cortex of complex animals
such as monkeys and humans by the coincident activation of a group of distributed neurons
called a cell assembly [26, 130, 192, 133, 3]. The idea is appealing because the formation of a
cell assembly can easily be explained by the assumption of a simple synaptic learning rule: the
Hebbian rule (cf. section 2.1.2) postulates that a synaptic connection between two neurons is
strengthened if both neurons are active at the same time. Thus, if a group of neurons gets repeat-
edly activated by a specific stimulus, all the synapses connecting the neurons in the group will
be strengthened, and thereby a representation of the stimulus (i.e., the cell assembly) evolves.

A cell assembly representing, for example, a cow will presumably be distributed over many
cortical areas [136, 135, 143] corresponding to the visual, auditory, language (in humans), olfac-
tory, and further modalities, and would also be distributed over the postulated different process-
ing streams within each modality. On the one hand the particular postulate of assembly theory is
the representation of objects and thoughts in discrete activation states (i.e., the coincident activa-
tion of the neurons constituting the cell assembly), on the other hand it is important to note that
there is probably not a single cow assembly in the brain that gets completely activated whenever
the subject sees, hears, thinks of, or smells a cow, but that “the” cow assembly is rather a collection
of stable activation states that have probably large overlaps but that differentiate between differ-
ent occurrences of a cow, for example in the visual modality to account for different views of a
cow (frontal, from behind, etc.).

This corresponds also to the fact that it is anatomically impossible to have synaptic connec-
tions between all neurons of a global assembly (see section 2.1.3). Even for two local neurons
(not necessarily belonging to the same assembly) below the same square millimeter of cortex sur-
face the chance of a connection is only about ten percent [27, 65]. And for more distant neurons
synaptic links can only exist along the patchy cortico-cortical connections. This means that a
global assembly extending over two anatomically separated processing streams (e.g., ’what’ vs.
’where’) is divided into two rather independent parts in the two streams that may only be con-
nected with each other at the locations of convergence or divergence of the streams. In contrast,
neighboring neurons of a global assembly (e.g., below the same square millimeter) are very likely
to be directly connected by synapses.

Thus it is important to differentiate between global and local cell assemblies. Local cell assem-
blies are neuron groups in the same cortical column that are highly interconnected. In particular
we can assume that the chance of a synapse between two neurons of a local assembly is much
higher than the average connection probability of ten percent, for example fifty percent. We can
use neural associative memory as a model for local cell assemblies (see section 2.3.3) where for
analysis usually a complete connection within local assemblies is assumed, i.e., a neuron of an
assembly makes synapses on all other neurons of the same assembly. From the analysis of neural
associative memory we know another argument for locally distributed representations. By using
n neurons we can represent almost n2 independent entities if the representations are sparse, i.e., if
the cell assemblies consist only of few of the n neurons. This is analyzed and discussed in chapter
3. In the following we will address a severe problem occurring for distributed representations.

2.2.3 The binding problem

One immediate argument against the idea of distributed representations and cell assemblies
which has been put forward many times is the binding or superposition problem: if two or more
assemblies are activated at the same time, how can they be segmented into the individual as-
semblies? One solution to this problem is provided by the strong mutual excitation between the
neurons belonging to the same local assembly, probably acquired by Hebbian learning or auto-
association. This has been worked out in several rather theoretical papers [204, 26, 129, 130, 69,
131, 133] which essentially show that by controlling the total activity within a certain region of
the cortex, for example by unspecific inhibition, the superposition problem, i.e. the activation of

2.2. DISTRIBUTED REPRESENTATIONS, NEURAL ASSEMBLIES, AND BINDING 15

two assemblies at the same time, can be avoided. Furthermore this can be achieved even when a
very large number of assemblies (sparse activation patterns) are stored by auto-association.

The term “binding problem” as used in the literature (e.g., [154, 188, 191, 192, 51, 165, 150,
193, 168, 199, 187, 194, 148, 56, 163, 167, 59, 147, 205]) actually corresponds to a whole family of
related problems. The solution described above guarantees that local superpositions of activation
patterns can be segregated into its components, i.e., into single local assemblies. On a more global
level another question is how local assemblies (e.g., representing features in a large topographical
cortical area) are coordinated to a whole. If we look at Figure 2.5 for the first time the picture
contains apparently nothing than a chaos of unrelated black patches. However, after looking at
the picture for some time (e.g., two minutes or so) our brain can generate an interpretation of
the apparent chaos. Suddenly we can recognize the dalmatian dog hidden in the chaos of black
patches. This corresponds to the binding problem of perception or Gestalt psychology [151]:
How are the local features bound to a coherent percept?

Figure 2.5: Illustration of the feature binding problem. There is a dalmatian dog hidden in the
chaos of black patches. (Modified from [75].)

A related version of the feature binding problem is the question what happens if a picture
allows more than one interpretation. For example, Figure 2.6 can be interpreted either as an old
or a young woman. Interestingly, we cannot see both interpretations at the same time. Instead,
the interpretation switches on a time scale of several seconds [139], presumably due to neural
habituation mechanisms [46]. This instructive example gives us two hints: First, binding is a dy-
namical process: the same stimulus can cause binding of different feature configurations. Second,
representation of multiple interpretations (a special case of the superposition problem described
above) avoids incongruent superpositions by using the temporal dimension. This leads to the
idea that the temporal domain plays a general role in solving the different binding problems.
Below we will discuss the so-called temporal correlation hypothesis postulating that binding in the
brain is accomplished by synchronization of neural activity [191, 192].

Figure 2.7 is a more extreme example for multiple interpretations. It is composed of small
black dots arranged in such a way that we can perceive a very large number of different circles of
different sizes. If we let our glance glide from reading-distance over the picture we are attracted
by a vast number of overlapping circles popping out of the figure. If we fixate one of the points

16 CHAPTER 2. INTRODUCTION

Figure 2.6: A variant of the “Young-Girl-Old Woman” illusion also known as “My Wife and My
Mother-In-Law”. (See [22].)

our attention is distracted quickly (perhaps every tenth of a second) from one bubbling circle
to the next. This points to the involvement of active (i.e., top-down) grouping processes in the
brain. I.e., the binding of local features represented in primary cortical areas is actively guided
by expectations or Gestalts presumably represented in higher cortical areas. You can experience
top-down grouping also when looking to Figure 2.5 for a second time: now you can probably
recognize the dalmatian dog almost immediately. Obviously a new representation has been al-
located somewhere in our brain when recognizing the dalmatian dog for the first time, which is
used as a pattern to accelerate binding of the features when looking again at the picture. These
observations motivate the design of a neural model of two reciprocally connected visual cortical
areas described in chapter 5 which is used to investigate feature binding (cf. also [89, 90, 91, 92]).

Note that so far we have not addressed problems that will occur for really distributed rep-
resentations as discussed in section 2.2.1. We argued that independent processing streams for
different feature dimensions avoid a combinatory explosion of the number of necessary repre-
sentations. For example only n+m instead of n ·m representations are necessary for representing
n forms and m colors. However, as soon as we represent multiple objects at the same time, we
have the problem of binding across different feature dimensions. For example if a scene contains
a green hat and a red book the coordination of which form belongs to which color would be
lost if form and color are processed independently of each other. Thus we need an additional
mechanism to bind across different feature dimensions.

An even more severe problem occurs if dynamic binding is required between different entities.
This occurs for example if one tries to understand the sentence “Tom beats Fritz”. This involves
the representation of a ’beater’ and a ’victim’, but no prejudicial bias of the role of Tom and
Fritz. Here the binding problem is to assign these roles dynamically to Tom and Fritz. This kind
of binding problem is closely related to language and logic, and can occur in arbitrarily nasty
forms, involving for example n-ary predicates and multiple instantiations [51, 165].

2.2.4 The temporal correlation hypothesis

As a possible solution to the binding problem the temporal correlation hypothesis (TCH) has been
suggested [191, 192]. The TCH postulates that binding is accomplished by synchronization of

2.2. DISTRIBUTED REPRESENTATIONS, NEURAL ASSEMBLIES, AND BINDING 17

Figure 2.7: Evidence for the existence of active grouping processes. (From [114, 113].)

neural activity. For the example with the green hat and the red book the neurons representing the
color ’green’ and the form ’hat’ would fire in synchrony, and also the representations for ’red’ and
’book’ would be synchronized, while ’red’ and ’book’ would not be synchronized neither with
’green’ nor with ’hat’. Thus the basic idea is that time can be used as an additional dimension to
represent dynamic relations between the spatial (i.e., neural) representations of entities.

From Figures 2.6 and 2.7 we already know that the temporal dimension is actually used to
express relations between features of a picture. We can see consciously only one interpretation
of a picture at a time. Thus at any given time the features constituting Fig.2.6 are bound either to
the representation of a young or and old woman. There can be no dispute about the truth of this
very weak version of the TCH involving the time window of conscious experience (about 3sec;
see [139]).

However, binding may also be necessary within one conscious interpretation of a picture, e.g.
to resolve which lines of the picture constitute the head of the old woman. Thus the real dispute is
about the representation of one coherent percept, and about the time scale on which we interpret
coincidence of neural activity. The strong version of the TCH postulates that the relevant time
scale for binding is the time scale of a few milliseconds corresponding to single spikes [191, 192].

18 CHAPTER 2. INTRODUCTION

As a consequence the strong TCH predicts that spikes of neuron groups distributed over the
cortex representing entities to be bound should be globally synchronized within a time window
of perhaps 1 − 10msec, whereas all neurons representing the whole scene should be activated
perhaps within 10 − 50msec, e.g., in phase-coding models within one period of an underlying
fast oscillation (e.g., [150]).

Actually the TCH was further supported by the observation of high-frequency (40-60 Hz) os-
cillations in the visual cortex apparently reflecting global stimulus properties (e.g., the two-bars-
experiments, see Fig.2.8; see also [41, 61, 168]). Evidence for this oscillatory activity was found
in EEG or local field potential recordings and also in single-unit auto- or cross-correlograms.
While the general idea of interpreting coincidence in assemblies on the timescale of milliseconds
or spikes has been pursued by many if not most researchers elaborating the Hebbian assembly
concept in the temporal domain [2, 133, 3, 136, 55, 6, 7, 198, 201], the special use of fine-timing
made in the context of the visual ’binding problem’, also related to the idea of ’phase-coding’
(activating different assemblies at different phases of a single underlying oscillation), has been
subject to considerable controversies (e.g. [196, 72, 195, 150, 106, 199, 200]).

2

1

(ms)τ(ms)τ (ms)τ

b)a) c)

sp

ik
es

Figure 2.8: The so-called ’two bars experiment’. Two neurons are stimulated under three differ-
ent stimulus configurations (boxes correspond to the receptive fields). From the corresponding
spike activity cross-correlograms are shown. a: A single bar moves over the receptive fields (RFs)
of the two neurons. The correlogram exhibits modulations with a central peak and additional
sidepeaks which indicates synchronized oscillatory activity. b: Two smaller collinearly aligned
bars move across the RFs. Now the modulations in the correlogram are much weaker. c: Two
bars move in opposite direction over the RFs of the neurons. The correlogram is essentially flat,
i.e., activity of the two neurons is uncorrelated. (Modified from [197].)

In chapter 5 we will explore the TCH by the simulation of two reciprocally connected vi-
sual cortical areas using spiking neurons. In contrast to other investigators implementing phase-
coding-models we have difficulties to find arguments supporting the strong version of the TCH.
We can obtain synchronization on the spike time scale only locally within the range of local or
cortico-cortical connections, but not globally. Our results support rather a weaker version of the
TCH, where global binding of corresponding features occurs by synchronization of neural activ-
ity within a time window of perhaps 30 − 300msec whereas the representation of a whole scene
can occur on the time scale of spike rates or of the 3sec window of a coherent conscious expe-
rience [139]. In contrast to the phase-coding models supporting the strong version of the TCH
(usually based on a Hopfield architecture, see section 2.3.4) our model is consistent with many
neuroanatomical and neurophysiological results (see chapter 5; cf. section 2.3.3).

The current implementation of our base model of two connected cortical areas accounts only
for some of the described binding problems. In chapter 6 we will discuss the relation to the more
challenging binding problems. In the next section we will introduce neural associative memory

2.3. ASSOCIATIVE MEMORY 19

as a model for local cell assemblies in the brain that can also be useful for technical applications
in computer science.

2.3 Associative memory

An associative memory is a system that can be used to store patterns or associations between
patterns (Fig. 2.9), where the patterns are usually vectors of a fixed dimension.

In the case of auto-association patterns u1, u2, ..., uM are stored during the learning phase.
After learning the stored patterns can be retrieved by addressing the associative memory by
noisy versions of the previously stored patterns. In the most general case one addresses with a
noisy superposition of many stored patterns ũµ1 , ũµ2 , ..., ũµN plus additional noise yielding as
retrieval output patterns ûµ1 , ûµ2 , ..., ûµM . In the ideal case those output pattern coincide with
the original patterns uµ1 , uµ2 , ..., uµN in order of relevance that made up the addressing pattern.
However, in general the retrieval output will deviate from the ideal case and one can characterize
the retrieval by a retrieval quality (with respect to some similarity measure on the set of possible
patterns; see appendices A and B).

AMu , u , ..., u1 2 M

AM i2i1 iN

i1 i2

(1) Learning patterns

(2) Retrieving patterns

^(u , u , ... , u)^ ^

u = u + u + ... + u + noise~ iN

Figure 2.9: An associative memory (AM) can be used for learning and retrieving patterns. During
the learning phase (top) M patterns (e.g., feature vectors) u1, u2, ..., uM are stored. For a retrieval
(bottom) an address pattern ũ is used which may consist of the superposition of N previously
stored patterns ui1 , ui2 , ..., uiN plus noise. As retrieval result the associative memory produces
patterns ûi1 , ûi2 , ..., ûiN which should equal the addressed patterns ui1 , ui2 , ..., uiN .

In the case of hetero-association we can store associations uµ → vµ between two sets of
patterns U and V . This can be seen as a special case of auto-association where the stored patterns
are tuples (uµ, vµ).

Associative memories can be implemented in different ways [204, 103, 104, 105, 33]. For exam-
ple one could simply use a look-up table containing all the stored patterns. This would certainly
yield the best possible results with respect to retrieval quality. However, the time necessary to
conduct a retrieval and/or the memory capacity would not be optimal then. In contrast, neural
implementations of associative memory [174, 204, 129, 69] can compress the necessary physical

20 CHAPTER 2. INTRODUCTION

memory and retrieval time while preserving fault tolerance and the possibility of parallel imple-
mentation. In addition, neural associative memory can be used to model neural assemblies and
cortical areas of the brain. The patterns (or assemblies) are subsets of a neuron population, and
the information about which neurons belong to one pattern is stored in the synaptic weights by a
Hebbian learning rule, i.e. synapses between neurons of a single pattern are stronger than other
synapses, assuming the coactivation of the pattern neurons.

2.3.1 The Willshaw model

In the following chapters we will study variants of the binary Willshaw model of neural asso-
ciative memory [174, 204, 129, 134, 29, 160, 171] which uses binary neurons and synapses. An
illustration of the working principle of the binary Willshaw model is given in Fig. 2.10 for auto-
association. The patterns are binary vectors uµ of length n corresponding to a population of n
neurons which can be active or silent. Similarly, each of the binary synapses can be either active
(1) or inactive (0). Usually all the pattern vectors contain the same number k of active neurons,
also called the pattern activity. Each neuron output is fed back to the other neurons where all
the synapses are inactivated before learning begins. A pattern is stored by activating the pat-
tern neurons and Hebbian learning which activates all synapses connecting two pattern neurons
(Fig. 2.10, left part). In other words, patterns or assemblies are represented by completely con-
nected neuron groups. After storing M patterns the memory matrix A of synaptic weights can
be expressed as the superposition of outer products of the pattern vectors (see section 3.1.1). An
important parameter of the memory matrix is the memory load or matrix load p1 defined as the
relative number of active synapses where p1 is a function of n, k, and M . In general p1 increases
with the number of stored patterns M . In general the retrieval result will be better for smaller
p1 (i.e., smaller M). Analysis of the classical Willshaw model reveals that we typically can store
patterns until p1 = 0.5, i.e., until half of the synapses are active.

Retrieving is performed by activating the output variables of neurons corresponding to an
address pattern ũ, which could be made up of one or more noisy versions of stored patterns.
By summing synaptic input, the dendritic potentials x = ũA of the neurons are obtained by a
vector matrix multiplication of the input vector ũ and the memory matrix A. In a final step
an appropriate threshold Θ is chosen such that each super-threshold neuron is activated. The
Willshaw threshold strategy simply chooses the threshold equal to the number of one-entries in
the address pattern. Note that if the address pattern ũ is part of a stored pattern uµ1 , i.e. ũ ⊆ uµ1 ,
the Willshaw strategy will activate all the neurons of this addressed pattern uµ1 , but possibly also
additional neurons. Thus the Willshaw strategy enables perfect pattern completion as shown in
Fig. 2.10 (right part) if not too many patterns have been stored, and if the overlap |ũ∩uµ1 | is large
enough (see section 3.1.2).

For hetero-association the Willshaw model can be applied analogously. For the association
of pattern pairs (uµ → vµ) where the patterns uµ and vµ are binary vectors of lengths m and
n, one can store auto-associatively the concatenated binary vectors (uµ, vµ) of length m + n as
described above. From the resulting (m + n) × (m + n)-matrix A it is sufficient to use the m × n
clip H = (Aij)i∈{1,2,...,m},j∈{m+1,m+2,...,m+n} that contains information about the correlations of the
two pattern sets (Fig. 2.11).

The information-theoretically analysis of the binary Willshaw-model has initially been con-
ducted in 1969 by David Willshaw [204] and has been refined in 1980 by Günther Palm [129] (cf.
appendix B.1). It has been found that high memory capacities can be obtained if the patterns are
sparse, i.e. the number of one-entries k must be much smaller than the length n of the pattern
vector (typically k = log n). Using n neurons and sparse coding one can expect to store and cor-
rectly retrieve on the order of n2/ log2 n patterns. This yields an asymptotic memory capacity of
ln 2 ≈ 0.7 bit per synapse for n →∞, i.e., the classical Willshaw model can make use of about 70
percent of the allocated physical memory.

2.3. ASSOCIATIVE MEMORY 21

2

u1

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 1 1 0

1 1 1 1 1 0

0 1 1 1 1 0

0 1 1 1 1 0

0 0 0 0 0 0

1

1

1

1

0

0

0

0

0

1

1

1

1

0

1 1 1 1 0 0 0

0 0 1 1 1 1 0u

1

1

1

1

0

0

0
i

j
u~

1 1 1 0 0 01

1 1 1 0 0 01

1 1 1 1 1 0

1 1 1 1 1 0

0 1 1 1 1 0

0 1 1 1 1 0

0 0 0 0 0 0

0

1

1

0

0

0

0

1

1

0

0

0

A

x 2 2 1 12 2 0

1 1 1 0 01 0(Θ=2)û

(1) Learning patterns (2) Retrieving patterns

Figure 2.10: Working principle of the binary Willshaw model (for auto-association). During the
learning phase (left) M binary vectors u1, u2, ..., uM are stored sequentially in the binary memory
matrix A representing connections (synapses) between neurons. While initially all synapses are
inactive each stored vector activates the synapses corresponding to its outer product, i.e., after
learning of all patterns Aij = min(1,

∑
µ=1,...,M uµ

i · u
µ
j) ∈ {0, 1}. For a retrieval (right) an address

pattern ũ is used for vector-matrix-multiplication resulting in the membrane potentials x = ũA.
To obtain the retrieval result û (=u2) a threshold Θ is applied.

2.3.2 Neural associative memory and technical applications

In the recent past associative memory has been used in various technical applications like pattern
recognition, language processing, computer vision, and word recognition (cf. [153, 206, 157]).
The Willshaw model of associative memory turned out to be the most efficient model variant
with respect to storage capacity, fault tolerance, and retrieval efficiency [134].

Instead of an associative memory one could use in principle simply look-up-tables where
each pattern or pattern pair would be explicitely represented in a list or table. This would even
be advantageous in many cases because in a look-up-table we can store an arbitrary number of
patterns, we can have an arbitrary degree of fault tolerance (defined by a distance measure), and
we can also have a large storage capacity (if we compress the patterns). One drawback of simple
look-up-tables is that the access to the patterns is quite slow if many patterns are stored. Given an
address pattern we have to compare it to any one of the stored patterns in order to find the most
similar pattern. If we have stored n2 patterns we need also n2 times the number of steps necessary
for comparing two patterns. If the address patterns would be scalars we could decrease the
time by using binary search [33], but for general vectors this is not possible. Another possibility
would be to use a hash-table [33] where a hash-function could compute in perhaps constant time
access to the desired piece of information. However, hash-tables cannot easily implement fault
tolerance.

In contrast, the Willshaw model can store a large number of pattern vectors (almost n2 for
vector size n) in a fault-tolerant way, where a sequential implementation of a retrieval requires
only ∼ n log n steps. A parallel implementation using n processors would even decrease the

22 CHAPTER 2. INTRODUCTION

A1

HT A2

H

A =

Figure 2.11: Hetero-association is a special case of auto-association, and vice versa. For exam-
ple an auto-associative memory matrix can be divided in two quadratic auto-associative sub-
matrices A1 and A2 and two hetero-associative matrices H and HT .

number of necessary steps to ∼ log n for sparse coding.
However, the usefulness of the Willshaw model (and also other models) of associative mem-

ory for technical applications has been severely limited by a number of facts. (1) High storage
capacity near the asymptotic maximum (ln 2 ≈ 0.7) occur only for a very large vector size n, e.g., a
storage capacity of 0.5 requires more than 106 neurons. (2) For given vector size n high storage ca-
pacities occur only if the number k of ones in the binary pattern vectors is in a very narrow range
around k = log n. For smaller or larger pattern activity k the storage capacity decreases rapidly
(see section 3.1.2). (3) For relatively small n the performance of associative memory seems to
be much lower than predicted by the classical analysis which relies on some assumptions which
turn out to be invalid in some conditions even for very large n (see section 3.6). (4) We can store a
large number of patterns only if the patterns are uncorrelated, e.g., random patterns. But in most
applications we typically do not have random patterns.

In summary, current implementations of Willshaw associative memory are superior to stan-
dard algorithms of computer science [33] only for special parameter ranges, e.g, if a very large
number of uncorrelated (random) pattern vectors have to be stored requiring fault tolerance. In
all other cases we should prefer the usage of look-up-tables, search indices, or hashing.

A considerable part of this work contributes to the theory of Willshaw associative memory. In
chapter 3 we find a simple solution to problems (1) and (2). It turns out that optimal compression
of the memory matrix leads to much higher storage capacities for finite n and a very large range
of k. For n → ∞ we can even obtain storage capacity 1 for almost all sub-linear pattern activ-
ities k(n). In section 3.6 a refined analysis of Willshaw associative memory [29, 171] reveals the
origin for problem (3) and suggests some relief. However, problem (4) turns out to be a principle
problem. The role of correlated patterns is not well understood so far and depends certainly on
the domain of the application. In the next section we describe why the Willshaw model can be
interpreted as a reasonable model for local cortical networks.

2.3.3 Willshaw associative memory as a model for a cortical column

Neural associative memory models such as the Willshaw model represent information about
previously stored patterns in the synaptic connections between the neurons. This happens by
application of a Hebbian learning rule on a completely connected network architecture, where a

2.3. ASSOCIATIVE MEMORY 23

neuron typically is (or can be) connected to all other neurons. The assumption of a complete
connection scheme is certainly not valid for the brain on the global level, but possibly at the local
level of a cortical column. As discussed in section 2.1.3 it is reasonable to assume that any two
neurons below the same square millimeter of cortex surface containing rawly about n = 100000
pyramidal cells can make connections on each other.

The Willshaw model assumes that synapses are binary corresponding to only two possible
strengths or weights: zero or one. Despite such simple synapses the amount of information that
can be stored per synapse (ln 2 ≈ 0.7) is quite near the theoretical optimum. It has been argued
that the packing density of synapses in the cortex is the limiting factor for cortical connectivity
(section 2.1.3). Therefore it is reasonable to assume that misplaced synapses that are depressed
to a strength near zero by a correlational learning rule (see section 2.1.2; cf. [19, 1]; cf. [204, 64,
103, 69]) finally could be removed and possibly replaced by newly generated synapses at other
locations. This would be an argument for identifying the activated synapses in the Willshaw
model with the synapses anatomically present in the cerebral cortex. Since it is known that a
cortical neuron is connected to about ten percent of the other local neurons in the same cortical
column (see section 2.1.3) we can assume a matrix or memory load p1 = 0.1 for a typical local
cortical network.

If the hypothesis of local cortical cell assemblies (see section 2.2.2) is true, there is still the
question for the size of a typical local assembly corresponding to the number k of ones in the
binary pattern vectors of the Willshaw model. Theoretical considerations suggest that local as-
semblies may comprise a few hundred neurons (see [136, 203, 169]). Thus we may be not totally
wrong when assuming k = 100.

Cortical tissue contains about 80− 90% excitatory cells (mostly pyramids) and only 10− 20%
inhibitory cells (see section 2.1.3). Further only excitatory cells can make long-range cortico-
cortical connections, and it has long been assumed that only excitatory cells are involved in
learning. From these facts and assumptions it has been suggested that information processing is
performed mostly by the excitatory cells (“skeleton cortex”), whereas the role of inhibitory cells
would rather be the regulation of the total amount of neural activity [26, 130, 27]. This means for
the Willshaw model that the memory matrix can be identified with the synaptic connections be-
tween the excitatory cells, while the inhibitory cells would implement an appropriate threshold
control ([199, 89]; see section 4.6).

It must be stressed that Willshaw associative memory should be seen only as a very abstract
model of a local cortical network. It does not account for a number of anatomical and neurophysi-
ological facts or plausible assumptions: (1) Synaptic strengths as measured in neurophysiological
experiments exhibit standard deviations on the order of the mean value (see Fig.2 in [115], Fig. 52
in [27]; cf. [137]). (2) In its basic form the Willshaw model does not reflect the layered structure of
real cortex. (3) Even if the assembly hypothesis is true it is unlikely that a neuron of a local assem-
bly is connected to all other neurons of the assembly. It would rather be plausible to assume that
the connectivity within an assembly is increased to perhaps fifty percent compared to the average
connectivity of ten percent. (4) It is also likely that not all the assemblies have the same size k. It is
even possible that the distribution of assembly size has multiple peaks or that a large cell assem-
bly could be structured in a larger number of smaller assemblies whereas the level of inhibition
determines the current number of active neurons. (5) It is also probable that local cortical con-
nectivity is not perfectly symmetric corresponding to stable activation states in auto-associative
networks [129, 69, 70]. In addition to cell assemblies a second likely organization principle of cor-
tical networks may be synfire chains [2, 5, 197] corresponding to asymmetric hetero-associative
connections. Apart from cell assemblies and synfire chains there may also be other subsystems
in the same cortical column performing processing of gradual information. (6) The postulated
small patch of (a square millimeter) cortex is not isolated from neighboring columns, and the
probability of a synaptic connection is not homogeneously p1 = 0.1. Actually the probability of a
connection between two neurons decreases rather continuously with the distance of the neurons
[3, 27, 65].

Despite all these limitations we find it reasonable to assume as a working hypothesis that
the Willshaw model with parameters n = 100000, p1 = 0.1, and k = 100 reflects rawly the true

24 CHAPTER 2. INTRODUCTION

situation of cerebral cortex if the assembly hypothesis is true. In the following we will refer to
this parameter set as the cortical parameters of the Willshaw model.

2.3.4 Alternative models of associative memory

Besides the Willshaw model there exist a number of alternative models for associative memory,
for example linear associative memory [103, 104], or the Hopfield model [69, 70].

While linear associative memory can be used to store a relatively small number of continuous-
valued vectors, the Hopfield model is usually used for storing binary vectors similarly as the Will-
shaw model (although the Hopfield model uses -1/1 instead of 0/1 binary patterns). Although
the Hopfield model became very popular in the last two decades, it is argued that the Willshaw
model has a number of advantages over Hopfield-like models both for technical applications and
brain modeling.

For technical applications the main advantages of the binary Willshaw model using n neurons
are the following: (1) In the Willshaw model we can store a much larger number of patterns
(typically ∼ (n/ log n)2) than in the Hopfield model (typically� n). Although the patterns in the
Willshaw model have to be sparse (with typically k = log n) while the patterns in the Hopfield
model have to be non-sparse (typically k = n/2) this (2) results in a much higher storage capacity
per synapse (asymptotically ln 2 ≈ 0.7) for the Willshaw model than in the Hopfield model. (3)
Due to the binary synapses in the classical Willshaw model the storage capacity normalized to
the required physical memory is equivalent to the storage capacity per synapse. In contrast the
representation of each synapse in the Hopfield model requires a whole integer (corresponding
to typically ∼ log n bits of physical memory) such that the storage capacity per physical bit
approaches zero for large n. As we will see in chapter 3 the Willshaw model can even reach
storage capacity 1 if the memory matrix is optimally compressed. (4) Another consequence of
the binary synapses and of the sparse patterns is that for the Willshaw model retrievals can be
performed very quickly in n log n (sequential) or even log n (parallel) steps.

For biological models of the cerebral cortex there are additional advantages using the Will-
shaw model: (5) The binary pattern vector (0,1) reflects the binary nature of spikes. (6) The
binary synaptic matrix (0,1) reflects the fact that a cortical neuron can make only one type of
connection: either excitatory or inhibitory (see section 2.1.3). In contrast, the Hopfield model, for
example, requires synapses with both signs on the same axon and even a possible change of sign
of the same synapse. Therefore the Hopfield model can be adequate only for modeling at a lower
resolution interpreting one Hopfield node as a mixed group of excitatory and inhibitory neurons.
Even then it is especially difficult to interpret models using spiking neurons (e.g., [150]). More-
over, it is not yet clearly verified by neurophysiological experiments that learning of inhibitory
synapses (which would be required by Hopfield nets) follows the rule postulated by Hopfield.
(7) The Willshaw model requires sparse activation patterns as they seem to be present in the real
brain. In contrast Hopfield nets rather need very large pattern activities.

2.4 Simulation tools and models of neurons and synapses

There exists a whole zoo of different neuron models at any level of complexity. The simplest
models are memory-free threshold elements instantaneously summing the dendritic inputs, and
subsequently applying a threshold operation. If the dendritic inputs exceed the threshold the
output variable is 1 (corresponding to a spike), and otherwise 0. This model was already in-
troduced in 1943 by McCulloch and Pitts [117] and it has been shown that networks of these
units can compute any boolean function (and therefore also any discrete function). Actually, the
neurons used for Willshaw and Hopfield associative memory as described in section 2.3 are also
McCulloch-Pitts threshold units (although for the Hopfield model we have output values -1/+1
instead of 0/1).

For other neuron models used for approximation of continuous functions (e.g., by multi-layer-
perceptrons using the backpropagation algorithm; [153, 155]) the output variable is a continuous

2.4. SIMULATION TOOLS AND MODELS OF NEURONS AND SYNAPSES 25

sigmoid function of the dendritic inputs, whereas the biological interpretation of the output vari-
able would rather be that of a spike rate instead of an individual weighed spike.

Since Hodgkin and Huxley [67] there have also been developed detailed biophysical models
of neurons including detailed electrical and biochemical properties on the level of ion channels.
Usually each anatomical or functional segment of the neuron’s dendrite and soma is modeled by
a separate compartment (e.g., [185, 138, 161]). Although these models can very precisely repro-
duce recordings from isolated neurons in brain slices, their implementation is very expensive in
terms of computation time. Therefore it is currently possible to simulate only a relatively small
number of such neurons on standard computers (perhaps 100-1000). Furthermore, it is difficult to
analyze the behavior of such neurons mathematically, and sometimes using multi-compartment
models appears to contradict the rule to prefer the simplest possible model that adequately re-
produce a phenomenon under consideration (Occam’s razor; e.g. [34]).

There have been derived simplified spiking models not requiring the costly spike genera-
tion of the original Hodgkin/Huxley model. The so-called integrate-and-fire-neurons integrate
presynaptic input by a low-pass-equation with corresponding membrane time constant to the
trans-membrane potential. If the membrane potential exceeds the threshold the spike variable
is activated for one time step. After a spike additional mechanisms (e.g., reset of the membrane
potential, or temporary increase of the threshold) prevent the neuron from emitting a further
spike at the next time step. These simplified models have the advantage that a relatively large
number of neurons can be efficiently simulated while they still produce spike data which can be
compared to physiological recordings. Furthermore, even the simplified spiking models show
a qualitatively different behavior than gradual rate-function models in otherwise comparable
parameter configurations [202, 197].

An even more simplified model of a spiking neuron in an oscillatory regime are phasors (e .g.,
[8]) which can be analyzed and simulated with minimal costs. On the other side they are difficult
to interpret with respect to biology.

In this work we use three different neuron models. In chapter 3 we use simple binary McCul-
loch/Pitts neurons for the analysis of Willshaw associative memory. For a spiking variant of the
Willshaw model in chapter 4 we introduce the so-called counter model [86, 89, 90] which can be
seen as the abstract version of a more realistic neuron model used for the biological models in
chapter 4 and 5.

The biological model used in this work is a one-point (i.e., one-compartment) integrate-and-
fire neuron model with an intermediate level of complexity - comparable with the so-called
PTNR10 model of MacGregor [111] - that produces relatively realistic input-output dynamics.
The model has two states gex and gin corresponding to excitatory and inhibitory synaptic conduc-
tances. Presynaptic spikes cause an instantaneous increase of the conductances followed by an
exponential decay with time constants τex and τin according to the following low-pass equations,

τex
d

dt
gex(t) = −gex(t) +

∑
s

ws

∑
i

δ(t− ts,i) + noise(2.1)

τin
d

dt
gin(t) = −gin(t) +

∑
s

ws

∑
i

δ(t− ts,i) + noise,(2.2)

where the sums are over the synapses s and the corresponding time points of presynaptic spikes
ts,i. Similarly each spike emitted by the neuron (at time ti) increases the habituation variable h
instantaneously by H followed by an exponential decay with time constant τh,

τh
d

dt
h(t) = −h(t) + H

∑
i

δ(t− ti)(2.3)

The synaptic conductances cause excitatory and inhibitory postsynaptic currents which drive the
transmembrane potential x towards the excitatory and inhibitory equilibrium potentials Eex and
Ein. The low-pass equation for x can be written as

τx
d

dt
x (t) = −x (t) + gex (t) (Eex − x (t)) + gin (t) (Ein − x (t)) + noise(2.4)

26 CHAPTER 2. INTRODUCTION

The dynamic firing threshold Θ can be expressed as

Θ(t−) =
{

∞ , t− s(t−) ≤ Ra

Θ∞ · (1 + Rr

t−s(t−)−Ra
) + h(t−) , otherwise.(2.5)

where Ra and Rr are parameters for absolute and relative refractoriness, and s(t) is the time point
of the latest spike before time t. The neuron emits a spike (variable y) as soon as the membrane
potential x exceeds Θ.

y(t) = 1[x(t)≥Θ(t−)].(2.6)

Typical parameters used for the simulations described in this work are summarized in table 2.1.

type τex [ms] τin [ms] τx [ms] Eex [mV] Ein [mV] Θ∞ [mV] Ra [ms] Rr [ms] τh [ms] H [mV]
e.s. 5 7 10 80 −10 10 2 3.0 150 0.6
i.s. 5 7 10 80 −10 10 2 3.5 - -
i.g. 5 7 5 80 −10 - - - - -

Table 2.1: standard neuron parameters (averages) for the three neuron types: e.s.=excitatory
spiking, i.s.=inhibitory spiking, i.g.=inhibitory gradual

Similar as for the neuron models there are also many different simulation tools which can be
used in principle for the implementation. Each tool has its strengths and weaknesses with re-
spect to features like detailed modeling of single neurons (e.g., [66, 25]) or support of parallel
computer architectures (e.g., [177]). The implementation of the network models described in this
work required in particular efficient implementation of special topographic network mappings,
efficient implementations of delayed connections and binary associative memories on relatively
small computers, at least in the early phase of this work [86, 89]. To achieve this the Felix sim-
ulator for neural networks of Thomas Wennekers [197] has been extended to an object-oriented
C++ based simulation tool Felix++ [88]. All simulations described in this work have been imple-
mented using Felix or Felix++. In appendix C a brief overview of the architecture of Felix++ is
given.

Chapter 3

Willshaw associative memory

Associative memories are systems that contain information about a finite set of associations be-
tween pattern pairs {(uµ → vµ) : µ = 1, ...,M}. A possibly noisy address pattern ũµ can be used
to retrieve an associated pattern v̂µ that ideally will equal vµ.

In neural implementations the information about the associations is stored in the synaptic con-
nectivity of one or more neuron populations. Neural implementations can be advantageous over
hash-tables or simple look-up-tables if the number of patterns is large, if parallel implementation
is possible, or if fault-tolerance is required, i.e. if the address patterns ũµ may differ from the
original patterns uµ used for storing the associations.

The so-called storage capacity of an associative memory can be measured information-theoreti–
cally by maximizing the transinformation between the stored patterns vµ and the retrieved pat-
terns v̂µ. A valid quality measure is the storage capacity normalized to the required physical mem-
ory (or, less valid, normalized to the number of required synapses).

In 1969 Willshaw et al. [204] discovered that a high (normalized) storage capacity of ln 2 ≈ 0.7
is possible for Steinbuch’s neural implementation of associative memory using binary patterns
and synapses [174]. These results were refined by Palm in 1980 [129]. The analysis showed
that the upper bound ln 2 is only approached asymptotically for very large (i.e., not practical)
numbers n of neurons (but see [160]). Even worse, high capacities are only possible for sparse
patterns, i.e., if the number k of one-entries is much smaller than the pattern size n, typically
k = c log n for a constant c (cf. Fig. 3.1). For k smaller or larger than required for the optimum,
the capacity usually decreases rapidly to small values. These requirements imposed a severe
limitation to the practical use of the Willshaw (or Steinbuch) model since it turned out to be difficult
to find adequate codes that match the strict requirements for the pattern activity k. Another
severe limitation is that high capacities can only be achieved for random patterns, i.e., if the
stored patterns are uncorrelated.

In the mid eighties alternative neural implementations were proposed [69, 70, 71]. But it
turned out that the capacity of the Willshaw model exceeds the capacities of other models by far
[134]. From the late eighties on methods were developed to improve the retrieval results under
noisy conditions, e.g. by bidirectional, iterative, or spiking retrievals [107, 160, 171, 89], and an
early attempt to use sparse matrices efficiently was not very promising [14].

Although it was possible to slightly extend the upper theoretical bound for the storage capac-
ity (per synapse) to 1/(2 ln 2) ≈ 0.72 for non-binary synapses [189, 134], the bound of ln 2 for the
storage capacity normalized to the required physical memory was never exceeded for non-trivial
models. It was even believed that it would be impossible to reach capacity 1 (or at least exceed
ln 2) for really distributed storage [134].

In this chapter we will see that it is indeed possible to reach capacity 1 asymptotically for really
distributed storage (see also [87]). This can be achieved for the Willshaw model if the patterns are
not optimally sparse in the sense of the classical analysis (k 6= c log n). Then the memory matrix
contains sparsely either one-entries (for k < c log n) or zero-entries (for k > c log n). It turns out
that optimal compression of the memory matrix (e.g. by a Huffman or Golomb code [74, 57])

27

28 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

leads to capacities exceeding the classical optimum. Although capacity 1 is approached only
for unrealistically large n, values in the range of ln 2 (the classical upper bound) can already be
reached for practical n. Even more relevant for real applications with finite n is the fact that high
capacities on the order of or above the classical optimum are obtained for a very broad range of
k, including ultra-sparse patterns (e.g. k constant) and moderately-sparse patterns (e.g. k =

√
n).

In the next sections we will investigate the Willshaw model along the dimensions storage
capacity, retrieval efficiency, and fault tolerance. In section 3.1 we will briefly review the classical
analysis of the basic storing and retrieval algorithms used in the Willshaw model. These classical
results are applied in section 3.2 to analyze optimal compression of the memory matrix. Sections
3.4 and 3.5 deal with efficient implementations of the Willshaw model with compressed memory
matrix on sequential and parallel computer architectures. In section 3.3 we discuss the fault
tolerance of the Willshaw model, where we will focus on missing ones in the address patterns (for
false ones see section 4.4). The results in this chapter (as well as in much of the classical literature)
concerning storage capacity and fault tolerance are based on the binomial approximation of the
true distribution of dendritic potentials (the so-called Willshaw distribution). In section 3.6 we will
work out why the binomial approximation can be very bad for finite number of neurons. In the
concluding section 3.7 we will discuss the implications of the results obtained in this chapter for
technical applications and biological modeling.

3.1 Classical analysis of the Willshaw model

In this section we will briefly review the classical analysis of the basic storage and retrieval pro-
cedures used in the Willshaw model [174, 204, 129, 134, 171].

3.1.1 Storing and retrieving patterns

Consider the set of associations between M pattern pairs {(uµ → vµ) : µ = 1, ...,M} where all
patterns are binary vectors of length n containing exactly k ones.

We store the patterns hetero-associatively in the binary memory matrix A ∈ {0, 1}n×n corre-
sponding to synaptic connections between two neuron populations, the address population corre-
sponding to the patterns uµ, and the addressed or retrieval population corresponding to the patterns
vµ. Matrix entry Aij corresponds to the synaptic weight of the connection from neuron i in the
address population to neuron j in the retrieval population, and is obtained from the superposi-
tion of outer products of corresponding pattern vectors as

Aij = min

1,
M∑
µ=1

uµ
i · v

µ
j

 ∈ {0, 1} .(3.1)

For pattern retrieval we address the associative memory by an address pattern ũ which may
(for example) be a noisy version of one of the original address patterns uµ. By vector-matrix-
multiplication ũA we obtain neural potentials which can be transformed to the retrieval result v̂
by applying a threshold Θ,

v̂j =
{

1 ,
(∑n

i=1 ũiAij

)
≥ Θ

0 , otherwise .(3.2)

The choice of the threshold Θ is important for good retrieval results. One possibility which is
referred to as the Willshaw-retrieval-strategy is simply setting the threshold equal to the number of
one-entries in the address pattern ũ,

Θ =
n∑

i=1

ũi(3.3)

3.1. CLASSICAL ANALYSIS OF THE WILLSHAW MODEL 29

If all the one-entries in the address pattern ũ occur also in one of the original patterns, uµ, then
the one-entries in the retrieval result v̂ will be a superset of the ones in the associated pattern, vµ.
Indeed, this strategy is the only possible choice if one assumes that the address pattern contains
no ’false alarms‘, and it plays also an important role for pattern separation in spiking associative
memories with time-continuous retrievals (see chapter 4, cf. [89, 92]). In the following we will in-
vestigate the storage capacity of the Willshaw model for this simple one-step retrieval algorithm.

3.1.2 Classical analysis of one-step retrieval

Consider storing hetero-associatively M random pattern pairs (uµ, vµ) as described in section
3.1.1. All patterns have size n and contain exactly k ones. The probability that a given synapse is
not set by the association of one pattern pair is approximately 1−k2/n2. Therefore the probability
p1 of a one-entry in the resulting binary n × n-matrix A after association of all M pattern pairs
can be approximated by

p1 ≈ 1− (1− k2/n2)M ≈ 1− e−Mk2/n2
,(3.4)

which can be resolved for M yielding

M ≈ ln(1− p1)
ln(1− k2/n2)

≈ −n2

k2 ln(1− p1).(3.5)

Note that the first approximations would become exact if the ones in the binary patterns were
chosen independently of each other with probability k/n. However, we can assume that this
discrepancy is negligible for our purposes. The second approximations are valid for large M
(eq.3.4) and k � n (eq.3.5).

After storing the patterns we can use an address pattern containing k1 := λ · k ≤ k one-entries
(0 < λ ≤ 1) of pattern uµ (but no false ones) to retrieve the associated patterns vµ. Applying
the Willshaw strategy Θ = k1 (see sect. 3.1.1) we obtain a retrieved pattern v̂µ that contains all
the one-entries of vµ, but possibly also false one-entries. The probability p01 of a false one can be
approximated by

p01 ≈ pk1
1 ,(3.6)

assuming that the ones in the memory matrix A are generated independently of each other. This
binomial approximation leads to eq.3.6 since a false one occurs if and only if all the k1 relevant
synapses of the corresponding non-addressed neuron are active. In section 3.6 we will work out
why the binomial approximation can be very bad for finite n, k, and M .

To obtain good retrieval results we demand similarly as in [134] a high-fidelity-requirement
p01/(k/n) ≈ 0 and p01 → 0 for n → ∞ which states that the relative number of false ones is near
zero. High-fidelity can be obtained by requiring p01 ≤ εk/n for a small positive ε and k/n → 0
which is true for (sublinearly) sparse patterns. From eq. 3.6 we obtain a minimal address pattern
size of

k1,hifi :=
ln(n/k)− ln ε

− ln p1
.(3.7)

The storage and retrieval of the M pattern pairs as described can approximately be thought of
as the transmission of Mn binary digits (of the vµ patterns) over a binary channel (cf. appendix
B.1). For small k/n the information per digit is I(k/n) ≈ −(k/n) log(k/n) and for small ε the
totally stored (or transmitted) information (cf. eq.B.2) is about

CA(n, k; M) ≈ MnI(k/n) ≈ Mkld (n/k)(3.8)

To maximize CA for given n and k we store as much patterns as possible so that we can still fulfill
the hifi-requirement. This means we can increase the memory load p1 by storing patterns until
k1,hifi(p1) = k. From the hifi-requirement and eq. 3.6 it follows the maximal matrix load

p1,max = (εk/n)1/k,(3.9)

30 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

and with eq. 3.5 we get the maximal number of stored patterns,

Mmax =
ln(1− p1,max)
ln(1− k2/n2)

≈ −n2

k2 ln(1− p1,max)(3.10)

≈ −(ld p1,max)2 · ln(1− p1,max) · n2

(ld n)2 .(3.11)

For the second approximation we used k ≈ −ld (n/k)/ld p1,max from eq. 3.7. Thus we obtain for
the (normalized) storage capacity C(n, k) as the maximal stored information per physical memory
unit (bit for ld = log2),

C(n, k) :=
CA(n, k; Mmax)

n2 ≈ − ln(1− p1,max)
ld (n/k)

k
(3.12)

≈ ld p1,max ln(1− p1,max),(3.13)

where for the second approximation we used again k ≈ −ld (n/k)/ld p1,max from eq. 3.7. To
compute the storage capacity C(n) := C(n, kopt) of an associative memory with n neurons, we still
have to maximize C(n, k) with respect to k. From eq. 3.13 we see that the optimum (for large
n →∞) occurs for p1 = 0.5 corresponding to kopt = ld n. Therefore C(n) → ln 2 for n →∞.

In the following we will simply write p1 for p1,max, and M for Mmax. Figure 3.1 illustrates
some results of the classical analysis. As can be seen in Fig.3.1d the convergence of C(n) towards
ln 2 for n → ∞ is quite slow. For ε = 0.01 values C(n) > 0.5 are obtained only for n > 3.7 · 106.
Surprisingly, maximization for the number of stored patterns requires a smaller p1 ≈ 0.16 than
the maximum of the storage capacity (Fig. 3.1c).

For a given n, high capacities C are obtained only for a very narrow range of k around an
optimum kopt (ε = 0.01, n = 1000000, kopt = 21, and C ≈ 0.49 in Fig.3.1a,b). For larger or smaller
k the capacity decreases rapidly. The memory load p1 increases with k monotonically from 0 to
1. For k = kopt the memory matrix is not sparse with p1 ≈ 0.5. and compression is not possible.
However, for k smaller and larger the memory load approaches 0 and 1, respectively, and we can
hope to improve the storage capacity by compressing the memory matrix. This is investigated in
the next section.

3.2 Matrix compression yields storage capacity 1

As a result from the analysis above, the storage capacity per synapse is limited to ln 2, and even
this value is achieved only for infinitely large numbers of neurons n → ∞ and a certain k(n).
Nevertheless what we can do is making use of the physical memory in an optimal way by com-
pressing the memory matrix A. However, compressing the matrix for the classical maximum
C(n) is useless since it is obtained at a memory load p1 = 0.5 where A is incompressible. On the
other hand, for (classically) non-optimal k we will obtain p1 6= 0.5, and thus compression of the
memory matrix will decrease the required physical memory.

A naive approach would simply be to store explicitely the indices of the sparse matrix elements
(either ones for p1 < 0.5 or zeros for p1 > 0.5). Such a sparse matrix representation would require
only min(p1, 1 − p1)n2ld n bits of physical memory. Thus the resulting storage capacity Csprs can
improve by a factor min(p1, 1− p1)ld n, and for large n we obtain from eq.3.13

Csprs(n, k) :=
C(n, k)

min(p1, 1− p1)ld n
≈ ld p1 · ln(1− p1)

min(p1, 1− p1)ld n
.(3.14)

Unfortunately, it turns out that storage capacity 1 cannot be achieved by this naive approach for
pattern activities k(n) where we have really distributed storage (i.e., k > 1; see eq.3.19; cf. Figure
3.2a,b,d; cf.[14]) or where we can store many patterns (i.e., M > n, see eq.3.25, eq.3.23, cf. table
3.1).

3.2. MATRIX COMPRESSION YIELDS STORAGE CAPACITY 1 31

log k10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

M ∼ −(ld p
1
)2 ln(1−p

1
)

C = ld p
1
 ln(1−p

1
)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ln 2

C

ε=0.01

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

C

n=1000000
ε=0.01

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

C

n=1000000
ε=0.01

memory load p

st
or

ag
e

ca
pa

ci
ty

log n101

pattern activity k

st
or

ag
e

ca
pa

ci
ty

 /
m

em
or

y
lo

ad

st
or

ag
e

ca
pa

ci
ty

 /
m

em
or

y
lo

ad

st
or

ag
e

ca
pa

ci
ty

 /
st

or
ed

 p
at

te
rn

s

c d

a b

Figure 3.1: Some results from the classical analysis of the Willshaw model (hifi-parameter ε =
0.01, see text). a : Dependence of the storage capacity C(n, k) (black) and memory load p1(n, k)
(gray) on the pattern activity k (number of one-entries in a pattern) for pattern size n = 106. The
optimal capacity C ≈ 0.49 is reached for k = 21. For larger or smaller k the capacity decreases
rapidly. The memory load p1 increases with k monotonically from 0 to 1. p1 is near 0.5 for optimal
k. b : same as (a), but logarithmic scale. c : For given large n we have C ∼ ld p1 ln(1− p1) (black,
see eq.3.13) but M ∼ (ld p1)2 ln(1 − p1) (gray, see eq.3.11). While C is maximal for p1 = 0.5,
maximal M is obtained for moderately sparse memory matrix (matrix load p1 ≈ 0.16). d : The
convergence of C(n) → ln 2 for n →∞ is rather slow, unfortunately.

However, optimally compressing the memory matrix by applying Huffman or Golomb coding
[74, 57] (the latter requires p1 → 0 or p1 → 1, see appendix A.3.2) will decrease the required
physical memory by a factor of I(p1) := −p1ld p1 − (1− p1)ld (1− p1) ([164, 34], see also appendix
A.1). Fig.3.2a,b shows the dependence of C and the improved storage capacity Ccmpr := C/I(p1)
on k for n = 106 and ε = 0.01. While p1 increases monotonically with k from 0 to 1 (cf. Fig.3.1a),
surprisingly, for k 6= kopt we have not only Ccmpr(k) > C(k), but also Ccmpr(k) > C(kopt). Indeed it
turns out that C(kopt), the classical maximum of C, is rather a local minimum of Ccmpr (Fig.3.2b,c):

From eq. 3.13 we obtain for large n an improved storage capacity Ccmpr of

Ccmpr(n, k) :=
C(n, k)
I(p1)

≈ ln p1 ln(1− p1)
−p1 ln p1 − (1− p1) ln(1− p1)

.(3.15)

For small p1 → 0 we have I(p1) ≈ −p1ld p1 and ln(1 − p1) ≈ −p1, and therefore Ccmpr → 1.

32 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

log k10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ccmpr

C

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ccmpr,k=3

Ccmpr,k=30

C

ε=0.01

Ccmpr,sqrt

Csprs,k=3

Csprs,9rt10

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ccmpr

C

Csprs

n=1000000
ε=0.01

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ccmpr

C

Csprs

n=1000000
ε=0.01

st
or

ag
e

ca
pa

ci
ty

memory load p

st
or

ag
e

ca
pa

ci
ty

log n101

st
or

ag
e

ca
pa

ci
ty

pattern activity k

st
or

ag
e

ca
pa

ci
ty

c d

a b

Figure 3.2: Comparison of storage capacities for the classical Willshaw model (C, gray), for sparse
representation of the memory matrix (Csprs, dash-dotted), and for optimally compressed mem-
ory matrix (Ccmpr, black). a : Comparison of C(n, k), Csprs(n, k) := C/(min(p1, 1 − p1)ld n), and
Ccmpr(n, k) := C/I(p1) for n = 106, ε = 0.01 (cf. Fig.3.1a). b : Same as (a) but with logarith-
mic scale for k. While C is large only for a narrow range of k around the optimum kopt = 21,
Ccmpr(n, k) > C(n, kopt) is possible for a very broad range of k. Csprs achieves values around
C(n, kopt) only for very small k. c : Asymptotic storage capacities C and Ccmpr over memory
load p1 for n → ∞. The maximum ln 2 of C at p1 = 0.5 turns out to be the minimum of Ccmpr.
Ccmpr → 1 for p1 → 0 or p1 → 1. d : C(n), Csprs(n), and Ccmpr(n) for different functions k(n)
and ε = 0.01. C (gray) reaches ln 2 ≈ 0.7 asymptotically for k = ld n. Csprs achieves 1/k for
constant k (e.g., Csprs,k=3 → 1/3 for k = 3; thin dash-dotted) and d for k = nd (e.g., Csprs,9rt10 → 0.9
for k = n0.9; thick dash-dotted). Optimal compression yields asymptotically storage capacity
Ccmpr → 1 for constant k = 3 (Ccmpr,k=3, thick), constant k = 30 (Ccmpr,k=30, dashed), and k =

√
n

(Ccmpr,sqrt, thin) as well as for all sublinear but non-logarithmic functions (see text).

Similarly for large p1 → 1 we have I(p1) ≈ −(1 − p1)ld (1 − p1) and therefore also Ccmpr ≈
(ln p1)/(1− p1) → 1.

Together, we obtain an asymptotic storage capacity of 1 as soon as p1 → 0 or p1 → 1 for
n → ∞. From eq. 3.9 we see that this can be fulfilled for almost all sublinear functions k(n). For
c > 0 and logarithmic k = c ln n we obtain from eq. 3.9

ln p1 =
ln(εc ln n)− ln n

c ln n
→ −1

c
,(3.16)

And therefore p1 → exp(−1/c) for n → ∞. So varying c one can obtain all possible values in
(0; 1) for asymptotic p1 and correspondingly all values in [ln 2; 1) for asymptotic Ccmpr (see Fig.

3.2. MATRIX COMPRESSION YIELDS STORAGE CAPACITY 1 33

3.2c). Since p1 is monotonically increasing in k we conclude that Ccmpr → 1 for all sublinear, but
non-logarithmic functions k(n).

Fig.3.2d shows the convergence of Ccmpr for k = 3, k = 30, and k =
√

n in comparison to the
classical C. All the Ccmpr functions slowly approach 1. Values in the range of ln 2, the classical
maximum, are already approached for relatively small n at least for ultra-sparse patterns (e.g.
n = 108 for k = 3).

Although the convergence of Ccmpr is fastest for ultra-sparse patterns (k < kopt), the results
for the moderately-sparse patterns (k > kopt) are also relevant for applications because the broad
range of k with Ccmpr(k) ≥ C(kopt) makes it much easier to find adequate codes.

In the following we derive some explicit formulas for the ultra-sparse and the moderately-
sparse case which can be used to estimate storage capacities, storable patterns, and memory load
for large values of n and k. Table 3.1 summarizes the asymptotic results for some example pattern
activities k.

k p1 M C Csprs Ccmpr

c 0 ∼ n2−1/c 0 1/c 1

c(ln n)d , 0 < d < 1 0 ∼ n2−1/(c(ln n)d)/(ln n)2d 0 0 1

ld n 0.5 (ln 2)n2/(ld n)2 ln 2 ≈ 0.69 0 ln 2

c ln n exp(−1/c) ∼ n2/(ln n)2 ∈ (0; ln 2) 0 ∈ (ln 2; 1)

c(ln n)d , 1 < d 1 ∼ n2 ln ln n/(ln n)2d 0 0 1
√

n 1 0.5n ln n 0 0.5 1

cnd , 0 < d < 1 1 ∼ n2−2d ln n 0 d 1

cn , 0 < c < 1 ∈ (0; 1) − ln(1− p1)/ ln(1− c2) 0 0 0

Table 3.1: Asymptotic results for memory load p1, storable patterns M , and storage capacities
C (classical), Csprs (sparse matrix representation), and Ccmpr (optimal matrix compression) for
different pattern activities k(n) when requiring high-fidelity.

3.2.1 Ultra-sparse patterns

For sub-logarithmic pattern activity k with k/ld n → 0 we have p1 → 0, and with− ln(1−p1) ≈ p1
and I(p1) ≈ −p1ld p1 we obtain from eqs. 3.9, 3.10, 3.12, 3.14, and 3.15

M ≈ ε1/k · n2−1/k

k2−1/k
(3.17)

C ≈ ε1/k · ld (n/k)
n1/k · k1−1/k

→ 0(3.18)

Csprs ≈ 1− log(k)/ log n

k
→ 1/k(3.19)

Ccmpr ≈ 1
1− ln ε

ln(n/k)

→ 1(3.20)

We can still store a very large number of ultra-sparse patterns with M being almost quadratic in
n for large k. However, note that for a given n the maximal M is obtained for logarithmic k (cf.
Fig.3.1c). The classical storage capacity C vanishes for large n, but for optimal compression we
obtain Ccmpr → 1. For naive sparse matrix representation (see above) we obtain asymptotically
Csprs → 1/k. Thus we have non-zero values for Csprs only for small constant k. For constant
k = 1 we have trivially Csprs → 1. However, this result is not very interesting since for k = 1 we
have not really distributed storage. For k = 1 there are only n possible patterns to store, and the

34 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

memory matrix degenerates to a look-up-table. In section 3.4.1 we will discuss that the Willshaw
model of associative memory is more efficient than a look-up table only for M/n →∞.

3.2.2 Moderately-sparse patterns

For super-logarithmic but still sub-linear pattern activity k with k/ld n → ∞ and k/n → 0 we
have p1 → 1, and with I(p1) ≈ −(1 − p1)ld (1 − p1) and 1 − p1 ≈ − ln p1 we obtain from eqs. 3.9,
3.10, 3.12, 3.14, and 3.15

p1 ≈ n−1/k → 1(3.21)

1− p1 ≈ 1
k

ln
n

εk
≈ ln(n/k)

k
→ 0(3.22)

M ≈ n2

k2 (ln k − ln ln
n

εk
)(3.23)

C ≈ (ln k − ln ln
n

εk
)
ld (n/k)

k
→ 0(3.24)

Csprs ≈
ln k − ln ln n

εk

(1− ln ε
ln(n/k)) ln n

≈ ln k

ln n
(3.25)

Ccmpr ≈ ln(n/k)
k · (1− p1)

≈ 1
1− ln ε

ln(n/k)

→ 1(3.26)

Here we can still store many more moderately-sparse patterns than neurons (M � n) as long as
k ≤

√
n (see eq.3.23, cf. table 3.4.1). The classical storage capacity C vanishes for large n, but for

optimal compression we obtain Ccmpr → 1. Surprisingly, storage capacity 1 can be approached
even for non-optimal matrix compression: For k = nd and 0 < d < 1 we obtain from eq.3.25
Csprs → d. However, the convergence is extremely slow (Fig.3.2d), and for d > 0.5 we obtain
asymptotically only M < n (see eq.3.23, cf. table 3.1) where simple look-up tables are more
efficient than neural associative memories (see section 3.4.1).

As can be seen in Fig. 3.2b, both Ccmpr and Csprs exhibit local maxima at k
cmpr
opt and k

sprs
opt for

k > ld n. In appendix B.4.2 these maxima are computed using C from eq.3.12 since the approx-
imations of eq.3.25 and eq.3.26 exhibit no (or not the correct) local optimum. The asymptotic
optima are approximately

k
sprs
opt ∼ n · (e

√
− ln ε)−

√
ln n(3.27)

k
cmpr
opt ∼ n1−− ln ε−

√
− ln ε

− ln ε−1 .(3.28)

Note that k
sprs
opt grows faster than nd for any d < 1, and therefore also Csprs(ksprs

opt) → 1.

3.2.3 Non-sparse patterns

The fact that matrix compression exhibit high storage capacities for all sub-linear pattern ac-
tivities k(n) leads to the question if we can also obtain a high storage capacity for non-sparse
patterns, i.e., for linear k(n). For a constant 0 < c < 1 and k = cn we have to demand ε(n) → 0 to
still fulfill the hifi-requirement (see section 3.1.2). If we choose for example ε = 1/ ln n we can still
use eqs.3.9 and 3.10 to estimate maximal matrix load p1 and number M of storable patterns. If
the binomial approximation of the error probability p01 (see eq.3.6) is still correct for linear k = cn

3.3. FAULT TOLERANCE 35

we would obtain with eqs. 3.8 and 3.22

M ≈ ln(1− p1)
ln(1− c2)

≈ ln k

− ln(1− c2)
→∞(3.29)

C :=
CA

n2 ≈ MI(c)
n

≈ I(c)
− ln(1− c2)

· ln k

n
→ 0(3.30)

Csprs :=
C

(1− p1)ld n
≈ cI(c)

ln(1− c2) · ld (εc)
· ld k

ld n
→ 0(3.31)

Ccmpr ≈ C

−(1− p1)ld (1− p1)
≈ cI(c)

ln(1− c2) · ld (εc)
→ 0(3.32)

(3.33)

Note that for small but constant ε both Csprs and Ccmpr would converge towards a positive value
C∞(c) := cI(c)/(ln(1 − c2)ld (εc)) ∈ (0; 1). While C∞ → 0 for c → 1 we would still have C∞ → 1
for c → 0.

Since we have chosen ε → 0 just for the sake of high-fidelity (see section 3.1.2) while the esti-
mation of the capacity CA should still be correct for small but constant ε (cf. appendix B.1), these
results suggest that we could obtain a high asymptotic storage capacity also for small constant ε
and linear k.

However, in section 3.6 it is shown that the classical binomial analysis is valid only for sub-
linear k(n) and large n. For finite n the binomial approximation of eq.3.6 can be very bad even for
logarithmic k = log(n). In appendix B.4.3 it is shown without using the binomial approximation
that for linear k = cn asymptotically indeed C → 0, Csprs → 0, and Ccmpr → 0 even for constant ε.

3.3 Fault tolerance

In the last two sections we have investigated the storage capacity for different variants of the
Willshaw model. For this we assumed perfect address patterns. In this section we will investi-
gate the decrease of storage capacity if the address patterns used for retrievals deviate from the
original ones.

3.3.1 Missing ones in the address patterns

Here we will investigate the case of missing ones. Let us assume that an address pattern used for
retrieval contains a fraction λ ∈ (0; 1] of the k ones of the original address pattern (but no false
ones). To still achieve good retrieval results according to the hifi-requirement (see section 3.1.2)
we have to store fewer patterns than before. With the same arguments as in section 3.1.2 we can
increase the memory load p1 by storing patterns until k1,hifi(p1) = λ · k (cf. eq.3.7). Analogously to
eq.3.9 we obtain a maximal memory load p1,max(n, k, ε, λ). In the following we will write simply
p1,λ for p1,max(n, k, ε, λ), and p1 for p1,max(n, k, ε, 1). Thus

p1,λ = (εk/n)1/(λk) = p
1/λ
1 .(3.34)

From eq.3.10 we see that now we can store only

Mλ ≈ −n2

k2 ln(1− p1,λ)(3.35)

patterns (where we write simply Mλ for Mmax(n, k, ε, λ) and M for Mmax(n, k, ε, 1)). This is only
the fraction

mλ :=
Mλ

M
≈ ln(1− p1,λ)

ln(1− p1)
.(3.36)

36 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

of the number of storable patterns for perfect address patterns. Thus we see from eqs. 3.8 and
3.12 that also the classical storage capacity C is reduced to

Cλ := mλ · C(3.37)

where we write simply Cλ for C(n, k, ε, λ) and C for C(n, k, ε, 1).

Maximal storage capacity for uncompressed memory matrix

One interesting question is about the maximal possible storage capacity for given n, ε, and λ, i.e.,
when maximizing over k, or equivalently, over p1,λ (or p1 = p1,λ

λ). Asymptotically for large n we
obtain from eqs. 3.37, 3.36, and 3.13

Cλ := mλ · C ≈ ld (p1) · ln(1− p1,λ) = λld (p1,λ) · ln(1− p1,λ).(3.38)

We see that maximizing Cλ with respect to p1,λ for given λ is equivalent to maximizing C (see
eq. 3.13). The maximum occurs for p1,λ = 0.5 corresponding to p1 = 0.5λ, and we can write

C(n, ε, λ) := max
k

C(n, k, ε, λ) → λ · ln 2(3.39)

If we denote by C(q1) the asymptotic storage capacity for asymptotic matrix load q1 (cf. Fig.3.2c),
and analogously Cλ(q1) when considering fault tolerance according to parameter λ we can write
more generally

Cλ(q1) = λC(q1).(3.40)

Thus addressing using only a fraction λ of the ones in the original pattern decreases the classical
asymptotic storage capacity by factor λ. In the following we will see that this is a very general
result that is also true in a similar sense if the memory matrix is optimally compressed.

Storage capacity for optimal matrix compression

For given n, k, and ε, requiring fault tolerance according to parameter λ leads to a decrease
in maximal memory load (see eq. 3.34), number of storable patterns (see eq. 3.35) and storage
capacity (see eq. 3.37). The decrease in memory load will also alter the compressibility of the
memory matrix. For optimal matrix compression (see section 3.2) we can write (cf. eq.3.15)

iλ :=
I(p1,λ)
I(p1)

.(3.41)

Note that iλ < 1 for p1 < 0.5, but usually iλ > 1 for p1 > 0.5. The latter occurs for moderately
sparse patterns (with super-logarithmic k, see section 3.2.2) and implies that although fewer pat-
terns are stored more physical memory is required. Now we obtain finally for the storage capacity
C

cmpr
λ of the compressed Willshaw model (cf.eq. 3.15)

ccmpr(λ, p1) :=
mλ

iλ
,(3.42)

C
cmpr
λ :=

Cλ

I(p1,λ)
= ccmpr(λ, p1) · Ccmpr.(3.43)

Thus the factor ccmpr expresses the change of Ccmpr due to the requirement of fault tolerance.
Figure 3.3 illustrates the impact of requiring fault tolerance for ultra-sparse patterns (p1 <

0.5), classically sparse patterns (p1 = 0.5), and moderately sparse patterns (p1 > 0.5). For the
ultra-sparse and classically-sparse regime the number of storable patterns Mλ decreases very
rapidly with decreasing λ, while the decrease is much slower for the moderately sparse patterns
(Fig. 3.3a).

3.3. FAULT TOLERANCE 37
m

λ
cm

pr
c

 (

)
λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

0
0.2

0.4
0.6

0.8
1 0 0.2 0.4 0.6 0.8 1

−0.02

0

0.02

0.04

0.06

p
1λ

e
rr

o
r

f(
λ,

p
1

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ λ

λ

i λ

p = 0.99991

p = 0.00011
p = 0.11

p = 0.91

p = 0.51

p = 0.99991p = 0.91

p = 0.51

p = 0.11
p = 0.00011

p = 0.00011p = 0.11p = 0.51p = 0.91p = 0.99991

c d

a b

Figure 3.3: Impact of missing ones in the address pattern on the number of storable patterns,
synaptic information, and storage capacity for different p1. Address pattern are assumed to
contain λ · k out of the k original ones, but no false ones. p1 is the maximal matrix load for
λ = 1. For λ < 1 the matrix load will be decreased to p1,λ = p1

1/λ. For ε = 0.01 and n = 106

neurons we would obtain (approximately) p1 = 0.0001, 0.1, 0.5, 0.9, 0.9999 for pattern activities
k = 2, 7, 22, 129, 70000. a : The fraction mλ := Mλ/M vs. λ . While the number of storable pat-
terns remains relatively constant for p1 > 0.5, mλ decreases rapidly with λ for p1 ≤ 0.5. b : The
fraction iλ := I(p1,λ)/I(p1) vs. λ exhibits the inverse behavior of mλ. c : For all values of p1 we
have ccmpr(λ, p1) := mλ/iλ ≈ λ (see text). d : The error f (λ, p1) := ccmpr(λ, p1)−λ of approximating
ccmpr(λ, p1) by λ is small (−0.02 < f < 0.06) and even vanishes for p1 → 0 and p1 → 1.

For the compressibility the situation is inverted (Fig. 3.3b). While for ultra-sparse and classi-
cally-sparse patterns the synapse information I(p1,λ) decreases rapidly with decreasing λ (i.e.,
the compressibility increases rapidly), I(p1,λ) even increases for the moderately-sparse patterns.

Most interestingly the two effects seem to compensate for each other quite well (Fig. 3.3c).
Indeed, we can propose

ccmpr(λ, p1) = λ + f (λ, p1) ≈ λ(3.44)

for a small error function f . We can numerically verify −0.02 < f (λ, p1) < 0.06 for λ, p1 ∈ (0; 1)
(see Fig.3.3d). For p1 → 0 and p1 → 1 we prove that f (λ, p1) → 0.

For p1 → 0 (corresponding to ultra-sparse patterns with sub-logarithmic k(n), see section

38 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

3.2.1) we have also p1,λ → 0 and therefore from eq. 3.36

mλ ≈ p1,λ

p1
= p

(1−λ)/λ
1 → 0,(3.45)

and from eq.3.41

iλ ≈
p

1/λ
1 · (1/λ) · ld p1

p1 · ld p1
=

p
(1−λ)/λ
1

λ
→ 0,(3.46)

and therefore ccmpr(λ, p1) ≈ λ.
By applying L’Hospital’s rule one can easily verify that for given λ and p1 → 1 (corresponding

to moderately-sparse patterns with super-logarithmic but still sub-linear k(n), see section 3.2.2)
we obtain from eq. 3.36

mλ ≈ ln(1− p1,λ)
ln(1− p1)

→ 1.(3.47)

Similarly we can apply L’Hospital’s rule on eq. 3.41 and find

ccmpr(λ, p1) ≈ ln(1− p1,λ)
ln(1− p1)

· (1− p1) · ld (1− p1)
(1− p1,λ) · ld (1− p1,λ)

=
1− p1

1/λ

1− p1
→ λ.(3.48)

Consequently we have also iλ → 1/λ for p1 → 1.
In summary, using only a fraction λ of the ones contained in the original address patterns

reduces the storage capacity by a factor of λ. This seems to be a very general result which has
been shown to be asymptotically true in this section for storage capacities Cλ(n) (see eq. 3.39),
Cλ(p1) (see eq. 3.40), C

cmpr
λ (n), and C

cmpr
λ (n, k) (see eqs. 3.43 and 3.44).

3.3.2 False ones in the address patterns

The analysis of missing ones in the address pattern was quite easy. Unfortunately, the analysis of
false ones is more complicated. Moreover, the Willshaw retrieval strategy (threshold equal to the
number of active units in the address patterns) cannot be applied if the address pattern contains
false ones.

For the classical Willshaw model Sommer and Palm [171] have derived exact formulas for
the error probabilities in the retrieved pattern given the error probabilities in the address pattern
(i.e., numbers of false and missing ones) and the threshold. Thus the threshold can be chosen
somewhere between k and the number of ones in the address pattern to minimize the error prob-
abilities in the retrieval result.

However, if the error probabilities in the address pattern are not known then it is impossible
to choose a priori an appropriate threshold. Instead it is necessary to adjust a posteriori the
threshold repeatedly until the number of ones in the retrieval result matches the desired pattern
activity.

Even if the error probabilities in the address pattern are known it is difficult to derive general
results about the impact on number of storable patterns and storage capacity as has been done
in section 3.3.1 for missing ones. While the formulas of Sommer and Palm [171] can be used to
numerically compute mλ, iλ, and ccmpr(λ, p1) for certain given n and k they still lack appropriate
approximations necessary for more general results.

As we will see in the next chapter spiking associative memory can have the nice property to
apply implicitly the Willshaw retrieval strategy even if the address pattern contains false ones.
Therefore we leave out a further analysis of false ones at this point and refer to section 4.4 where
we try to investigate the impact of false ones on the retrieval results of spiking associative mem-
ory.

3.4. RETRIEVAL EFFICIENCY FOR SEQUENTIAL IMPLEMENTATIONS 39

3.4 Retrieval efficiency for sequential implementations

So far we were concerned with the storage capacity and fault tolerance of the Willshaw associa-
tive memory when storing M binary pattern vectors of length n, each containing exactly k ones.
Another important question is how fast the information can be retrieved. A straight-forward mea-
sure for sequential implementations is the information current or information flow

fI :=
Iret

tret
=

CA

Mtret
(3.49)

defined as the fraction of the information Iret := CA/M obtained in a retrieval over the time
(or number of steps) tret required for the retrieval, where CA is the totally stored information,
or absolute storage capacity (see section 3.1.2 and appendix B.1). Thus the information flow
expresses the average number of retrieved information units per time step.

For example, for a sequential implementation of the classical (uncompressed) Willshaw model
we require asymptotically tret = k · n steps (with typically logarithmic k = c ln n): for each of the
k address units all n entries in the corresponding row of the memory matrix must be tested to
obtain the membrane potentials. The subsequent threshold operation requires n further steps that
can be neglected asymptotically. The retrieved information per pattern is Iret ≈ n·I(k/n) ≈ k ·ld n
(cf. eq. 3.8), and thus we have asymptotically fI = ld n/n for the Willshaw model.

The information flow fI will depend non-trivially on the absolute storage capacity CA (i.e.,
the total amount of information stored in the associative memory). To allow comparison of fI

among different pattern sizes n, pattern activities k, and even different models (e.g., compressed
vs. uncompressed) we require fI to be normalized with respect to a reference model of associative
memory. For this reference model we use simply the classical uncompressed Willshaw model
with parameters n, k, M , and λ = 1 such that fI is maximal for given CA as in the alternative
model under consideration.

For the uncompressed Willshaw model we have CA = C · n2 with the normalized storage
capacity C (see eq.3.12), and thus n =

√
CA/C. From this we get for given CA a reference in-

formation flow of f ref
I = ld n/n = 0.5ld (CA/C)/

√
CA/C. We observe that f ref

I is asymptotically
maximal for the classical maximum C = ln 2 corresponding to k = ld n and p1 = 0.5 (see section
3.1.2). This motivates the definition of the retrieval efficiency

E :=
fI

f ref
I

≈ 2
√

ln 2 ·
√

CA

ln CA
· fI(3.50)

For example, if we find that a certain model exhibits E = 5 this means that it is five times faster in
retrieving one bit of information than the classical Willshaw model storing the same total amount
of information. In the following we will compute the retrieval efficiency for different models of
information storage.

3.4.1 Look-up-tables with M = nd

As a first example, consider the case of a simple look-up table to store M pattern pairs. This will
result in a M × 2n matrix for pattern size n, i.e. each line of a matrix contains a pattern pair. To
allow fault tolerant retrieval for each stored index pattern the Hamming distance to the address
pattern must be computed which requires tret = M ·n steps. For k = n/2 (or equivalently p1 = 0.5,
i.e. non-sparse patterns) we have Iret = n, and thus for such a look-up table we have fI = 1/M .
Further we have CA = M · n and if we require to store many patterns, e.g., M = nd for a constant
d, we find fI = n−d and CA = nd+1 and thus we obtain from eq.3.50 a retrieval efficiency

Elut =
2
√

ln 2
d + 1

· n(1−d)/2

ln n
.(3.51)

Thus for d > 1, i.e., if we require to store many patterns, the classical Willshaw model is more
efficient than a look-up table (cf. [132]).

40 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

3.4.2 Classical Willshaw model

What is the retrieval efficiency for the classical uncompressed Willshaw model? Obviously we
have E = 1 for k = ld n and λ = 1. In the following we consider the situation for general
k(n) and fault tolerance according to parameter λ. The latter allows not only addressing with
(1 − λ)k missing ones (see section 3.3.1) but also the addressing with up to κk additional false
ones (which is, however, more difficult to analyze; cf. section 4.4). We assume that the address
pattern contains α · k one-entries where obviously α ∈ [λ; λ + κ] (if both missing and false ones
occur then α must lie somewhere inside the interval). We have

tret = αkn(3.52)
Iret ≈ kld n(3.53)

fI ≈ ld n

αn
(3.54)

CA ≈ Cλ · n2 = λ · n2 · ld (p1) · ln(1− p1)(3.55)

where for CA we used eq. 3.38, and p1 := p1,max(n, k, ε, λ) = (εk/n)1/(λk) (cf. eq. 3.34). From
the definition eq. 3.50 we obtain for large n → ∞ and constant λ, α, and p1 (corresponding to
logarithmic pattern activity k = cld n, see section 3.1.2) with ln(CA) ≈ 2 ln n,

E ≈ 1
ln 2

·
√

λ

α
·
√

ld (p1) · ld (1− p1).(3.56)

Thus the retrieval efficiency is also constant and therefore the corresponding optimal information
flow differs only by a constant factor.

3.4.3 Compressed Willshaw model with ultra-sparse patterns

For ultra-sparse patterns with sub-logarithmic pattern activity k we have p1 = (εk/n)1/(λk) → 0
asymptotically for large n and fixed λ (cf. eq. 3.34). In the following we compute the retrieval
efficiency for the optimally compressed Willshaw model (see section 3.2) applying Golomb cod-
ing and decoding of the memory matrix. The Golomb compressed matrix essentially contains
information about the interval between two active synapses in a matrix row, and decoding of the
position of an active synapse requires only (almost) constant time a ([57], see appendix A.3.2).
Thus we obtain for large n and with address pattern size αk for constant α (see section 3.4.2)

tret = α · k · a · p1 · n = α · ε1/(λk) · a · k1+1/(λk) · n1−1/(λk)(3.57)
Iret ≈ k · ld n(3.58)

fI ≈ 1
α · a · p1

· ld n

α · n
=

ld n

α · a · ε1/(λk) · k1/(λk) · n1−1/(λk)(3.59)

CA ≈ λ · I(p1) · n2 ≈ −λ · n2 · p1 · ld p1 ≈
n2 · p1 · ld n

k
(3.60)

=
ε1/(λk) · n2−1/(λk) · ld n

k1−1/(λk) .(3.61)

Note that for constant k we can have a sub-linear retrieval time tret. For CA we have used that
the normalized storage capacity for optimal compression is λ asymptotically (see section 3.3.1).
With ln CA ≈ (2− 1

λk) · ln n we obtain from the definition eq. 3.50

E ≈ 1
(1− 1/(2λk))

· 1
α · a

·
√

n1/(λk) · ln n

ε1/(λk) · k1+1/(λk) .(3.62)

Taking logarithms we see that ln(E) ∼ (ln n)/(λk) + ln ln n− ln k →∞ and therefore also Ecmpr →
∞ for any sub-logarithmic k(n). Thus the compressed Willshaw model is more efficient than the
classical Willshaw model for ultra-sparse patterns.

3.5. RETRIEVAL EFFICIENCY FOR PARALLEL IMPLEMENTATIONS 41

3.4.4 Compressed Willshaw model with moderately-sparse patterns

For moderately-sparse patterns with super-logarithmic (but still sub-linear) pattern activity k we
have p1 = (εk/n)1/(λk) → 1 asymptotically for large n and fixed λ (cf. eq.3.34). In the following we
compute the retrieval efficiency for the optimally compressed Willshaw model (see section 3.2)
applying Golomb coding and decoding of the memory matrix. The Golomb compressed matrix
essentially contains information about the interval between two inactive synapses in a matrix row,
and decoding of the position of an inactive synapse requires only (almost) constant time a ([57],
see appendix A.3.2). Thus we obtain for large n and with address pattern size αk for constant α
(see section 3.4.2) using 1− p1 ≈ − ln p1 ≈ ln(n/k)/(λk) (cf. section 3.2.2)

tret = α · k · a · (1− p1) · n ≈ a · α

λ
· n · ln(n/k)(3.63)

Iret ≈ k · ld (n/k)(3.64)

fI ≈ 1
ln 2

· λ

α · a
k

n
(3.65)

CA ≈ λ · I(p1) · n2 ≈ −λ · n2 · (1− p1) · ld (1− p1)(3.66)

≈ ln(n/k) · ln(k)
ln 2

· n2

k
(3.67)

For CA we have used that the normalized storage capacity for optimal compression is λ asymp-
totically (see section 3.3.1). With ln CA ≈ ln(n2/k) we obtain from the definition eq. 3.50

E ≈ 1
ln 2

· λ

α · a
·
√

ln(n/k)
ln(n/

√
k)
·
√

k · ln k(3.68)

∼
√

k ln k

ln n
(3.69)

Since already
√

k/ ln n → ∞ we have Ecmpr → ∞ for n → ∞ and any super-logarithmic but
sub-linear pattern activity k(n). Thus the compressed Willshaw model is more efficient than the
classical Willshaw model also for moderately-sparse patterns.

3.5 Retrieval efficiency for parallel implementations

For parallel implementations of associative memory we can define the information flow fI anal-
ogously as for sequential implementations (see section 3.4). To obtain the information flow
through individual processors fI,N we can normalize fI with respect to the number of processors.

fI :=
Iret

tret
(3.70)

fI,N :=
Iret

tret · #processors
(3.71)

As an example we compute the information flow for a parallel implementation of the classical
Willshaw model with parameters n (number of neurons), k (pattern activity), M (number of
stored patterns), and λ = 1 (fault tolerance parameter). Using n processors (i.e., one processor
per neuron) it is possible to perform a retrieval in only tret = k steps: For each of the k address
units all n neurons have to update their neuron potentials in parallel. After that the threshold
operation is performed in parallel in constant time. For typically k = c ln n and large n, the
information obtained from one retrieval is still Iret ≈ kld n, and the totally stored information
is still CA = C · n2 which can be transformed to n =

√
CA/C. Thus we have fI ≈ ld n and

fI,N ≈ ld n/n for this case.
In order to compare different models we require the information flow to be normalized with

respect to a reference model of associative memory. Similar as in section 3.4 we use the classical

42 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

uncompressed Willshaw model with parameters n, k, M , and λ = 1 such that fI is maximal
for given CA. From CA = C · n2 (see eq.3.12) we obtain n =

√
CA/C, and thus f ref

I ≈ ld n =
0.5ld (CA/C) and f ref

I,N ≈ ld n/n = 0.5ld (CA/C)/
√

CA/C. Using the classical maximum C =
ln 2 we can define in analogy to eq. 3.50 the retrieval efficiency E and the normalized retrieval
efficiency EN ,

E :=
fI

f ref
I

≈ 2 ln 2
ln CA

· fI(3.72)

EN :=
fI,N

f ref
I,N

≈ 2
√

ln 2 ·
√

CA

ln CA
· fI,N .(3.73)

Note that the definition of EN is the same as for the sequential implementation (cf. eq.3.50).

3.5.1 Classical Willshaw model

For the parallel implementation of the classical uncompressed Willshaw model we have obvi-
ously E = EN = 1 for k = ld n and λ = 1. For general k(n), fault tolerance according to a
constant parameter λ (see section 3.3.1) and an address pattern containing α · k one-entries (cf.
section 3.4.2), we have for large n

tret = α · k(3.74)
Iret ≈ k · ld n(3.75)

fI ≈ ld n

α
(3.76)

fI,N ≈ ld n

α · n
(3.77)

CA ≈ Cλ · n2 = λ · n2 · ld (p1) · ln(1− p1)(3.78)

where CA is the same as in eq. 3.55 with p1 := p1,max(n, k, ε, λ) = (εk/n)1/(λk) (cf. eq. 3.34). From
the definitions of eqs. 3.72 and 3.73 we obtain for large n → ∞ and constant λ, α, and p1 (corre-
sponding to logarithmic pattern activity k = cld n, see section 3.1.2) using ln(CA) ≈ 2 ln n,

E ≈ 1
α

(3.79)

EN ≈ 1
ln 2

·
√

λ

α
·
√

ld (p1) · ld (1− p1).(3.80)

Thus the retrieval efficiency is also constant and therefore the corresponding optimal information
flow differs again only by a constant factor.

3.5.2 Parallel implementation of the compressed Willshaw model

In the following we develop an efficient implementation of the compressed Willshaw model with
parameters n (number of neurons), k (number of one-entries in a pattern), λ (fault tolerance
parameter, cf. section 3.3.1) and p1 := p1,max(n, k, ε, λ) = (εk/n)1/(λk) (cf. eq. 3.34) when the address
pattern contains α · k one-entries (cf. section 3.4.2).

In a naive parallel implementation of the compressed Willshaw model each processor would
receive all the α · k address indices and then compute the corresponding neuron potential. Thus
the retrieval would require tret = a · min(p1, 1 − p1) · n steps (a is the time required to perform
Golomb decoding of one active/inactive synapse),i.e., only factor α · k better than the sequential
implementation (cf. sections 3.4.3 and 3.4.4).

A more promising approach is to implement something analogous to the classical algorithm:
Each processor should compute in only α·k steps the potential of the corresponding neuron. Thus
for each of the α·k address neurons a processor must decide in constant time if the corresponding

3.5. RETRIEVAL EFFICIENCY FOR PARALLEL IMPLEMENTATIONS 43

synapse is active. Since the memory matrix is Golomb compressed this cannot be done in a direct
access as for the uncompressed case. To avoid searching through the whole compressed matrix
row (representing essentially the index intervals between active/inactive synapses) which would
require min(p1, 1−p1)n steps (for each of the α·k address neurons), we can try to use a look-up-table
for each neuron as illustrated in Fig.3.4. The idea is to divide the matrix row into compartments
of length d. Thus each compartment contains

:= d ·min(p1, 1− p1)(3.81)

active synapses on average (or inactive synapses for p1,λ > 0.5). The look-up-table consists of
two rows. To decide if the i-th synapse is active (inactive) we have to look into the i DIV d-
th column. The value from the second row is the smallest index j of an active (inactive) synapse
with j ≤ i DIV d, and the value from the first row the corresponding start index in the compressed
matrix row. From this starting point we can reach the i-th synapse after skipping of < # Golomb
coded numbers. Thus to decide if the i-th synapse is active (inactive) we will require less than
a · # steps. Therefore the whole retrieval will require

tret = a · # · α · k(3.82)

steps which is almost as fast as for the uncompressed model if # is small (e.g., constant, cf.
eq.3.74).

On the other hand we should try to keep the size of the look-up-table as small as possible
which requires large #. More exactly, if we still want to obtain storage capacity 1 we require that
the size 2·n2/d·log n of the look-up-table is much smaller than the size n2 ·I(p1) of the compressed
memory matrix, i.e. for n →∞ we require

min(p1, 1− p1) · log n

· I(p1)
→ 0(!).(3.83)

With Iret = kld (n/k) and eq.3.82 we can write for the information flows

fI =
ld (n/k)
α · a · #

(3.84)

fI,N =
ld (n/k)

α · a · # · n
.(3.85)

In the following we try to analyze the parallel implementation of the compressed Willshaw model
for codes of different degrees of sparseness.

3.5.3 Compressed Willshaw model with ultra-sparse patterns

For ultra-sparse patterns with sub-logarithmic pattern activity k(n) we have p1 = (εk/n)1/(λk) → 0
asymptotically for large n and fixed λ (cf. eq. 3.34; cf. section 3.2.1). With I(p1) ≈ −p1ld p1 ≈
p1 · ld (n)/(λk) for large n the requirement of eq. 3.83 writes

λ · k
#

→ 0 (!).(3.86)

Thus constant # is not possible, unfortunately. This means that storage capacity 1 would require a
that increases faster than k. However, for constant k and large but constant # we can still obtain
a significant storage capacity.

With CA as in eq. 3.60,
√

CA ≈ ε1/(2λk)n1−1/(2λk)
√

ld n/k1/2−1/2λk, and ln CA ≈ (2− 1/(λk)) ln n
we obtain from eqs. 3.72 and 3.73 with eqs. 3.84 and 3.85

E ≈ 1
α · a · # · (1− 1/(2λk))

(3.87)

EN ≈ 1
ln 2

· ε1/2k

(1− 1/(2λk))
· α · a · # ·

√
ln n

k1−1/(λk) · n1/(λk) .(3.88)

44 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

3dd=100 2d

4 14 17 25

4 10 3 8

0 4 9 12

Golomb (m=4) compressed matrix row

uncompressed matrix row

look−up−table

d 2d0 3d

0 4

−

−12

25144

Figure 3.4: Illustration of the use of the look-up-table for Golomb-decoding of a matrix row.
Top: The uncompressed matrix row. The sparse (e.g., one) entries are drawn in black (columns
4, 14, 17, 25). Middle: The Golomb-coded matrix row (m = 4, cf. appendix A.3.2) contains a
compressed representation of the intervals between sparse entries in the matrix row (intervals
4, 10, 3, 8). Bottom: The look-up-table for Golomb-decoding. The matrix row is divided in
compartments of length d = 10. For each compartment the look-up-table contains two entries: the
entry in the first row is the index in the compressed matrix row corresponding to the first sparse
entry in the relevant compartment. The second entry is the corresponding (absolute) index in the
uncompressed matrix row. E.g., to find out if the i-th bit in the matrix row is active one can use
the i DIV d-th column in the look-up-table to start searching in the compressed row with the first
sparse entry in the relevant compartment. On average no more than # := d ·min(p1, 1−p1) further
Golomb decoding steps (each requiring time a) are necessary.

For non-constant # both E and EN vanish. This means that the classical Willshaw model is
superior to the compressed Willshaw model for parallel implementation.

3.5.4 Compressed Willshaw model with moderately-sparse patterns

For moderately-sparse patterns with super-logarithmic but still sub-linear pattern activity k(n)
we have p1 = (εk/n)1/(λk) → 1 and therefore I(p1) ≈ −(1− p1)ld (1− p1). With (1− p1) ≈ − ln p1 ≈
ln(n/k)/(λk) and −ld (1− p1) ≈ ld k the requirement of eq. 3.83 writes

ld n

· ld k
→ 0 (!).(3.89)

Again constant # is not possible, unfortunately. However, if k is a root of n then # is allowed to
increase arbitrarily slowly in order to obtain asymptotically storage capacity 1. Even for constant
but large # a significant storage capacity is still possible in this case.

With CA as in eq. 3.67,
√

CA ≈ n
√

ln(n/k) ln(k)/(k ln 2), and ln CA ≈ 2 ln(n/
√

k) we obtain

3.6. A CRITIQUE OF THE CLASSICAL BINOMIAL ANALYSIS 45

from eqs. 3.72 and 3.73 with eqs. 3.84 and 3.85

E ≈ ln(n/k)
ln(n/

√
k)
· 1
α · a · #

≈ c1

α · a · #
(3.90)

EN ≈ 1
ln 2

· ln(n/k)
ln(n/

√
k)
· 1
α · a · #

·
√

ln(n/k) ln k

k
(3.91)

≈ c1

ln 2
· 1
α · a · #

·
√

ln(n/k) ln k

k
,(3.92)

for a constant c1 (where c1 = 1 if k is less than a root of n). Again for non-constant # both E and
EN vanish. This means that the classical Willshaw model is superior to the compressed Willshaw
model for parallel implementation.

3.6 A critique of the classical binomial analysis

Almost all the classical results [204, 129, 134] as well as the analysis conducted in the last sections
are based on the hypothesis that the true distribution of membrane potentials can be approxi-
mated by a binomial, at least asymptotically. In this section we will see why this assumption is
justified only for large numbers of neurons and low address pattern activity.

3.6.1 The binomial approximation of the Willshaw distribution can be bad

Let us consider similarly as before the case of a Willshaw (hetero-)associative memory with n
neurons and M stored pattern pairs, where each patterns contains exactly k one-entries and n−k
zero-entries. Further let us assume for retrieval that an address pattern contains λk ones of a
previously stored pattern, and additionally κk randomly chosen false ones. Then the membrane
potential of a neuron is determined by the number of ones in the relevant subcolumn of the
memory matrix which contains z := (λ+κ)k entries. For random patterns we will call the resulting
potential distribution for a non-addressed neuron (which is not part of the pattern corresponding
to the λk correct ones of the address pattern) the Willshaw distribution Wz,n,k,M .

Already in 1980 Palm derived a formula for the probability of a false one-entry in a retrieval
based on the true distribution of the membrane potentials (see appendix in [129]). Then the prob-
ability density function of the Willshaw distribution has been determined in 1991 by Buckingham
and Willshaw [31, 29], and was subsequently refined by Sommer and Palm [171]. However, the
resulting formulas are not very convenient for the analysis of storage capacities and error prob-
abilities, and therefore the classical binomial approximation Bz,p1 (with mean zp1 and variance
zp1(1− p1)) has been used so far, where the matrix load p1 can be computed as a function of n, k,
and M (see eq. 3.4).

Using a binomial distribution assumes that the active synapses are generated independently
of each other. This is not true since storing of one pattern activates k2 synapses simultaneously,
causing dependencies within the memory matrix. Figure 3.5 illustrates some cases where the
binomial approximation is quite bad. It is tempting to assign the observed discrepancy to finite
size effects for finite n, k, and M . For example we may argue that the characteristic modulations
in the histograms of membrane potential (cf. Fig.3.5a,b) are due to relatively large k and small M .
Similarly, one could think that the massive underestimation of the true variance of the membrane
potential distribution (see Fig.3.5c,d; note that the mean is still correct) origins from an address
pattern activity z that is too large compared to the number of neurons n. Thus it appears rea-
sonable to argue that for sub-linear k these effects can be neglected for large n → ∞, and that
requiring

(λ + κ)k � n(3.93)

is sufficient to justify the binomial approximation.

46 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

 σ

/σ
W

B

800 1000 1200 1400 1600
0

20

40

60

80
n = 5000
k = 50
p

1
= 0.5

λ = 1
κ = 50

0 200 400 600 800 1000
0

20

40

60

80

100

120 n = 5000
k = 1000
p

1
= 0.8

λ = 1
κ = 0

0 200 400 600 800 1000
0

20

40

60

80

100
n = 5000
k = 1000
p

1
= 0.5

λ = 1
κ = 0

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
n = 5000
k = 50
p

1
= 0.5

λ = 1

neuron potential neuron potential

κ

ex
pe

ct
ed

 n
um

be
r

of
 n

eu
ro

ns

ex
pe

ct
ed

 n
um

be
r

of
 n

eu
ro

ns

ex
pe

ct
ed

 n
um

be
r

of
 n

eu
ro

ns

neuron potential

c d

a b

Figure 3.5: The binomial approximation of the true distribution of neuron potentials can be bad.
a: True potential distribution (◦) for non-addressed neurons for n = 5000, k = 1000, p1 = 0.5 when
addressing with λ = 1 (no missing ones in the address pattern) and κ = 0 (no false ones). The
binomial approximation (∗) is quite bad. Since k 6� n only M = 16 6� 1 patterns can be stored
to obtain p1 = 0.5. b: Same as (a) but p1 = 0.8. A larger number of patterns M = 39 can be
stored. The binomial approximation is still bad. c: Same as (a) but k = 50 and κ = 50. Although
a large number of patterns M = 6931 can be stored (due to small k), the binomial approximation
massively underestimates the variance of the true distribution of neuron potentials. Note that
the activity of the address pattern (λk + κk = 2550) is on the order of n. d: Fraction of the
standard deviations of the binomial approximation (σB) and the true Willshaw distribution (σW)
of neuron potentials as a function of κ. The plot illustrates results from experiments (×) for
κ=0,1,2,5,10,20,...,90,99) and theory (solid line, cf. eq. 3.122). The binomial approximation is valid
only for very low pattern activity λk + κk � n. Experimental estimations of the true potential
distributions were computed by averaging potential histograms for 10 different address patterns.

We may be interested more deeply why the binomials are quite bad approximations of the
true potential distributions, and more specifically, what causes the characteristic modulations
(Fig.3.5a,b) and the massive underestimation of the true variance (Fig.3.5c,d) leading to a massive
overestimation of fault tolerance at least against false ones.

An intuitive argument for the underestimation of the variance is the following. Assume that
kκ is on the order of n as in the examples illustrated in Fig.3.5c. Then it is very likely that the
address pattern will not only address the single addressed assembly but also many others of
the stored patterns. Even worse, the memory matrix may contain many more spurious stable
states. For auto-association (and also similarly for hetero-association) each of the stored patterns

3.6. A CRITIQUE OF THE CLASSICAL BINOMIAL ANALYSIS 47

is represented by a k-clique in the memory matrix, i.e., each of the pattern neurons is connected
with the k − 1 other neurons of the pattern. Note that the high-fidelity criterion guarantees
only the occurrence of no or only few spurious k + 1-cliques (i.e., the probability of a false one
is small). On the other hand there exist many more smaller cliques, e.g., k − 1-cliques most of
which emerge from parts of several of the stored patterns. These spurious states would occur
only with a negligible probability if the synapses were activated truly independently of each
other as assumed by the binomial approximation.

In the following we will analyze quantitatively the phenomena illustrated in Fig.3.5. The true
distribution of membrane potentials as determined by Buckingham and Willshaw [29] and sub-
sequently refined by Sommer and Palm [171] covers the observed phenomena. When the ad-
dress pattern contains exactly z := (λ + κ)k ones then with the binomial probability pB(k; n, p) :=(
n
k

)
pk(1− p)n−k the probability that a non-addressed neuron has dendritic potential XR = x is

pr[XR = x] =
M∑
i=0

pB(i; M,k/n) · pB(x; z, 1− (1− k/n)i)(3.94)

=
(

z

x

) M∑
i=0

(
M

i

)
(k/n)i(1− k/n)M−i[1− (1− k/n)i]x[(1− k/n)i]z−x(3.95)

=
(

z

x

) x∑
s=0

(−1)s
(

x

s

)
[1− k

n
(1− (1− k/n)s+z−x)]M − δx,0(1− q)M ,(3.96)

where δx,0 is the Kronecker symbol (1 for x = 0, and 0 else). The transformation of eq. 3.95 to
eq. 3.96 is detailed in [171]. Note that the refined formula of Sommer and Palm (eq. 3.96) requires
the addition of only x ≤ z � n terms where the original formula of Buckingham and Willshaw
requires the addition of M terms (with typically M � n) which provides a considerable relief for
computation.

The sum in the formula of Buckingham and Willshaw (eqs. 3.94 and 3.95) is over the so-called
unit usage i. That means, for a given neuron, i is the number of assemblies (stored patterns) the
neuron belongs to. For random patterns, the unit usage i is a binomially distributed quantity.
Similarly, given the unit usage i, the number of active synapses x (out of z) is also binomially
distributed where 1− (1− k/n)i is the probability for any of the z relevant synapses to be active.
It should be noted that the formula of Buckingham and Willshaw is only exact for pr[XR = x]
if the ones in the stored random pattern vectors were generated independently with probability
k/n for each component, whereas we used random patterns each containing exactly k ones (see
section 3.1). However, this should cause only minor deviations.

3.6.2 Oscillatory modulations in the membrane potential distribution

The formula of Buckingham and Willshaw (eq. 3.94) helps us to understand why sometimes
the potential histograms show characteristic oscillatory modulations (see Fig.3.5a,b). This effect
origins obviously from the additive superposition of the binomial probability density functions
pB(x; z, 1−(1−k/n)i) in eq. 3.94. The expectation and variance of the i-th binomial can be written
as

E(Bz,1−(1−k/n)i) = z(1− (1− k/n)i) = z
k

n

i−1∑
j=0

(1− k

n
)j ,(3.97)

Var(Bz,1−(1−k/n)i) = (1− k/n)i · E(Bz,1−(1−k/n)i).(3.98)

Additionally the i-th binomial in eq.3.94 is weighed with a factor pB(i; M,k/n). For i around
the expectation i0 := Mk/n the weights differ significantly from zero. Thus to avoid oscillatory
modulations as in Fig.3.5a,b we have to require that for i around i0 the standard deviations of

48 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

the binomials Bz,1−(1−k/n)i) are much greater than the distance between two neighboring expec-
tations, i.e., we require

√
z(1− (1− k

n
)i0)(1− k

n
)i0 � z

k

n
(1− k

n
)i0(3.99)

⇔ z · (
k

n
)2 · (1− k

n
)Mk/n � 1.(3.100)

For the parameters of Fig.3.5a (n = 5000, k = 1000, M = 16, z = 1000) we have z · (k/n)2 · (1 −
k/n)Mk/n ≈ 19.6 6� 1. Therefore we can expect oscillatory modulations for the potential his-
tograms with peaks at x = 0, 200, 360, 488, 590, 672, 738, 790, ... (evaluate eq.3.97 for i = 0, 1, 2, ...),
cf. Fig.3.5a. For the parameters of Fig.3.5c (n = 5000, k = 50, M = 6931, z = 2550) we have
z · (k/n)2 · (1 − k/n)Mk/n ≈ 0.69 < 1, and therefore the modulations are almost absent. For cor-
tical parameters (n = 100000, p1 = 0.1, k = 100; see section 2.3; cf. [27, 136, 203, 169]) we have
z · (k/n)2 · (1 − k/n)Mk/n ≈ z · 9 · 10−7 � 1 for z ≤ n. Thus the described effect of oscilla-
tory modulations plays probably no important role for physiological parameters, at least if the
estimated assembly size [136, 203, 169] is correct. However, in sections 3.7.2 and 4.4.3 we will
discuss possible functional implications of a related effect that will occur for any reasonable set
of parameters.

3.6.3 Underestimation of the variance of membrane potentials

We still have to explain why the binomial approximations in Fig. 3.5c,d massively underestimate
the variance of (non-addressed) neuron potentials which can lead to an overestimation of the
fault tolerance of Willshaw associative memory. For this we try to extract the variance Var(XR) =
E(XR

2) − E(XR)2 from the formula of Buckingham and Willshaw (eq. 3.94). First note that the
binomial approximation already gives us the correct expectation (cf. eq. 3.4)

E(XR) = z · p1 = z · (1− (1− k2

n2)M)(3.101)

Nevertheless it turns out to be useful to compute E(XR) for a second time from eq.3.94,

E(XR) =
z∑

x=0

x
M∑
i=0

pB(i; M,k/n) · pB(x; z, 1− (1− k/n)i)(3.102)

=
M∑
i=0

pB(i; M,k/n) ·
z∑

x=0

xpB(x; z, 1− (1− k/n)i)(3.103)

=
M∑
i=0

pB(i; M,k/n) · z(1− (1− k/n)i).(3.104)

Note that the second sum in eq.3.103 equals the expectation of a binomial Bz,1−(1−k/n)i . Compar-
ing eq.3.101 and eq.3.104 we obtain for p := k/n

M∑
i=0

pB(i; M,p) · (1− p)i = (1− p2)M ≈ e−Mp2
(3.105)

3.6. A CRITIQUE OF THE CLASSICAL BINOMIAL ANALYSIS 49

which will become helpful immediately when computing E(XR
2). From eq.3.94 we obtain

E(XR
2) =

z∑
x=0

x2
M∑
i=0

pB(i; M,k/n) · pB(x; z, 1− (1− k/n)i)(3.106)

=
M∑
i=0

pB(i; M,k/n) ·
z∑

x=0

x2pB(x; z, 1− (1− k/n)i)(3.107)

=
M∑
i=0

pB(i; M,k/n) · [z(1− (1− k/n)i)(1− k/n)i + z2(1− (1− k/n)i)2](3.108)

= z
M∑
i=0

pB(i; M,k/n) · [z − (2z − 1)(1− k/n)i + (z − 1)(1− k/n)2i](3.109)

= z2 − z(2z − 1)(1− (k/n)2)M + z(z − 1)
M∑
i=0

pB(i; M,k/n) · (1− k/n)2i.(3.110)

Note that the second sum in eq. 3.107 equals the sum of the squared expectation and the variance
of a binomial Bz,1−(1−k/n)i . For eq.3.110 we used eq.3.105. Simplifying the remaining sum in
eq.3.110 turns out to be more difficult. For M (k/n)(1−k/n) � 1 we can approximate pB(i; M,k/n)
by a Gaussian with expectation µ and variance σ2, and the sum by a integral. Using

∫ ∞

−∞
e−at2+btdt = e

b2
4a ·
√

π

a
(3.111)

(which can be derived, for example, from [28] no. 3), we can write for arbitrary 0 < p � 1,
σ2 := Mp(1− p) � 1, µ := Mp, and q = (1− p)r,

M∑
i=0

pB(i; M,p) · qi ≈ 1√
2πσ

∫ ∞

−∞
e−

(t−µ)2

2σ2 et ln qdt(3.112)

=
e−

µ2

2σ2

√
2πσ

∫ ∞

−∞
e−

1
2σ2 t2+(ln q+ µ

σ2)tdt(3.113)

= e−
µ2

2σ2 · e(ln q+ µ

σ2)2 σ2
2(3.114)

= e(ln q)2 σ2
2 +µ ln q(3.115)

≈ e−rMp2(1+ p
2 (1−r(1−p)(1+p+ p2

4)))(3.116)

≈ e−rMp2(1−p(r−1)/2)(3.117)

≈ e−rMp2
(3.118)

where for the second approximation we used ln q ≈ −rp(1 + p/2). The last approximation is
valid for r(r − 1)Mp3/2 � 1. Note that for p = k/n and M chosen according to the high-fidelity
criterion (see eq.3.10) we have asymptotically for n →∞ indeed Mp3 = − ln(1− p1) · k/n → 0 for
sublinear k (even for p1 → 1, cf. eq.3.22). Thus we obtain for p = k/n and r = 2 from eqs.3.110
and 3.117

E(XR
2) ≈ z2 − z(2z − 1)(1− (k/n)2)M + z(z − 1)e−2M (k/n)2(1−k/(2n)(3.119)

For k/n � 1, large M , using eq. 3.4 and equivalently exp(−M (k/n)2) = 1− p1 (cf. eq.3.105), and
the linear approximation a1−b ≈ a(1 − b ln a) (with a := (1 − p1)2, 0 < b := k/(2n) � 1), we can

50 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

write for the variance σW
2 of a Willshaw distributed random variable XR ∼ Wz,n,k,M ,

σW
2 := Var(XR

2) = E(XR
2)− E(XR)2(3.120)

≈ z2 − z(2z − 1)(1− p1) + z(z − 1)(1− p1)2(1− k

n
ln(1− p1))− z2p1

2(3.121)

= zp1(1− p1)− (z2 − z)
k

n
(1− p1)2 ln(1− p1)(3.122)

≈ zp1(1− p1) =: σB
2.(3.123)

The second approximation yields the variance σB
2 suggested by the classical binomial analysis,

and is justified only if the relative error of the standard deviations, δ := 1− σB/σW , is small. For
a given small δ we have to require

z < 1 + δ2 · p1

−(1− p1) ln(1− p1)
· n

k
.(3.124)

For our example in Fig.3.5c this would require z = (λ + κ)k < 1 + 144δ2. Since already k = 50 and
λ = 1 the binomial approximation is justified only for κ < 2.88δ2 − 1, i.e., not at all for reasonable
δ2 � 1. Indeed, the analysis in this section reveals that the binomial approximation underlying
almost all classical results is justified only for very large n. For the classical optimum which
occurs for k = ld n and p1 = 0.5 we would require when addressing with correct address patterns
(i.e., z = k),

ld n− δ2

ln 2
· n

ld n
< 1.(3.125)

Thus for δ = 0.1 we would require n > 11729, and for δ = 0.01 we would require already n >
3069494. The quality of the binomial approximation depends on k/n. Thus for finite n and ultra-
sparse patterns with sub-logarithmic pattern activity k < ld n (see section 3.2.1) the binomial
approximation is much better than for the classical or super-logarithmic pattern activity.

3.6.4 Consequences

Do the results of this section imply that the binomial analysis conducted in this chapter as well
as in much of the classical literature [204, 129, 134] is rather irrelevant for practical finite n? In
particular, the underestimation of the potential variance will lead to an underestimation of the
error probabilities and therefore to an overestimation of fault tolerance especially against false
one-entries in the address pattern. On the other side, in any case the results of the classical analy-
sis concerning with number of storable patterns, error probabilities, and storage capacity deliver
upper limits for the true values. Besides, we have up to date no better method of analyzing the
binary Willshaw model in such a general fashion as provided by the binomial approximation.
The structure of the theory is correct, and any future theory for the Willshaw model probably has
the same structure. For example, for address patterns with κ = 0 (no false ones) the binomial
analysis in this chapter is correct except for the assumption of the error probability p01 in eq. 3.6
(leading to a bad approximation of the maximal matrix load in eq. 3.9). The correct error proba-
bility p01 for a false one-entry when applying the Willshaw retrieval strategy can be derived from
eq. 3.94 (see [31, 29, 30, 171]; cf. also appendix in [129]). For x = λk and z := λk we obtain

p01 =
M∑
i=0

pB(i; M,k/n)(1− (1− k/n)i)λk(3.126)

=
λk∑
s=0

(−1)s
(

λk

s

)
[1− k

n
(1− (1− k/n)s)]M ,(3.127)

where the latter equation can be derived either by using eq.3.105 and expanding (1−(1−k/n)i)λk

or directly by using eq.3.96. Unfortunately it turns out to be difficult to find an appropriate
approximation for p01 such that we could repeat the analysis in this chapter.

3.6. A CRITIQUE OF THE CLASSICAL BINOMIAL ANALYSIS 51

3.6.5 An experiment to test the hypothesis of cell assemblies in the brain

On the one hand the results of this section are disappointing. The underestimation of the true
neuron potential variance implies that the classical binomial analysis can be very bad for practical
finite n, especially for large address pattern activity z (see eq. 3.122, cf. Fig. 3.5).

However, the difference between the true Willshaw variance (eq. 3.122) and the binomial
variance (eq. 3.123) extracts the most important difference between independently generated
synapses and synapses generated by Hebbian learning of neural assemblies. This difference
should also be measurable in neurophysiological experiments, for example using brain slices.

The basic idea is to stimulate the neurons in a small piece of cortex as unspecifically as possible
and then measure the mean µm and variance σm

2 of the postsynaptic potentials (or currents). For a
given stimulation strength it should be possible to estimate the probability ps that a neuron emits
a spike. If we know the number n of neurons in the relevant piece of cortex, we can estimate the
number z := ps · n of relevant neurons activated by the stimulus. If we additionally know the
probability p1 and mean strength (here assumed to be 1) of a synapse between two neurons in
our piece of cortex then we can even verify our estimate since z = µm/p1 (cf. eq. 3.101). Thus we
can determine all variables in eq. 3.122 except for the assembly size k.

To decide if the piece of cortex contains assemblies or not, we have to repeat the experiment
with different stimulation strengths corresponding to different values of z, and then plot the
experimentally measured variance σm

2 versus z. If the synapses in the piece of cortex were
generated independently of each other then we should obtain a linear relationship between σm

2

and z (eq. 3.123). In contrast, if the piece of cortex contained Hebbian cell assemblies then we
should see rather a quadratic relationship (eq.3.122). (Alternatively we could simply check if
σm/µm is correlated with the stimulation strength: if not this would support Hebbian learned
cell assemblies, while a negative correlation corresponding to σm/µm ∼ 1/

√
z would support

independently generated synapses.)
If we really observe a quadratic relationship between σm

2 and z (or the absence of a correlation
between σm/µm and the stimulation strength) then we can even estimate the assembly size k by
resolving eq.3.122 for k,

k =
σm

2 − zp1(1− p1)
−(z2 − z)(1− p1)2 ln(1− p1)

· n.(3.128)

Neuroanatomical findings about the extensions of dendrites and local axon collaterals suggest
that an appropriate size for the relevant piece of cortex (where we can expect local cell assemblies)
would be about 1mm3 containing about n = 100000 neurons where the chance of a synaptic
connection is about p1 = 0.1 (see [27, 65]). Furthermore, theoretical considerations suggest an
assembly size of perhaps a few hundred neurons [136, 203, 169]. If we assume k = 10 or k = 100
we can expect to measure variances σm

2 as illustrated in Figure 3.6. The test seems to be very
robust especially for relatively large k ≥ 100 corresponding to the theoretical estimations.

Note that this analysis provides only a raw sketch for the design of a real neurobiological
experiment. There are a number of additional factors that have to be considered: (1) The unspe-
cific stimulation will activate both excitatory and inhibitory neurons, but we are only interested
in the excitatory postsynaptic potentials (or currents) assuming that cell assemblies are consti-
tuted mainly by excitatory cells (see [64, 130, 27]). (2) When determining the variance σm

2 we are
only interested in the postsynaptic potentials (or currents) caused monosynaptically by the stim-
ulation, and not of polysynaptic recurrent spikes. Thus the time delay between stimulation and
measurement is crucial for the results. (3) The stimulation will yield temporally dispersed spikes
such that the postsynaptic potentials will not perfectly overlay in time. This effect will be even
stronger due to axonal transmission delays, in particular when testing hetero-associative cortico-
cortical connections by stimulating a distant cortical location. (4) The Willshaw model assumes
that all synapses have equal strength. In the real brain this is certainly not the case. Thus the
present analysis is valid only if the true variance of the synaptic strength is small. However, ex-
periments rather suggest that the standard deviations of synaptic strengths are on the order of
the mean value (see dashed lines in Fig.3.6; see Fig.2 in [115], Fig. 52 in [27]; cf. [137]). (5) The

52 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

z/104 z/104

4
mσ

/1
0

2

4
mσ

/1
0

2

0 1 2 3 4 5
0

1

2

3
n=100000
p

1
=0.1

k=10

0 1 2 3 4 5
0

5

10

15

20

n=100000
p

1
=0.1

k=100

a b

Figure 3.6: Expected variance σm
2 when measuring dendritic potentials in the proposed neuro-

physiological experiment (see text) vs. number z of ’address’ neurons spiking by initial stimu-
lation. For independently generated synapses σm

2 should be a linear function of z (gray), while
σm

2 should be quadratic in z if the synapses were generated by Hebbian learning of cell assem-
blies (black). Unit of σm corresponds to the mean synaptic strength of active synapses. Strength
of active synapses are assumed either to be the same for all active synapses (solid), or to be gen-
erated by Gaussians with mean and variance 1 (dashed or dash-dotted). For the dash-dotted line
only half of the synapses were generated by Hebbian learning, and the probability of a synapse
between two neurons of the same assembly was only 0.5. The difference to the corresponding
curve expected for independently generated synapses (gray, dashed) is still significant. a : Ex-
pected neurophysiological results for n = 100000, p1 = 0.1, k = 10. b : Same as (a) but k = 100.

described analysis assumes the linear summation of distributed postsynaptic currents. Actually,
there is considerable controversy whether dendritic integration of synaptic inputs in real neurons
is linear or non-linear [32, 110]. In the latter case it might be difficult to estimate the number of
activated synapses from only one local measurement such as the somatic potential. (6) The clas-
sical Willshaw model assumes that synaptic connections are possible between all local neurons,
and that within an assembly a neuron is connected with all other neurons of the same assembly.
This is certainly not the case in the real brain. Even if the neurons are organized in assemblies it
is likely that within an assembly the connection probability is increased compared to the mean
connection probability (e.g., from 0.1 to 0.5), and that not all synapses correspond to Hebbian
cell assemblies (see dash-dotted lines in Fig.3.6). (7) While the Willshaw model assumes that the
probability of a synapse is p1 for any pair of neurons, real cortical tissue exhibits an anatomical
bias: Near neighbored neurons are more likely to be connected than more distant neurons, and
only on average we have about p1 = 0.1 within 1mm3 of cortex [27, 65]. (8) A serious problem
may be the unreliability of synaptic transmission [9]: A presynaptic spike can fail to evoke a
postsynaptic response. Although in slice preparations the probability of a synaptic failure can
be quite large (often > 0.5) it is not clear to what extent the failures are due to unphysiological
recording conditions (e.g. low temperatures; see [63]). (9) In the analysis it is assumed that in-
dependently generated random patterns are stored in the memory matrix. But if there are local
assemblies in the cortex it is probable that they will exhibit correlations.

In remains to be seen in discussions with neurobiologists if and how the problems (1) and (2)
can be solved by experimental techniques. For problems (3), (4), (5), (6), (7), (8), and (9) it might
be possible to refine the theoretical analysis. In any case, the effect of increased potential variance
for Hebbian cell assemblies is strong enough especially for large k and z (cf. Fig. 3.6) such that
we should be able to observe it despite the described problems.

3.7. IMPLICATIONS 53

3.7 Implications

3.7.1 Implications for technical applications

In section 3.2 we have demonstrated that optimal matrix compression by Huffman or Golomb
coding [74, 57] (see also appendices A.3.1 and A.3.2) yields storage capacity Ccmpr = 1 asymp-
totically. Surprisingly, this happens for almost all sublinear pattern activities k(n). Indeed, it is
somewhat ironic that choosing k = c log n, which was widely analyzed so far and thought to be
optimal, is the only possible choice of a (sublinearly) sparse code where Ccmpr → 1 is not possible.

Similarly as for the classical capacity C the convergence of Ccmpr is rather slow, and values
near 1 are obtained only for n too large for real implementations (Fig. 3.2d). However, at least
for ultra-sparse patterns (e.g. constant k with still M ∼ n2−1/k) values Ccmpr ≈ ln 2, the classical
upper bound, can be achieved already for practical n (e.g. Ccmpr(n) ≈ 0.7 for k = 3 and n = 108 in
Fig.3.2d).

The fact that high storage capacities of the order of or above the classical optimum occur for
all sublinear pattern activities k(n) (and not only for k = ld n, cf. Fig.3.2b) is a big relief for finding
adequate codes. For certain applications k = ld n is simply too small for practical n to express
complex hierarchical relations between the patterns [144], and one would prefer k =

√
n where

still a large number of (random) patterns M ∼ n ln n can safely be retrieved.

On the other hand, using a large (i.e., super-logarithmic) pattern activity with p1 → 1 will
cause at least two severe problems: First, for larger k the cross-talk between the patterns will
also be larger if the patterns are not perfectly uncorrelated which is usually the case for practical
applications. Second, p1 → 1 yields only storage capacity 1 if really the maximal possible number
of patterns is stored. Since many applications will start with relatively few stored patterns (while
many new patterns are learned only with passing time) this may lead to the paradox effect that
the required physical memory is larger for fewer stored patterns than for the maximal number of
stored patterns. Even worse, this effect occurs also if a smaller than maximal number of patterns
is stored to improve fault-tolerance (section 3.3). Thus it remains to be shown if the p1 → 1 regime
proves useful for technical applications. In any case, these problems do not occur for ultra-sparse
patterns with with sub-logarithmic k(n) and p1 → 0.

Furthermore, for sequential implementations optimal matrix compression applying Golomb
coding not only improves the storage capacity but also the retrieval speed (section 3.4). For
ultra-sparse patterns (k < c log n) the Golomb-compressed Willshaw model is superior to the
classical model with respect to the time tret required for a retrieval, the information flow fI (in-
formation retrieved per time step), and the retrieval efficiency E (fI normalized to the classical
Willshaw model storing the same total amount of information). For moderately-sparse patterns
(k > c log n) the compressed Willshaw model is still superior with respect to fI and E (but not
for tret).

For parallel implementation (section 3.5) the classical Willshaw model remains superior to
the compressed model with respect to tret, fI , fI,N , E, and EN (fI,N and EN are normalized to
the number of processors) for both ultra-sparse and moderately-sparse patterns. Nevertheless,
the Golomb-compressed Willshaw model can also quite efficiently be implemented in parallel if
look-up tables are used to accelerate accessing individual synapses (see section 3.5.2).

In summary, for any sequential implementation Golomb-compression of the memory matrix
is recommended as long as no excessive online-learning is required (learning of the association
for a pattern pair needs k2 steps for the classical model, but∼ kn steps for the compressed model
involving decompression and subsequent compression of k matrix rows). For parallel imple-
mentations, matrix compression can only be recommended if saving physical memory is more
important than saving computing time. This may indeed be the case for some parallel archi-
tectures (like CNAPS, cf. [62]) where the individual processors have relatively limited working
memory.

54 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

3.7.2 Implications for biological models

As detailed in section 2.3 associative memory can be interpreted as a model for the cerebral cortex
where the stored patterns can be identified with neural assemblies, i.e., sub-groups of neurons
which are highly interconnected by Hebbian learning of synapses [64, 26, 130, 133]. Therefore
the results presented in this chapter might be also relevant for biological modeling and even
neurophysiological experiments.

One important finding is that the classical binomial analysis of the Willshaw associative mem-
ory [204, 129, 134] can be very bad (see section 3.6) for finite parameters n (number of neurons),
k (assembly size), and M (number of assemblies). This results from the binomial assumption
of independently generated synapses leading to binomial Bz,p1 distributed dendritic potentials
for input from z address neurons (typically z = k) and memory load p1. Actually, for Hebbian
learned cell assemblies the dendritic potentials follow rather a Willshaw Wz,n,k,M distribution
(see section 3.6.1), which converges towards the binomial distribution only for n →∞ if k and z
are sub-linear in n (see section 3.6.3).

For finite parameters there can occur at least two important differences between the binomial
and Willshaw distribution: (1) The probability density function of the Willshaw distribution can
exhibit characteristic oscillatory modulations (see Fig. 3.5a,b). (2) The variance of the Willshaw
distribution can be much larger than the variance of the corresponding binomial distribution (see
Figs. 3.5c,d and 3.6).

On the one hand these results are disappointing when concerned with technical applications
since the underestimation of the variance leads to an overestimation of storage capacity and fault
tolerance (which means that the true performance of the Willshaw model is worse than expected
from the classical theory). On the other hand the described statistical differences between the
binomial and Willshaw distributions can in principle be used to test the cell assembly hypothesis
in neurophysiological experiments (see section 3.6.5). The difference in variance is so large for
plausible parameters (e.g., n=100000, p1 = 0.1, k = 100, large z) that it should be measurable also
in the real brain. While the variance should be linear in z for independently generated synapses
the relationship should be rather quadratic if the cell assembly hypothesis is true (see Fig.3.6).
For the latter case we could even estimate the assembly size k (see eq.3.128). However this will
require a further refined theory that would take into account many additional factors influencing
the measured variances not captured by the Willshaw model (e.g., distributed synaptic strengths,
incomplete connections within assemblies, etc.; see section 3.6.5).

For three reasons it is probably difficult to observe the other difference between the binomial
and Willshaw distribution in neurophysiological experiments, namely oscillatory modulations in
the histograms of the dendritic potentials (Fig.3.5a,b). First, oscillatory modulations occur only
for a large assembly size k and a small number M of stored patterns (see eq.3.100). For plausible
cortical parameters (n = 100000, k = 100, p1 = 0.1) we cannot expect oscillatory modulations.
Second, even if the true assembly size in cortical tissue is much larger than the estimated number
(k = 100, [136, 203, 169]) the effect may be an artifact of the idealizations of the Willshaw model
since in the real brain the effect may be wiped out due to other factors influencing the potential
distribution (such as distributed synaptic strengths, incomplete connections within assemblies,
etc.; see section 3.6.5). Third, even if the oscillatory modulations occur in the brain, they will
probably be very difficult to measure for technical reasons.

We can only speculate about functional implications of such oscillatory modulations in the
membrane potential: If membrane potential distributions would really exhibit multiple peaks as
illustrated in Fig.3.5a,b one effect could be that the neurons corresponding to each peak would
fire in synchrony (if we assume that the ’potentials’ in Fig.3.5 correspond to temporal change of
the potentials in the real brain - see also the argumentation in chapter 4 about spiking neurons
and pattern separation). But what would be synchronized then? Actually, this effect would not
synchronize the activity of an assembly, but rather those neurons that belong to the same number
of assemblies, i.e., the neurons which have the same unit-usage (see eq.3.94 and the remarks on
page 47). The functional relevance of such a behavior is not clear.

Note that the described analysis of the oscillatory modulations in the membrane histograms

3.7. IMPLICATIONS 55

(Fig. 3.5a,b; see section 3.6.2) assumes that the z address neurons are selected at random. In
this case we cannot expect oscillations if we assume parameters plausible for cortical tissue (see
above). However, a related effect occurs trivially if the z address neurons constitute one of the
assemblies as it is the case in the classical scenario of the analysis (see section 3.1.2). Then the
distribution of the neuron potentials exhibits two peaks: The high-potential peak corresponds to
the addressed neurons, while the low-potential peak corresponds to the non-addressed neurons.
If the address pattern contains parts of two (N) assemblies then we will obtain four (2N) peaks in
the membrane potentials corresponding to neurons belonging to both assemblies, only to the first
assembly, only to the second assembly, neither to the first nor to the second assembly. This related
effect for superpositions of patterns or assemblies will occur obviously for any reasonable set of
parameters, and here the assemblies themselves would be synchronized. In the next chapter
we will deal with the separation of superimposed patterns in associative memory using spiking
neurons.

In the last sections we have seen that it is possible to improve the asymptotic storage capacity
of Willshaw associative memory from ln 2 to 1 if the memory matrix is optimally compressed (see
section 3.2). By applying Golomb coding this happens without severe computational costs (see
appendix A.3.2). Performance is even improved, at least for sequential implementation (section
3.4). For implementing biological models on computers this obviously reduces the costs in terms
of memory and computation time (see appendix C). But what are the relations to the biological
reality of the brain?

As detailed in section 2.3.3 associative memory can be interpreted as a model for the cerebral
cortex. The fact that the Willshaw model requires sparse coding to obtain high storage capac-
ity was often interpreted as a striking coincidence with physiological findings of sparse spike
activity in the brain: most neurons in the brain are only seldom activated and exhibit only low
spontaneous spike rates of few (1-5) spikes per second. This might lead to the conclusion that the
neural nets in the brain could be optimized with respect to the information theoretic storage ca-
pacity. On the other hand, it is known that the probability of a synapse between two local cortical
neurons is approximately p1 = 0.1. This obviously contradicts the maximal-capacity-hypothesis
since the classical Willshaw model requires p1 = 0.5 for optimal storage capacity (but see [24] for
incompletely connected networks). Arguing that p1 should be below the optimal value in order
to stabilize the neuronal assemblies and allow pattern completion is also not really convincing.

In contrast, we have seen that the storage capacity for compressed memory matrices is mini-
mal for non-sparse p1 = 0.5, and the highest capacities are obtained for p1 → 0 (or p1 → 1). This
should draw our attention to sparse synaptic connectivity as found in the brain. Of course, ma-
trix compression has no obvious biological equivalent: The brain cannot ’compress’ its synapses
as we can do in our models of the brain. Nevertheless there are other arguments for sparse
synaptic connectivity that are independent of whether the synaptic matrix is compressed or not.
First, the maximum for the number of storable patterns M does not coincide with the maximum
for the storage capacity. While maximal storage capacity is obtained asymptotically for p1 = 0.5,
maximal M occurs at only p1 ≈ 0.16 (see Fig.3.1c) which is much nearer to the physiological
value p1 = 0.1. Now the remaining difference might more convincingly be assigned to stabilizing
patterns and the possibility of pattern completion or fault tolerance (see section 3.3).

Thus we should not rule out the possibility that, from an anatomical point of view, the brain
is designed to maximize the number of stable activity states rather than the storage capacity.
In the following chapter we will find another argument for sparse synaptic connectivity when
investigating the use of spiking neurons for associative memory.

56 CHAPTER 3. WILLSHAW ASSOCIATIVE MEMORY

Chapter 4

Spiking associative memory

Associative memories can be used as models for the cerebral cortex. In the Willshaw model a
binary synaptic memory matrix contains information about a certain set of stored patterns (see
chapter 3). Since connections are required between all neurons of a pattern (or assembly), and
local connections between local cortical neurons reach only few millimeters [27] we think that
the classical Willshaw model can be used to model approximately 1mm3 of cortical tissue (see
sections 2.3.3 and 2.1.3). To model larger parts of the cortex it is more appropriate to connect
many such elementary associative memories by hetero-associative (i.e. Hebbian learned) links
(see chapter 5, or to use topographical models (see section 5.3.5).

In its basic form associative memory is a model of synaptic connectivity (i.e. the memory
matrix) plus a “neuronal” algorithm to read out the stored information. However, in the real
brain this involves spiking neurons, i.e. binary events in space and time. On the one hand the
binary Willshaw model of associative memory can already be interpreted as a spiking model
since the neurons are binary, i.e. the ones in the patterns correspond to single spikes (in space).
On the other hand the temporal dimension collapsed completely since a retrieval is performed
in a single atomic step (see section 3.1.1; but see [69]). Moreover, in other models of associative
memories the patterns and synaptic interactions are rather gradual, and thus even the spatial
aspect of a spike is missing (e.g., [103, 104]). Since all those models work apparently quite well in
applications as well as in neural field models of brain parts one may question what the purpose
or advantage of spikes is?

In this chapter we will study in more detail a problem where spiking neurons seem to be
superior to gradual ones: The separation of superpositions of patterns. Together with the results
from the last chapter (e.g., sparseness) this will lead us to some tentative answers why spikes
occur in the brain.

4.1 Addressing with superpositions

The classical scenario how to read out information from an auto-associative network is to use just
one of the previously stored patterns as address pattern to retrieve the complete pattern.

For the binary Willshaw model the situation might be as follows: The address pattern contains
half of the ones of a previously stored pattern, i.e., k/2 of the k ones in a pattern. Additionally it
may contain f further (spurious) ones generated at random. When addressing, i.e., applying the
matrix-vector-multiplication as described in section 3.1.1, the potentials x of the neurons will be
distributed approximately according to two binomial random variables. A neuron that does not
belong to the addressed pattern is connected with one of the address neurons with probability
p1 (matrix load, cf. eq. 3.4), approximately independently for all address neurons (but see sec-
tion 3.6; cf. [29, 171]). Thus the neuron potential is the outcome of a binomial random variable
Bk/2+f,p1 corresponding to k/2 + f Bernoulli random experiments (true, false) where the experi-
ment is “true” with probability p1. Similarly, a potential of a neuron belonging to the addressed

57

58 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

pattern will be distributed as a random variable k/2+Bf,p1 , because the neuron will be connected
to all the k/2 neurons of the half pattern and the Bernoulli experiments will be performed only
for the f spurious neurons. The situation is illustrated in Fig. 4.1a: One obtains a bimodal dis-
tribution of the neuron potentials, where one mode corresponds to the addressed neurons and
the other mode corresponds to the rest of the cells. If the conditions for retrieval are met (i.e., not
too many stored patterns with respect to the pattern activity k, see section 3.1.2 for details) the
two binomial modes will be separated well, and we just have to choose an appropriate threshold
between the two modes to retrieve the completed pattern.

= ??~~threshold Θ

ne

ur
on

s

potentials x

ne

ur
on

s

potentials x

Θthreshold

a b

k

k

k

2

~ B +f,p
2

2
k~ + Bf,p

1

1

2
k~ + B

k+f,p~ B

+f,p
2

1

1

Figure 4.1: Potential distributions for one-step retrieval when addressing with a single pattern
(a) or with a superposition of two patterns (b). a: When the address pattern consists of half (k/2
one-entries) of a previously stored pattern (the addressed pattern) plus noise (f “false” one-entries)
then the neuron potential distribution is bimodal. The non-addressed neurons have potentials ac-
cording to a binomial Bk/2+f,p1 , while the addressed neurons receive at least k/2 inputs plus input
according to a binomial Bf,p1 . In this case the two modes are well separated, and the addressed
pattern can be easily extracted by choosing a threshold Θ between the two modes. b: When ad-
dressing with the superposition of two halves of two previously stored patterns (k/2 one-entries
for each half) plus f noisy one-entries, then an additional mode appears for the second addressed
pattern (we have neglected a further very small mode corresponding to the neurons lying in the
intersection of the two addressed patterns). The two modes corresponding to the two addressed
patterns overlap closely. It is difficult to separate the two patterns by one-step retrieval because
the retrieval result will always be a superposition of the two addressed patterns for any choice of
the threshold Θ.

However, if we perform the retrieval using a superposition of, for example, two previously
stored patterns the situation is as illustrated in Fig. 4.1b. Now we have a trimodal distribution
where the two modes of the two addressed neuron groups may closely overlap (we neglected a
further mode corresponding to the intersection of the two addressed patterns which is valid for
random patterns): If we address with two half patterns plus f spurious ones we will obtain one
mode distributed according to Bk+f,p1 , and two modes distributed with k/2+Bk/2+f,p1 . Thus, it is
impossible to choose a threshold in order to extract only a single completed pattern. Instead we
will always obtain a superposition of the two addressed patterns, irrespective of the threshold.
It is argued that this is not desired: For example, the superposition of two patterns reduced to
activity k may correspond to a third pattern that is not at all related to the current situation. In
the next section a solution to this form of the superposition problem is described.

4.2. PATTERN SEPARATION 59

4.2 Pattern separation

Several different technical models of neural associative memory have been introduced to demon-
strate the capability of neural networks to learn and retrieve patterns (e.g. [204, 103, 104, 129,
69, 70]), whereas the issue of pattern separation has not attracted as much attention so far. Often
the classical models use continuous variables that are interpreted as firing rates, and they exhibit
some problems when addressed with a superposition of several patterns. Normally, this will
result in an activation of a superposition of stored patterns. This is true in particular for linear
associative memory (e.g., [103, 104]) where per definition the result is the linear superposition of
single input components.

For non-linear models retrievals can be performed iteratively [160, 171]: If the asymmetries
in the address superposition are sufficient, the output pattern can converge towards one of the
components, but only after several iterations. Using spiking neurons suggests a complementary
solution for the problem of pattern separation. Here the basic idea is to interpret the synaptic
inputs delivered by an addressed pattern not as the potentials x (see Fig.4.1), but rather as the
temporal change of the potentials dx/dt as illustrated in Figure 4.2. Then the different (binomial)
modes start moving towards a fixed threshold Θ. At some time the first neuron will reach the
threshold and therefore emit a spike. This spike is immediately fed back which will further excite
the neurons of the corresponding pattern and suppress somehow the neurons of other rivaling
patterns. Thus in the ideal case one complete pattern will pop out. Similarly as for classical one-
step retrieval the result can be further improved by iterating the spiking retrieval. For extraction
of the other components of the superposition further spiking retrievals have to be performed,
where the neurons activated in previous retrievals can be suppressed (e.g., by eliminating the
corresponding address inputs) in order to prevent multiple activations of the same pattern.

Θ

ne

ur
on

s

potentials x / derivative x

Figure 4.2: A solution to the superposition problem illustrated in Fig. 4.1. Instead of the mem-
brane potential x the address input is interpreted as the temporal change dx/dt of the membrane
potential. Then the three binomial modes start moving towards a fixed threshold Θ. At some
time the first neuron reaches the threshold and a spike is emitted. By immediate selective feed-
back one of the pattern can pop out, while the others are suppressed.

The described spike mechanism reminds of the asynchronous updating rule of the Hop-
field model [69], although in the original Hopfield model for the next spike an arbitrary super-
threshold neuron is chosen at random whereas it would be more plausible to simply choose the
most excited neuron (on the other hand this prevents the expensive computation of the maximum
of a set containing n values; cf. section 4.5). The postulated use of spiking neurons for scene seg-
mentation or pattern separation has already been described by several authors simulating rather
biological (usually time-continuous) versions of the Hopfield model (e.g., [150]) or the Willshaw
model (e.g., [199, 197, 201]).

Wennekers and Palm demonstrated the pattern separation capability of a spiking variant of

60 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

the Willshaw model ([199], see also [172]). They used two populations of neurons, one excita-
tory spiking population that was auto-associatively connected according to the clipped Hebbian
learning rule [64, 204, 129], and a single gradual inhibitory interneuron reciprocally coupled with
the excitatory population. Connections from an input population coupled to the excitatory pop-
ulation and initiated a retrieval process. The function of the inhibitory population was to control
excitation so that only one of the addressed populations got activated. However, this model was
faced with two problems. First, the strength of necessary inhibitory connections depends strongly
on the size of the addressing pattern, i.e. different synaptic strengths were needed when address-
ing by patterns with either missing or additional active elements, and similarly when addressing
with a superposition of several incomplete patterns. Second, introducing realistic synaptic and
axonal delays, the pattern separation capability vanishes, since the indirect activation of inhibi-
tion is too slow.

In the following section we will develop a technical extension of classical one-step retrieval for
the Willshaw model, the so-called spike-counter model [86, 89]. This model is based on the princi-
ples of spiking retrievals as discussed in this section and implements an instantaneous version
of the Willshaw retrieval strategy of the classical model (see section 3.1.1). It turns out that the
spike counter model can be implemented almost as efficiently as one-step retrieval (see section
4.5). Further, in section 4.6 we can derive a biological version of the spike counter model that
is much more robust to synaptic delays and differences in address pattern size than previously
suggested models [199].

4.3 Spike counter model

When addressing an auto-associative memory in the Willshaw model with a certain pattern, the
result is that every neuron i can be assigned a counter value ci corresponding to the number of
connected address inputs. The result of the retrieval is the set of neurons with counter values
exceeding a global threshold Θ. For threshold setting, two strategies can be used: (1) Willshaw
retrieval strategy (cf. section 3.1.1): If we can assume that the address pattern is an incomplete
version of a stored pattern, then the threshold can be chosen equal to the number of active units
in the address pattern. This way we obtain all neurons of the stored pattern, plus perhaps some
false ones. (2) When nothing is known about the address pattern, one has to adjust the threshold
step by step until the number of active units in the resulting pattern has a desired value (cf. [202]).
Note that the second strategy constrains the pattern sizes to be about the same for all patterns.

Interpreting this technical model as a biological one, the idea is to interpret the counter values
ci as membrane potentials xi, and Θ as the firing threshold of the neurons. Thus only neurons
above the threshold get activated (see Fig.4.1) with a certain rate (which saturates immediately
in the case of binary patterns).

An alternative would be to interpret the counter values ci as temporal changes of membrane
potentials dxi/dt. Then we obtain temporal dynamics (see Fig. 4.2): Given the instantaneous
membrane potentials we can compute for each neuron, if and when it will exceed its threshold.
The idea is to integrate the membrane potentials only until the next spike occurs, and then to
increment the count values ci for each neuron connected to the spiking one. This gives us new
values of dxi/dt and we continue to integrate the potentials until a sufficient number of spikes
has occurred. Since already the first spike of a retrieval is fed back immediately, fast pattern
separation is accomplished: the first spikes determine which of the simultaneously addressed
assemblies becomes activated.

This is essentially what happened in the model of Wennekers and Palm [199] (cf. section 4.2).
The function of the inhibitory neuron was to increase gradually the threshold Θ to let only the
strongest activated neurons fire. But this happened in a quite uncontrolled way.

To get an optimal threshold control, we should consider the relation between the spike counter
and the temporal change of membrane potential more closely. To this end we split up our counter
values ci in several categories and propose that the temporal derivative of the potentials dxi(t)/dt

4.3. SPIKE COUNTER MODEL 61

should be a function f

d

dt
xi = f (cH

i , cA
i , cΣ)(4.1)

of the number of spikes cH
i received from the address area (by hetero-association or essentially

by auto-association if one-to-one connections from the address area are used), the number of
spikes cA

i received auto-associatively from intra-areal neurons, and the total number of spikes cΣ

generated by all intra-areal neurons until time t (see Figure 4.3).

CA
i CΣ

CH
i

neuron i("hetero−associative")

address input

("auto−associative")
feedback ,

Figure 4.3: The spike counter model: Each neuron i has three counter states: (1) cH
i counts the

input spikes obtained from the address area (e.g., hetero-associatively; see text); (2) cA
i counts the

number of spikes received auto-associatively by feedback from intra-areal neurons; (3) cΣ counts
the total number of spikes generated by all intra-areal neurons (and therefore cΣ is equal for all
local neurons).

To implement something analogous to the Willshaw threshold strategy (1) described above,
f should exhibit the following properties:

• If cA ≈ cΣ , then f (cH , cA, cΣ) should be positive.

• If cA � cΣ , then f (cH , cA, cΣ) should be negative.

Essentially, the role of cΣ is that of an instantaneous threshold that allows increasing membrane
potentials only for neurons connected with (nearly) all the neurons that already have emitted
a spike, and therefore we can expect the exclusive activation of one stored pattern (remember
that patterns in the Willshaw model are completely connected subsets of the neurons). Figure 4.4
illustrates the retrieval process and the meaning of the spike counters.

Note that our model exhibits a very friendly behavior, if one chooses f as proposed above:

• The problem in the Willshaw model of adjusting the threshold Θ dependent on the size
of the address pattern is eliminated and it is even possible to store assemblies of different
sizes. This is because as long as all neurons that exhibited a spike belong to one assembly,
for all other neurons of this assembly we have cA = cΣ , and therefore exclusively their
potentials continue to increase towards the threshold.

• Miscarried retrievals (e.g. if neurons of different assemblies have already fired) exhibit
a tendency to break down at an early time, because the condition cA ≈ cΣ is no longer
fulfilled for any neuron.

Thus we obtain autonomous threshold control and autonomous detection of failed retrievals.

62 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

H
i

H
j

A
i

A
j

c =1, c =0

c =3, c =1, c =4Σ

A

A A

i j

1

2

3

Figure 4.4: Illustration of a retrieval in the spike counter model according to the Willshaw as-
sociative memory. The associative memory (ellipse) contains three assemblies (completely con-
nected subgraphs A1, A2 and A3) addressed by extra-areal input (five units below ellipse). Neu-
rons that already have spiked are represented by black circles, other neurons by unfilled cir-
cles. Neurons i and j get input from cH

i = 1 and cH
j = 0 hetero-associatively connected ac-

tive addressing units. At the moment, cΣ = 4 neurons of the associative memory have already
spiked, three neurons of assembly A1 and one neuron of A2. Therefore neurons i and j get auto-
associative input cA

i = 3 and cA
j = 1 respectively. Since for neuron i (as well as for the other

neurons of A1) we have cA
i ≈ cΣ the potential of neuron i will continue to increase towards the

firing threshold (for an appropriate input integration function f). In contrast, the potential of
neuron j will decrease because cA

j � cΣ . The result will be a complete activation of assembly
A1 and a suppression of the remaining neurons.

A simple linear example for an appropriate input integration function is the following:

f1(cH , cA, cΣ) = acH + b
(
cA − αcΣ

)
, a, b > 0, 0 < α ≤ 1(4.2)

Parameters a and b determine strengths of inter-areal and intra-areal inputs respectively. Param-
eter α determines the so called separation strength. E.g. a separation strength of α = 0.9 means that
the auto-associative feedback is only excitatory for neurons connected to more than 90 percent
of the neurons that have fired in the addressed area. For all other neurons, the auto-associative
feedback is inhibitory.

For α ≈ 1, the first required property for f is obviously fulfilled. The second can be achieved,
if one weighs the influence of the auto-associative feedback much stronger than the influence of
the hetero-associatively addressing area. This is also justified for biological models (cf. sections
2.1.3 and 2.3.3). According to [27], half of the synapses on a cortical pyramidal cell are made
by axons belonging to local (auto-associatively coupled) neurons of the same area, while the
other half results from possibly remote areas. Experiments revealed that a local cortical neuron
group is connected to five to eight other local groups. This suggests that the local auto-associative
feedback may be about five to eight times stronger than input from one extra-areal neuron group.

An efficient implementation of a technically optimized variant of this model is described in
section 4.5. In the following we will analyze the spike counter model with respect to fault toler-
ance and compare it to classical one-step retrieval in the classical Willshaw model.

4.4. ANALYSIS OF THE SPIKE COUNTER MODEL 63

4.4 Analysis of the spike counter model

The analysis of the classical Willshaw model applies to a certain degree also to the spike counter
model of Willshaw associative memory. In particular the analysis of using single address pat-
terns with missing ones (see section 3.3.1) delivers a lower bound for the fault tolerance of the
spike counter model. In section 3.3.2 we have postponed the analysis of address patterns with
false ones for the classical Willshaw model. Now this is caught up for the spike counter model. In
the following we will investigate conditions for the number of false ones in the address pattern,
κk such that the neurons with the highest membrane potentials can still be expected to be cor-
rect. First using the binomial approximation similar as in the classical analysis we can compute
explicitely the maximal possible κ (see eq. 4.34). Then we will conduct the refined analysis (see
section 3.6) where we can still obtain an implicit formula for for κ (see eq. 4.64).

4.4.1 Single noisy address patterns

Consider addressing with one of the original address patterns (size n) containing only λk out
of k ones of the original address pattern (0 < λ ≤ 1), but also κk false ones (κ ≥ 0). If we
further assume a matrix load p1 (which should equal (εk/n)1/(λk) if we require high-fidelity, cf.
section 3.3.1) the potentials of addressed neurons and the remaining non-addressed neurons are
distributed according to random variables X1 and XR, respectively,

X1 ∼ λk + Bκk,p1 ≈ Nµ1,σ1(4.3)
XR ∼ B(λ+κ)k,p1 ≈ NµR,σR

(4.4)

where the Bn,p are binomial random variables with expectation np and variance np(1− p). From
the DeMoivre-Laplace theorem we know that for np(1 − p) � 1 (cf. section 4.4.4) the binomials
can be approximated by Gaussians Nµ,σ with corresponding expectation µ and variance σ2. Thus

µ1 = (λ + κp1)k(4.5)
µR = (λ + κ)p1k(4.6)
σ1 =

√
κp1q1k(4.7)

σR =
√

(λ + κ)p1q1k(4.8)

with q1 := 1− p1. We are interested in the probability that the potential of a certain neuron takes
at least a value of x. To analyze this we use the Gaussian error function

G(x) :=
1√
2π

∫ x

−∞
e−t2/2dt = pr[N0,1 ≤ x](4.9)

For general Gaussians with parameters µ and σ we have

pr[Nµ,σ ≤ x] =
1√
2πσ

∫ x

−∞
e−(t−µ)2/(2σ2)dt(4.10)

=
1√
2π

∫ (x−µ)/σ

−∞
e−s2/2ds(4.11)

= G

(
x− µ

σ

)
,(4.12)

where for the integrals we applied the substitution s = (t − µ)/σ. For a given number #1 we can
determine a value x1 such that on average #1 of the k addressed neurons have a potential larger
than x1 by demanding

k · pr[X1 ≥ x1] = #1 (!) ⇔ k

(
1−G

(
x1 − µ1

σ1

))
= #1(4.13)

⇔ x1 − µ1

σ1
= G−1(1− #1/k) =: g1(4.14)

⇔ x1 = σ1g1 + µ1.(4.15)

64 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

Analogously we can determine a value xR such that on average #R of the n − k non-addressed
neurons have a potential larger than xR,

(n− k) · pr[XR ≥ xR] = #R (!) ⇔ xR = σRgR + µR,(4.16)

where gR := G−1(1−#R/(n−k)). We assume reasonable values n > k > 2#1 ≤ 2#R which implies
gR > g1 > 0. Note also that gR and g1 increase only very slowly with n and k (see eq. 4.28).
Fig. 4.5 illustrates the situation for cortical parameters n = 100000, k = 100, p1 = 0.1 (see section
2.3.3) and λ = 1, κ = 10, #1 = 30, #R = 10.

250 275 300 325 350
0

1

2

3

4

k⋅ pdf{ Nµ
1
,σ

1

}

(n−k)⋅ pdf{ Nµ
R

,σ
R

}

250 275 300 325 350
0

20

40

60

80

100

k⋅ pr[Nµ
1
,σ

1

> x]

(n−k)⋅ pr[Nµ
R

,σ
R

> x]

#
1

#
R

x
1

x
R

neuron potential x neuron potential x

a b

Figure 4.5: Neuron potential distributions when addressing with a single pattern plus noise
for cortical parameters n = 100000, k = 100, p1 = 0.1 and λ = 1, κ = 20, #1 = 30, #R = 10 (see
text). a: Gaussian probability density functions (pdf) for addressed neurons (black) and non-
addressed neurons (gray), scaled to obtain the expected neuron potential histograms (bin size 1).
b: Expected number of neurons exceeding potential x for addressed neurons (black) and non-
addressed neurons (gray). We can expect #1 (#R) of the addressed (non-addressed) neurons to
have a potential of x1 (xR) or larger.

For a small # (e.g., # = 1) we can argue that x1 > xR implies that on average the neurons firing
first will be addressed neurons (see Fig.4.5). Therefore we can expect a good retrieval result for the
spike counter model (see section 4.3). The condition x1 > xR is equivalent to

x1 > xR (!) ⇔ σ1g1 + µ1 > σRgR + µR(4.17)

⇔ g1
√

κp1q1k + (λ + κp1)k > gR

√
(λ + κ)p1q1k + (λ + κ)p1k(4.18)

⇔
√

p1q1k
(
gR

√
λ + κ− g1

√
κ
)

< λk(1− p1)(4.19)

⇔ gR

√
λ + κ < λ

√
kq1/p1 + g1

√
κ(4.20)

⇔ g2
R(λ + κ) < λ2kq1/p1 + g2

1κ− 2λg1
√

κkq1/p1(4.21)

⇔ (g2
R − g2

1) ·
√

κ
2 − 2λe1

√
kq1/p1 ·

√
κ + g2

Rλ− λ2kq1/p1 < 0.(4.22)

To obtain eq.4.20 we have squared both (positive) sides of the inequality in eq.4.21. The expres-
sion on the left side of eq.4.22 is a parabola in

√
κ with a minimum at the vertex. Thus we require

√
κ <

2λg1
√

kq1/p1 +
√

4λ2g2
1kq1/p1 − 4(g2

R − g2
1)(g2

Rλ− λ2kq1/p1)

2(g2
R − g2

1)
(4.23)

=
λg1
√

kq1/p1 + gR

√
λ(g2

1 + λkq1/p1 − g2
R)

g2
R − g2

1
(4.24)

4.4. ANALYSIS OF THE SPIKE COUNTER MODEL 65

For many practical parameter sets the term λkq1/p1 is dominating over gR
2−g1

2 (e.g., asymp-
totically for high-fidelity, n →∞, and sub-logarithmic k(n); cf. section 4.4.2). In this case we can
simplify eq.4.24 to

√
κ <

λg1
√

kq1/p1 + gR

√
λ2kq1/p1

g2
R − g2

1
(4.25)

=
λ
√

kq1/p1(g1 + gR)
g2

R − g2
1

(4.26)

=
λ
√

k/p1 − k

gR − g1
(4.27)

What do we get from this analysis? We have derived a maximal κ from which we can infer
a threshold (> x1 = xR) such that the average number #1 of addressed super-threshold neurons
exceeds the average number #R of non-addressed super-threshold neurons. Clearly this alone does
not guarantee a good retrieval result, in particular not for the classical Willshaw model. However,
we have postulated for spiking associative memory that the first firing neurons during a retrieval
determine the retrieval result (see section 4.3). For a small #R (e.g., #R = 1) eq. 4.24 (with p1 as
in eq. 3.34 for high-fidelity) guarantees that the first spike on average origins from an addressed
neuron. If we strictly implement the instantaneous Willshaw strategy (see section 4.3) then after the
first spike the distribution of the non-addressed neurons will be weakened by a factor of p1. I.e.,
only the neurons connected to the first spiking neuron will still have a chance to fire. Thus if p1 is
not too large (e.g., p1 < 0.5) the majority of the competing non-addressed neurons will lose this
chance. This is true especially for ultra-sparse patterns with sub-logarithmic k and p1 → 0 (cf.
section 3.2.1).

Since the analysis applies only for the average case it may happen that the first spiking neuron
does not belong to the addressed pattern. Then the retrieval will usually be aborted (cf. section
4.3) with only a few neurons spiking such that the miscarried retrieval can be detected. Then
a subsequent second or third trial (e.g., with newly generated false ones) can lead to a good
retrieval with high probability.

Fig.4.6 illustrates the situation for physiological cortical parameters n = 100000, k = 100, p1 =
0.1 and λ = 1, #1 = 30, #R = 10 where we have maximized κ according to eq.4.24 and obtained
κ = 87.04. This means that we can expect good retrievals (note that p1 is quite small) even if the
address patterns contains 8704 randomly chosen false ones.

Usually one would choose rather #R = 1. Then we can expect that #1 = 25 of the addressed
neurons have fired before the first non-addressed neuron would fire. For this case we still have
a maximal κ = 63.19. Additionally we may interpret the relatively low cortical matrix load p1 =
0.1 [27, 65] for n = 100000 and k = 100 (which is far below the high-fidelity matrix load p1 =
(εk/n)1/k = 0.89 that cortical associative memories must also be robust against missing ones in
the address pattern (cf. section 3.3.1). From eq. 3.34 we obtain λ = 0.05. And even in this
case we would still have a maximal κ = 0.1 meaning that it might be possible to obtain good
retrieval if the address pattern contains only 5 correct ones but 10 false ones. However, we have
to be cautious with such a small number of active neurons in the address pattern since then
our analysis using Gaussians in order to approximate binomials might no longer be valid (see
section 4.4.4). Moreover λ = 0.05 seems not to be very plausible. For more realistic λ = 0.5 we
would still obtain a maximal κ = 15. Note that the results in this section are based on the classical
binomial approximation which can be very bad for finite n (see section 3.6); a refined analysis is
conducted in section 4.4.5.

4.4.2 Asymptotic analysis

Now we derive some asymptotic results. First we determine how fast g1 and gR increase in n.
For this we compare g(n) := G−1(1 − 1/n) to f (n) := (ln n)d. Since g increases monotonically in
n the inverse function g−1 exists, and we have f (n)/g(n) = f (g−1(g(n)))/g(n) = f (g−1(x))/x for

66 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

900 950 1000 1050 1100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k⋅ pdf{X
1
}

(n−k)⋅ pdf{X
R

}

970 980 990 1000 1010 1020
0

10

20

30

40

50

60

k⋅ pr[X
1
>x]

(n−k)⋅ pr[X
R

>x]

#
1

#
R

x
1
 = x

R

neuron potential x neuron potential x

a b

Figure 4.6: Neuron potential distributions when addressing with a single pattern plus noise
with cortical parameters as in Fig.4.5 except κ (n = 100000, k = 100, p1 = 0.1, λ = 1, κ = 87.04, #1 =
30, #R = 10). Noise parameter κ was chosen maximal according to eq.4.24. a: Gaussian (solid)
and binomial (*) approximation of the neuron potential distributions of the addressed neurons
(X1, black) and non-addressed neurons (XR, gray), scaled to obtain the expected neuron poten-
tial histograms (bin size 1). b: Expected number of neurons exceeding potential x for addressed
neurons (black) and non-addressed neurons (gray) using Gaussian (solid) and binomial (*) ap-
proximations. We can expect #1 (#R) of the addressed (non-addressed) neurons to have a poten-
tial of x1 (xR) or larger. Noise parameter κ = 87.04 from eq.4.24 is chosen maximal such that
x1 ≤ xR. Usually one would choose #R = 1 where we still have a maximal κ = 63.19 (see text).
The Gaussian approximation of the binomials is quite good.

x := g(n). With g−1(x) = 1/(1 − G(x)) we obtain f (n)/g(n) = (− ln(1 − G(x))d/x. By applying
de l’Hospital’s rule one can easily verify that (1 − G(x))/(exp(−x2/2)/x) → 1/

√
2π for x → ∞.

Therefore asymptotically − ln(1 − G(x)) ≈ x2/2 and f (n)/g(n) ≈ 0.5d · x2d−1. From this we can
infer for d = 0.5 with gR(n) = g(n/#R) asymptotically

gR
2 = (G−1(1− #R/n))2 ≈ 2 ln(n/#R) ≈ 2 ln n,(4.28)

where the latter approximation is true if #R is asymptotically less than any root of n.
Next we analyze how fast kq1/p1 (cf. eq.4.24) increases in n for high-fidelity p1 = (εk/n)1/(λk)

(cf. sections 3.1.2 and 3.3.1). For c := k/ ln n we obtain with q1 = 1− p1 and n1/λk = exp(1/(λc))

kq1/p1 = k ·
((n

εk

)1/(λk)
− 1
)

(4.29)

= c ·
(

e1/(λc)

(εk)1/(λk) − 1
)
· ln n.(4.30)

= c1 · ln n(4.31)

with c1 := c · (e1/(λc)/(εk)1/(λk) − 1). Note that kq1/p1 dominates over gR
2 asymptotically for

sub-logarithmic k with c1 → ∞ and high-fidelity, which validates the simplified eq.4.27 for that
particular case. Generally, if we assume gR � g1 (e.g., g1 = 0 for #1 = k/2) we obtain from eq.4.24
asymptotically for high-fidelity using eq.4.28 and eq.4.31

√
κ <

λg1
√

c1 ln n +
√

2 ln n ·
√

λ2c1 ln n− 2λ ln n

2 ln n
(4.32)

=
λg1

√
c1

2
√

ln n
+

√
λ2c1

2
− λ(4.33)

4.4. ANALYSIS OF THE SPIKE COUNTER MODEL 67

For sub-logarithmic k we have c → 0, c1 → ∞, and g1/
√

ln n ∼ g1/gR ≤
√

ln k/ ln n → 0, and
therefore the second term of the sum in eq.4.33 dominates. For logarithmic k we have constant c
and c1 and therefore also the second term in eq.4.33 dominates. For super-logarithmic k we have
c → ∞, and with exp(x) → 1 + x for x → 0 we obtain c1 → 1/λ. This would result in a negative
term under the right square root in eq.4.33, and already a negative discriminant for the parabola
in eq. 4.22. This might be interpreted such that for super-logarithmic k we have asymptotically
no fault-tolerance against false ones since for any fixed κ > 0 we obtain for n → ∞ no solution
for the inequality of eq. 4.22. On the other hand we should not be too disappointed since we
cannot expect good pattern separation anyhow by spiking associative memory for p1 → 1 implied
by super-logarithmic patterns (cf. eq.3.16 in section 3.2). Asymptotically we obtain from this
analysis

κ ≤


λ2

2 · (εk)1/(λk) · k·n1/(λk)

ln n , sub− logarithmic k
λ2

2 · c · (e1/(λc) − 1)− λ , logarithmic k = c ln n with 0 < c < c0(λ)
0 , else.

(4.34)

Thus according to this analysis even logarithmic k = c ln n yields fault-tolerance against false
ones only for 0 < c < c0 where c0 depends on λ. For λ = 1 we can compute c0 ≈ 0.80 (and
correspondingly p1 < 0.29, cf. eq.3.16 and eq.3.34), for λ = 0.5 we obtain c0 ≈ 1.59 (and p1 < 0.28).
Note that the classical optimum for the Willshaw model is obtained for k = ld n = ln n/ ln 2 ≈
1.44 ln n (see section 3.1) where also no fault tolerance is possible for λ = 1.

Note that for κ = 0 and #R ≤ εk these results contradict the classical asymptotical analysis
of section 3.1.2: Our high-fidelity choice of p1 = (εk/n)1/(λk) actually guarantees that for κ = 0
we have good retrievals even for the classical one-step algorithm. In contrast, the analysis in this
section suggests that for logarithmic or super-logarithmic k even for κ = 0 there are no good re-
trievals possible. This paradox is due to the Gaussian approximation of the binomial distribution
in the present calculations. In section 4.4.4 we will argue that the Gaussian approximation is not
adequate for small κ → 0.

As will be further analyzed in section 4.4.4 we also have to be cautious for sub-logarithmic k
since the approximation of binomials by Gaussians may no longer be valid. It turns out that the
approximations (and therefore also eq.4.34) are valid if we have at least k = (log n)d for d > 0.5.
If k is asymptotically smaller than

√
ln n then the analysis in this section may overestimate the

robustness against false ones (cf. Fig.4.6). For k = (log n)0.5+δ we have ln n1/(λk) = (ln n)0.5−δ/λ.
Thus we can infer from eq.4.34 that the maximally possible κ grows faster than (ln n)d but slower
than nd for any d > 0.

In summary we conclude that spiking associative memory implementing the instantaneous
Willshaw retrieval strategy can cope with a very large number of false ones (∼ ln n or even
∼ k2n1/λk/ ln n = O((ln n)d) for any d > 0) in the address pattern at least if the memory load is not
too high. The best results can be expected for sub-logarithmic k and p1 → 0. It is remarkable that
for λ = 1 and p1 → 0 we can have storage capacity 1 when applying optimal matrix compression
(see section 3.2.1) and at the same time we can have the described fault tolerance against false
ones.

4.4.3 Superpositions of several noisy address patterns

Now consider addressing with a superposition of N noisy versions of the original patterns where
for i = 1, 2, ..., N the i-th original pattern contributes with λik correct ones (0 < λi ≤ 1), and ad-
ditionally the address patterns contains κk false ones (κ ≥ 0) not related to the involved original
patterns. If we neglect overlaps within the involved original pattern parts we can now distin-
guish N + 1 potential distributions corresponding to the N groups of addressed neurons and
the remaining non-addressed neurons. Similarly as for N = 1 in section 4.4.1 the distributions
of the corresponding random variables X1, X2, ..., XN , XR can be approximated by binomials or

68 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

Gaussians, and for i = 1, 2, ..., N we have

Xi ∼ λik + B(κ+
P

j 6=i λj)k,p1 ≈ Nµi,σi(4.35)

XR ∼ B(λ+κ)k,p1 ≈ NµR,σR
(4.36)

where the parameters of the Gaussians are

µi = (λi + (κ +
N∑

j=1,j 6=i

λj)p1)k(4.37)

µR = (κ +
N∑
j=1

λj)p1k(4.38)

σ1 =

√√√√(κ +
N∑

j=1,j 6=i

λj)p1q1k(4.39)

σR =

√√√√(κ +
N∑
j=1

λj)p1q1k.(4.40)

For λ1 ≥ λi for i = 1, 2, ..., N we can again determine values x1 and xR such that on average #1
of the k neurons of the first most strongly addressed group have a potential ≥ x1, and #R of the
n−Nk non-addressed neurons have a potential ≥ xR,

x1 = σ1g1 + µ1(4.41)
xR = σRgR + µR(4.42)

with

g1 := G−1(1− #/k)(4.43)
gR := G−1(1− #/(n−Nk)).(4.44)

For #R ≤ #1 and n−Nk > k (we should assume N to be a small integer) we still have gR > g1, and
the situation is very similar to N = 1 in section 4.4.1. If we require again x1 > xR this condition is
equivalent to eqs. 4.17- 4.22 if λ and κ are replaced by λ1 and

κ1 := κ +
N∑
j=2

λj ,(4.45)

respectively. Therefore we can demand from eqs.4.24 and 4.27

√
κ1 <

λ1g1
√

kq1/p1 + gR

√
λ1(g2

1 + λ1kq1/p1 − g2
R)

g2
R − g2

1
(4.46)

≈
λ1
√

k/p1

gR − g1
,(4.47)

where the latter approximation is valid for λ1kq1/p1 � g2
R − g2

1 . From this and eq.4.45 we obtain

κ <
λ1

2 · k/p1

(gR − g1)2 −
N∑
j=2

λj(4.48)

where for high-fidelity with p1 = (εk/n)1(λk) the asymptotic analysis can be conducted analo-
gously to section 4.4.2.

4.4. ANALYSIS OF THE SPIKE COUNTER MODEL 69

Again note that fulfilling eq.4.48 (or eq.4.46) alone does not guarantee a good retrieval result.
It guarantees only that on average the first spike corresponds to one of the addressed neurons.
Then it is possible by implementing the instantaneous Willshaw retrieval strategy to pop-out the
corresponding addressed patterns. But for this we need in addition a low memory load p1, in
particular if the addressed patterns are excited equally, i.e., λ1 = λ2 = ... = λN .

4.4.4 Relevance and applicability of the analysis

In sections 4.4.1 and 4.4.2 we have analyzed spiking Willshaw associative memory with respect to
the number of false ones in the address pattern. The results of this analysis are somewhat counter-
intuitive. Numerical simulations rather showed that classical Willshaw associative memory is
quite sensitive to false ones in the address patterns [160]. In contrast, this analysis suggests
that the Willshaw model can be robust against a very large number of false ones κk with κ ≥
ln n → ∞. However, we have to be cautious since evaluation of eq. 4.24 for practical values of
n, k, ε sometimes yields implausible values for κ. For example using parameters n = 100000, k =
500, p1 = 0.1 and λ = 1, #1 = 30, #R = 10 (which still are plausible values for cortex, cf. section
2.3.3; cf. Fig. 4.6) would result in κ = 960. Thus the possible number of false ones κk = 480000
would exceed the number of neurons n = 100000 which obviously cannot be true.

Where does this discrepancy origin from? There are at least three possible pitfalls where the
results from the analysis above should not be applied! First it may be that the analysis is correct,
but nevertheless the results are irrelevant for a matrix load 0.5 < p1 < 1 since then we cannot
expect good retrievals because the separation will be very difficult even if the first occurring
spikes are correct. Second, the analysis may be invalid because the Gaussians do not sufficiently
well approximate the binomials. Third, the analysis may be invalid because already the binomial
approximation of the true distribution of membrane potentials is inadequate (cf. section 3.6). In
the following we will discuss the three corresponding requirements in more detail.

Only a low matrix load p1 < 0.5 allows good pattern separation

Our analysis so far for the possible number of false ones κk in address patterns guarantees only
that on average the addressed neurons will fire first, but possibly followed immediately by non-
addressed ones. As mentioned in sections 4.3 and 4.4.1, for good retrievals we require that the
first correct spikes suppress the non-addressed (i.e., non-correct) neurons by immediate feed-
back. Implementing strictly the instantaneous Willshaw retrieval strategy (see section 4.3) the
first correct spike will exclude a fraction 1− p1 of the non-addressed neurons from spiking. And
if the first i spikes are correct this will even exclude a fraction 1 − p1

i of the non-addressed neu-
rons. Obviously this suppression mechanism can only be effective if the matrix load p1 is small.
In principle, the situation after the i-th spike can be analyzed similarly as in section 4.4.1. Recon-
sider the situation illustrated by the curves k ·pr[X1 > x] and (n−k) ·pr[XR > x] in Fig. 4.6b. We
have computed a maximal κ such that we can expect the firing of #1 addressed (correct) neurons
before #R non-addressed (false) neurons, i.e., such that x1 ≥ xR. After the i-th (correct) spike
we can similarly compute x1,i and xR,i such that on average #1 addressed and #R non-addressed
neurons have potentials larger than x1,i and xR,i, respectively. For i � k we can write simply

k · pr[X1 ≥ x1,i]− i = #1 (!)(4.49)
p1

i · (n− k) · pr[XR ≥ xR,i] = #R (!).(4.50)

If we can prove that for this we still obtain

x1,i ≥ xR,i(4.51)

then we can be at least as confident to obtain again a correct spike as in the beginning of the
retrieval. Obviously we can always fulfill eq.4.51 by requiring a sufficiently small p1.

The requirement of a small p1 ≤ 0.5 fits well with the results from section 3.2.1 where we
obtained storage capacity 1 asymptotically for ultra-sparse patterns with sub-logarithmic k <

70 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

c log n and p1 → 0. In contrast, our analysis will overestimate the robustness of spiking associa-
tive memory with respect to false ones in the address pattern if p1 > 0.5 as it is the case, e.g., for
high-fidelity and super-logarithmic patterns k > c log n where p1 → 1 (cf. section 3.2.2).

The Gaussian approximation of the potential distribution must be adequate

It is possible that the approximation of the binomials by Gaussians is not valid. As discussed
in section 4.4.1 according to the DeMoivre-Laplace theorem we require np(1 − p) � 1 for a Bn,p

binomial distribution. Thus for our analysis we have to require from eq. 4.7

σ1
2 = κ · k · p1 · (1− p1) � 1 (!).(4.52)

Clearly this requirement is not always met for practical finite values of n, k, p1. Asymptotically
for high-fidelity we can infer from eq. 4.34 in which cases eq. 4.52 can be fulfilled. For sub-
logarithmic k we have κ ∼ kn1/(λk)/ ln n, p1 ∼ 1/n1/(λk), and therefore σ1

2 ∼ k2/ ln n. Thus in
this case eq. 4.52 is met only for k �

√
ln n. For logarithmic k = c ln n we have constant p1 and

from eq. 4.34 we obtain also constant κ if c is sufficiently small (otherwise we can expect no fault
tolerance against false ones; see below). Thus we have σ1

2 ∼ k →∞ and therefore eq. 4.52 is met.
Both for logarithmic k = c ln n with c ≥ c0 (and constant p1) and super-logarithmic k (with

p1 → 1) we can infer from eq. 4.34 that the maximally possible κ is zero or negative (or more ex-
actly, eq.4.17 has no solution). Thus even for κ = 0 on average the non-addressed (false) neurons
should fire first. This contradicts the classical high-fidelity analysis of sections 3.1.2 and 3.3.1
which guarantees for κ = 0 a good separation between addressed and non-addressed neurons
where even for classical one-step retrieval we would expect only ≤ ε · k false one-entries (see
section 3.1.2). For κ → 0 it may be that eq. 4.52 is not met although this depends on how fast κ
converges to zero. But there is also another problem for κ = 0 with a threshold x1 = xR = λk:
Although the variance of the non-addressed neurons is σR

2 = λ · k · p1 · (1 − p1) ∼ ln n → ∞ the
expected number of super-threshold non-addressed (false) neurons is according to the Gaussian
approximation #R = (n − k) · pr[XR ≥ λk] ≈ (n − k) · (1 − G(

√
λk(1− p1)/p1)) (cf. eq. 4.16).

This turns out to be a massive overestimation with #R/k → ∞ instead of #R/k ≈ ε as sug-
gested by the classical analysis: From section 4.4.2 we know 1 − G(x) ∼ exp(−x2/2)/x. For
high-fidelity and logarithmic k = c ln n with x ≈

√
λc(ln n)(1− p1)/p1 and constant p1 we obtain

#R ∼ n1−λ(1−p1)p1/2/
√

ln n and therefore #R/k → ∞. For high-fidelity and super-logarithmic k

with p1 ≈ ln(n/k)/k (see eq.3.22) we have x ≈
√

λ ln(n/k) and #R ∼ n1−λ/2kλ/2/
√

n/k and there-
fore also #R/k →∞. Thus the reason for the paradox is simply that the Gaussian approximation
does not take into account the limitation of the binomial random variable XR to values ≤ λk for
κ = 0. To avoid this paradox we have to require additionally

µ1 − µR

σR
=

√
λ2

λ + κ
· 1− p1

p1
· k � 1 (!),(4.53)

where µ1, µR, and σR are as in section 4.4.1.

The binomial approximation of the potential distribution must be adequate

In the initially mentioned example we obtained an absurd maximal κ = 960 for n = 100000 and
k = 100, i.e., κ · k > n. This senseless result cannot be explained by a bad approximation of the
binomial by a Gaussian. It rather shows that the binomial approximation of the true distribution
of the membrane potentials can be bad. Using a binomial distribution assumes that the active
synapses are generated independently of each other. This is not true since storage of one pattern
activates k2 synapses causing dependencies within the memory matrix. In particular if k is rel-
atively large (e.g., super-logarithmic) one observes characteristic modulations in the histograms
of membrane potentials (cf. Fig.3.5a,b). Moreover, if the activity of an address pattern (number
z of one-entries) is too large (i.e., in the order of n) then the binomial approximation massively

4.4. ANALYSIS OF THE SPIKE COUNTER MODEL 71

underestimates the true variance of the membrane potential distribution although the mean is
still correct (see Fig.3.5c,d).

These phenomena have been investigated in detail in section 3.6. It turned out that the vari-
ance σW

2 ∼ z + z2 · k/n of the true Willshaw distribution of the membrane potentials is quadratic
in the pattern activity z := (λ + κ)k while the variance σB

2 ∼ z of the binomial approximation
is only linear in z. This explains why the binomial approximation massively underestimates the
variance of the non-addressed neurons’ potentials and therefore overestimates the fault toler-
ance of the Willshaw model. For the sake of completeness we rewrite the conditions for avoiding
oscillatory modulations (eq. 3.100),

z · (
k

n
)2 · (1− k

n
)Mk/n � 1,(4.54)

and for avoiding underestimation of the variance (eq. 3.124),

z < 1 + δ2 · p1

−(1− p1) ln(1− p1)
· n

k
.(4.55)

In the next section we will repeat the analysis of section 4.4.1 by approximating the true Willshaw
distribution by Gaussians with the correct variances (cf. eq. 3.122).

4.4.5 Refined analysis

In section 3.6 we have seen that the classical binomial analysis of the Willshaw model of associa-
tive memory is only valid for a very large number of neurons n, and sub-linear address pattern
size z := (λ + κ)k where k is the pattern activity (number of one-entries in a stored pattern), λ
is the fraction of the original k one-entries used in the address pattern, and κk is the number of
false one-entries in the address pattern.

For small n or large z the binomial approximation Bz,p1 of the membrane potential distribu-
tion underestimates the true variance of the Willshaw distribution Wz,n,k,M (see section 3.6.1;
cf. eqs. 3.123 and 3.122). In the last sections we used the binomial approximation to analyze re-
trievals in a spiking variant of the Willshaw model. We have derived a formula for the maximal
possible κ, i.e., for the maximal number of false one-entries in an address pattern such that we
still can expect a good retrieval (see eqs. 4.24 and 4.34). The binomial analysis is correct asymp-
totically for large n → ∞, sub-linear k, and z � n (cf. eq.4.55). For general parameters n, k and
p1 we can try to apply a refined analysis using the Willshaw distribution ([29, 171], see section
3.6).

Similar as in section 4.4.1 we consider addressing with one of the M original address pattern
vectors (length n) containing only λk out of k ones of the original address pattern (0 < λ ≤ 1), but
also κk false ones (κ ≥ 0). If we further assume a matrix load p1 (which should equal (εk/n)1/(λk)

if we require high-fidelity, cf. section 3.1.2) the potentials of addressed neurons and the remaining
non-addressed neurons are distributed according to random variables X1 and XR, respectively,

X1 ∼ λk + Wκk,n,k,M ≈ Nµ1,σ1(4.56)
XR ∼ W(λ+κ)k,n,k,M ≈ NµR,σR

(4.57)

We assume that the Willshaw distribution Wz,n,k,M can be approximated by Gaussians Nµ,σ with
corresponding expectation µ as in eq.3.101 and variance σ2 as in eq.3.122. As a working hypoth-
esis we can assume that this Gaussian approximation is good for σ2 � 1, similarly as for the
Gaussian approximation of a binomial according to the DeMoivre-Laplace theorem (cf. eq. 4.52).

72 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

Thus

µ1 = (λ + κp1)k(4.58)
µR = (λ + κ)p1k(4.59)

σ1 =

√
κp1q1k − (κ2k2 − κk)

k

n
q1

2 ln q1(4.60)

σR =

√
(λ + κ)p1q1k − ((λ + κ)2k2 − (λ + κ)k)

k

n
q1

2 ln q1(4.61)

with q1 := 1−p1. Similarly as in section 4.4.1 we require that on average #1 of the address neurons
have at least potential x1, and #R of the non-addressed neurons have at least potential xR. With
the same definitions of g1 and gR as in section 4.4.1 we choose typically large #1 (e.g., #1 = k/2)
and small #R (e.g., #R = 1), and require

x1 > xR (!)(4.62)
⇔ σ1g1 + µ1 > σRgR + µR(4.63)

⇔ gR

√
λ + κ

√
p1 − ((λ + κ)k − 1)

k

n
q1 ln q1 − g1

√
κ

√
p1 − (κk − 1)

k

n
q1 ln q1 < λ

√
kq1(4.64)

Note that for k/n → 0 the two large roots become simply p1 and eq. 4.64 becomes equivalent to
eq.4.20. In contrast to eq.4.20, however, it is difficult to resolve eq.4.64 for κ (cf. eq. 4.24). For
given n, k,M, λ we can compute numerically the maximal κ. In section 4.5.4 we will compare
the maximal κ computed from eq. 4.64 and eq. 4.24 with the results from numerical simulations
of the spiking Willshaw model. Figure 4.7 shows that the refined analysis approximates the true
Willshaw distribution quite well.

4.5 Technical implementations of the spike counter model

There are basically two possibilities how to implement one or more interconnected spike counter
neuron populations: (1) As a dynamical system without a global clock; (2) In discrete time steps
defined by a global clock: In each time step a retrieval is performed in each of the spike counter
populations. The latter possibility (2) can be further subdivided: (2a) The retrieval result is the
set of spikes in the populations, (i.e., a set containing for each spike a tuple (i, t) where i is the
neuron index and t is the spike time; (2b) The retrieval result is only the set of activated neurons
whereas the spike times are not used here.

There are certainly efficient technical implementations of type (1) conceivable. However, we
have used a type (1) implementation only for simulation of a biologically more realistic model
(see section 4.6; cf. also chapter 5). A technical implementation of type (2a) has already been
described in [86, 89]. In this work a type (2b) implementation is used which has several ad-
vantages: (i) type (2b) is more in accordance with the analysis of the spike counter model in
section 4.4 where the address pattern contains also no information about the spike times; (ii) if
implementing many interconnected associative areas a type (2b) architecture is compatible with
classical non-spiking algorithms (like one-step retrieval) on the global level, i.e., it is more easily
possible to encapsulate the local retrieval algorithm; (iii) when simulating only one spike counter
population we need not to consider the spike times of the address pattern, i.e., we have less free
parameters; (iv) when simulating many populations we do not have the problem (or freedom) of
how to mix address inputs from different populations to the same population.

Of course we may loose valuable information by ignoring the spike times on the global level
because generally the earliest spikes are most relevant. However, here we are interested mainly in
the evaluation of our analysis, and in general results about how efficient spiking associative mem-
ory can be implemented on digital computers. In the following we will describe straight-forward
extensions of the spike counter model for a type (2b) implementation of many interconnected
associative areas [95].

4.5. TECHNICAL IMPLEMENTATIONS OF THE SPIKE COUNTER MODEL 73

250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

k⋅ pdf{X
1
}

(n−k)⋅ pdf{X
R

}

320 340 360 380 400
0

10

20

30

40

50

60

k⋅ pr[X
1
>x]

(n−k)⋅ pr[X
R

>x]

#
1

#
R

x
1
 = x

R

neuron potential x neuron potential x

a b

Figure 4.7: Refined analysis using a Gaussian approximation of the Willshaw distribution (see
text) for neuron potential distributions when addressing with a single pattern plus noise with
physiological (i.e., cortical) parameters n = 100000, k = 100, p1 = 0.1, λ = 1, κ = 24.52, #1 =
30, #R = 10 (same parameters as in Fig.4.6 except for κ). Noise parameter κ = 24.52 was chosen
maximal according to eq.4.64. Note the difference to the results using the binomial approximation
(κ = 87.04) in Fig.4.6. a: Averaged neuron potential distributions of the addressed neurons (X1,
black, ∗) and non-addressed neurons (XR, gray, ◦), scaled to obtain the expected neuron potential
histograms (bin size 1). The true potential histogram of the addressed neurons (black ∗) is slightly
asymmetric which is not captured by the refined Gaussian approximation (black solid). The re-
fined Gaussian approximation for the non-addressed neurons (gray solid vs. ◦) is quite good.
Generally, the refined Gaussian approximations are much better than the Gaussian approxima-
tion of the classical binomial approximations (dash-dotted; cf. Fig.4.6). b: Expected number of
neurons exceeding potential x for addressed neurons (black) and non-addressed neurons (gray)
computed from the cumulations of the corresponding histograms shown in (a). The refined Gaus-
sian approximation is quite good for the non-addressed neurons (gray solid vs. ◦) while it leads
to significant errors for the addressed neurons (black solid vs. ∗) due to the described asymmetry,
cf. plot (a). The Gaussian approximation of the classical binomial approximation (dash-dotted)
is bad. Estimations of the Willshaw potential distributions (∗, ◦) were computed by averaging
potential histograms for 100 different address patterns.

4.5.1 Model extension

Figure 4.8 illustrates the basic structure of the spike counter model of associative memory for a
type (2b) implementation of many interconnected neuron populations or associative areas (see
above). A local population of n neurons constitutes an associative area. Each neuron i has five
state variables:

1. Membrane potential xi.

2. Counter cH
i for spikes received hetero-associatively from N other cortical areas (binary

memory matrices H1, H2, ..., HN). In this model variant cH
i is not really a counter since the

received spikes are weighted by connection strengths cj of the respective hetero-associative
input connections (j = 1, 2, ..., N) or the last output state of the neuron (j = 0). The latter
can be used to implement a kind of working memory.

3. Counter cA
i for spikes received by immediate auto-associative feedback via the binary

memory matrix A.

4. Counter cΣ for the total number of spikes that already occurred during the current retrieval
within the local area. This counter is the same for all local neurons.

74 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

5. Output state yi. Initially yi = 0 for all neurons. As soon as the potential xi exceeds a
threshold Θ the output state is set to yi = 1.

H1

c0

c1 c2

HN

cN

neuron i

y1 y2 yN

i ix = f(c ,c ,c)H
i
A Σ

A

H2

i i Θy = [x >]

Figure 4.8: Implemented (slightly extended) spike counter model of the Willshaw associative
memory. A local population of n neurons receives external input via N hetero-associative con-
nection matrices Hj each weighted with factor ci. Additional input comes from the old output
state yold of the population weighed with c0. This input initiates the retrieval where local spikes
are immediately fed back via the auto-associative connection matrix A. The counters cH

i, c
A

i, c
Σ

represent the number of spikes a neuron receives hetero-associatively and auto-associatively, and
summed over the whole local population, respectively.

While in the classical Willshaw model (see chapter 3) synaptic input is summed to obtain the
membrane potential, in the spike counter model synaptic input rather determines the temporal
change of the membrane potential (see section 4.3). This is similar to real neurons where synaptic
input causes synaptic currents which in turn load the membrane (see section 2.4). The derivative
of the membrane potential of a neuron i is a function f of its spike counters (see eq. 4.1). We can
implement an instantaneous variant of the Willshaw retrieval strategy (see sections 3.1.1 and 4.3)
if we choose the function f such that f is positive if cA

i ≈ cΣ , and negative for cA
i � cΣ . We use

the simple linear example of eq. 4.2,

dxi

dt
= f1(cH

i, c
A

i, c
Σ) := acH

i + b
(
cA

i − αcΣ
)
,(4.65)

where we can choose a � b and α ≈ 1 which is also neurophysiologically plausible ([27]; see
sections 2.3.3 and 2.1.3).

Any type (2b) implementation of the spike counter model (see above) should compute a map-
ping

(yold,y1,y2, ...,yN) 7→ y(4.66)

4.5. TECHNICAL IMPLEMENTATIONS OF THE SPIKE COUNTER MODEL 75

from the relevant old activity states of the network at time t − 1 (where yold is the old output
state of the local population, and y1,y2, ...,yN are the old activity states of other areas delivering
input to the local population) to the new activity state y of the local population at time t. In
the following we discuss efficient sequential and parallel implementations of the described spike
counter model.

4.5.2 Sequential implementations

An efficient implementation of the spike counter model as described in section 4.5.1 is given by
the following algorithm (cf. [86, 89, 95]):

1. cA := 0; cΣ := 0; ẋ := 0; y := 0;

2. cH := c0 · yold + c1 ·H1 · y1 + ... + cN ·HN · yN;

3. x := cH −max{cH
i };

4. (ts, j) := (0, arg max{cH
i });

5. WHILE ts ≥ 0 DO

6. x := x + ẋ · ts;

7. yj := 1;

8. cA
j := −∞;

9. cA := cA + Aj;

10. cΣ := cΣ + 1;

11. ẋ := a · cH + b · (cA − α · cΣ);

12. Snext := {(xi/ẋi, i)};

13. (ts, j) := next spike in Snext (or ts = −1 if not possible)

14. ENDWHILE

Line 1 initializes all the state variables. In line 2 the working memory effect is implemented,
i.e., the last output vector yold of the local neuron population is weighted with c0. Together with
hetero-associative synaptic input from N external areas this yields the spike counter vector cH.
Line 3 initializes the membrane potentials with cH such that only the most excited neurons reach
the threshold Θ = 0. Line 4 determines the first neuron that will spike (neuron j at time ts). The
WHILE loop of lines 5 to 14 iterates as long as there still exists a neuron j that is about to spike at
time ts. Line 6 integrates the membrane potentials, line 7 sets the output vector for the currently
spiking neuron j, line 8 prevents neuron j from emitting a second spike. In lines 9 and 10 the
spike counters cA and cΣ are updated (Aj is the j-th row of the auto-associative memory matrix
A, and 1 is a vector of length n containing only one-entries). In line 11 the temporal change
of the membrane potentials is computed as described above, and lines 12 and 13 determine the
next spike. If dxi/dt is negative for all neurons i no more spike will occur, and this will end the
algorithm with the retrieval result y.

If the address patterns yj for j = 1, ..., N from the N other areas contain on average z := (λ+κ)k
one-entries where k is the number of one-entries in a stored pattern, lines 1 to 4 require ∼ Nzn
steps. The WHILE loop will be processed about k times, and each loop run will require no more
than ∼ n steps. Thus a total of

tret ∼ N · z · n + k · n(4.67)
∼ k · n(4.68)

76 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

steps is required to perform a retrieval, where for the second approximation constant N and κ
have been assumed. The retrieval time remains up to a constant factor the same as for the classical
Willshaw model (see eq.3.52).

Compressing the memory matrices has qualitatively the same effect as discussed in chapter
3: For non-logarithmic k the storage capacity is increased, and at the same time retrievals are
even accelerated. With respect to storage capacity note that an efficient auto-associative retrieval
applying matrix compression requires the whole memory matrix, i.e., we cannot make use of
the symmetry in an auto-associative matrix. Here the asymptotic storage capacity for efficient
retrievals in auto-associative memories is limited by 0.5 (instead of 1).

4.5.3 Parallel implementations

The algorithm described in section 4.5.2 can be implemented efficiently also on parallel architec-
tures with n processors, i.e., one processor per neuron: If the address patterns yj for j = 1, ..., N
from the N input areas contain on average z := (λ+κ)k one-entries where k is the number of one-
entries in a stored pattern, lines 1 to 3 require ∼ Nz steps by parallel implementation of sparse
vector-matrix-multiplication (see section 3.5). Again we have to run the WHILE loop about k
times. Each line within the WHILE loop can be performed in parallel in constant time except for
line 13. Here as well as in line 4 the minimal spike time must be extracted from n values. This
requires still ld n steps for a parallel implementation. Thus we require a total of

tret ∼ N · z + k · ld n(4.69)
∼ k · ld n(4.70)

steps to perform a retrieval, where for the second approximation we assumed constant N and
κ. Although this implementation is still quite efficient the spike counter model can not be paral-
lelized optimally (then we would have obtained tret ∼ k as it is the case for the classical Willshaw
model; see eq. 3.74).

At least, compressing the memory matrix for spiking retrievals bears no additional costs: In sec-
tion 3.5.2 we argued that an efficient parallel implementation of the non-spiking Willshaw model
with compressed memory matrix requires a look-up-table with n min(p1, 1− p1)/# columns (and
two rows) to accelerate access to the sparse matrix-entries (see Fig. 3.4; cf. eq. 3.81). It has been
discussed that we need # → ∞ in order to guarantee that the physical memory required for
the look-up-table is negligible compared to the compressed memory matrix (see eqs. 3.83, 3.86,
and 3.89). On the other hand side this will increase the retrieval time compared to the non-
compressed case (see eqs. 3.74 and 3.82). The retrieval time for the parallel implementation of the
spike counter model with compressed memory matrix is

tret ∼ k · (ld n + #)(4.71)
∼ k · ld n.(4.72)

Thus if # grows at most logarithmically (as assumed for the second approximation) we have
asymptotically no additional costs while it is guaranteed that the size of the look-up table is
asymptotically negligible.

An efficient parallel implementation of auto-association without matrix compression already
requires that each neuron has a list of all the connected neurons. Thus the symmetry in the auto-
associative memory matrix cannot be exploited to save memory, i.e., we can obtain at most a
storage capacity of 0.5 (instead of 1). In a similar way we have argued in section 4.5.2 for sequen-
tially implementing auto-association with matrix compression. Thus if we allow for the luxury of
a parallelized spiking associative memory, applying matrix compression bears asymptotically no
additional costs.

4.5. TECHNICAL IMPLEMENTATIONS OF THE SPIKE COUNTER MODEL 77

4.5.4 Simulation experiments

In this section we discuss results of simulation experiments in order to illustrate and verify the
analysis of the Willshaw model conducted in this chapter and chapter 3, and to compare the
spike counter algorithm (section 4.5.2) to alternative retrieval algorithms such as classical one-
step retrieval. For this we have implemented the following retrieval algorithms:

1. Classical one-step retrieval (1step): This is the algorithm for hetero-association similar as
described in section 3.1.1. In contrast to the Willshaw threshold strategy (which simply
chooses the threshold equal to the number of active units in the address pattern; see sec-
tion 3.1.1) we assumed that the pattern size k is constant and known. Thus the threshold is
chosen such that the number of ones in the retrieval result is near k.

2. Hetero- plus auto-associative one-step retrieval (1step h/a): This algorithms starts with a
classical hetero-associative one-step retrieval (algorithm 1), but then adds an auto-associ-
ative one-step retrieval. Similar to the spike counter algorithm (see below algorithm 4) this
algorithm exploits both the hetero-associative and the auto-associative memory matrices.

3. X-wise one-step retrieval (xwise-1step): This algorithm is the one-step version of the bidi-
rectional retrieval algorithm proposed by Sommer and Palm in [171]. Similar as for the first
two algorithms a fixed given pattern size k is required. As additional parameters we used
standard values as suggested by the libasso.h/c library of Friedrich Sommer (see module
F2 libasso.h/cpp in appendix C.1.2): a first-step activity of 3 and boolean anding.

4. Spike counter algorithm (s-counter): This is the algorithm as proposed in section 4.5.2 with
parameters a = 1, b = 1000, and α = 1.

In order to evaluate the performance of the different algorithms we used two quality measures:

• rN ∈ [0; 1] is the normalized transinformation between the stored pattern and the retrieved
pattern (for details see eq. B.16 in appendix B.3.1).

• pr[perfect retrieval]∈ [0; 1] is the probability that a retrieved pattern is free of any errors
(false or missing one-entries).

Each quality value has been estimated from the simulation of 100 retrieval repetitions.
In the following we will discuss the results from three retrieval scenarios: (i) Missing ones in

the address pattern, (ii) false ones in the address pattern, and (iii) addressing with superpositions
of several of the original address patterns.

Missing ones in the address pattern

As a first step we validate the analysis of Willshaw associative memory in chapter 3, in partic-
ular the analysis of what happens when some of the original one-entries of the original address
pattern are missing (section 3.3.1). Figure 4.9 shows the results for n = 10000 neurons, pattern
activity k = 50, and M = 44699 stored patterns which corresponds to a matrix load of p1 ≈ 0.67.
The matrix load has been chosen by requiring high-fidelity (ε = 0.01; see section 3.1.2) when ad-
dressing with only half of the original k one-entries, i.e., for λ = 0.5 (see eq. 3.34). Then we tested
the retrieval quality when addressing with a fraction λk of the original one-entries in the address
patterns where we varied λ from 0 to 1.

Fig. 4.9a plots the relation between λ and rN . For all four algorithms the results are close to
what has been predicted from the theory in section 3.3.1. For small λ � 0.5 we have low quality,
but for increasing λ also the quality rN increases. Around λ = 0.5 we achieve already rN ≈ 1.
This is exactly what we would expect, since we have chosen the number M of stored patterns (or
equivalently, the matrix load p1) in order to obtain high-fidelity retrievals for λ = 0.5 (i.e., when
the address patterns contain half of the original one-entries).

Fig. 4.9b reveals some differences between the algorithms for the second quality measure, the
fraction (or probability) of a perfect retrieval. Here the algorithms s-counter and 1step h/a perform

78 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY
qu

al
ity

 r
N

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1step
1step h/a
xwise−1stp
s−counter

n=10000
k=50
p

1
=0.67

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

pr
[

pe
rf

ec
t r

et
ri

ev
al

]

λλ

a b

Figure 4.9: Retrieval performance of different one-step algorithms when addressing with λk of
the k original one-entries in the address patterns, but without any false one-entries (n = 10000,
k = 50, M = 44699). Matrix load p1 ≈ 0.67 has been chosen by requiring high-fidelity (ε = 0.01)
for λ = 0.5 (see eq. 3.34). Results for the following algorithms are shown: one-step retrieval (×),
auto/hetero one-step retrieval (+), xwise one-step retrieval (◦), and spike counter retrieval (�). a:
Normalized transinformation rN (see eq. B.16) vs. λ. b: Probability of a perfect retrieval vs. λ for
the same simulation as for (a). Each plotted value has been estimated from 100 retrievals.

better than the remaining two algorithms. This can be attributed to the fact that both s-counter
and 1step h/a make use not only of the hetero-associative matrix but also of the auto-associative
matrix of the patterns to be retrieved.

In the following simulation experiment illustrated by Fig. 4.10 it is tested for fixed n whether
the pattern activity k has an influence on the retrieval quality. To this end we compared only the
two algorithms one-step-retrieval (gray) and spike-counter-retrieval (black) for different pattern
activities k =5, 14, 100, and 200.

For the normalized transinformation rN the curves for different k are very similar (Fig. 4.10a).
However, for larger k there is a tendency for a shallower increase from 0 to 1 (e.g., compare
k = 100 to k = 200), although this effect is difficult to see for ultra-sparse patterns (e.g., k = 5).
One cause for this may be the quadratic dependence of the potential variance for non-addressed
neurons on k (see eq. 3.122 in section 3.6.3).

There is a much clearer difference between the different degrees of sparseness when measur-
ing the fraction of perfect retrievals (Fig. 4.10b). However, these differences are mainly due to
the high-fidelity requirement limiting the normalized number ε of expected false one-entries in
the retrieval result (see section 3.1.2; cf. eq. B.6). Thus, it is not surprising that for larger k the
probability of a perfect retrieval is lower.

False one-entries in the address pattern

Next we tested the different algorithms when addressing with patterns containing κk false one-
entries (but no missing one-entries) in order to validate the results from the analysis in sec-
tion 4.4.1 and to compare the algorithms. Figure 4.11 illustrates the results for different pattern
activities k =5,14,100 where in each case M , the number of stored patterns, (or equivalently, the
matrix load p1) has been chosen according to the high-fidelity requirement when addressing with
perfect patterns (λ = 1 and κ = 0; see eq. 3.34 in section 3.3.1)

The plots show that for κ = 0 (i.e., no false one-entries in the address pattern) the retrieval
performance is quite good in accordance with the chosen matrix load p1. With increasing κ the
performance decreases gradually. For the spike counter algorithm s-counter the vertical dashed

4.5. TECHNICAL IMPLEMENTATIONS OF THE SPIKE COUNTER MODEL 79
qu

al
ity

 r
N

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1
n=10000

 k=5
 k=14
 k=100
 k=200

 1step
 s−counter

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

pr
[

pe
rf

ec
t r

et
ri

ev
al

]

λλ

a b

Figure 4.10: Retrieval performance for n = 10000 and different pattern activities k = 5 (×), k = 14
(+), k = 100 (◦), and k = 200 (�) when addressing with λk of the k original one-entries in the
address patterns, but without any false one-entries. In each case matrix load p1 has been chosen
by requiring high-fidelity (ε = 0.01) for λ = 0.5 (see eq. 3.34). The plots show results for one-step
retrieval (gray) and the spike counter algorithm (black). a: Normalized transinformation rN (see
eq. B.16) vs. λ. b: Probability of a perfect retrieval vs. λ for the same simulation as for (a). Each
plotted value has been estimated from 100 retrievals.

lines in the plots indicate the maximal κ such that we can expect the first spiking neuron to be
a correct one (#1 = #R = 1; see analysis in section 4.4), where the thick gray line corresponds
to the naive binomial analysis (eq. 4.24 in section 4.4.1), and the thin black line to the refined
analysis using Gaussian approximations of the Willshaw distribution (eq. 4.64 in section 4.4.5;
cf. section 3.6). The two estimations for maximal κ are quite similar for ultra-sparse (k = 5;
Fig. 4.11a,d) and classically sparse (k = 14; Fig. 4.11b,e), but differ significantly for moderately
sparse patterns (k = 100; Fig. 4.11c,f).

Similar to the case of missing one-entries (cf. Figs. 4.9 and 4.10) the performance of the different
algorithms as measured from the normalized transinformation rN (Fig. 4.11a,b,c; cf. eq. B.16) is
quite similar for one-step retrieval (1step) xwise-one-step retrieval (xwise-1step), and the spike
counter algorithm (s-counter), although the results for the spike counter algorithm are slightly
better than for the other algorithms.

Surprisingly, the combined hetero-/auto-associative one-step retrieval (1step h/a) performs
worse than the other algorithms. The reason for this is probably that the result of the first hetero-
associative one-step retrieval (which is equivalent to algorithm 1step) contains some false one-
entries and therefore missing correct one-entries (since it has been adjusted for pattern activity
k). But missing one-entries will result in a bad retrieval result for the subsequent auto-associative
step since M and p1 have been adjusted for address patterns without missing one-entries (λ =
1; see above). Therefore a better retrieval strategy would be perhaps to lower the threshold
in the first hetero-associative step in order to assert that all correct one-entries are active. But
this would require additional assumptions on the number of false one-entries contained in the
address pattern. A further alternative could be to apply the threshold operation only after the
second auto-associative step (but not for the first hetero-associative step).

Even more clearly than for missing-one entries (Figs. 4.9 and 4.10) the difference between the
spike counter and the other algorithms can be seen for the retrieval performance as measured
from the fraction of perfect retrievals (Fig. 4.11d,e,f). With increasing number of false one-entries
in the address pattern it becomes impossible for 1step, 1step h/a and xwise-1step to maintain perfect
retrievals. In contrast, the spike counter algorithm s-counter can deliver perfect retrievals even for
large κ, in particular for ultra-sparse patterns (k = 5).

80 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY
qu

al
ity

 r
N

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

k=5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

k=14

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

k=100

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
n=10000
k=5
p

1
=0.0871

λ=1

 1step
 1step h/a
 xwise−1stp
 s−counter

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

k=14
p

1
=0.4501

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

k=100
p

1
=0.9119

κκ

κκ

pr
[

pe
rf

ec
t r

et
ri

ev
al

]

κ

κ

d e f

a b c

Figure 4.11: Retrieval performance of different one-step algorithms when addressing with all k
original one-entries (λ = 1) but also κk false one-entries (n = 10000). In each case matrix load p1
has been chosen by requiring high-fidelity (ε = 0.01) for κ = 0 and λ = 1 (see eq. 3.34). Results for
the following algorithms are shown: one-step retrieval (×), auto/hetero one-step retrieval (+),
xwise one-step retrieval (◦), and spike counter retrieval (�). Dashed lines show maximal κ such
that the first firing is correct on average (#1 = #R = 1) as obtained by the binomial approximation
(gray; eq. 4.24) and the refined analysis (black; eq. 4.64). Top panels (a,b,c) show normalized
transinformation rN (see eq. B.16) vs. κ. Bottom panels (d,e,f) show probability of a perfect
retrieval vs. κ for the same simulations as in the top panels. a,d: Ultra-sparse patterns (k = 5,
M = 364515, p1 = 0.087) where analysis yields κ < 5.02 (binomial) and κ < 4.93 (refined). b,e:
Classically-sparse patterns (k = 14 ≈ ld n, M = 305111, p1 = 0.45) where analysis yields κ < 1.59
(binomial) and κ < 1.45 (refined). c,f: Moderately-sparse patterns (k = 100, M = 24302, p1 = 0.91)
where analysis yields κ < 1.84 (binomial) and negative κ (refined). Each plotted value has been
estimated from 100 retrievals.

Remember that one property of the spike counter algorithm is to break down bad retrievals
autonomously: as soon as false neurons begin to spike the activation of further neurons stops.
This means that in most cases the spike counter algorithm delivers either a perfect retrieval or
the result contains only a few active neurons. Thus in order to maximize the transinformation rN

a variant of the spike counter algorithm could simply add further high-potential neurons in case
of an early retrieval break down.

Next we investigated the fault tolerance against κk false one-entries in the address pattern for
a lower matrix load. For the simulations shown in Figure 4.12 we required high-fidelity retrievals
for λ = 0.5 (and κ = 0), i.e., for the case the address pattern contains only half of the original one-
entries (but no false one-entries; see section 3.3.1; cf. eq. 3.34).

The results shown in Fig. 4.12 are qualitatively similar to the results for higher matrix loads
(Fig. 4.11). Performance of the spike counter algorithm s-counter is significantly better than for
one-step retrievals 1step and 1step h/a, and at least comparable or even better than xwise-1step.

For all algorithms the quality measures take optimal value 1 for κ = 0. For small positive κ
qualities remain high on a plateau near 1. But for larger κ the quality measures decrease gradually
to zero. As expected from the lower matrix load (and the smaller number of stored pattern) the
fault tolerance against false one-entries is quantitatively much better than in Fig. 4.11.

In particular for ultra-sparse patterns fault tolerance is possible for quite large κ. Now the

4.5. TECHNICAL IMPLEMENTATIONS OF THE SPIKE COUNTER MODEL 81
qu

al
ity

 r
N

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

k=5

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

k=14

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

k=100

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
n=10000
k=5
p

1
=0.0076

λ=1

 1step
 1step h/a
 xwise−1stp
 s−counter

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

k=14
p

1
=0.2026

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

k=100
p

1
=0.8318

κκ

κκ

pr
[

pe
rf

ec
t r

et
ri

ev
al

]

κ

κ

d e f

a b c

Figure 4.12: Retrieval performance for similar simulations as shown in Fig. 4.11 but where matrix
load p1 was lower. Now p1 has been chosen by requiring high-fidelity (ε = 0.01) even for λ = 0.5
(see eq. 3.34). Legends are the same as in Fig. 4.11. a,d: Ultra-sparse patterns (k = 5, M = 30516,
p1 = 0.0076) where analysis yields κ < 77.57 (binomial) and κ < 66.25 (refined). b,e: Classically-
sparse patterns (k = 14 ≈ ld n, M = 115509, p1 = 0.2026) where analysis yields κ < 9.17 (binomial)
and κ < 7.67 (refined). c,f: Moderately-sparse patterns (k = 100, M = 17825, p1 = 0.8318) where
analysis yields κ < 7.65 (binomial) and κ < 1.42 (refined).

maximal possible κ (dashed lines) as predicted from the theory in section 4.4.1 (binomial approx-
imation; see eq. 4.24) and section 4.4.5 (refined analysis; see eq. 4.64) differ significantly also for
ultra-sparse (k = 5) and classical patterns (k = 14). The predictions from the binomial approxi-
mation massively overestimate the fault tolerance, at least for the moderately sparse case (k = 100).
In contrast, the predictions from the refined analysis are precise (cf. Fig. 4.7) although the inter-
pretation is not straight-forward since the relation between the retrieval quality and the fact that
the first spikes are correct on average is not clear. Of course the predicted maximal κ depends
also strongly on the choice of #1 and #R (see section 4.4.1). Here we used #1 = #R = 1 which is
the weakest possible quality criterion meaning that the neuron with the highest potential (after
hetero-associative one-step retrieval) is on average a correct one. Thus, this criterion just asserts
that perfect retrievals are possible. With this argumentation the presented results validate the
refined theory quite well: For the predicted maximal κ the fraction of perfect retrievals lies in
the range of κ where perfect retrievals become indeed possible (around 10% perfect retrievals; cf.
Figs. 4.11, 4.12, and also 4.13).

Addressing with superpositions

In further simulation experiments we tested the different algorithms for different pattern activi-
ties k = 5, 14, 100 when addressing with superpositions of several patterns. Figure 4.13 illustrates
some of the results for the same memory matrices as in Fig. 4.12 and superpositions of two com-
plete address patterns.

Similarly as in the examples before (Fig. 4.9-4.12) we measured the normalized transinfor-
mation (Fig. 4.13a,b,c) and the fraction of correct retrievals (Fig. 4.13d,e,f). For determining the
transinformation (and to decide if a retrieval was perfect) when addressing with a superposition

82 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY
qu

al
ity

 r
N

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

k=5

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

k=14

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

k=100

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

 1step
 1step h/a
 xwise−1stp
 s−counter
n=10000
k=5
p

1
=0.0076

λ
1
=λ

2
=1

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

k=14
p

1
=0.2026

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

k=100
p

1
=0.8318

κκ

κκ

pr
[

pe
rf

ec
t r

et
ri

ev
al

]

κ

κ

d e f

a b c

Figure 4.13: Retrieval performance when addressing with a superposition of two complete pat-
terns (λ1 = λ2 = 1) for the same matrix and pattern parameters as in Fig. 4.12. Same legends as
in Fig. 4.12. a,d: Ultra-sparse patterns (k = 5, M = 30516, p1 = 0.0076) where analysis yields
κ < 76.57 (binomial) and κ < 65.25 (refined). b,e: Classically-sparse patterns (k = 14 ≈ ld n,
M = 115509, p1 = 0.2026) where analysis yields κ < 8.17 (binomial) and κ < 6.67 (refined). c,f:
Moderately-sparse patterns (k = 100, M = 17825, p1 = 0.8318) where analysis yields κ < 6.65 (bi-
nomial) and κ < 0.42 (refined). The values for maximal κ are by λ2 = 1 smaller than in Fig. 4.12
(cf. eqs. 4.64 and 4.48).

of N address patterns we used simply the one out of the corresponding N previously stored
target pattern that was most similar to the retrieval result.

Here even for the transinformation measure rN the spike counter algorithm s-counter is sig-
nificantly better than the other algorithms 1step, 1step h/a, and xwise-1step. In particular, the clas-
sical one-step algorithm 1step is bad in separating superpositions (cf. Fig. 4.1b): even without
noise (κ = 0) there are practically no perfect retrievals for the 1step algorithm. In contrast, for
ultra-sparse patterns (k = 5) performance of the spike counter algorithm s-counter seems to be
even better than for a single address pattern (compare Fig. 4.13a,d with Fig. 4.12a,d; see also
Fig. 4.14a,d; see below for an explanation of this phenomenon).

Another curiosity for ultra-sparse patterns (k = 5) can be seen in Fig. 4.13d for algorithms 1step
h/a and xwise-1step: The retrieval performance increases with increasing noise and a performance
maximum occurs at κ ≈ 10. This effect is stable and occurs also for superpositions of more than
2 patterns (data not shown). The most plausible explanation is that a moderate amount of noise
serves to break the symmetry between the two addressed patterns and thereby enables pattern
separation.

For moderately sparse patterns (k = 100) none of the algorithms, not even the spike counter
algorithm s-counter, performs well. Even without noise (κ = 0) almost no perfect retrieval occurs.
Note that the performance for a single complete address pattern with k additional false one-
entries (see κ = 1 in Fig. 4.12) the situation is much better. Thus this effect can be attributed
mainly to a bad pattern separation due to the high memory load p1 ≈ 0.82 > 0.5 (see section 4.4.4
on page 69).

In further simulation experiments summarized in Figure 4.14 we have investigated address-
ing with superpositions of many complete address patterns (N = 1, 2, 3, 4, 5, 10) using the same

4.5. TECHNICAL IMPLEMENTATIONS OF THE SPIKE COUNTER MODEL 83
κ

m
ax

 {

: r

>
 0

.5
 }

N
κ

m
ax

 {

: p
r[

 p
er

fe
ct

 r
et

ri
ev

al
]

 >
 0

.5
 }

1 2 3 4 5 10
0

10

20

30

40

50

60
k=5

1 2 3 4 5 10
−1

0

1

2

3

4

5

6

k=14

1 2 3 4 5 10
−1

0

1

2

3

k=100

1 2 3 4 5 10
0

10

20

30

40

50

60 1step
 1step h/a
 xwise−1stp
 s−counter

n=10000
k=5
p

1
=0.0076

λ
i
=1

1 2 3 4 5 10
−1

0

1

2

3

4

5

6

k=14
p

1
=0.2026

1 2 3 4 5 10
−1

0

1

2

3

k=100
p

1
=0.8318

N N

N

number N of superposed patterns

NN

d e f

a b c

Figure 4.14: Retrieval performance of different algorithms when addressing with a superposition
of N complete patterns (λ1 = λ2 = ... = λN = 1; N = 1, 2, 3, 4, 5, 10) for the same matrix and pattern
parameters as in Figs. 4.12 and 4.13. For the algorithms the legends are the same as in Fig. 4.12.
Top panels (a,b,c) show for given N the maximal κ where the retrieval quality rN (see eq. B.16)
was larger than 0.5. Similarly, the bottom panels (c,e,f) show the maximal κ where at least half
of the retrievals were perfect. a,d: Ultra-sparse patterns (k = 5, M = 30516, p1 = 0.0076). b,e:
Classically-sparse patterns (k = 14 ≈ ld n, M = 115509, p1 = 0.2026). c,f: Moderately-sparse
patterns (k = 100, M = 17825, p1 = 0.8318). Negative values indicate that even for κ = 0 (i.e., no
false ones) the quality criterion (rN > 0.5 or pr[perfect retrieval]>0.5) was not met. Each plotted
value has been estimated from 100 retrievals.

memory matrices as for Figs 4.12 and 4.13. For the two quality measures transinformation
(Fig. 4.14a,b,c) and fraction of perfect retrievals (Fig. 4.14d,e,f) the plots show the maximal κ
where the measure was at least 0.5. For example, for the transinformation measured for the spike
counter algorithm s-counter and k = 5 (Fig. 4.14a) we have a value of max κ = 26 for N = 1 because
in the corresponding plot (Fig. 4.12a) the maximal κ where the s-counter curve exceeded rN = 0.5
was around κ = 26. Similarly for N = 2 we have max κ ≈ 33 (compare Fig. 4.13a with Fig. 4.14a).

For ultra-sparse (k = 5) and classically sparse patterns (k = 14) the spike counter algorithm
generally performs much better than the other algorithms in particular for many superposed
address patterns. However, for high matrix load (as it is the case for moderately sparse patterns
with k = 100 and p1 ≈ 0.83) pattern separation is bad even for the spike counter algorithm (see
section 4.4.4 on page 69).

As already mentioned above at first glance it is surprising that the fault tolerance increases
with the number N of superposed patterns for ultra sparse patterns (k = 5) and the spike counter
algorithm s-counter (and also for algorithm xwise; see Fig. 4.14a). A plausible explanation is the
following: First note that for ultra-sparse patterns the first spike decides which pattern is re-
trieved (this is because the matrix load p1 is very small for ultra-sparse patterns; cf. section 3.2.1).
Then a perfect retrieval occurs (with high probability) as soon as the first spike is correct. This
explains the observed phenomenon because the probability that the first spike belongs to an
addressed (i.e., correct) neuron is larger for a larger number of addressed neurons and, corre-
spondingly, larger N .

84 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

4.5.5 Summary

We have seen that the technical spike counter model can be implemented efficiently both on
sequential and parallel architectures. Table 4.1 summarizes retrieval times for sequential and
parallel implementations of the classical Willshaw model and the spike counter model with or
without matrix compression.

sequential parallel

classical ∼ k · n ∼ k
compressed classical ∼ min(p1, 1− p1) · k · n ∼ # · k

spike counter ∼ k · n ∼ k · ld n
compressed spike counter ∼ min(p1, 1− p1) · k · n ∼ k · ld n

Table 4.1: Comparison of the (asymptotical) retrieval times tret for sequential and parallel imple-
mentations of different variants of Willshaw associative memory with n neurons, k one-entries
per binary pattern vector, and matrix load p1. # is a parameter for parallel matrix decompression
(see text; cf. section 3.5.2); classical: classical Willshaw model (one-step-retrieval) without ma-
trix compression; compressed classical: one-step-retrieval applying optimal matrix compression;
spike counter: technical spike counter model without matrix compression; compressed spike
counter: technical spike counter model applying optimal matrix compression.

For sequential implementations on a digital computer the spike counter model requires asymp-
totically the same time (up to a constant factor) as the classical Willshaw model, while matrix
compression even accelerates the retrieval.

For a parallel implementation on a digital computer the spike counter model requires factor
ld n more time than the classical Willshaw model. In contrast to the classical Willshaw model,
matrix compression causes no additional costs for the parallelized spike counter model. I.e., if
one chooses the spike counter model then there is no reason why not also compress the memory
matrix.

4.6 Biological implementations of the spike counter model

A direct biological implementation of the more technical model of the spike counters cA, cH , cΣ

(see sections 4.3 and 4.5) and the input integration function f1 (eqs. 4.2 and 4.65) is realized as
follows (cf. [86]): Consider the connection scheme of Figure 4.15. It consists of two areas. The
addressing area R makes input connections in the addressed area C. For area R we consider only
the excitatory population R, since it is known that only excitatory neurons make cortico-cortical
connections (see section 2.1.3; cf. [182, 27]). Area C consists of three populations. One excita-
tory population C, and two inhibitory populations CS (separating inhibition) and CT (terminating
inhibition). Note that only population CS (but not CT) receives input from the addressing area.

For our base model, we assume the following: Excitatory neurons make specific connections
to excitatory as well as to the separating inhibitory population CS . All other connections are
unspecific. This means that beside the auto-associative connection of population C, the connec-
tions from R to C and CS as well as from C to CS are hetero-associatively learned according to
the binary clipped Hebbian learning rule (see section 3.1.1, eq. 3.1). Moreover, the assemblies of
C and CS have the same structure, therefore we call this model TSI (Totally Specific separating
Inhibition) opposed to other (more realistic) model variants introduced below. An important
feature of the TSI model is, that connections onto C and CS are the same. The result is, that
in C and CS always corresponding neuron populations get activated. Thus information about
the spike counter cA is conveyed through the excitatory auto-associative connections of popu-
lation C, while information about the spike counter cΣ can be conveyed through the unspecific
(e.g. full) connections from population CS onto C. Note that this property is even independent
of many features of the used neuron model (including synaptic and axonal delays). The only
requirement is, that excitatory and inhibitory inputs superpose in an approximately subtractive

4.6. BIOLOGICAL IMPLEMENTATIONS OF THE SPIKE COUNTER MODEL 85

P

C

Ct

Ci

CH

CH

CA

CA

CΣ

CΣ

excitatory
inhibitory

unspecific
associative

associative areaaddressing area

SC

CTR

C

Figure 4.15: Network structure of the spiking associative memory (associative area C). It con-
sists of three neuron populations. Population C is excitatory, while populations CS and CT are
inhibitory. Populations C and CS receive extra-areal input from addressing area R, while popula-
tion CT exclusively receives input from within area C. Arrows → denote excitation, a inhibition.
Thick arrows correspond to specific associative (i.e., Hebbian learned) synaptic connections be-
tween neuron populations, while thin arrows correspond to unspecific (e.g., full) connections.
The spike counters cH , cA, and cΣ of the more technical models are implemented analogously by
the synaptic connections as indicated (see text for details).

manner on a time scale according to the retrieval length (in our model 4-5msec as we will show
below).

Finally we relate this biological model more formally to the spike counter model proposed
above. We suggest that excitatory and inhibitory conductances play the role of the spike counters.
In our model, excitatory and inhibitory conductances gex and gin superimpose linearly (eqs. 2.1
and 2.2). Therefore we can write

gex ≈ K · cH + L · cA(4.73)
gin ≈ M · cΣ(4.74)

for relative synaptic strengths K, L and M , if the spike counts represent spikes in a short time
window (dependent on the decay constants of the synaptic conductances). Below, we will find
that a retrieval is done in 4-5msec, and therefore the approximation is justified. Note, that in our
model, the synaptic conductance changes have the form of an exponential. Using alpha-functions
with prolonged plateaus would even improve this approximation.

Neglecting noise processing and assuming an essentially subtractive superposition of excita-
tory and inhibitory postsynaptic potentials (EPSPs and IPSPs), we obtain from eq. 2.4 the follow-
ing approximation.

τx
d

dt
x = −x + gex(Eex − x) + gin(Ein − x)

≈ gex(Eex − x) + gin(Ein − x)
≈ (K · cH + L · cA)(Eex − x) + M · cΣ(Ein − x)

= K(Eex − x)cH + L(Eex − x)
(

cA − M (x− Ein)
L(Eex − x)

cΣ

)
But this is essentially the input integration function f1 of eqs. 4.2 and 4.65

τx
d

dt
x ≈ f1(cH , cA, cΣ) = a · cH + b(cA − αcΣ)(4.75)

86 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

with parameters

a =
K(Eex − x)

τx
(4.76)

b =
L(Eex − x)

τx
(4.77)

α =
M (x− Ein)
L(Eex − x)

(4.78)

Note that the parameters depend on the membrane potential x. While for biological parameter
values, the dependence of a and b may be weak, since x is small in comparison to the excitatory
reversal potential Eex, the dependence of α may be much stronger, since the resting potential of
neurons (x = 0) may be near the inhibitory reversal potential Ein. This means that the second
requirement for the input integration function f may be fulfilled only for membrane potentials
near the firing threshold (see section 4.3 and eq. 4.1). Or the other way, the separation strength α
increases when the membrane potential approaches the firing threshold.

Thus we have essentially implemented our technical spike counter model using an excitatory
and an inhibitory neuron population where the connectivity for the inhibitory one is a copy of the
excitatory one. However, for several reasons there may be a need for a second inhibitory popula-
tion. Since our model relies on a balanced excitation and inhibition, it is not always guaranteed
that the excitation can be controlled. Furthermore, it may even be useful to choose the separation
strength to be non-stationary in order to work in different regimes ([130],chapter 12). In an un-
balanced regime of weak separation strength, the inhibition produced by CS may be much too
weak to control excitation. Therefore to be sure of uncontrolled spread of excitation there may be
a need of further inhibition in a late phase of the retrieval. The idea that inhibition generally lasts
longer than excitation is quite common both in physiology and modeling.

The idea is to make the connectivity for the second inhibitory population CT the same as
for neurons of an addressed assembly that get no extra-areal input (e.g. because the address
pattern was incomplete). Given that only one assembly gets activated, unspecific (e.g. full) input
connectivity from C is sufficient to achieve this. The result is that neurons of CT fire at the end
of the retrieval and guarantee that finally inhibition prevails. This holds if a single assembly gets
activated, as required for pattern separation. On the other hand, if a superposition of several
assemblies gets activated, then the neurons of CT fire before the last neurons of the superposed
addressed assemblies. Together with the fault detecting properties of CS as described above
(see section 4.3), this breaks down the retrieval and prevents the activation of a superposition of
several patterns. Note that it is not necessary to make CT specific.

Since our base model (TSI) may be not very realistic with respect to the connection scheme,
we simulated also some variants successively reducing the assumptions of our strictly symmetric
model. For PSI (Partially Specific separating Inhibition), we stored less assemblies in CS than in
C. The result is that one assembly in CS controls excitation for several assemblies in C. This may
be the case, for example, if exclusively excitatory-to-excitatory connections can be learned, but a
certain degree of specificity is achieved through the spatial arrangement of inhibitory neurons.
For USI (UnSpecific separating Inhibition) only one assembly was stored in CS controlling all
the excitatory assemblies. This would happen if connections are learned only for excitatory-
to-excitatory connections and we make no special assumptions of the spatial arrangement of the
neurons. In NSI (No Separating Inhibition) we inactivated population CS completely. This model
is essential the same as in [199], except that the gradual inhibitory neuron was replaced with the
spiking population CT .

Figure 4.16 demonstrates the typical behavior of our spiking associative memory. For address-
ing R we activated subsequently two assemblies AR1 and AR2 hetero-associatively corresponding
to the assemblies AC1 and AC2 stored in area C (Fig. 4.16a). AR2 was activated tdiff = 2msec af-
ter AR1, and the temporal dispersion of activation times of individual neurons was a Gaussian
with standard deviation of 1.5 msec. Figure 4.16b shows the activation of the two addressed
assemblies in population C. While the first assembly gets activated completely, the second as-

4.6. BIOLOGICAL IMPLEMENTATIONS OF THE SPIKE COUNTER MODEL 87

sembly is mostly suppressed with the most activated neurons lying in the overlap with the first
assembly. Figure 4.16c shows the activation of the three neuron populations in area C. The pop-
ulations C and CS show a symmetric behavior, while population CT gets activated at the end of
the retrieval.

Figure 4.16: Retrieval in the biological model of spiking associative memory when addressed
with a superposition of two patterns. a: Spike activity in the address area R. Two patterns AR1
(thick line) and AR2 (thin line) are activated with strong temporal overlap. b: Spike activity in
population C. Only assembly AC1 (thick line) addressed by the earlier pattern AR1 gets com-
pletely activated. The other addressed assembly AC2 (thin line) is almost completely suppressed.
c: Spike activity in the three populations C, CS and CT . Populations C and CS show a symmetric
activation, while CT is activated at the end of the retrieval. d-h: Threshold distance histograms
(TDH) over time. For a neuron, threshold distance is the difference between membrane potential
and the instantaneous firing threshold (including refractory mechanism and habituation). The
histograms are binary, i.e. a black dot is drawn if at least one neuron is in the bin. d: TDH for the
first addressed assembly AC1. e: TDH for AC2. f: TDH for the other non-addressed neurons in
C. g: TDH for population CS . h: TDH for CT .

88 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

A more detailed illustration of the interplay of the different populations is given in Fig. 4.16d-
h. Here, histograms of the threshold distance dth are shown over time. The threshold distance for
a neuron is defined as the difference of membrane potential and instantaneous firing threshold
including refractoriness and habituation (see section 2.4). Note that the histograms plots are
binary for the sake of better visibility. Thus a black dot results if at least one neuron is in the bin.
Figures 4.16d and e show the histograms for the two addressed assemblies in C, Fig. 4.16f for the
other neurons in C not being addressed, and Figs. 4.16g and h show the histograms for the two
inhibitory populations CS and CT . Omitting population CS in our model leads generally to the
simultaneous activation of both addressed assemblies in C, while omitting population CT can
lead to uncontrolled bursting of the neurons if separation strength is relatively weak (see [86] for
more details).

Some results concerning the capability of our models for pattern retrieval and separation
are shown in Figure 4.17. TSI1 is a variant of our base model, where the assemblies in CS were
generated independently from those in C. NSI1 is a variant of NSI where the connection strengths
were optimized for pattern separation to unrealistic values. We simulated two conditions: Either
with only 10 stored assemblies per population (Fig. 4.17a–d), or with high memory loads p1 = 0.25
for the connections from R to C, and p1 = 0.40 for connections within area C (Fig. 4.17e–h).

The plots show the normalized retrieval quality rN over probability p10 of missing one-entries
(Fig. 4.17a,e) and probability p01 of additional one-entries (Fig. 4.17b,f) in the address pattern
when addressing with a single pattern. The normalized retrieval quality is defined as the transin-
formation between the stored and the retrieved patterns normalized to perfect retrievals (see
eq. B.16 in appendix B.3.1). A value rN = 1 therefore means that a complete pattern was re-
trieved with no faults.

Then we addressed area C using a superposition of two patterns. Fig. 4.17c,g shows the
normalized quality of the retrievals, Fig. 4.17d,h the normalized separation sN over the average
time difference tdiff of the spike times of the two addressing assemblies in R. If all addressed
assemblies get the same activation, we have sN = 0, and we obtain sN = 1 if only neurons of one
assembly get activated (see eq. B.20 in appendix B.3.2).

For low memory load and addressing with a single pattern we obtain good retrieval perfor-
mance for all models (Fig. 4.17a,b). However, the differences between the models with (TSI, TSI1,
PSI and USI) and without (NSI, NSI1) separating inhibitory population CS (see Fig. 4.15) are
revealed when addressing with a superposition of two patterns (Fig. 4.17c,d). While the model
variants with inactivated population CS exhibit pattern separation only for relatively high val-
ues of tdiff, all the variants including population CS accomplish pattern separation also for small
values of tdiff. The differences between the two model groups increase, when the memory load is
increased (Fig. 4.17e–h). Here, the models without CS show generally bad results in both cases
addressing with one pattern or with a superposition. In contrast the models with CS still show
acceptable results.

Note that depending on the operation mode of connected associative memories, relatively
small values of sN for a single retrieval are sufficient. For instance, in an oscillatory regime with
two reverberating associative memories, the separation is improved from one to the next itera-
tion. This behavior is known as iterative retrieval in technical associative memories (cf. [160] for
the auto-associative and [171] for the hetero-associative case). The simulation results presented
in the next chapter 5 suggest indeed a similar function of synchronous oscillations found in the
visual system.

4.7 Implications

4.7.1 Summary of the chapter

In this chapter we have extended the classical Willshaw model (chapter 3) by using spiking neu-
rons. Starting from simple considerations about problems of classical one-step retrieval with
the separation of overlayed address patterns (section 4.1 and 4.2) we developed the so-called

4.7. IMPLICATIONS 89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

xlabel1

y
la

b
e

l1

A

L

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

xlabel2

y
la

b
e

l2

B

0 1 2 3 4 5 6 7
0

0.5

1

xlabel3

y
la

b
e

l3

C

0 1 2 3 4 5 6 7
0

0.5

1

xlabel4

y
la

b
e

l4

D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

xlabel1

y
la

b
e

l1

A

L

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

xlabel2

y
la

b
e

l2

B

0 1 2 3 4 5 6 7
0

0.5

1

xlabel3

y
la

b
e

l3

C

0 1 2 3 4 5 6 7
0

0.5

1

xlabel4

y
la

b
e

l4

D

TSI
TSI1
PSI
USI
NSI1
NSI

*
+
x

e

f

g

h

b

a

c

d

se
pa

ra
tio

n
qu

al
ity

 s
N

N
re

tr
ie

va
l q

ua
lit

y
r

N
re

tr
ie

va
l q

ua
lit

y
r

N
re

tr
ie

va
l q

ua
lit

y
r

t [msec] for two overlayed address patternsdiff

p for single address pattern10p for single address pattern10

p for single address pattern01

t [msec] for two overlayed address patternsdiff

p for single address pattern01

Figure 4.17: Quality of retrieval and pattern separation for the biological spiking associative
memory model using 1600 neurons for population C and CS and 400 neurons for population
CT , and an average pattern size of 160. The following variants of the model (see text) were
tested: TSI (∗), TSI1(◦), PSI(+), USI(×), NSI(∇) and NSI1(�). Two different memory conditions
were simulated for each variant: Left column (a-d) : low memory load (10 stored pattern). Right
column (e-h): High memory load with intra-areal and inter-areal memory matrixes filled up to
0.4 and 0.25 respectively. a/e: Retrieval Quality rN over probability p10 of a missing active element
in the single addressing pattern. b/f: rN over probability p01 of an additional active element in the
single addressing pattern. c/g: rN over average time difference tdiff of two address patterns laid
over in time. d/h: Separation Quality sN over tdiff. For c/d and g/h the same simulations were
used respectively. Note the difference in separation performance between the model variants
with activated separating inhibition CS (TSI,TSI1,PSI,USI) and the variants with deactivated CS

(NSI,NSI1).

spike counter model (section 4.3) which implements essentially a time-continuous instantaneous
version of the classical Willshaw retrieval strategy (cf. section 3.1.1). The basic idea of the spike
counter model is that the first spikes during a retrieval can determine the retrieved pattern by im-
mediate auto-associative feedback. This can improve the resistance against noise in the address
pattern, and in particular the separation of simultaneously addressed patterns (cf. Fig. 4.2).

In section 4.4 we analyzed the spike counter model with respect to fault tolerance. The anal-
ysis for addressing with single patterns compares the potential distributions of the addressed
(i.e., correct) neurons to the distribution of the non-addressed (i.e., false) neurons by applying
Gaussian approximations (section 4.4.1). For classical one-step retrieval the two Gaussians must
be separated completely to obtain perfect retrievals (cf. Fig. 4.1a). In contrast, the spike counter

90 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

model requires only that the neurons with the highest potentials (corresponding to the first spikes)
are correct ones, while the two Gaussians are allowed to have significant overlaps (cf. Fig. 4.6).
This leads to an improved tolerance against noise in the address pattern. On the one hand the
fault tolerance against missing one-entries in the address pattern improves only little because
the Gaussian of the addressed (correct) neurons collapses to a Dirac impulse in this case, which
makes spike counter and one-step retrieval almost equivalent. On the other hand the fault toler-
ance against missing one-entries in the address pattern can be improved massively (see eq. 4.24)
at least for a low matrix load p1 < 0.5 corresponding to sparse patterns with logarithmic or sub-
logarithmic pattern activity k (cf. section 3.2). In section 4.4.2 it is shown that for ultra-sparse
patterns with sub-logarithmic k and p1 → 0 (where also storage capacity 1 is possible; cf. section
3.2.1) the spike counter model can cope with O((ln n)d) false one-entries in the address pattern for
any d > 0. In section 4.4.3 the analysis is generalized for separation of overlayed patterns where
overlaps of the addressed patterns are neglected.

The conducted analysis predicts sometimes implausible high fault tolerance against false
ones. In section 4.4.4 the different sources for these misleading results are analyzed, and con-
ditions are derived where the analysis of sections 4.4.1-4.4.3 is valid. One source for improper
analytical results is the use of the binomial approximation for the membrane potential distribu-
tions (cf. Fig. 4.1). Although we have seen in section 3.6 that the binomial approximation is
valid asymptotically for large n and sub-linear address pattern activity z (=k for perfect address
pattern), we have also seen that the binomial approximation can be very bad for finite n and
in particular for large z where the address pattern contains many false one-entries (cf. Fig. 3.5).
In particular it turned out that the binomial approximation can underestimate the true variance
of the potentials massively (see Fig. 3.5c,d; cf. eqs. 3.122 and 3.123). In section 4.4.5 we have
therefore repeated the analysis of section 4.4.1 using Gaussian approximations with the correct
variances (eq. 3.122; cf. Figs. 4.7 and 4.6).

In section 4.5 we have discussed efficient sequential and parallel implementations of the spike
counter model (cf. Table 4.1). It turned out that a sequential implementation of the spike counter
model is asymptotically (up to a constant factor) as efficient as classical one-step retrieval (∼ kn
steps per retrieval; see section 4.5.2; cf. section 3.4). However, the suggested spike counter algo-
rithm cannot be parallelized optimally. In section 4.5.3 we have seen that a parallel implemen-
tation requires ∼ kld n steps per retrieval while a parallel implementation of classical one-step
retrieval requires only ∼ k steps (cf. section 3.5.2). On the other hand this is still quite efficient,
and implementing in addition optimal matrix compression (see section 3.2) bears asymptotically
no additional costs.

In section 4.6 we have shown that the principles of the technical spike counter model can also
be implemented in a biologically realistic architecture. For this purpose the spike counters (see
section 4.3) have been mapped to the excitatory and inhibitory synaptic conductances of a more
realistic neuron model (see section 2.4). In the subsequent chapter 5 we incorporate the described
biological model into a larger model of interacting visual cortical areas in order to investigate
spike synchronization, scene segmentation, and binding of distributed representations.

4.7.2 Why spikes?

Why do neurons emit spikes? It is well established that real neurons can emit a spike when the
depolarization of the membrane potential at the axon hillock exceeds a certain threshold. The
duration of a spike lies in the range of one millisecond, and it is generally believed that spikes
are the most important carrier of fast information transmission in biological systems. However,
the significance of the precise spike times is controversial.

According to one view-point the only function of spikes is to transmit the information con-
tained in the membrane potential of the neuron over long distances. Direct electrotonic coupling
of connected structures would result in heavy loss of information for longer distances. For ex-
ample, the so-called space constant of dendrites is at most a few millimeters. This means that a
signal can be transmitted passively only over a few millimeters, and the signal is weakened grad-
ually to zero all along its way. In contrast a spike can be transmitted along the axon over arbitrary

4.7. IMPLICATIONS 91

long distances without being weakened. The price to be paid is that a spike is a quite stereotypic
almost digital or binary event. In fact a single spike cannot contain significant information about
the membrane potential since its shape is almost independent of the degree of depolarization at
the axon hillock. Thus information about the membrane potential could be obtained by counting
the spikes of the neuron over a longer time interval, i.e. by evaluating its spike rate.

According to another view-point the precise timing of a spike on the millisecond-time-scale
would contain additional information if related to other spikes of the same and other neurons.
For example, the stronger a neuron is excited, the earlier it will emit a spike. In fact the model
of a spiking associative memory developed in this chapter makes use of this property of spiking
neurons: The spike time contains information about the strength of excitation relative to other
neurons. Other neurobiologists and theoreticians claim that even more subtle aspects of the pre-
cise spike timing of a neuron population contains significant information about the functional
state of the organism. E.g., it has been suggested that spike synchronization within a time win-
dow of perhaps 1-5msec may be used for global binding of distributed feature representations
(e.g., [41, 61, 168]; see also section 2.2.4). Or it has been suggested that subtle complex spatio-
temporal patterns, so-called synfire-chains [2, 3], may also be functionally relevant [197].

In the following we provide a (probably incomplete) list of possible answers why evolution
might have invented spikes. Some of the arguments are discussed in more detail below. The
rather speculative arguments are signed by a question mark.

C1: Implications of cable theory: Distance-dependent attenuation of electrotonic signals [145],
while spikes can be transmitted without loss of information over arbitrary long distances.

T1: High temporal resolution? This corresponds also to short reaction times: After stimulus
onset the first spikes at a given cortical location are most relevant [183].

T2: (Global) binding by spike synchronization [191, 192, 41, 61, 168]?

T3: Functional relevance of complex spatio-temporal spike patterns (presumably generated by
synfire chains) [2, 3, 5, 197]?

S1: Synaptic repertoire: Synaptic transmission of a spike can elicit numerous effects on the
postsynaptic site depending on the receptor distribution: E.g., one spike can at the same
time cause modulatory signals and excitatory signals on different time scales (e.g. NMDA
vs. AMPA; cf. [38]).

S2: Synaptic plasticity: Detection of coincidence and causes?; Asymmetric learning rules [112,
15, 1, 173, 53].

A1: Separation of overlayed patterns or assemblies (distributed representations): Linear models
are not able to separate superpositions.

A2: Attractor fusion: Flat or quasi-linear activation functions of the neurons lead to bad sepa-
ration (or even fusion) of attractors [70].

A3: Sparseness: Sparse patterns are only stable for steep activation functions of the neurons.

A4: Willshaw distribution: The variance of non-addressed neurons’ potentials is quadratic in
the number of active input units (see section 3.6.3; cf. Fig. 3.5; cf. eq. 3.122): Thus for noisy
membrane potentials assemblies would not be stable for non-steep activation functions of
the neurons.

Arguments C1 and T1-T3 have been discussed briefly above. In particular the idea that the first
few spikes can determine the functional state of an organism ([183]; see argument T1) fits per-
fectly with the role of spikes in our model of spiking associative memory (see section 4.3). In
chapters 5 and 6 we will develop and discuss a model of reciprocally connected visual cortical
areas in order to further investigate the hypothesis of global binding by spike synchronization

92 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

corresponding to argument T2. Arguments S1 and S2 are experimentally relatively well verified,
and at least the truth of argument S2 implies also the truth of argument T1 (and perhaps also T3).

Most closely related to the work described in this chapter are the arguments A1-A3 which
presuppose the existence and usefulness of cell assemblies or discrete activity states. Argument
A1 states for example that linear associative memory cannot separate superpositions. If the out-
put for addressing with input pattern U 1 is V 1 := f (U 1) and similarly V 2 := f (U 2) for another
address pattern U 2, then the output for the superposition U 1 + U 2 of the two address patterns
will be f (U 1) + f (U 2) per definition of the linearity of f . It is argued that at least it should be
possible to segment a superposition into its components (see section 4.1). Indeed at least at higher
processing stages the brain also processes separately the components of superpositions. For ex-
ample, if the two eyes see different images the subject does not see a superposition of the two
images. Instead one observes binocular rivalry where the subject sees the image from either the
left or right eye [18], similar to Fig. 2.6 where we also can see either the young girl or the old
woman but not a superposition of both (cf. also [46]). In experiments with monkeys this rivalry
is also reflected by neural activity [109, 166]. This evidence that the brain requires segmentation
of superpositions into its components rules out linear processing, but gives us not yet a clear hint
why spikes are useful. This is because also the spike rate of a typical cortical neuron depends
non-linearly (usually sigmoidal) on its membrane potential. On the other hand the activation
function of many cortical neurons are linear (or almost linear) within a large interval of relevant
membrane potentials. This quasi-linearity may cause attractor fusion [70] as stated by argument
A2. In contrast, spikes are the most extreme form of a non-linearity (all or nothing) which could
be emulated by gradual rate-coded neurons only if the activation function would be very steep
(e.g., as it is the case for the Heaviside function). Actually one can argue that networks of spik-
ing neurons and networks of gradual neurons are equivalent (at least with respect to the results
presented in this work) if the gradual neurons have a very steep activation function (cf. [70]).

A strong argument for the importance of spikes (or a very steep activation function) is ar-
gument A3 stating that rate coding (with a rather flat quasi-linear activation function) would
contradict sparse neural assemblies as postulated for example by the Willshaw model. Consider
the following example for a population of n neurons and an assembly size of k, where k � n
for sparse assemblies/patterns. Let us assume that the membrane potentials x of the neurons
can take values from the interval [0; 1], and that f (x) is the sigmoidal activation function (for
example with f (0) = 0 and f (1) = 1). Let us assume that all k neurons of one assembly are maxi-
mally active (x = 1), and all other neuron have noisy potentials ν (cf. Fig. 4.1a). If we require the
noise-to-signal ratio to be smaller than δ we can write

noise
signal

:=
(n− k)p1f (ν)

kf (1)
≤ δ (!)(4.79)

⇔ k

n− k
≥ p1

δ
· f (ν)
f (1)

(!).(4.80)

This means that for large f (ν) sparse patterns with small k/(n − k) are not possible for small
δ, because then the very few (k) signal inputs would be hidden in the vast amount of many
(p1(n − k)) noisy inputs. Obviously, the optimal f would be f (x) = 0 for x below a threshold Θ
and f (x) = 1 (for example) otherwise.

The impact of argument A3 can be understood only in connection with argument A4: In
section 3.6 we have seen that the commonly used binomial approximation of the true Willshaw
distribution of neuron potentials can be very bad (see Fig. 3.5). In particular the binomial approxi-
mation can underestimate massively the variance of the neuron potentials (see section 3.6.3). The
true variance grows quadratic in the number z of active input elements while the binomial ap-
proximation suggests only a linear growth (cf. eqs. 3.122 and 3.123; cf. Fig. 3.5c,d). Actually the
quadratic growing variance excludes non-sparse assemblies (cf. section 3.2.3 and appendix B.4.3).
On the other hand the following self-consistency condition is essential for the stability of an as-
sembly: If only the neurons of the considered assembly are active then the potentials caused by
auto-associative feedback must be such that the assembly neurons have larger potentials than

4.7. IMPLICATIONS 93

the other neurons (e.g., cf. Fig. 4.1a). Now consider gradual neurons with a non-steep activa-
tion function and noisy potentials ν of the non-assembly neurons (similarly as argued for A3).
Then we have essentially the worst case z = n since all neurons deliver input to other neurons
(although the non-assembly neurons only with strength ≈ f (ν) instead of f (1)). Since the po-
tential variance (which limits the possible number of assemblies and the storage capacity) grows
quadratic in z its largest part will origin from the noisy membrane potential fluctuations of the
non-assembly neurons.

Although the analysis of arguments A3 and A4 is quite informal and certainly has to be im-
proved in future work the following conclusions can be drawn: An important function of spikes
at least in the context of our model is to decouple the neurons from noisy membrane potential fluctua-
tions of the other neurons. It is suggested that in this sense spiking neurons and gradual neurons
with a very steep activation function are equivalent.

94 CHAPTER 4. SPIKING ASSOCIATIVE MEMORY

Chapter 5

Model of visual cortical areas

One of the most fundamental and central questions in systemic neuroscience and brain research is
the question of representation of objects or thoughts in the cortex of sufficiently complex animals
like monkeys or men. Probably the most reasonable idea on this issue goes back to the psycholo-
gist Donald Hebb. Concepts or thoughts are represented in terms of the coincident activation of
groups of neurons called cell-assemblies ([64]; see section 2.2.2). One immediate argument against
this idea which has been put forward many times is the superposition problem (cf. section 2.2.3) :
if two or more assemblies are activated at the same time, how can they be segmented into the in-
dividual assemblies? The answer to this problem is provided by the strong mutual excitation be-
tween the neurons belonging to the same assembly, probably acquired by auto-associative Heb-
bian learning. This has been worked out in several theoretical papers [204, 26, 129, 130, 133, 171]
which essentially show that by controlling the total activity within a certain region of the cortex,
for example by unspecific inhibition, the superposition problem, i.e. the activation of two or more
assemblies at the same time, can be avoided (see section 2.3 and chapters 3 and 4). Furthermore
this can be achieved even when a very large number of assemblies (sparse activation patterns)
are stored by auto-association.

But is this really a solution? May it not be necessary or at least useful in some situations
to activate two or more assemblies at the same time in the same local cortical area and not to
confuse them? In a visual scene, for example, there may be several objects present close to each
other at the same time: If each of them is represented by an assembly that contains a subassem-
bly in a visual area, and if the whole scene is also represented by an assembly, then these visual
sub-assemblies should all be part of the “scene assembly” and therefore be activated at the same
time in the same local region of visual cortex. This problem becomes more acute in higher visual
areas where the assemblies corresponding to the different objects cannot be assumed to be spa-
tially separated in the cortex due to a topographical visual representation with a sufficiently large
magnification factor as in V1 or V2. But even in V1 or V2 neighboring neurons may be activated
by different objects, where they are close together or even partially occluding each other. This
particular version of the superposition problem has suggested a closer look on the timescale on
which coincidence of activity is interpreted. It could be that there is a succession of coincident
activity moving from one assembly to the next within a few milliseconds (i.e. on the timescale
of single spikes), and also coincident activity of the whole set on the timescale of 100msec or of
increased firing rates. This is the strong version of the temporal correlation hypothesis (TCH; see
section 2.2.4) [192] which was put forward as a solution to the superposition problem (also called
the ’binding problem’).

Actually, even a longer time window of up to three seconds [139] may be involved, for ex-
ample, when we look at a complex picture, or obtain an impression of the room we have just
entered, which may require several fixations and involve long-term memorized knowledge. This
is a quite common situation, where from the point of view of assembly theory [26, 130] it may be
reasonable to assume that a global assembly representing the situation as a whole is activated in
the cortex which contains several subassemblies representing several individual objects. These

95

96 CHAPTER 5. MODEL OF VISUAL CORTICAL AREAS

subassemblies are probably only partially activated and in particular it is unlikely that several of
them are activated at the same time (narrow time-window) in the same place (local cortical area,
within 1-2mm of cortex), because that would violate the constraints on the total local activation.
Using threshold control (or eye-movements) we can focus our attention (or our gaze) on each of
these objects in turn and activate the corresponding assembly more completely, thereby reduc-
ing the activation of other assemblies representing other objects that are part of the same global
situation.

The TCH was experimentally supported by the observation of high-frequency gamma (40-
60 Hz) oscillations in the visual cortex apparently reflecting global stimulus properties [40, 168].
Evidence for this oscillatory activity was found in EEG or local field potential recordings and also
in single-unit auto- or cross-correlograms. While the general idea of interpreting coincidence in
assemblies on the timescale of milliseconds or spikes has been pursued by many if not most
researchers elaborating the Hebbian assembly concept in the temporal domain [2, 192, 133, 150,
6, 201], the special use of fine-timing made in the context of the visual ’binding problem’, also
related to the idea of ’phase-coding’ (activating different assemblies at different phases of a single
underlying oscillation), has been subject to considerable controversies.

In this chapter it is shown that the original Hebbian ideas and the corresponding models
based on associative memory almost automatically and naturally solve the “binding problem”
by temporal correlation, when they are implemented in biologically realistic networks of spik-
ing neurons. Global cortical assemblies are formed automatically when one assumes Hebbian
synapses both in the long-range cortico-cortical connections between different areas and in the
excitatory short-range connections within areas. Since most of the cortico-cortical connections
appear to be bidirectional, a good starting point is to analyze two bidirectionally connected lo-
cal areas. Here we essentially interpret our two cortical areas as two local spots of two visual
areas, a more peripheral and a more central one, with a high and low spatial magnification fac-
tor, respectively. For our neuron-model, we use a spike generation mechanism with a dynamic
threshold quite similar to common leaky integrate-and-fire models (see section 2.4). In the fol-
lowing first we describe the model in more detail, and then the simulations and its relation to
neurophysiological experiments are summarized.

5.1 Modeling

For simulations we chose a one-point spiking neuron model including refractoriness and habitu-
ation as described in section 2.4. The network consists of three areas (R, P and C) each composed
of several neuron populations (Figure 5.1). Details of the neuron and network model are also
described in [89, 91, 92].

In the retinal area R input patterns corresponding to stimulus objects in the visual field are
represented in a 100×100 bitmap. The two cortical areas P (primary visual cortex) and C (central
associative area) are both modeled with one excitatory (P and C) and two inhibitory neuron
populations (PS , PT , CS , and CT), where only one of them receives extra-areal input (PS and
CS). Only the excitatory connections are specific (with respect to orientations in area P, and with
respect to the pattern representations in area C) according to Hebbian learning. This is essentially
the architecture of the biological version of spiking associative memory described in section 4.6
(cf. Fig. 4.15). The modeling was motivated by the requirement of an efficient threshold control
and the separation of distributed representations, especially for the associative area C, and is also
biologically plausible ([27]; see sections 2.1.3 and 2.3.3).

5.1.1 Model of the primary visual cortex

Each neuron population in area P has size 100× 100 (cf. Fig. 5.1). Connections from R and inside
P are modeled corresponding to the subsystem of orientation selective columns in the primary
visual cortex (see Fig. 5.2).

5.1. MODELING 97

b

a
local (25)

bitmap orientation selective modules

associative memory

R

C

P

100 x 100 100 x 100

40 x 40

topogr.(15) topographic

(33) (13)

PS CS

PT CT

area C

C

area R area P

R

P

Figure 5.1: Overview of the network model. a: Global connection scheme and the representations
of a triangle stimulus in the different areas. Retinal area R is simply a bitmap. Primary visual
cortical area P is modeled according to the orientation modules of primary visual cortex. Central
visual area C represents shapes and is modeled as spiking associative memory (see section 4.6).
Numbers in brackets correspond to the size of efferent kernels of individual neurons, e.g. a P-
neuron projects to a patch in C with diameter 13 neurons. b: Individual neuron populations of
the three areas and excitatory (indicated by arrows) and inhibitory connections between them.
The structure of areas P and C is similar to the structure of spiking associative memory shown in
Fig. 4.15.

The internal excitatory connections from P to populations P and PS couple specifically neu-
rons which have similar orientation preferences and additionally are near neighbored or collin-
early aligned (for details see [91]). This is as expected from Hebbian correlation learning during
the presence of stimuli rich of contours, and results in a patchy representation of stimulus objects
(Fig. 5.1a): At a certain location in P, only the neurons with orientation preferences best matching
the pattern in R get strongly activated, while neighboring cells are suppressed by recurrent inhi-
bition. We have also incorporated in our model temporally and spatially correlated noise as ubiq-
uitously found in experiments (e.g. [190]). This noise, for instance, prevents artificial long-range
correlations of spike activity. Due to computational limitations we replaced the two inhibitory
populations PS and PT in some of the simulations by one gradual inhibitory population.

5.1.2 Reciprocal connection to a central cortical area

Area C (central visual area) is modeled as a fully connected auto-associative network according to
Hebbian learning of topographic random representations of stimulus objects (see [89] for details).
Populations C and CS have size 40×40, while population CT has only size 20×20 (cf. Fig. 5.1b).
As can be seen, for example, from the triangle representation in area C (see Fig. 5.1a; cf. Fig. 5.3a),

98 CHAPTER 5. MODEL OF VISUAL CORTICAL AREAS

a

10 neurons

c

b

10 neurons

A KPR

M15

−10 −5 0 5 10

−10

−5

0

5

10

B KPP

M25

−10 −5 0 5 10

−10

−5

0

5

10

C KIP

M11

−10 −5 0 5 10

−10

−5

0

5

10

T

x

15 x 15 25 x 25 19 x 19

y ,xj jP

y ,xi iP

ϕij

dijdij

P R7,4K P P7,4K P P7,4K

dji

Figure 5.2: Modeling of area P. a: Arrangement of orientation selective columns in area P. Only
a 20 × 20 clip is shown, whereas area P is composed of 100 identical blocks of size 10 × 10. The
black points mark axes around which orientation preference rotates for 180◦. The cross (x) denotes
the position of the neurons for which some afferent kernels are shown in (c). b: Illustration of
the variables determining the strength of the synapse between two P -neurons at positions i and
j. Synaptic strength depends mainly on the distance dij between the neurons, the difference Φij

in their orientation preference, and the degree of collinearity as measured from d⊥ij and d⊥ji (see
text for details). c: Plots of some afferent kernels of the neurons at the location corresponding to
the cross (x) shown in (a) at row seven, column four. For the excitatory neuron, afferents from R
(left) and from P (middle) are shown, while for the inhibitory neuron (from PT) the plot depicts
afferents from P (right). Numbers correspond to kernel sizes.

the original stimulus shape is only rawly preserved.
Areas P and C are reciprocally connected by a topographic hetero-association according to

Hebbian learning of corresponding stimulus representations in P and C (Fig. 5.3; see [91] for
further details).

We use simple shapes as test stimuli, e.g. a triangle, a rectangle or an ellipse (Fig. 5.3a). In
different simulations we present single stimuli to focus on the general behavior of the network
(e.g., the appearance of oscillations and distance dependent synchronization), or superpositions
of several stimuli to investigate competition and segmentation properties of the model. To inves-
tigate more global model properties we simulated also a larger variant of the model where areas
P and C had sizes 30× 500 and 15× 250 and also area C was organized topographically [92].

5.2 Interaction between two cortical areas

5.2.1 Single stimulus

In order to investigate the general behavior of area P, we first simulated the network without
any feedback from C using the triangle stimulus (see left panels of Figs. 5.4 and 5.5): Activity in
both areas then is oscillatory due to the interaction of excitatory and inhibitory pools of neu-
rons. In the primary area P one obtains activated patches along the contour of the stimulus shape
(Fig. 5.4c; cf. Figs. 5.1a and 5.3a). Correlation analysis of multi-unit spike activity from differ-
ent such patches reveals that only activity from neighbored patches is synchronized (modulated
correlograms with central peaks) while activity from distant patches is uncorrelated (flat correlo-
grams, cf.Fig.5.5a,c).

5.2. INTERACTION BETWEEN TWO CORTICAL AREAS 99

B KP2

M2

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

A KP1

M1

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

20 40 60 80 100

20

40

60

80

100
20 40 60 80 100

20

40

60

80

100
10 20 30 40

10

20

30

40

20 40 60 80 100

20

40

60

80

100
20 40 60 80 100

20

40

60

80

100
10 20 30 40

10

20

30

40

20 40 60 80 100

20

40

60

80

100
20 40 60 80 100

20

40

60

80

100
10 20 30 40

10

20

30

40

a b

c

KC Pj KP Ci

KC P3,26KP C9,61

C/CS

populations P/PS

Pi Cj

13 x 13 33 x 33

Figure 5.3: Modeling of area C. a: Representations of three test stimuli in the three areas R (first
column), P (second column) and C (third column). See text for a description of the algorithm gen-
erating the representations in C. b: Reciprocal connection scheme of areas P and C. Neuron Pi

projects to a patch in C/CS according to efferent kernel KPi→C . Vice versa, neuron Cj projects
back to a patch in P according to efferent kernel KCj→P . c: Plots of efferent kernels of neurons
P9,61 (left) and C3,26 (right) at roughly corresponding positions in P and C. Compare with the trian-
gle representations in P and C (part (a), first row). Numbers in the right upper corners correspond
to kernel sizes.

The situation changes if the complete model is simulated including the feedback from area C
to area P (see right panels of Figs. 5.4 and 5.5). Then also correlograms for activity from distant
patches show significant central peaks indicating an enlarged synchronization range (Fig.5.5b,d).

In summary the simulations show that spike synchronization (on a time scale of milliseconds)
under realistic noise conditions is only possible for neurons in either directly (neighbored in area
P) or indirectly (by divergent feedback from area C) connected cortical regions. This is consis-
tent with neurophysiological results where synchronization seems to be restricted to synaptically
connected regions (some millimeters within visual cortex, cf. [40]), but it obviously contradicts
the strong version of the TCH: This states that global assemblies of neurons should be synchro-
nized on the time scale of milliseconds despite the lack of direct connections between parts of
the assembly. However, as we will see later, global synchronization is indeed possible on a larger
time scale of tens to hundreds of milliseconds.

5.2.2 Multiple stimuli

According to the TCH synchronous fast (gamma) oscillations were suggested to solve the bind-
ing problem. In this subsection we test our model using a superposition of three test stimuli, a
triangle, an ellipse, and a rectangle (cf. Fig. 5.3a). Here the representation of each stimulus in
P is a certain set of orientation selective patches (see Fig. 5.6c), and the binding problem is to
coordinate activity of patches that belong to one representation in P as well as corresponding
representations in P and C. Previous models solved this kind of binding problem for example
by phase coding (e.g. [150]). That means, assemblies representing different stimuli are activated
during different phases of one gamma period. However, there exists little experimental evidence
for this kind of coding. Rather, experiments investigating the representations of several simul-
taneously presented stimuli indicate uncorrelated activity between assemblies for the different
stimuli corresponding with flat correlograms (e.g., [168]; cf. Fig. 2.8). In case of a phase-coding
mechanism the correlograms should be modulated with certain shifts of the central peaks.

Figure 5.6a,b shows simultaneous recordings of spike activity from neurons in P and C. Multi-

100 CHAPTER 5. MODEL OF VISUAL CORTICAL AREAS

0

50

100
A

y
la

b
e
l1

0

50

100

150
B

y
la

b
e
l2

0

1

2

3

4

5

6

7

8

9

10
C

y
la

b
e
l3

0 100 200 300 400 500 600 700
0

1

2

3
D

xlabel1

y
la

b
e
l4

0

50

100
A

y
la

b
e
l1

0

50

100

150
B

y
la

b
e
l2

0

1

2

3

4

5

6

7

8

9

10
C

y
la

b
e
l3

0 100 200 300 400 500 600 700
0

1

2

3
D

xlabel1

y
la

b
e
l4

e

g

h

time t [msec]

#s
pi

ke
s

C
SU

 P
#s

pi
ke

s[
10

]
pa

tc
he

s
P

a

c

d

time t [msec]

no feedback with feedback

fb

#s
pi

ke
s

P

Figure 5.4: Spike trains for single stimulus condition. Left panels (a-d) correspond to the model
with inactivated feedback from area C, right panels (e-h) correspond to the complete model. a/e:
Summed spike activity in population C. b/f: Summed spike activity in population P . c/g:
Summed spike records of 10 different activated patches representing the triangle stimulus in pop-
ulation P Ordinate unit corresponds to 10 spikes. d/h: Potentials and spikes of single units taken
from three activated patches of P . Membrane potential ordinate unit corresponds to 100mV.

unit spike activity is depicted separately for the different (sub)assemblies representing the three
stimuli (triangle, ellipse and rectangle). The recordings of one assembly in C (Fig. 5.6a, e.g. the
bottom row for the rectangle assembly) show periods of fast oscillatory activity lasting for a few
hundred milliseconds alternating with longer periods of essential silence. Comparing the three
recordings from C, one observes that only one assembly is in the fast activity state at a time. This
results from the structure of the associative memory in area C, which prefers separated activation
of the three addressed assemblies (see section 4.6; cf. [89]).

Multi-unit activity of patches belonging to the three assemblies in area P reveals similar results
(Fig. 5.6c) as in area C. The recordings show periods of fast and precise (little phase jitter) oscil-
latory activity (fast state) lasting again for a few hundred milliseconds alternating with periods
of relatively slow and unordered activity (slow state). When looking at different patches of one
assembly one observes that activity is synchronized only during the fast state, but asynchronous
during the slow state. Moreover, corresponding assemblies in P and C are simultaneously either

5.2. INTERACTION BETWEEN TWO CORTICAL AREAS 101

−50 0 50
0

0.5

1

−50 0 50
0

0.5

1

0 20 40 60 80
0

0.5

1

0 20 40 60 80
0

0.5

1

pa
tc

h−
C

C

m
ax

 p
at

ch
−

C
C

time lag [msec] time lag [msec]

patch distance [neuron] patch distance [neuron]

d

ba

c

no feedback with feedback

Figure 5.5: Analysis of spike activity from area P when stimulating with a triangle (cf. Figs. 5.4c,g
and 5.1a). Plots a, c correspond to the model with inactivated feedback from area C, while plots
b, d correspond to the complete model. a, b: Cross correlograms for multi-unit activity from
two (distant) activated patches in area P. c, d: Maximal correlations (maximized over time lag)
vs patch distance for pairs of activated patches in P. Without feedback significant (central) peaks
occur only for nearby patch pairs, while for the complete model also distant patch pairs are
synchronized.

in the fast or in the slow state. Comparing with the single stimulus conditions, one finds that the
slow state is very similar to the results without feedback from the higher area, and that the fast
state is very similar to the results of the complete model (cf. Fig. 5.4).

Mean firing rates show a superposition of the assemblies representing the three stimuli (Fig.
5.7a,b). In contrast correlation analysis reveals that spike activity within one assembly is synchro-
nized on a timescale of milliseconds (modulated correlograms with central peaks, see Fig. 5.7c
for the triangle assembly in area P), while spikes of different assemblies are uncorrelated (flat cor-
relograms, see Fig. 5.7d for the cross correlation of triangle and ellipse assemblies in P). This is
consistent with findings of specifically modulated and unmodulated correlograms in neurophys-
iological experiments described in section 2.2.4 using multiple stimulus objects (see Fig. 2.8).

Cross correlations for activities of corresponding assemblies in P and C show modulations
with the central peak shifted for about half a period (Fig. 5.7e for the triangle assembly), which
occurs similarly for a single stimulus in the complete model (data not shown, cf. [91]). However,
fast oscillatory activity in different visual areas is consistently reported to be synchronized with
zero phase lag. In section 5.3.2 we will discuss this apparent inconsistency in more detail.

Figure 5.7f shows the cross correlations for two distant triangle patches in area P (patches as
in Fig. 5.5a,b), but on a larger time scale. While the correlations on the finer time scale looked
very similar to Fig. 5.5b, here the correlogram shows one broad central peak indicating non-
oscillatory synchronization on a larger time scale. In our simulations these broad peaks result
from the switching between two activity states as described above, and they occur centered on

102 CHAPTER 5. MODEL OF VISUAL CORTICAL AREAS

0

100

200

300
A

yl
ab

el
1

0

100

200

300
B

yl
ab

el
2

0
1
2
3
4
5
6
7
8
9

10 C

yl
ab

el
3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3
D

xlabel1

yl
ab

el
4

}
}
}

}

}

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

a

c

d

time t [msec]

#s
pi

ke
s

C
SU

 P
#s

pi
ke

s[
10

]
pa

tc
he

s
P

b

#s
pi

ke
s

P

Figure 5.6: Spike trains for a superposition of three stimuli in the complete model. a: Summed
spike activity in population C for the triangle (top row), ellipse (middle row) and rectangle as-
sembly (bottom row). b: Summed spike activity in population P for the triangle (top row),
ellipse (middle row) and rectangle assembly (bottom row). c: Summed spike records of 10 differ-
ent activated patches representing the triangle (rows 6–9), the ellipse (rows 3–5) and the rectangle
stimulus (rows 0-2) in population P . Ordinate unit corresponds to 10 spikes. d: Potentials and
spikes of single units taken from three activated patches of P representing the triangle stimulus
(same neurons as in Fig. 5.4d,h). For membrane potentials ordinate unit corresponds to 100mV.

the time origin even for activity from different areas. In section 5.3.3 these results are further
discussed and related to findings of broad peaks in physiological data.

5.3 Relation to neurophysiological results

5.3.1 Two-bars experiment

In section 5.2.2 we investigated scene segmentation using a superposition of three different stim-
ulus objects (Fig. 5.6). The neuron groups representing one stimulus tended to be simultaneously
in the so-called slow state or the fast state, thereby segmenting the superposition. Cross correla-
tions between cell groups coding features corresponding to a common stimulus were modulated,
while cross correlations remained flat, if the cell groups coded features corresponding to differ-
ent stimuli. These results are consistent with experimental findings of specifically modulated
and unmodulated correlograms [60, 44, 168, 108] (cf. Fig. 2.8). Figure 5.8 shows the results from
a simulation where we used a stimulus configuration in analogy to these experiments (using

5.3. RELATION TO NEUROPHYSIOLOGICAL RESULTS 103

−100 −50 0 50 100
0

0.5

1

A
D

−100 −50 0 50 100
0

0.5

1

C
D

E

−100 −50 0 50 100
0

0.5

1

C
P

D
C

D

−1000 −500 0 500 1000
0

0.1

0.2

0.3

0.4
C

C
p

a
tc

h
D

20 40 60 80 100

20

40

60

80

100
10 20 30 40

10

20

30

40

time lag [msec]

e f

dc

time lag [msec]

pa
tc

h−
C

C

a b

spike rates P spike rates C

x
C

P
P

A
C

x
P

P

Figure 5.7: Analysis of the spike activity shown in Fig. 5.6 when stimulating with a superposition
of three stimuli (triangle, ellipse, rectangle; complete model). a, b: Spike rates in population P
and C. c: Auto-correlogram (AC) for summed spike activity of the triangle assembly (all triangle
patches) in population P . d: Cross-correlogram (CC) for summed spike activity from the triangle
and ellipse assemblies. e: CC for the triangle (sub-)assemblies in populations P and C. f: CC for
the same patch pair as in Fig. 5.5a,b, but on a larger time scale.

static instead of moving stimuli). We recorded simultaneously from two locations testing two
stimulus configurations. In the first configuration the two locations were stimulated by one ob-
ject (Fig. 5.8a,b), while in the second configuration they were stimulated by two different objects
(Fig. 5.8c,d). This is reflected in modulated correlograms for the first configuration and flat cor-
relograms for the second.

In earlier proposed phase coding models (e.g. [150]) simultaneously presented stimuli are seg-
mented by serially activating the corresponding assemblies in a fixed order within one gamma-
period (about 30 msec). However, these models inconsistently would predict correlograms with
shifted peaks if the two groups code different entities.

5.3.2 Inter-areal synchronization

Interpreting area C for example as V2 or V4, the finding of anti-phase interactions for the fast
oscillatory synchronization between areas P and C (Fig. 5.7e) is inconsistent with experimental
results of zero-phase synchronization between connected visual areas (e.g. [41, 43, 45, 52]) which
depends apparently on cortico-cortical connections (e.g., [43, 122]).

Further simulations illustrated in Fig. 5.9 (see also [92]; cf. [150, 16, 17]) showed that activity
from the two areas is correlated with either zero-phase or anti-phase depending on the inter-
areal transmission delays and the oscillation period T . Small delays support zero-phase, medium
delays around T/2 result in anti-phase, whereas large delays around T support again zero-phase.

104 CHAPTER 5. MODEL OF VISUAL CORTICAL AREAS

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

−100 0 100
0

0.1

0.2

0.3

0.4

0.5

−100 0 100
0

0.1

0.2

0.3

0.4

0.5

p1

p1 p2

p2

C
C

 p
1

x
p2

C
C

 p
1

x
p2

area P

area P

time lag [msec]

a

d

b

c

Figure 5.8: Analogy of the ’two-bars-experiments’ ([60, 44, 168, 108]; cf. Fig. 2.8). Top panels:
First stimulus configuration: One single rectangle. Bottom panels: Second stimulus configura-
tion: Two different rectangles. a: Spike rates in area P (black patches indicate activity) for the first
stimulus configuration. Activities of patches p1 and p2 as indicated were used for correlation
analysis. b: Cross correlation for activities of patches p1 and p2 indicates synchronization (cen-
tral peak and side-peaks). c: Spike rates in P for the second stimulus configuration. Same patches
p1 and p2 as in (a,b) were used for correlation analysis. Now the two patches are activated by
different objects. d: Flat cross correlation for patches p1 and p2 indicates uncorrelated activity.

For the simulations so far we used transmission delays around 7msec (2.5msec - 10msec, see
[92] for details), which is about T/2 for an oscillation frequency around 60Hz. Using smaller
inter-areal delays yields zero-phase correlations as in the neuro-physiological experiments, but
then our model does not exhibit the scene segmentation capability as described before, because
inhibition cannot be bridged by the small delays. Since experiments rather support broad de-
lay distributions reaching values in the tens of milliseconds [179] we simulated a model variant
with a bimodal distribution of inter-areal transmission delays (including very small delays cor-
responding to fast conducting myelinated axons but also broadly distributed large delays corre-
sponding to slowly conducting unmyelinated axons). We obtained both (near) zero-phase corre-
lations and scene segmentation [92]. Moreover, we proved in further simulation studies [97, 98]
that spike-time-dependent synaptic plasticity [112, 15, 53, 1] in an oscillatory regime strengthens
synapses with delays in the range of one oscillation period such that zero-phase-lag is stabilized
even for realistic delay distributions which would otherwise lead to anti-phase correlations.

5.3. RELATION TO NEUROPHYSIOLOGICAL RESULTS 105

0 20 40 60
0

5

10

15

20
tim

el
ag

A2

0 20 40 60

20

30

40

50

60

os
ci

llf
re

q

B2

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

ph
as

el
ag

delayms

C2

0 20 40 60

0.4

0.42

0.44

0.46

0.48

delayms

m
ax

co
rr

D2

a b

c d

ph
as

e
la

g
(n

or
m

.)

synaptic delay s [msec]

tim
e

la
g

[m
se

c]

f
[H

z]
m

ax
 C

C

synaptic delay s [msec]

Figure 5.9: Dependences of P × C cross correlation properties on inter-areal synaptic delay pa-
rameter s (see text). a: Time lag of the cross correlation peak nearest to zero (absolute values).
b: Oscillation frequency in populations P and C (measured by Fourier analysis of the correl-
ograms). c: Phase lag of cross correlation peak; same values as in (a), but normalized to one
oscillation period. d: Height of cross correlation peak (normalized values).

5.3.3 Synchronization on larger time scales

Correlation analysis of spike activity from neurophysiological recordings reveal evidence for syn-
chronization on different time scales [123, 127, 126, 125]. Widths of correlogram peaks show a
tripartite distribution classified as T(ower) (width at half height < 16 ms), C(astle) (16− 180 ms)
and H(ill) peaks (> 180 ms). Both T and C peaks seem to depend on cortico-cortical connections
[122] and thus the broad peaks in our model (cf. Fig. 5.7f) may be related to the C-peaks.

In our model the widths of the broad peaks depend on the duration of the fast state of oscilla-
tory activity (section 5.2.2), and the switching between the slow and fast state is obviously due to
habituation of activated neurons. In simulations (see Fig. 5.10; cf. [92]) we manipulated the dura-
tion of the fast state by varying the habituation parameters of the neurons. For strong habituation
we obtained durations down to 20-50msec where the enhanced periods often degenerated to a
single retrieval cycle. For weak habituation the duration of the fast state periods increased up
to seconds, and could result in the sustained activation of a single assembly without switching
between different assemblies.

The correlograms found in neurophysiological experiments were either flat or showed cen-
tral peaks, while oscillatory modulations or central troughs were observed rarely. According to
our model one should expect oscillatory modulations with central troughs at least for two com-
peting stimuli. To investigate under which conditions our model reproduces the experimentally
observed correlograms we used up to seven overlapping stimuli (Fig. 5.11; cf. [92]). While broad

106 CHAPTER 5. MODEL OF VISUAL CORTICAL AREAS

0 1000 2000 3000 4000
0

1

2

0

1

2

yl
ab

el
1

xlabel1

A

0 1000 2000 3000 4000
0

1

2

0

1

2

yl
ab

el
2

xlabel2

B

0 1 2 3 4
0

100

200

300

400

C

cc

yl
ab

el
3

xlabel3

0 200 400 600 800 1000
0

100

200

300

400

D

dd

yl
ab

el
4

xlabel4τhdecay time [msec]

τh = 50 msec

τh = 1000 msec
τh = 150 msec

+

*

+

*

time t [msec]

time t [msec]

ac
tiv

ity
 in

 P
 a

nd
 C

ac
tiv

ity
 in

 P
 a

nd
 C

m
ea

n
le

ng
th

 [
m

se
c]

m
ea

n
le

ng
th

 [
m

se
c]

threshold increment H [mV]

d

ca

b
H = 0.6 mV
H = 0.2 mV

H = 1.5 mV

Figure 5.10: Length of the enhanced periods depends on the habituation parameters. a,b: Activi-
ties in C (top three rows) and P (bottom three rows) for the triangle (top), ellipse (mid), and rectan-
gle (bottom) assemblies. a: Example of long enhanced periods (H = 0.2 mV, τh = 400 msec, mean
length ≈ 500 msec). b: Example of extremely short enhanced periods (H = 3.0 mV,τh = 150 msec,
mean length ≈ 20msec). The enhanced periods often degenerate to single retrievals. c: Depen-
dence of the mean length of the enhanced periods on the threshold increase H per emitted spike
for τh = 50 msec (∗), τh = 150 msec (◦, standard value), τh = 1000 msec (+). d: Dependence of the
mean length of the enhanced periods on the decay time constant τh of the increased threshold for
H = 0.2 mV (∗), H = 0.6 mV (◦, standard value), H = 1.5 mV (+). Mean lengths were computed
for activity in C from 10s trials and averaged over the three activated assemblies.

peaks were absent for single stimuli, and two stimuli induced anti-phasic correlations, we ob-
tained the experimental correlogram peaks if many assemblies are activated at the same time.
Then correlograms remain flat for different assemblies and show single broad peaks within an
assembly.

A possible conclusion could be that the brain is actually in a ’many-activated-assemblies’
regime even without external stimulation, where ongoing activity supposedly wanders perma-
nently through different local assemblies [4, 11, 190, 85, 149]. Indeed, the behavior of our model
without stimulation but with enhanced noise level is very similar to the case of many simulta-
neously presented stimuli. In this view, a stimulus causes the corresponding assembly to spend
more time in the fast state as in the other assemblies. This would be in line with recent findings
of stimulus dependent two-state fluctuations of membrane potentials [10] and could also explain
neurophysiological results described next.

5.3. RELATION TO NEUROPHYSIOLOGICAL RESULTS 107

−1 0 1
0

1

0

1

−1 0 1
0

1

τ [sec]
−1 0 1

τ [sec]
0 2 4 6 8 10

t [sec]

b c

e f

h ig

d

a

Figure 5.11: Broad peak correlations. a-c: Example where one assembly is activated by a stimu-
lus. a: Recordings of spike activity for seven assemblies. Only the bottom one is activated. Other
assemblies enter spontaneously the fast state. b: Auto correlation for the activated assembly. A
broad peak is not visible due to tonic activation and absence of competition. c: Cross correlation
for the activated assembly (most bottom trace in a) and a non-activated assembly (second bottom
trace in a) remains flat. d-f: Same as a-c but now two assemblies are activated simultaneously
by two stimuli resulting in correlograms with oscillatory modulations. g-i: Same as a-c but now
all seven assemblies are activated simultaneously by seven stimuli resulting in correlograms that
are either flat or exhibit single central peaks.

5.3.4 Attention and biased competition

The results from the previous sections suggest an involvement of attentional processes in scene
segmentation (cf. [188, 186]). The prevalence of one of the three stimulus objects was switched on
a time scale of tens to hundreds of milliseconds (fast and slow state, see section 5.2.2). This may
be interpreted as self-generated attention switching serially from one object to the next. For the
following simulations we modeled the top-down attentional bias explicitely as additional tonic
excitation to the neurons of one selected assembly in area C.

We tried to simulate a scenario as in experiments described in [147] (Fig. 5.12; see also [121,
146, 84, 92]). In this scenario two stimuli in the receptive field of a single neuron were used,
a preferred and a poor stimulus. Presenting only the preferred stimulus, the neuron exhibits a
strong response, while the response is weak, if only the poor stimulus is used. Interestingly, for
the superposition of the two stimuli, the response lies between the responses for single stimuli,
indicating competition between the two stimuli. If attention is directed to one of the stimuli, the
neuron responds as if only the attended stimulus were present. Thus the effect of attention is

108 CHAPTER 5. MODEL OF VISUAL CORTICAL AREAS

similar to a filter that eliminates or weakens unattended stimuli. Another result of the neuro-
physiological experiments was that the described effect scales with the receptive field size, i.e.
the effect was stronger in higher visual areas (e.g. V4 or IT), and weaker in lower visual areas
(e.g. V1 or V2).

20 40 60 80 100

20

40

60

80

100

0 1000 2000 3000
0

10

20

30

40

50

0 1000 2000 3000
0

10

20

30

40

50

ba c

time [msec] time [msec]

no att
+ rect
x elli
* pair

pairs
 att rect
 att elli
* no att

ra
te

 [
sp

ik
es

/s
ec

]

ra
te

 [
sp

ik
es

/s
ec

]

Figure 5.12: Attention and biased competition. Responses of single neurons in P and C when
presenting one or two objects. PSTHs (bin size 500 msec) were computed from 5 trials of length
3000 msec. The stimuli were active during the first 2000 msec of each trial. a: Stimulus configura-
tion and location of recorded neurons in P. b: Responses of a neuron in C when stimulating with
the rectangle (+), the ellipse (×), and both the rectangle and ellipse (∗). The ellipse is the preferred
stimulus (response > 40 spikes/sec), the rectangle the poor stimulus (response < 10 spikes/sec).
The intermediate response for the pair stimulus indicates competition. c: Responses of a neu-
ron in C when stimulating with both the rectangle and ellipse. When attention is directed to
the rectangle (box symbol) or the ellipse (circle symbol) the neuron responds as if the non-attended
stimulus were absent.

The results illustrated in Figure 5.12 (see also [92]) show that our model can reproduce ex-
perimentally measured neuron responses quite well. It explains the competition and the filter
property by two activation states (fast and slow states). For one stimulus a neuron is in the fast
state all the time, while with two competing stimuli the neuron is only about half the time in the
fast state; attentional bias, however, brings the neuron into the fast state again.

5.3.5 Synchronization on larger space scales

The model as proposed so far should be interpreted as the bidirectional connection of two small
patches of cortex. In the real visual system many such structures may be arranged in parallel. To
account for more global interactions we simulated a model variant with larger areas (area P size
30 × 500; area C size 15 × 250), where area C was modeled as a topographic associative memory
[92]. While the structure of area P remained unchanged, the connection kernels within area C and
between areas P and C were reduced to sizes 31 × 21 and 15 × 11, respectively. The kernel sizes
in y-direction were larger to model competition in y-direction and topography in x-direction. As
stimuli we used three long bars that extended over the whole areas and were represented by
three learned assemblies in area C. Fig. 5.13 shows results from a single simulation of the model
stimulated with all three bars simultaneously. At time t = 4sec attention was directed for three
seconds to the upper bar, while attention was absent in the rest of the simulation.

When attention is directed to one of the three bars the whole corresponding assembly enters
the fast state, similarly as if only the attended bar were present in the visual field (cf., section
5.3.4). In addition, the globally synchronized oscillations of the smaller model (see section 5.2.2)
mutate to waves of activity moving fast along the bar. At a given time the oscillation phase

5.3. RELATION TO NEUROPHYSIOLOGICAL RESULTS 109

Figure 5.13: Results for a simulation of the larger model stimulated by three bars simultaneously
(simulation over 20sec). Between 4sec and 7sec after stimulus onset attention is directed to the
(upper) bar 1. a: Spike rates in area P. 50 activated patches (black) reflect each of the bar stimuli.
b: Plot of the membrane potentials vs time for the central neurons of the activated patches in area
P for bar 1 (neurons at vertical position 5 and horizontal positions 8,28,...,498; the plot contains
one line for each neuron). c: Plot of spike activity vs. time for the central neurons of the acti-
vated patches for bar 1,2,3 (vertical positions 5,15,25 and horizontal positions 8,18,...,498). White
patches indicate strong activation of neurons (fast state). Without attention the fast state is split
up between the three bar representations due to competition (slow waves, fluctuating binding).
Attention selects one of the bars (static binding).

is a continuous function of the location along the bar representation (Fig.5.13b) reflecting the
global shape of the stimulus (cf. [42]). However, fast activity in P and C is synchronized only
locally corresponding to the feedback range of intra-areal and inter-areal connections, and cor-
relation analysis reveals that the central peaks of (long-term) correlograms decay with distance
[92]. Moreover, short-term correlograms (time window 50msec) show that the central peaks of
the long-term correlograms result mainly from averaging over phase-shifts that increase with dis-
tance from the recording sites. A similar effect can also be observed for the broad peaks (section
5.3.3).

Without attention the representations of the three bars compete in the higher area C. At a
fixed location the situation is very similar to the local model (section 5.2.2): The assembly corre-
sponding to the most salient stimulus wins and enters the fast state. After some time (e.g. some

110 CHAPTER 5. MODEL OF VISUAL CORTICAL AREAS

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

0

0.5

1

−1 0 1
0

0.5

1

−1 0 1 −1 0 1 −1 0 1

dist=100dist=0 dist=10 dist=50

C
C

H
 b

1
x

b1
C

C
H

 b
1

x
b2

time lag [sec]

distance

b1
xb

1
C

C
H

 p
ea

k
he

ig
ht

la
rg

er
 t

im
e

sc
al

e

−5 0 5

0.1

0.2

0.3

−20 0 20

−0.5

0

0.5

φ=0.1 msec

−5 0 5

−20 0 20

φ=0.3 msec

−5 0 5

−20 0 20

φ=0.6 msec

−5 0 5

−20 0 20

φ=1 msec

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

dist=38dist=18dist=8dist=4

time lag [msec]

lo
ng

−
te

rm
 C

C
of

 s
ho

rt
−

te
rm

 C
C

pe
ak

 o
ff

se
t d

en
si

ty

distancelo
ng

−
te

rm
 C

C
 p

ea
k

he
ig

ht

fi
ne

 t
im

e
sc

al
e

d

e

f

b

a

c

1

1.5

0.5

0 100 200 300 400 500

Figure 5.14: Analysis of long-range synchronization of neural activity in the more global model
shown in Fig. 5.13 stimulating with three bars. a-c: Analysis of activity from single units in
activated patches of area P representing the attended first bar (cf. top panel of Fig. 5.13c between
4sec and 7sec) on a fine time scale. a: Distribution of peak offsets of short-time correlograms
(time window 50 msec) for neuron pairs with distances 4,8,18,38 (from left to right). b: The
corresponding long-time correlograms (time window 10sec) reveal only small peak offsets of
0.1, 0.3, 0.6, 1.0 msec. c: Peak height of the long-time correlograms over neuron distance. d-f:
Correlation analysis of spike activity from activated patches of area P representing the three bars
during absence of attention (cf. Fig. 5.13c between 0sec and 4sec, and also between 4sec and 7sec)
on a coarser time scale. Correlograms (bin size 10 msec) are computed from 100sec trials. d: Auto
and cross correlograms for patch pairs (distances 0,10,50,100) corresponding to bar 1. e: Cross
correlograms for patch pairs corresponding to bar 1 and bar 2 (horizontal distances 0,10,50,100).
f: Relative peak height of correlograms over patch distance for patch pairs of bar 1.

hundred milliseconds) the assembly habituates and returns to the slow state, such that another
assembly can enter the fast state. However, for the global model it turns out that the assembly
switching is a rather local property. At different locations different assemblies can be in the fast
state at the same time.

Correlation analysis reveals that synchronization on the larger time scale extends further [92]
than synchronization on the finer time scale. Actually it turns out that the synchronization range
depends mainly on the duration of the fast state, and is therefore independent of the extension
of the underlying synaptic connections. It could therefore be manipulated, e.g., by modulatory
synaptic input or attention. This long-range synchronization on a larger scale of space and time

5.4. SUMMARY OF THE MECHANISMS IN THE MODEL 111

might be an important property of the visual system to integrate local features of possibly new
objects in the visual field. Although synaptic connectivity is local, global synchronization can
be achieved as soon as neighboring local stimulus (sub)representations (e.g., in a topographical
area) are compatible with each other.

5.4 Summary of the mechanisms in the model

In the following the main relevant mechanisms in the model are summarized.

5.4.1 Local synchronization

Synchronization within a local cortical patch emerges from the interaction of local excitatory and
inhibitory neurons. Typically a few excitatory neurons (the most strongly excited ones) spike
first. The excitatory feedback on neighboring neurons launches an avalanche of further excita-
tory and inhibitory neurons to spike. In the end inhibition prevails because of the larger time
constants of inhibitory conductances (cf. τex and τin in Table 2.1 on page 26), non-linear inhibition
with an equilibrium potential near the resting potential (cf. Eex and Ein in Table 2.1), weaker
refractoriness and habituation in inhibitory neurons (cf. τh and H in Table 2.1), and the corti-
cal architecture leading to an increasing number of inhibitory neurons firing in a late phase (see
Figs. 4.15 and 4.16).

The principle that the most excited neurons fire first and determine by feedback other related
neurons to fire, is exactly the mechanism postulated for spiking associative memory (see sec-
tions 4.3 and 4.6). The result is a coincident activation of highly connected neuron groups, i.e., of
neural assemblies.

5.4.2 Fast oscillations

The interplay of excitation and inhibition leads very naturally to locally synchronized oscilla-
tions. Qualitative simulation results (data not shown) suggest that the amplitude of the oscilla-
tion is determined mainly by delays of the inhibitory feedback loop. E.g, large amplitudes are
caused by large transmission delays with a small variance, but also by weak connections from
the excitatory onto the inhibitory neurons, or by strong connections from excitatory neurons onto
excitatory neurons.

The period of the oscillations is also a non-trivial phenomenon. The oscillations become usu-
ally faster for stronger extra-areal input. This happens both for constant gradual extra-areal input
(as input from area R to area P in our model), but also for synchronized spike input (areas P and
C in our model). For the latter case, two reciprocally connected areas can even enter a resonant
state where one (or two or even more) waves of spike activity can drive each other (see below).

If the spikes of inhibitory neurons arrive asynchronously at the excitatory neurons the oscil-
lations will come to an end. This happens for example if the variance of the transmission delays
are on the order of the oscillation period (i.e., for fast oscillations), or by strong extra-areal input
onto inhibitory neurons.

In general the amplitude and period of the oscillation depends in a quite complicated way
on the strengths and transmission delays of the connections between the different excitatory and
inhibitory neuron populations. Analysis of simplified architectures can be found in [197], where
usually the presence of transmission delays and connections from inhibitory neurons onto in-
hibitory neurons are ignored.

5.4.3 Intra-areal long-range synchronization

Within one (e.g., topographically organized) area synchronization of fast oscillations (gamma
range, 30-60Hz) is possible only locally corresponding approximately to the range of intra-areal

112 CHAPTER 5. MODEL OF VISUAL CORTICAL AREAS

synaptic connections, or common input from another area. Actually, synchronization as mea-
sured from correlogram peak heights decreases continually with distance. Although the peaks of
long-term correlograms are usually centered around zero delay this is only an effect of averaging
in the relatively large time window. It turns out that for larger distances practically all phase rela-
tions can occur in short-time correlations, whereas only in long-term correlations phase 0 prevails
while the height of the central peaks decreases to zero with increasing distance. Thus, our results
give evidence against the idea of global phase coding in the gamma range (e.g., [150]) where it is
assumed that representations to be bound are synchronized globally (time window 1-5msec) in a
certain phase of the gamma period (< 30msec).

5.4.4 Inter-areal long-range synchronization

Oscillatory activity from distant cortical areas can be synchronized with zero-phase lag if (1) the
transmission delays are small [150], (2) if the inter-areal connections with larger delays couple
specifically onto inhibitory neurons [23] (which is not very plausible since this would assume
inhibition within an assembly), or (3) if synapses of inter-areal connection with delays around
multiples of the oscillation period are specifically strengthened by spike-time-dependent synap-
tic plasticity [15, 53, 112, 97].

Using only small transmission delays with a small variance resulted indeed in zero-phase
synchrony in our model. However, then the attention switching described below was absent.
Zero-phase synchronization in conjunction with switching can be obtained if many synaptic con-
nections exhibit small delays (e.g., due to myelinated axons) and the remaining connections have
broadly distributed delays (e.g., due to unmyelinated axons). In this case we can even expect
that a spike-timing-dependent synaptic learning rule as described in neurophysiological experi-
ments will strengthen the connections with delays around multiples of the oscillation period as
postulated above in item (3).

Similarly as argued in section 5.3.5, synchronization as defined by long-term correlograms ex-
hibiting central peaks around zero delay does not mean that the neuron populations are actually
permanently synchronized as required, for example, by phase-coding models postulating bind-
ing by synchronization of gamma oscillations (e.g., [150]). Instead, practically all phase relations
occur, and only using a larger time window the different phases average out to zero-phase-lag
peaks in the correlograms.

5.4.5 Attentional switching between two activation states

When stimulating with a superposition of several stimuli the result is an activation of all corre-
sponding representations on a large time scale of spike rates (or at least the 3sec window of [139]).
On a finer time scale one observes a competition of the representations at locations where they
are overlapping, i.e., at locations where different activated local assemblies are controlled by the
same inhibitory neurons.

For our model of two reciprocally connected cortical areas we observed two activation states
characterized as a fast state (corresponding to fast synchronized oscillations) and a slow state
(slower less synchronized activity). After stimulus onset the most excited local assembly at a
given location enters the fast activation state. After some time (e.g., 50 − 500 msec) the excita-
tory neurons of the assembly get habituated and enter the slow state, while the most strongly
activated one of the remaining assemblies enters the fast state. The switching corresponds to a
rather non-oscillatory synchronization on a larger time scale reflected by broader peaks (widths
at half height perhaps also 50−500 msec) in the correlograms. In contrast to the fast gamma oscil-
lations the range of synchronization is quite independent of the underlying synaptic connectivity
and can reach arbitrarily far for weak habituation or an attentional bias.

The two states of activation result from the reciprocally connections of two cortical areas, where
an activated assembly in one area can either be supported by a corresponding assembly in the
other area or not. If on the other hand a cortical area is reciprocally connected to two (or more)
other distant cortical areas then we should be able to distinguish three (or more) activation states

5.4. SUMMARY OF THE MECHANISMS IN THE MODEL 113

corresponding to either no support from another area, support from only one further area, or
support from both distant areas.

5.4.6 Binding

In this context binding is defined as the coincident activation of the distributed elements of cells
to be bound in the sense of the temporal correlation hypothesis (TCH; see section 2.2.4).

Binding the cells of a single local assembly is possible by the local quasi-complete synaptic
connectivity, similarly as suggested by the theory of spiking associative memory (see chapter 4,
in particular section 4.6) even for a larger cortical area with topographic connections.

Similarly, binding different corresponding local assemblies distributed at distant cortical loca-
tions (for example within one large topographical area, or in many different areas) is possible by
the specific (i.e., Hebbian learned) synaptic connections between the local assemblies (either direct
or indirect).

Our results do not support the strong version of the TCH postulating that global binding oc-
curs on the fine time scale of the gamma oscillations, i.e., that neurons to be bound have to be
synchronized globally within a time window of only 1 − 5msec. This kind of synchronization
is possible only for neighboring local assemblies where the phase correlations decay gradually
with distance: Only nearby cell groups show zero-phase synchronization with central peaks in
the correlograms, but distant groups rather uncorrelated activity with flat correlograms (see sec-
tions 5.3.2 and 5.4.4).

Our results rather support a weaker version of the TCH requiring global synchronization
within a larger time window of perhaps 30 − 300msec. This type of synchronization is possible
over distances larger than connectivity ranges and rather independent of the underlying synaptic
connectivity.

In the presence of multiple stimuli the corresponding local assemblies at a given cortical lo-
cation may compete against each other corresponding to fluctuating binding of the distributed
representations. The binding can become static in the presence of an attentional bias, similar as
only one stimulus were present.

In the next chapter we will further discuss possible solutions to the different binding problems
in the light of our simulation results.

114 CHAPTER 5. MODEL OF VISUAL CORTICAL AREAS

Chapter 6

Binding in the brain

6.1 Is there a binding problem in the brain?

In the introduction we have argued that it is plausible to assume that representing internal and
external states in the brain is accomplished in a non-trivially distributed way (see section 2.2.1).
This means there is probably no single location or center in the brain where all the information
necessary for a coherent unified percept is concentrated. Alternative views suggesting localized
representations such as the so-called grandmother neuron inevitably lead to a combinatorial ex-
plosion of the number of necessary locations (e.g., neurons).

Further there is plenty of evidence from neuroanatomy, neurophysiology, and neuropsychol-
ogy that the cortex is organized in anatomical and functional processing streams on both global
and local levels. For example it is commonly accepted that visual processing in the brain on the
global level is segregated into a dorsal (’where’) and a ventral (’what’) stream. The global streams
are further divided on a more local level, such as separate processing of form and color. On the
neural level this is reflected by specialized cells. A neuron can be activated by an object moving
in a certain direction irrespective of the form or the color. Another neuron may respond to a
certain form (e.g., a face) irrespective of its color and location in the visual field. This fits well
to the fact that neurological patients suffering, for example, from brain lesions have very specific
difficulties depending on the location of the lesion (e.g., [47]). There are patients that can copy
the features of a colored form quite good with paper and pencils, but cannot recognize the form
itself (visual agnosia) [48], or other patients that specifically have problems with the recognition
of moving objects [47]. Even on a local level of columns in primary cortical areas (e.g., M1 or
V1) where the interpretation of neural responses is still relatively easy, neurophysiological exper-
iments revealed population codes: For example in V1 the tuning of orientation selective cells is
relatively broad, and a visual stimulus activates usually a large number of orientation selective
cells [184]. Thus the information of the actual orientation of a contour is coded in the activation
of a large group of neurons which can be identified with local cell assemblies (see sections 2.2.2).
The situation is similar for the prediction of the direction of a hand movement when recording
from primary motor cortex [54].

All these arguments are support for the hypothesis that information processing in the brain is
distributed in a non-trivial sense (see section 2.2.1) which causes “the” binding problem. Actually
there are several distinct binding problems which may be one reason why there is still some
controversy on the question if there is actually a problem of binding in the brain (e.g. [56, 163,
148]; see also section 2.2.3). Below we will discuss a classification of different binding problems
relevant for our purposes.

115

116 CHAPTER 6. BINDING IN THE BRAIN

6.2 Critique of the strong Temporal Correlation Hypothesis

6.2.1 Postulations of the strong TCH and phase coding

The temporal correlation hypothesis (TCH) postulates that binding of distributed representations
in the brain is accomplished by neural activity that is correlated in the temporal domain. While the
term “correlated activity” is quite general and could, for instance, also mean complex repeating
spatio-temporal spike patterns such as synfire chains [2, 3], the predominating interpretation is
that of a synchronization of spike activity [191, 168].

The specific prediction of the strong version of the TCH is a global synchronization of elements
to be bound within a very narrow time window of perhaps 1-5 msec [191, 192]. This idea has
been amplified and modified by neurophysiological observations of high-frequency oscillations
(gamma range; 30-60Hz) in the visual cortex apparently reflecting global stimulus properties
[41, 61, 168]. Phase-coding models are popular instantiations of these ideas where it is commonly
assumed that one gamma period (15-30msec) can be partitioned into several time slots, and that
distributed entities to be bound are activated in one of the time slots (e.g., [150]). Thus multiple
objects are represented by the sequential activation of the corresponding cell groups, where the
cells representing the same object are activated within the same time slot. Usually the order of
activation does not change from one oscillation period to the next.

In simulation experiments [150] it has been found that the size of one time slot is about 4-5
msec for realistic neuron parameters (which coincides quite well with the retrieval time in our
biological model of associative memory, cf. section 4.6). Thus within one gamma period there
would be room for about four to seven time slots. If such models are interpreted at the level of
global binding this would mean that up to about seven entities can be integrated to a unified
conscious percept. This conclusion tempted several investigators to speculate about a relation
to results of psychological experiments where humans can hold up to 7 (±2) items in working
memory (cf. [77, 150]).

6.2.2 Critique of phase coding in the gamma range

There are several arguments why we should be cautious with the interpretation of the simulation
results from the phase coding models. First, the architectural relation to the real cerebral cortex is
obscure for most phase coding models. Usually a Hopfield-like architecture is used which does
not reflect a number of neuroanatomical facts or commonly accepted assumptions (see section
2.3.4; cf. [150]). For example, real neurons are either excitatory or inhibitory while Hopfield
neurons (or rather Hopfield units) can make both types of synapses, and the sign of a given
synapse can even change during learning. This discrepancy is sometimes excused by arguing
that a Hopfield unit corresponds actually to a small group of neurons (perhaps 10-100) consisting
of both excitatory and inhibitory cells. But this raises new questions concerning the interpretation
of a spike within such a cell collection, in particular because phase coding models intend to make
a strong point with respect to fine timing of spike activity.

Phase coding within one cortical area modeled as a Hopfield associative memory (e.g., [150])
is apparently based on the following mechanisms: (1) Global excitation within one assembly in
the area; (2) direct global mutual inhibition between different assemblies; (3) local inhibition
such that each Hopfield unit can oscillate independently of the others. When the first neurons
of one assembly start firing the fast global excitatory feedback (1) synchronizes the remaining
neurons of the same assembly within 4 − 5msec, similar to our model (see section 4.6). At the
same time the fast global inhibition (2) delays the activation of concurrent assemblies. For this
the global inhibition must be weak and/or last only shortly (shorter than the excitation) because
other assemblies shall fire in a later time slot of the gamma period, but shall not be suppressed
completely. Finally the strong and long lasting local inhibition (3) shapes the gamma oscillation.
(1) and (2) are a direct consequence of Hopfield’s learning rule. (3) needs an additional neuron
population, usually one additional reciprocally connected inhibitory cell per Hopfield unit. Due
to the complete connections the described Hopfield phase coding model of a cortical area must

6.2. CRITIQUE OF THE STRONG TEMPORAL CORRELATION HYPOTHESIS 117

be interpreted as a small patch of cortex where dense connections between neurons are possible
(e.g., 1 mm3), similarly as argued for the Willshaw model in section 2.3.3.

Thus Hopfield-like phase coding models for local cortical networks make several strong neu-
roanatomical and neurophysiological assumptions which are difficult to prove or falsify. Al-
though we cannot exclude by this argumentation that this kind of phase coding occurs in local
cortical networks it is hard to believe that phase coding as described scales to the global level. Al-
though many authors have simulated two (or more) reciprocally connected Hopfield areas, this
is usually done just to demonstrate that zero-phase synchronization is possible even between
distant areas with considerable delays. For example Ritz et al. [150] simulated a single area us-
ing multiple stimuli to demonstrate phase-coding, and two reciprocally connected areas using a
single stimulus to demonstrate zero-phase synchronization, but they did not simulate two recip-
rocally connected areas using multiple stimuli in order to demonstrate global binding by phase
coding in the gamma range. I suspect that this would require both (1) small transmission delays,
and (2) Hopfield-like inter-areal connections in order to prevent the destruction of the sequential
order of corresponding time slots in the two areas. I.e., it would require that the reciprocally inter-
areal connections were functionally equivalent to the intra-areal connections (and therefore the
two areas would collapse to one single larger area). In particular (2) would be in clear contradic-
tion to neuroanatomical results. It is well known that inter-areal cortico-cortical connections are
almost exclusively excitatory (see section 2.1.3), while the Hopfield architecture would require
mixed excitation and inhibition. The argument that the required long-range inhibition could be
provided indirectly if long-range excitation activates local inhibition polysynaptically is also not
convincing because this would even worsen the transmission delay problem (1). However, it will
probably require further simulations to confirm these suspicions.

The probably most convincing argument against gamma range phase coding is lacking or
even contradicting evidence in neurophysiological experiments. In the so-called two-bars-experi-
ments ([44, 168, 108]; see Figs. 2.8 and 5.8) spike activity is recorded simultaneously from two
neuron groups at two neighboring locations with overlapping receptive fields. When stimulat-
ing with a single coherently moving bar the correlograms show central peaks corresponding to
synchronized spike activity. However, if the two receptive fields are stimulated with two bars
moving in different directions the correlograms remain flat whereas phase coding models would
rather predict shifted peaks.

On the other hand there are indeed experiments where correlograms exhibit shifted peaks
which have been interpreted as evidence supporting the strong version of the TCH and even
phase coding. For example in [106] simultaneous recordings from two neighboring neuron
groups in two different orientation columns of primary visual cortex with different orientation
preferences but largely overlapping receptive fields revealed correlograms with systematic phase
shifts of a few milliseconds. But here the stimulus was a single bar where phase-coding models
predict no phase-shifts. A better interpretation for these results would be that the most excited
neurons best matching the orientation of the bar stimulus fire a few milliseconds earlier than less
excited neurons with non-matching orientation preference. This is exactly what happens also
in our model of spiking associative memory (see section 4.6): The first spikes correspond to the
most excited neurons and determine the result of the retrieval (see Fig. 4.16; cf. [199, 183]).

Finally, there is a principle problem in the interpretation of neurophysiologically observed
synchronization especially over longer distances. Usually the experimenters record from one or
more stimulated neurons. The length of recordings used for computing the correlograms are usu-
ally several hundred milliseconds and involves in addition averaging over several trials. Thus
the interpretation of central peaks in such correlograms must be interpreted as an average effect.
Indeed some authors stress that zero-phase (unlagged) synchronization occurs only on average,
in particular for more distant recording sites [41, 52, 42]. This is consistent with simulation results
from our model. Here gamma synchronization as revealed by central peaks in correlograms can
reach some millimeters, where the peak height decreases gradually with increasing distance of
the recorded neuron groups. However, analyses using time windows of only one or two gamma
cycles reveal that most of the time the neuron groups do not fire in synchrony (see section 5.3.5;
cf. Figs. 5.13 and 5.14). Only when averaging over a larger time window (of hundred millisec-

118 CHAPTER 6. BINDING IN THE BRAIN

onds or more) the various phases average out to zero-phase. This effect happens for long-range
synchronization within one area (Figs. 5.13 and 5.14; cf. [41, 42]), but also for inter-areal synchro-
nization (Fig. 5.9d; cf. [52]). A good indicator of this effect are the decreasing peak heights with
increasing distance or transmission delays. Using very simple oscillators this effect is analyzed
further in [99]. Even for the model of Ritz et al. this effect can be seen in the correlograms (see
Fig. 6d in [150]).

The latter argumentation implies that synchronization over longer distances (e.g.,≥ 1−2mm)
as found in neurophysiological experiments reveals to be a phenomenon of a larger time window
of perhaps hundred milliseconds. On the global level this excludes phase coding in the gamma
range.

6.2.3 Functional relevance of fine timing

The argumentation above points out that the strong TCH and in particular the postulation of
global phase coding in the gamma range are probably not true. This conclusion has been drawn
because of lacking neurophysiological evidence, and because plausible models (such as our visual
model described in chapter 5) incorporating anatomical constraints such as transmission delays
and noise cannot establish global synchronization within the time window suggested by the strong
TCH.

Even if global synchronization on the spike time scale were possible (i.e., if our models were
invalid), there still would be the question about the functional relevance. How could the brain
read out or make use of the global synchronization within a very narrow time slot of all cortical
neurons representing a coherent entity? It is difficult to find an answer (but also to exclude the
existence of an answer).

We can assume that making use of synchronization of two cortical locations A and B at a third
location C would require at least that the synchronization of A and B can be detected at C. If we
assume that the type of synchronization observed in some neurophysiological experiments (e.g.,
[168]) would really occur globally there is still the problem that detection of synchrony will require
a larger time window of perhaps hundred milliseconds (similar to the neurophysiologists com-
puting correlograms by averaging over multiple trials each having lengths of tens to hundreds
of milliseconds; cf., the argumentation in sections 5.3.2, 5.3.5, 5.4.4, and 5.4.3). But then there is
no advantage over binding by synchronization on a larger time scale as suggested by our model.

Note that our argumentation contradicts the use of global gamma synchronization or phase
coding for binding, but not the use of fine timing of spike activity in general. Our results rather
suggest that spike synchronization is functionally very relevant in local or directly connected cor-
tical networks. In our model of spiking associative memory (see chapter 4) the precise temporal
order of the extra-areal input spikes is the crucial factor deciding which assembly gets activated.
And this property is passed on to the output spikes: The first spikes are usually the most relevant
spikes (see Fig. 4.16; cf. [183]). Also for our model of reciprocally connected cortical areas (see
chapter 5) pattern separation in spiking associative memory plays an important role to segment
a scene of overlaying objects, whereas the reciprocal connections between the areas stabilize the
activation of single representations in a way similar to iterative retrieval in more technical models
[160, 170, 171].

Moreover, local fine timing within the range of direct synaptic connections is also important
for synaptic plasticity. In neurophysiological experiments it has been shown that the order of
presynaptic and postsynaptic spikes is decisive if a synapse is potentiated or depressed, where
the relevant time window is below 10msec [112, 15, 1, 53]. It has also been suggested that this
so-called spike-timing-dependent synaptic plasticity (STDP) plays also a role in synchronization
of distant cortical areas connected by reciprocally connections with large transmission delays
[97, 98, 100].

Although we argued that global synchronization in the gamma range is improbable, the occur-
rence and functional relevance of complex global spatio-temporal spike patterns (e.g., synfire chains)
is more likely [2, 3].

6.2. CRITIQUE OF THE STRONG TEMPORAL CORRELATION HYPOTHESIS 119

6.2.4 Different time and space scales for binding by synchronization

There is considerable controversy about the significance of fine timing of spikes, and about the
relevant time window for binding by synchronization. For binding of global representations,
different models suggest different time windows for synchronization, e.g. a fraction of a gamma
cycle (1-5msec; e.g. [150]), one gamma cycle (about 30msec; e.g. [199, 201]), or even several
gamma cycles as in our visual model ([91, 92]; cf. chapter 5).

The TCH basically states that binding is accomplished by neuronal activity that is correlated
in time. For the time window of conscious experience (about 3sec [139]) there can be no dispute
about the truth of a weak form of the TCH (cf. section 2.2.4): Actually, our brain can construct
only one coherent conscious percept at a time; when looking at Fig. 2.6 we can perceive either the
young girl or the old woman, but not a superposition of both. Thus the real dispute about the
TCH is rather about which time scale is used for solving which kind of binding problem.

We have argued that binding is also necessary within one conscious interpretation of a picture.
The introspectively experienced switching between the old and young woman in Fig. 2.6 is sim-
ilar to the activation switching in our visual model (chapter 5; see Fig. 5.6), but differs with two
important respects: First, the switching in our model is not between different incongruent inter-
pretations as in Fig. 2.6, but between the representations of different constituents of one coherent
scene. Second, the time scale of the switching in our model is much finer (at least one order of
magnitude) than in the bistable figure. Thus a reasonable conclusion would be that global syn-
chronization in the brain is possible within a time window of 30-300msec in order to bind globally
distributed local representations, while conscious perception of the whole scene requires the in-
tegration of one or more such sets of synchronized local representations within a time window of
perhaps 300msec - 3sec.

It is important here to distinguish between two kinds of time windows, one for synchroniza-
tion, and another one for perceptual integration. The time window for synchronization would
be required to express unity while in the larger time window for integration relations between
different unified entities can be expressed. Hierarchically, the integration time window of a lower
stage can be identified with the synchronization time window of a higher stage. For example
for phase-coding models as discussed above (e.g. [150]; see section 6.2.2) the synchronization
window is 1-5 msec and the integration window is one gamma cycle (about 30msec). In our vi-
sual model (chapter 5; see Fig. 5.6) the synchronization window is perhaps 30-300msec, and the
integration window for representing a scene containing three shapes perhaps 100msec-1sec.

The results and arguments presented in this work suggest a raw classification of relevant time
and space scales for binding as illustrated by Table 6.1. The time window for local synchroniza-
tion is 1-5msec corresponding to the duration of a retrieval in our model of spiking associative
memory interpreted as a model of a local cortical network (see section 2.3.3). The integration win-
dow for local representations is perhaps 30-300msec corresponding to the interval between two
retrievals (about one gamma cycle) or even the time necessary for iterative retrievals [160, 171].
The integration window for local representations coincides with the time window for global syn-
chronization, whereas the time window for global integration corresponds to the time window
for conscious experience (up to 3sec; [139]). This integration time window corresponds to a syn-
chronization time window on a further “spatial” level for the representation of multiple inter-
pretations. However, the representation of multiple interpretations is apparently not implicitly
integrated in the brain. For this we need additionally explicit conscious reflection and memory.

time window local global (mult. interpr.)
1-5msec synchronization

30-300msec integration synchronization
300msec-3sec integration synchronization

Table 6.1: Different time windows for binding on different spatial (or representational) levels.
The representation of multiple interpretations is apparently not integrated in the brain: At any
time we can see only one of the possible interpretations of a scene (cf. Fig.2.6).

120 CHAPTER 6. BINDING IN THE BRAIN

The classification of time and space scales suggested by this work is consistent with several
theoretical and experimental results. (1) The division of space into a local and global level re-
flects basic results of neuroanatomy concerning a fundamental difference between local cortical
networks with a very dense connectivity within a volume of perhaps 1mm3 and global cortical
networks involving patchy cortico-cortical connections ([27, 3]; see also section 2.1.3). (2) The
division of time into three levels reflects neurophysiological observations of a tri-partite distri-
bution of peak widths in correlograms computed from spike activity [123, 127, 126, 125]. (3)
Based on psychological experiments Pöppel suggested a bi-partite division of time: A narrow
time window of 30msec being the subjective “horizon of simultaneity” or the “temporal quan-
tum” for behavior, and another broader time window of 3sec for a coherent conscious experience
[139, 141, 140]. Actually our tri-partition just extends Pöppels bi-partition by one intermediate
level which can be interpreted as a further structuring of the 3sec time window. (4) The suggested
classification would even be consistent with alternative models such as gamma phase coding at
a local level, although the argumentation in section 6.2.2 rather excludes gamma phase coding on
a global level.

6.3 Sketch of a more global model of binding in cortical areas

6.3.1 Classification of different binding problems

To investigate synchronization of distributed neural assemblies we have proposed a model of
two interacting cortical areas which is compatible with several lines of experimentally observed
phenomena such as synchronization on a fast time scale [40, 168] or a slow time scale [123],
ongoing activity in optical recordings [190], two-state fluctuations of membrane potentials [10],
and attentional or biased competition [147].

Neural assemblies are distributed representations that actually need binding of their compo-
nents, probably by synchronization of spike activity. Before we discuss possible solutions to the
binding problem (BP) in the context of our simulations, note that the BP occurs at different levels
of difficulty.

BP0 Binding between neurons in local cortical network.

BP1 Binding between distant neurons representing externally correlated or co-occurring fea-
tures.

BP2 Binding across different, often unrelated feature dimensions (such as form and color) within
one assembly.

BP3 Dynamic binding (e.g. role assignment) relating different assemblies, where possibly fast
synaptic plasticity is required.

6.3.2 Possible solutions

The simplest binding problems are BP0 and BP1. At least BP0 is well understood by the appli-
cation of the theory of associative memory (see chapters 3 and 4). BP1 is to bind together corre-
sponding subrepresentations like the features of a complex object and perhaps also an abstract
representation of the whole object in a higher area. This problem is relatively simple because
we can assume that specific synaptic connections exist between the subrepresentations. So far,
our model accounts only for this simplest BP: The features are the orientation patches in the pe-
ripheral area P, and the abstract representation are the object assemblies in the central area C.
Another instructive example is the famous picture of the dalmatian dog composed of a chaos of
black patches, (Fig. 2.5; cf. [40]). Here one can observe that BP1 occurs in two subforms: It is
rather difficult if the abstract representation does not (yet) exist as it is difficult to see the dog for
the first time. In contrast, if recognized only once, the dog is much easier to recognize the next
time. So we can assume that actually an abstract representation of this picture was allocated in

6.3. SKETCH OF A MORE GLOBAL MODEL OF BINDING IN CORTICAL AREAS 121

our brains that facilitates the binding of the black patches. However, we are also capable of recog-
nizing the dalmatian dog if we see the picture for the first time, although it will take some time.
We believe that binding in our larger model (Fig. 5.13) — where no global representations of the
bars exist — is similar to this process (although much easier). A refined coding strategy would
not require an extra code for each object. For example different objects could be segmented by
local properties alone, such as continuously aligned contours, cf., e.g. [124]. A process like the
slow waves in our simulations could help to segment a visual scene, although on a relatively
large time scale.

A more difficult problem is BP2 that occurs if binding across different feature dimensions
(such as form and color, cf. Fig. 6.1) is required. In this case we cannot always expect specific
synaptic connections between the different processing streams. For example artificial objects in
the visual field can occur with arbitrary colors, and combinatory coding each of n forms and each
of m colors would require n × m representations. Separating the feature dimensions, however,
requires only n+m representations plus an adequate binding mechanism. Thus, it would be very
inefficient and therefore surprising if the brain would not take advantage of the possibility of
separating different feature dimensions.

Figure 6.1 sketches a more global model to solve at least BP1 and BP2 that follows from our
simulations. Binding between subassemblies of two connected areas, i.e. BP1, is accomplished
by reciprocal excitation leading to the fast synchronized activation state. Local assemblies in
one area are competing with each other and only the winning assembly is routed to the next
higher processing stage. The range of competition is larger for higher areas. The bias of ex-
ternal excitation (e.g., attention) can select the subassemblies to be processed globally. While
the assembly corresponding to a “non-winning” (non-attended) object is suppressed in a high
area, pre-attentive processing may still be possible in a lower area where the corresponding as-
semblies do not compete due to spatial separation. Binding across different processing streams
may be possible due to the indirect reciprocal connections via the primary areas and/or bottom-
up synchronization mechanisms, e.g., locally correlated random fluctuations [72], or a localized
’searchlight’ [35].

An even more serious problem is BP3 which occurs if dynamic binding is required between
different entities. This occurs for example if one tries to understand the sentence “Tom beats
Fritz”. Here one can assume the existence of previously learned representations of the involved
persons (Tom and Fritz), and also representations of the meaning of “to beat” which involves
representations of a beater and a victim, but no prejudicial bias of the role of Tom and Fritz. Here
the binding problem is to assign these roles dynamically to Tom and Fritz. One solution to BP3
could be short-term plasticity that would temporarily connect the representations ’Tom’ with
‘beater’, and similarly ‘Fritz’ with ‘victim’. Although this fast synaptic plasticity (on a time scale
below a second) was proposed already long ago [192] it is experimentally not easy to measure
and its existence is still uncertain today. So the question arises if and how BP3 can be solved
without fast synaptic plasticity.

Note that the structure of BP3 is very similar to BP2. BP2 involves for example understanding
a visual scene containing a red apple and a green pear where temporary associations between
’red’ and ’apple’ and between ’green’ and ’pear’ are involved similarly as for BP3. As we dis-
cussed above BP2 can be solved by a topographical representation where basic feature represen-
tations of the apple and the pear are still connected with the correct color representations due to
spatial separation. This spatial separation principle could also work for BP3 which would reveal
it as a pseudo-problem. A possible solution is the following: “Tom beats Fritz” must be trans-
lated into a topographical generic feature representation where a generic feature representation of
’Tom’ is connected with a generic feature representation of ’beater’, and the same for ’Fritz’ and
’victim’. This could happen for example by visual imagination of a visual scene where Tom beats
Fritz. However, since we seem to understand “Tom beats Fritz” even without visual imagination
there may be involved also non-visual topographical representations. Although it is true that no
synaptic plasticity is required by this solution for BP3 there is still a need for a kind of “working
memory” to preserve e.g. an imagined scene by sustained activity.

Another solution to BP3 not requiring sustained activity or fast synaptic plasticity suggested

122 CHAPTER 6. BINDING IN THE BRAIN

intermediate

primary

central

form color

Figure 6.1: Suggested binding by “slow waves” in a global model of three stages and two pro-
cessing streams (form and color). Thick lines correspond to the fast enhanced activity state, thin
lines to the slow state. In the topographically organized primary area objects separated in space
do not compete with each other and are therefore in the fast state all the time. Competition, i.e.,
switching between different assemblies, occurs only at places where objects are overlapping. In
the smaller topographically organized intermediate area nearby objects compete, and in the cen-
tral area there is global competition. In the central area the “winning” (e.g., attended) assembly
forces by feedback the corresponding assemblies in the peripheral areas to the fast state, and
suppresses overlapping competing assemblies. Binding over different streams is accomplished
indirectly via the primary area due to the reciprocal connections.

by our simulations would rely on common habituation levels of corresponding representations.
For example hearing “Tom beats ...” would first activate two assemblies ’Tom’ and ’beater’ at two
different cortical locations for some time. Subsequently hearing “... beats Fritz” would similarly
activate the representations ’victim’ and ’Fritz’ in the same two areas representing persons and
roles, respectively. After suppressing activity in the two areas binding information would still
be preserved in the habituation variables. If the two areas are unspecifically activated (assuming
that all 4 assemblies are equally primed) one would obtain again ’Tom’ and ’beater’ because they
are less habituated than ‘Fritz’ and ’victim’.

Fast but decaying synaptic plasticity would improve binding in any case. How well the pro-
posed binding mechanisms operate remains to be seen in further future work.

Chapter 7

Conclusions

This thesis mainly contributes to the theory of neural associative memory [174, 204, 104, 129, 69,
105, 134, 29, 160, 171], and to the theory of cell assemblies in the brain [64, 26, 130, 192, 133]. The
results of this work are relevant for technical applications, e.g., for information retrieval, but also
for brain theory and perhaps also for (the connectionist tradition of) artificial intelligence.

On the one hand, neural associative memory models provide efficient methods for information
retrieval. This is true in particular for the classical binary associative nets proposed by Steinbuch
[174], and later analyzed by Willshaw et al. [204] and Palm [129] which is in the following referred
to as the Willshaw model. It delivers an algorithm useful in technical applications for rapid
and fault tolerant access to stored pattern information, where performance can be superior to
classical algorithms of computer science like search-trees, look-up-tables, or hash-tables. Here
the focus of this work is on optimal exploitation of the physical memory, while maintaining a
high retrieval speed, and good fault tolerance. In particular, the role of spikes in the separation
of superimposed patterns has been investigated by the development and analysis of a spiking
variant of the Willshaw model, the so-called spike counter model.

On the other hand, neural associative memory can be seen as a model for local networks
in the cerebral cortex [27], and is therefore closely related to assembly theory. Here the auto-
associatively stored patterns can be identified with Hebbian learned cell assemblies, i.e., discrete
neuron groups presumedly representing internal and external entities (e.g., thoughts and objects)
in the brain. A biological version of the spike counter associative memory has been developed
and simulated as a model for a small patch of cortex using a more realistic spiking neuron model.
Similar as for the technical associative memory our focus is on the separation of patterns overlap-
ping in space and time. On a more global level these questions are related to the feature binding
problem and to phenomena like spike synchronization and fast oscillations observed in neuro-
physiological experiments. In particular, this work investigated predictions of the so-called tem-
poral correlation hypothesis [192, 168] which postulates, for example, that binding in the brain
is accomplished by global synchronization of spike activity of the neurons coding the entities to
be bound (e.g., the features of a common object). For this purpose a larger model of two visual
cortical areas has been simulated, one of them a primary area similar to V1, the other one a more
central area modeled as spiking associative memory containing learned representations of the
stimulus objects.

7.1 Contributions to the theory of Willshaw associative memory

In chapters 3 and 4 the classical theory of Willshaw associative memory is extended in three
directions: (1) Compression of the memory matrix, (2) using spiking neurons, and (3) improving
the analysis technique.

One classical result of the analysis of the binary Willshaw model is that for sparse patterns
with k = ld n (where n is the length of the binary pattern vectors, and k is number of one-

123

124 CHAPTER 7. CONCLUSIONS

entries) a high storage capacity of ln 2 ≈ 0.7 is possible asymptotically for n →∞ which is much
higher than for alternative (e.g., Hopfield-like) models. This means that the Willshaw model can
store asymptotically about 0.7 bit of information per synapse. Since binary synapses are used this
means also that the storage capacity normalized to the required physical memory is ln 2, i.e., the
classical Willshaw model exploits about 70% of the physical memory required for representing
the memory matrix. So far it has been believed that it would be impossible to reach capacity 1 (or
at least exceed ln 2) for truly distributed storage [134].

One surprising result of this work is that asymptotically storage capacity 1 (normalized to the
required physical memory) is possible for the Willshaw model if the binary memory matrix is op-
timally compressed by applying Huffman or Golomb coding (see section 3.2). While for classical
parameters (k = ld n) the memory matrix is incompressible since the memory load (probability of
an active synapse) is p1 = 0.5, it turns out that storage capacity 1 is possible for all sub-linear but
non-logarithmic pattern activities k(n) corresponding to sparse memory matrices with p1 → 0
(sub-logarithmic k) or p1 → 1 (super-logarithmic k). Further, it turns out that even non-optimal
matrix compression (e.g., simply storing the indices of sparse matrix entries) can yield storage
capacity 1 (although only for parameters where ≤ n patterns can be stored).

With respect to fault tolerance a very simple and general result has been derived: Requiring
fault tolerance against (1 − λ)k missing ones in the address pattern (i.e., using only a fraction
λ ∈ (0; 1] of the k ones) decreases the storage capacity by a factor of about λ (see section 3.3.1).
For example, if we want to use address patterns where half of the original ones are missing this
would decrease the asymptotic storage capacity for optimal matrix compression from 1 to 0.5.

It has been shown that using efficiently Golomb coding (see appendix A.3.2) for optimal ma-
trix compression not only increases the storage capacity, but generally even decreases the time
tret required for a retrieval, at least for sequential implementations (see section 3.4). Indeed for
sequential implementations it turned out that matrix compression improves not only the absolute
retrieval time tret but also the information flow fI which normalizes to the amount of retrieved
information, and the retrieval efficiency E which additionally normalizes to the total amount CA

of stored information. Although quite efficient parallel implementations for matrix compression
are possible (see section 3.5.2), it turns out that parallel implementations of the classical Willshaw
model without matrix compression remain superior with respect to tret, fI , and E.

The classical analysis of the Willshaw model is based on a binomial approximation of the er-
ror probabilities. It is assumed that the active synapses are generated independently, and that
for addressing with z one entries the membrane potential XR (number of synaptic inputs) of an
unrelated (non-addressed) neuron can be described by a binomial random variable XR ∼ Bz,p1 .
Actually the synapses are not independent since storing one pattern (or pattern pair) generates
k2 synapses at a time. The true potential distribution has previously been described in [29] and
is denoted in this work as the Willshaw distribution Wz,n,k,M where M is the number of stored
patterns (see section 3.6). We have seen (see Fig. 3.5) that the binomial approximation can differ
quantitatively and qualitatively from the Willshaw distribution even for very large n. In partic-
ular the true Willshaw distribution of membrane potentials can exhibit oscillatory modulations
and a much larger variance than the corresponding binomial approximation. This has severe
consequences for the classical analysis which therefore overestimates storage capacity and fault
tolerance for finite neuron numbers n. In sections 3.6.2 and 3.6.3 it has been analyzed for condi-
tions where the binomial approximation is justified.

Chapter 4 investigated the use of spiking neurons for associative memory. Simple considera-
tions about the separation of overlaying patterns led to the development of a spike counter model
implementing a time-continuous version of the so-called Willshaw retrieval strategy of the clas-
sical Willshaw model (see section 4.3; cf. section 3.1.1) . The spike counter model is superior
to the classical model since it requires for a good retrieval only that the first spikes are correct
(cf. [183]). In contrast one-step retrieval in the classical model requires for a good retrieval that
the less excited addressed neurons must still have a larger potential than the strongest excited
non-addressed (false) neurons (Fig. 4.1). In the spike counter model the first spikes determine
the retrieval result (Fig. 4.2). If the first spikes belong to the (correct) addressed neurons instanta-
neous feedback will pop-out the correct pattern and suppress the false (non-addressed) neurons.

7.2. CONTRIBUTIONS TO THE THEORY OF CELL ASSEMBLIES 125

This effect works best for a low matrix load p1 ≤ 0.5 when addressing with a superposition of
several overlayed patterns (see section 4.4.4). Here the classical one-step retrieval usually yields
also a superposition of many patterns whereas the spike counter model can segregate the indi-
vidual components contained in the address pattern.

In contrast to the classical one-step retrieval the spike counter model can be seen as a clique-
detector where the patterns correspond to cliques if the one-entries in the memory matrix are
interpreted as the edges of a graph (in the auto-associative case). Thus, by choosing appropriate
parameters (internal feedback much stronger than external input; balanced excitation and inhi-
bition) the spike counter model supports the storage of patterns with different pattern activities
k and the autonomous detection of failed retrievals (see section 4.3).

In section 4.4 the spike counter model has been analyzed with respect to fault tolerance
against false one-entries in the address patterns. Analysis using the classical binomial approxi-
mation technique suggests a surprisingly high fault tolerance, in particular for ultra-sparse pat-
terns with sub-logarithmic k(n) (corresponding to p1 → 0). Even if the memory matrix is filled
up according to high-fidelity with λ = 1 for classical one-step retrieval (see section 4.4.2), i.e.,
without requiring fault tolerance against missing ones, we can expect good retrieval even for
κ · k false ones where κ can be polynomial in ln n (cf. eq. 4.34). Since this analysis relies on the
binomial approximation the fault tolerance is certainly overestimated for finite n. However, the
analysis is asymptotically correct for sublinear k(n). For finite n the analysis has been repeated
in section 4.4.5 using the true Willshaw distribution and the refined analysis technique derived
in section 3.6. This resulted in an implicit equation for the maximal possible κ. The true values
are smaller than the estimates of the binomial approximation but for ultra-sparse patterns with
k < ld n still very large values κ � 1 are obtained. In section 4.5.4 these theoretical results are
compared to numerical simulations of classical one-step retrieval and the spike counter model.

In section 4.5 it is shown that the spike counter model can be implemented efficiently (see
Table 4.1). For the classical optimum k = ld n both classical one-step retrieval and the spike
counter model require ∼ nld n steps for a sequential implementation. However, for a parallel
implementation the spike counter model requires already ∼ (ld n)2 steps while classical one-step
retrieval needs only ld n steps.

There is a remarkable coincidence of arguments favoring spiking associative memory, sparse
synaptic connectivity with p1 → 0 corresponding to ultra-sparse patterns with sub-logarithmic
k(n), and optimal matrix compression using Golomb coding. (1) For ultra-sparse patterns with
p1 → 0 storage capacity 1 is approached most quickly, i.e., the largest storage capacities can be ob-
tained for finite n (see Fig. 3.2d). (2) For ultra-sparse patterns still a very large number of patterns
can be stored (e.g., ∼ n2−1/k for constant k). This is almost as much as for the classical optimum
k = cld n (cf. Table 3.1). (3) The time required for a retrieval is particularly short for ultra-sparse
patterns. The efficiency measures tret, fI , and E are better for smaller k (see sections 3.4 and 3.5).
Note for example from eq. 3.57 that for constant k a retrieval can be implemented sequentially in
sub-linear time. (4) The fault tolerance of spiking associative memory against false one-entries in
the address pattern is particularly good for ultra-sparse patterns (see eq. 4.34). And correspond-
ingly, (5) spiking associative memory enables best pattern separation for small p1 → 0 as obtained
for ultra-sparse patterns (cf. section 4.4.4).

7.2 Contributions to the theory of cell assemblies

The theory of Willshaw associative memory in chapters 3 and 4 is closely related to the postu-
lation of local cell assemblies in a small patch of cortex. The binary memory matrix of Willshaw
associative memory can be seen as an idealized model of the neural connectivity below perhaps
a square millimeter of cortex surface (see section 2.3.3). Thus the classical results concerning
sparseness, storage capacity, and number of storable patterns apply at least qualitatively to local
cortical networks if they actually contain local assemblies.

Interestingly, the results of this work suggest a method to test the postulate of local cell as-
semblies in a neurophysiological experiment measuring the variance Var(XR) of the postsynaptic

126 CHAPTER 7. CONCLUSIONS

potentials XR of a given neuron when unspecifically stimulating a large number z of neurons
(see section 3.6.5). The experiment is based on results in section 3.6.3 where it is shown that
Var(XR) ∼ z2 (see eq. 3.122) if the active synapses are generated according to learning of local
Hebbian cell assemblies (corresponding to the Willshaw distribution), while Var(XR) ∼ z (cf.
eq. 3.123) if the synapses are generated independently (corresponding to the binomial approx-
imation). For large z the difference should be large enough to be measurable in neurophysio-
logical experiments even if we take into account additional sources of variance (like different
synaptic strengths, incomplete connections, delays, noise, etc.). It may be even possible to esti-
mate the mean size k of a local assembly at a given cortical location (see eq. 3.128).

In section 4.6 a biological version of spiking associative memory has been derived from the
spike counter model (as a continuous version of the classical Willshaw model) using a more real-
istic spiking neuron model, and incorporating principles of local cortical architecture (see section
2.1.3). This model gives a plausible role to excitatory and inhibitory conductances comparable to
the counters of the simpler spike counter model. The model consists of three neuron populations,
one of them excitatory, and two inhibitory. Different versions of the model have been investigated
with respect to retrieval quality and separation of overlaid patterns. In order to allow a perfor-
mance comparable to the technical spike counter model it turned out that the relevant property
of the model is a balanced activation of excitatory and inhibitory conductances. This requires
that at least a subgroup of the inhibitory neurons (i.e., one of the two inhibitory populations,
the so-called “separating inhibition”, see section 4.6; cf. Fig. 4.15) is active in synchrony with
the excitatory neurons. This can be achieved by inhibitory neurons receiving extra-areal (hetero-
associative) address input similar to the excitatory population. In contrast, previously suggested
simpler models [199], where inhibitory neurons receive only local excitation, are generally not
robust against realistic transmission delays.

With realistic neuron parameters (see section 2.4; see Table 2.1) a retrieval occurs within 5
msec (see Fig. 4.16). This means that the spikes of a local assembly are synchronized within a
time window of about 5 msec. When addressing with a superposition of several overlayed pat-
terns the first spikes determine which assembly gets activated. I.e., similar to the technical spike
counter model the delayed feedback of the first spike cause a pop-out of the corresponding as-
sembly, while other assemblies are suppressed. This demonstrates that subtle temporal structure
in neural signals such as spike synchronization on a millisecond-time-scale can guide informa-
tion processing in local cortical networks, despite the relatively large membrane time constants
of the neurons. However, our model did not exhibit phase coding as described in other work us-
ing Hopfield architectures (e.g., [150]) involving sequential activation within even smaller time
windows of all assemblies addressed by the input superposition.

In chapter 5 a model of two reciprocally connected visual cortical areas has been proposed in
order to investigate on a more global level, binding, synchronization and the temporal correla-
tion hypothesis (TCH). The lower area is modeled similar to the orientation selective subsystem
of primary visual cortex V1, the other more central visual area using the biological variant of
spiking associative memory as described in chapter 4. In the lower area objects in the visual
field are represented by distributed activity patches corresponding to local orientations, while
the higher area contains Hebbian learned cell assemblies representing the objects. The two areas
are connected by reciprocal connections associating the representations in the higher area with
certain patterns of activated patches in the lower area corresponding to the objects.

The model has been simulated using either a single stimulus or a superposition of several
stimuli. The simulations for a single stimulus showed that the feedback from the higher area can
induce fast oscillations in the gamma range (30-60Hz), and increase the range of synchronization.
For multiple stimuli the overlaying patterns are separated in the associative memory similarly as
described in chapter 4. In contrast to models with only uni-directional connections (e.g. [199])
the reciprocal connections induce stable attentional activation states where corresponding as-
semblies representing the same one object get activated in the two areas while the assemblies
representing the remaining objects are suppressed. Due to habituation of the excitatory neurons
the attentional state lasts only tens to hundreds of milliseconds and then switches to the next as-
sembly. Correspondingly, for neurons representing only one of the objects two activation states

7.2. CONTRIBUTIONS TO THE THEORY OF CELL ASSEMBLIES 127

can be observed: The attentional or fast state was accompanied with stronger spike activity and
fast oscillations synchronized over longer distances, while the unattended or slow state exhibited
weaker activity, slower oscillations, and a confined synchronization range.

These observations can be interpreted as binding of corresponding representations within and
between areas: The distributed feature representations in the lower area were bound to the object
representation in the higher area by synchronization of spike activity similar as suggested by the
temporal correlation hypothesis. This process is also related to phase coding as suggested in pre-
vious models (e.g., [150]) but differs with respect to several important aspects. Most importantly,
binding occurs on a slightly larger time scale than suggested by the strong version of the TCH.
Common phase-coding models [150] assume that within one gamma period (15-30msec) all sub-
assemblies representing the scene are activated separately in a sequence. Furthermore, phase
coding models usually assume that the order in the sequence does not (or only slowly) change
between different gamma cycles. In contrast, in the model proposed in this work already the
temporal ignition of the fast state along the cortico-cortical connections lasts 15-30 msec (or even
longer), the duration of the fast state of one assembly can be about 50-500 msec, and the repre-
sentation of a whole scene would require perhaps 100msec-1sec or even the whole time window
of conscious experience as postulated in [139] (about 3 sec).

In order to further investigate synchronization on different time scales also a larger variant
of the model has been simulated where also the higher area was modeled as a topographical as-
sociative memory, i.e., all the connections within and between the two areas were only local.
Stimulating with elongated bars we found that zero-phase synchronization on the fine time scale
corresponding to the gamma range can result from averaging over a larger time window when
computing spike correlograms, an effect which occurs apparently also in neurophysiological ex-
periments [41, 52, 42]. This means that zero-phase correlograms with central (un-lagged) peaks
do not necessarily indicate that the neurons are really synchronized within a time window re-
quired by phase-coding. Actually the neurons fire most of the time in asynchrony, and only
when evaluating a larger time window this averages out to zero phase. Thus a global cell as-
sembly distributed over the cortex cannot be expected to be globally synchronized within a time
window of 1-5msec.

The results of this work rather suggest that the relevant time window for global binding by
synchronization is at least one order of magnitude longer than suggested by the strong version
of the TCH, perhaps 50-500msec. Common phase-coding models [150] also contradict even ele-
mentary neurophysiological experiments. For example, they would rather predict shifted peaks
in correlograms of neurons representing different entities, while the experimental correlograms
remain flat [60, 44, 168, 108]. In contrast our model seems to be consistent with various phenom-
ena observed in neurophysiological experiments (see section 5.3) such as synchronization on a
fast time scale [40, 168] or a slow time scale [123], ongoing activity in optical recordings [190],
two-state fluctuations of membrane potentials [10], and attentional or biased competition [147].

In chapter 6 binding problems (BP) of different levels of difficulty are classified and discussed
in the light of the simulation experiments presented in this work. Binding within a local cortical
area (BP0) can occur due to local synaptic auto-associative connections as described and analyzed
in chapters 3 and 4 within a time window of 1−10 msec. Binding of corresponding assemblies in
different areas (BP1) can occur due to the reciprocal connections between the areas. If two areas
are directly connected binding of the most relevant assemblies requires perhaps 10−30 msec, but
binding of multiple competing representations can require several hundred milliseconds. Bind-
ing across different processing streams (BP2) corresponding to independent feature dimensions
(like form, color, or location) can occur indirectly via primary topographically organized areas
where the different streams are still represented at the same cortical location. The presented
model even suggests solutions for some forms of the dynamic binding problems (BP3) requiring
neither fast synaptic plasticity nor sustained activity. There are also more difficult binding prob-
lems beyond BP3 which certainly require further assumptions about the functional architecture
of the brain (e.g., multiple instantiations, etc.; cf. [165]). How well the suggested solutions for
BP2 and BP3 work remains to be seen in future studies.

128 CHAPTER 7. CONCLUSIONS

Chapter 8

Zusammenfassung (in German)

Diese Arbeit leistet hauptsächlich Beiträge zur Theorie der Neuronalen Assoziativspeicher [174,
204, 104, 129, 69, 105, 134, 29, 160, 171] und zur Theorie der Neuronalen Assemblies des Gehirns
[64, 26, 130, 192, 133]. Die erzielten Ergebnisse haben eine Relevanz einerseits für technische
Anwendungen im Bereich Information Retrieval, aber auch für die Hirnforschung und für die
neurowissenschaftliche Künstliche Intelligenz.

Hauptergebnisse mit Relevanz für Information Retrieval

Neuronale Assoziativspeicher liefern effiziente Methoden für Information Retrieval, d.h. für den
assoziativen Zugriff auf große Mengen in Form von Mustervektoren gespeicherter Information.
Insbesondere von dem von Steinbuch [174] vorgeschlagenen und später von Willshaw et al.
[204] und Palm [129] analysierten klassischen binären assoziativen Netzwerk, welches im folgen-
den als Willshaw-Modell bezeichnet wird, läßt sich ein Algorithmus ableiten, der in technischen
Anwendungen einen schnellen und fehlertoleranten Zugriff auf Information erlaubt, und der
klassischen in der Informatik eingesetzten Verfahren (etwa Suchbäumen, Look-Up Tabellen oder
Hash-Tabellen) überlegen sein kann. In Kapitel 3 und 4 wurde die klassische Theorie der Will-
shaw-Assoziativspeicher in drei Richtungen erweitert: (1) Komprimierung der Speichermatrix,
(2) Verwendung von spikenden Neuronen, und (3) Verbesserung der Analysetechnik.

Für das Willshaw-Modell ist seit langem bekannt, daß für spärliche Muster mit k = ld n
(wobei n die Länge des binären Mustervektors und k die Anzahl der Einsen ist) asymptotisch
eine hohe Speicherkapazität von ln 2 ≈ 0.7 erreichbar ist, was ein viel höherer Wert als bei alter-
nativen, etwa Hopfield-artigen Modellen ist. Bisher wurde angenommen, daß es für echt verteilte
Speicherung unmöglich sei, Speicherkapazität 1 zu erreichen oder wenigsten ln 2 zu übertreffen.

Ein überraschendes Resultat dieser Arbeit ist aber, daß Speicherkapazität 1 (normalisiert zum
belegten physikalischen Speicher) asymptotisch tatsächlich möglich ist, wenn man die Speicher-
matrix auf optimale Weise komprimiert, etwa durch Anwendung einer Huffman- oder Golomb-
Kodierung (siehe Abschnitt 3.2). Obwohl für klassich logarithmische Musteraktivität k = ld n
die Speichermatrix nicht komprimierbar ist da hier die Matrixbeladung p1 = 0.5 ist, ergibt sich
Speicherkapazität 1 für alle anderen sub-linearen k(n) wo entweder p1 → 0 oder p1 → 1.

Diese Befunde ergeben vor allem für technische Anwendungen des Willshaw-Modells eine
Reihe von Vorteilen (aber auch für die Simulation biologischer Modelle). (1) Der physikalische
Speicher wird viel besser ausgenutzt. (2) Für alle sub-linearen k(n) (und nicht nur für k = ld n)
kann man hohe Speicherkapazität erreichen, was das Finden von geeigneten Kodierungen er-
leichtert. (3) Es ergibt sich ein sehr einfacher Zusammenhang zwischen fehlenden Adreß-Einsen
und der Speicherkapazität: Wenn man mit nur λ ·k der Einsen adressiert (λ ∈ [0; 1]) so verringert
sich die Speicherkapazität um Faktor λ. (4) Matrixkomprimierung mit einer Golomb-Kodierung
verbessert nicht nur die Speicherkapazität, sondern für sequentielle Implementierungen auch die
Auslesegeschwindigkeit (selbst wenn man zur ausgelesenen oder insgesamt gespeicherten Infor-
mation normalisiert). Auch für parallele Architekturen existieren effiziente Implementierungen,

129

130 CHAPTER 8. ZUSAMMENFASSUNG (IN GERMAN)

obwohl hier das klassische unkomprimierte Modell überlegen bleibt.
In Kapitel 4 wurde der Nutzen spikender Neurone für Assoziativspeicher untersucht. Ein-

fache Überlegungen über die Trennung überlagerter Muster führten zur Entwicklung, Analyse
und Implementierung des sogenannten Spike-Zähler-Modells (spike counter model) als einer zeit-
kontinuierlichen Variante des Willshaw-Modells. Das Spike-Zähler-Modell bietet Vorteile, da
für ein gutes Ausleseergebnis nur die Korrektheit der Neurone mit den höchsten Potentialen
(die zuerst feuern) verlangt wird. In diesem Fall wird die instantane Rückkopplung zu einem
Pop-Out des richtigen Musters und gleichzeitig zu einer Unterdrückung der falschen (nicht
adressierten) Muster führen. Dies funktioniert am besten für geringe Matrixbeladung p1 ≤
0.5 wenn mit einer Überlagerung mehrerer Muster adressiert wird. Im Vergleich zum klas-
sischen Einschrittverfahren bietet das Spike-Zähler-Modell eine Reihe von weiteren Vorteilen:
(1) Es lassen sich Muster mit unterschiedlicher Musteraktivtäten k speichern. (2) Fehlerhaft ver-
laufende Auslesevorgänge können frühzeitig erkannt und abgebrochen werden. (3) Insbeson-
dere für ultra-spärliche Muster mit sub-logarithmischem k(n) und p1 → 0 erhält man eine hohe
Fehlertoleranz gegen κ · k falsche Einsen im Adreßmuster, wobei κ polynomiell in ln n wachsen
darf (Gl. 4.34). (4) Das Spike-Zähler-Modell kann sequentiell und parallel effizient implementiert
werden, auch in Kombination mit Matrixkompression.

Die bisherige Analyse des Willshaw-Modells beruht auf einer Binomialapproximation der
neuronalen Potentialverteilung von der man u.a. die Fehlerwahrscheinlichkeit p01 (Gl. 3.6) ablei-
tet. In dieser Arbeit wurde gezeigt, daß diese Approximation der sogenannten Willshaw-Vertei-
lung unter Umständen sehr schlecht sein kann (Abschnitt 3.6). Die tatsächliche Willshaw-Poten-
tialverteilung kann oszillatorische Modulationen und eine viel größere Varianz als die Binomi-
alapproximation aufweisen, was zu einer Überschätzung von Speicherkapazität und Fehlerto-
leranz führen kann (Fig. 3.5). Für die Varianz konnte eine Näherungsformel hergeleitet werden
(Gl. 3.122), mit deren Hilfe die Fehlertoleranz des klassischen Willshaw-Modell und des Spike-
Zähler-Modell genauer vorhergesagt werden kann (siehe Abschnitt 4.4.5).

Hauptergebnisse mit Relevanz zur Hirnforschung

Das Willshaw-Modell steht in enger Beziehung zur Assembly-Theorie der Gehirnforschung, da
sich neuronale Assoziativspeicher auch als Modell für lokale Netzwerke in der Großhirnrinde
interpretieren lassen [27]. Hierbei können die autoassoziativ gespeicherten Muster mit Hebb’sch
gelernten Zellen-Assemblies identifiziert werden, d.h. mit diskreten Neurongruppen von denen
angenommen wird, daß sie der Repräsentation interner oder externer Entitäten im Gehirn dienen
(etwa von Gedanken oder Objekten). Leider konnten die postulierten Zellen-Assemblies noch
nicht im Gehirn nachgewiesen werden, da man für einen direkten Nachweis eine sehr große
Zahl Neurone gleichzeitig ableiten müßte, was technisch sehr schwierig ist.

Interessanterweise kann man aber aus der eben beschriebenen Diskrepanz zwischen Will-
shaw-Verteilung und Binomialapproximation eine Methode für die Hirnforschung ableiten, wie
man die Hypothese lokaler Assemblies in einem neurophysiologischen Experiment überprü-
fen könnte (siehe Abschnitt 3.6.5). Das Experiment beruht darauf, daß Binomialapproximation
und tatsächliche Willshaw-Verteilung bei zufälliger Stimulierung von z Adreßneuronen unter-
schiedlich große Varianzen in den Membranpotentialen vorhersagen. Bei unabhängig gene-
rierten Synapsen (entsprechend der Binomialapproximation) würde die Varianz nur linear in z
wachsen, während sie bei Hebb’ sch gelernten Synapsen (entsprechend der Willshaw-Verteilung)
quadratisch in z wachsen müßte. Weiter erscheint es möglich, die mittlere Größe k einer lokalen
Assembly in einer gegebenen kortikalen Region abzuschätzen (Gl. 3.128).

Ein weiteres Problem der Hirnforschung (aber auch der neurowissenschaftlichen Künstlichen
Intelligenz [130]) ist das sogenannte Bindungsproblem, d.h. zu erklären wie aus der Aktivität
über das ganze Hirn verteilter Zellgruppen etwa kohärente Wahrnehmungen erzeugt werden.
Als mögliche Lösung wurde die sogenannten zeitlichen Korrelationshypothese (temporal correla-
tion hypothesis, TCH; [192, 168]) vorgeschlagen. Ein wichtiges Postulat der TCH ist etwa, daß
Bindung im Gehirn durch eine globale Spikesynchronisation der die zu bindenden Entitäten
kodierenden Neurone erreicht wird (z.B. die Merkmale eines gemeinsamen Objektes).

131

Um Bindung und Synchronisation in lokalen kortikalen Netzwerken zu untersuchen wurde
in Abschnitt 4.6 vom Spike-Zähler-Modell unter Verwendung realistischerer Neurone ein bio-
logisches Modell eines spikenden Assoziativspeichers abgeleitet. Unterschiedliche Varianten
des Modells wurden in Bezug auf Auslesequalität und Separation überlagerter Muster unter-
sucht, wobei eine Performanz vergleichbar mit der des technischen Spike-Zähler-Modells er-
reicht werden konnte. Mit realistischen Neuronparametern (Tab. 2.1) dauert ein Auselesevor-
gang ungefähr 5 msec. Wie beim Spike-Zähler-Modell verursacht die verzögerte Rückkopplung
der ersten Spikes einen “Pop-Out” der entsprechenden Assembly, während andere Assemblies
unterdrückt werden. Diese Ergebnisse zeigen wie feine zeitliche Struktur in neuronalen Signalen
die Informationsverarbeitung in lokalen kortikalen Netzwerken trotz relativ großer neuronaler
Membran-Zeitkonstanten steuern kann.

In Kapitel 5 wurde ein Modell zweier reziprok verbundener visueller kortikaler Areale ent-
wickelt um auf einer globaleren Ebene Bindung, Synchronisation und Vorhersagen der TCH zu
untersuchen. Das niedrigere Areal wurde ähnlich zum orientierungsselektiven Subsystem des
primären visuellen Kortex V1 modelliert, das andere eher zentrale visuelle Areal als die biolo-
gische Variante eines spikenden Assoziativspeichers. Im primären Areal werden Objekte im vi-
suellen Feld durch lokalen Orientierungen entsprechenden verteilte Aktivitätsflecken repräsen-
tiert, im zentralen Areal durch Hebb’sch gelernte Assemblies.

Simulationen ergaben, daß die Rückkopplung vom zentralen zum primären Areal schnelle
Oszillationen im Gamma-Bereich (30-60Hz) induzieren und den Synchronisationsbereich der
neuronalen Aktivität vergrößern kann. Bei mehreren Stimuli werden überlagerte Muster ähn-
lich wie in den spikenden Assoziativspeichern separiert. Die reziproken Verbindungen verur-
sachen stabile “attentive” Aktivierungszustände, wobei in den beiden Arealen entsprechende
Sub-Assemblies aktiviert werden, und die anderen Assemblies unterdrückt werden. Wegen Ha-
bituation der exzitatorischen Neurone halten diese attentiven Zustände nur einige zehn bis einige
hundert Millisekunden lang an und schalten dann auf eine andere Assembly um.

Die beschriebenen Beobachtungen konnten als Bindung zusammengehöriger Repräsentatio-
nen in und zwischen kortikalen Arealen interpretiert werden. Im Unterschied zu Vorhersagen
der starken TCH (z.B. Phasenkodierungen wie in [150]) findet globale Bindung auf einer gröberen
Zeitskala statt. Tatsächlich ergibt sich Synchronisation zwischen weit entfernten Neuronen nur
aus der Mittelung über größere Zeitfenster (vielleicht 50-500 msec). Die Repräsentation einer
ganzen Szene (mit mehreren Objekten) braucht vielleicht 100 msec-1 sec, oder sogar das ganze
Zeitfenster der bewußten Wahrnehmung (etwa 3 sec; [139]). Im Gegensatz zu alternativen Ar-
beiten scheint das in dieser Arbeit untersuchte Modell aber mit vielen neurophysiologisch be-
obachtbaren Phänomenen konsistent zu sein (etwa [40, 168, 123, 10, 147]).

In Kapitel 6 wurden verschiedene Bindungsprobleme unterschiedlicher Schwierigkeitsgra-
de im Zusammenhang mit den in dieser Arbeit beschriebenen Simulationen diskutiert und klas-
sifiziert. Während die durchgeführten Simulationen für einige einfachere Bindungsprobleme
schon plausible Lösungen darstellen, konnten die Ergebnisse auch hinsichtlich schwierigerer
Bindungsprobleme (z.B. dem der Rollen-Zuteilung) extrapoliert werden. Insbesondere erschei-
nen für einige dynamischen Bindungungsprobleme neue Lösungsmöglichkeiten, welche keine
schnelle synaptische Plastizität erfordern.

132 CHAPTER 8. ZUSAMMENFASSUNG (IN GERMAN)

Appendix

133

Appendix A

Information theory

A.1 Basic information theory

A.1.1 Information of random variables

Let X be a random variable on Ω = {ω1, ω2, ...}, and pi := pr[X = ωi] the probability that X has
value ωi ∈ Ω. Then the information of X is defined as

I(X) =
∑
i∈Ω

−pild pi.(A.1)

I(X) can be thought of as the minimal number of yes/no-questions that are necessary on average
to guess the actual value of X , or, in other words, the mean codeword length (in bit) of an optimal
code for outcomes of X (cf. section A.3.1).

Let Y be a second random variable on Ω, and pi∧j := pr[X = ωi ∧ Y = ωj] the compound
probability of X and Y , and pij := pr[X = ωi|Y = ωj] the conditional probability of X given Y .
Then we can similarly define the conditional information I(X|Y) of X given Y as

I(X|Y) =
∑

i,j∈Ω

−pi∧j ld pij ,(A.2)

which can be interpreted as the minimal number of yes/no-questions to guess X , if Y is already
known. Correspondingly, it can be shown that

I(X, Y) = I(Y) + I(X|Y) ≤ I(X) + I(Y),(A.3)

where equality holds if X and Y are independent. This relation is also called the subadditivity of
information.

A.1.2 Transinformation and transinformation rate

The transinformation or mutual information between two random variables X and Y is defined
as

T (X ; Y) = I(X) + I(Y)− I(X, Y) = I(X)− I(X|Y).(A.4)

and can be thought of as the information contained in Y about X (or vice versa), or correspond-
ingly, the number of yes/no-questions that can be saved due to knowledge of Y when guessing
X .

Furthermore, we define the transinformation rate between two processes (Xµ)µ=1,2,... and
(Y µ)µ=1,2,... as

T ((Xµ)µ; (Y µ)µ) = lim
M→∞

1
M

· T (X1, ..., XM ; Y 1, ..., Y M).(A.5)

135

136 APPENDIX A. INFORMATION THEORY

A.1.3 Channels and channel capacity

The information transmission from a stationary source process (Xµ)µ=1,2,... to a target (Y µ)µ=1,2,...

can be described by a channel which can be identified with a transition probability P : ΩIN ↪→
ΩIN assigning for each outcome of (Xµ)µ a probability measure for (Y µ)µ on ΩIN. If Ω is finite and
P is memory-free (i.e. the outcome of Y µ depends only on Xµ), then P can simply be identified
with a matrix of transition probabilities

pij = pr[Y µ = j|Xµ = i].(A.6)

Finally we define the channel capacity CP for a channel P : ΩIN ↪→ ΩIN as the maximal
achievable transinformation rate when varying the statistics of the source process (Xµ)µ=1,2,....
For our purposes it is sufficient to consider memory-free channels where the components Xµ of
the source process are i.i.d. (identically and independently distributed) according to a probability
measure pX . Then we can simply write

CP = sup
pX

T (X ; Y).(A.7)

A.2 Binary channels

In the following we consider the binary case Ω = {0, 1}. For a random variable X on Ω with
p1 := pr[X = 1] the information I(X) equals

I(p1) := −p1 · ld p1 − (1− p1) · ld (1− p1)(A.8)

≈
{

−p1 · ld p1 , p1 � 0.5
−(1− p1) · ld (1− p1) , 1− p1 � 0.5(A.9)

Note the symmetry I(p1) = I(1− p1), and that I(p1) → 0 for p1 → 0 (and p1 → 1). Occasionally we
will need also the derivative of I(p1),

I ′(p1) :=
dI(p1)
dp1

= −ld p1 + ld (1− p1).(A.10)

A binary channel without memory is already determined by the two error probabilities p01 (false
one) and p10 (false zero). For two binary random variables X and Y where Y is the result of
transmitting X over a binary channel we can write

I(Y) = IY (p1, p01, p10) := I (p1 (1− p10) + (1− p1) p01)(A.11)
I(Y |X) = IY |X (p1, p01, p10) := p1 · I(p10) + (1− p1) · I(p01)(A.12)

T (X ; Y) = T (p1, p01, p10) := IY (p1, p01, p10)− IY |X (p1, p01, p10).(A.13)

For the analysis of Willshaw associative memory we are especially interested in the case p10 = 0
and small p01 � 0.5 (cf. appendix B.1). Applying linearization of I(p1) in p1 we obtain

T (p1, p01, 0) = I (p1 + (1− p1)p01)− (1− p1) · I(p01)(A.14)
≈ I(p1) + I ′(p1) · (1− p1) · p01 − (1− p1) · I(p01)(A.15)
≈ (1− eI) · I(p1).(A.16)

For the relative error eI of approximating T (p1, p01, p10) by I(p1) we can write

eI :=
I(p1)− T (p1, p01, p10)

I(p1)
(A.17)

≈ (1− p1)
I(p01)− I ′(p1) · p01

I(p1)
.(A.18)

If we additionally assume p1 � 0.5 we have approximately 1 − p1 ≈ 1, I(p1) ≈ −p1ld p1 (see
eq.A.9), and I ′(p1) ≈ −ld p1 (see eq. A.10). Thus we obtain

eI ≈ I(p01)
I(p1)

− p01

p1
.(A.19)

A.3. OPTIMAL COMPRESSION OF SPARSE BIT STREAMS 137

A.3 Optimal compression of sparse bit streams

In chapter 3 we investigate the Willshaw model of associative memory. Here, information about
pattern pairs is stored in a binary matrix. We find that it is advantageous if sparse matrices are
compressed optimally with respect to information theory. Optimal compression of a bit stream
(e.g., a row of the Willshaw memory matrix) can be achieved by Huffman or Golomb coding
[74, 57, 164, 34]. These strategies are described in the following in more detail.

A.3.1 Huffman codes

As mentioned in section A.1.1 it is known that the expected length l of any binary code for a
random variable X ∈ Ω is at least I(X). More exactly, for any optimal code we have an expected
length l with

I(X) ≤ l ≤ I(X) + 1.(A.20)

Correspondingly, for coding the outcome of n i.i.d. random variables, i.e., X = (X1, X2, ..., Xn),
an optimal code will require mean length l/n → I(X1) per symbol for large n.

Compressing sparse binary vectors (e.g., the matrix rows of the Willshaw memory matrix)
can in principle be done by using Huffman codes which are known to be optimal [74, 34].

When compressing a bit stream where the sparse elements occur with probability p1 one
would proceed as follows: Divide the bit stream in compartments of length n. Then we have
an alphabet Σ containing 2n elements, i.e., all the binary vectors of length n. The probability of
a vector containing exactly k ones would be pk

1 · (1 − p1)n−k. Thus we can construct a Huffman
code that yields optimal compression for this alphabet. In the ideal case the code would decrease
the required physical memory by a factor of I(p1).

However, the compression factor would be limited to 1/n (each Huffman coded vector has at
least size 1 bit). Therefore, for very sparse bit streams (e.g., p1 → 0) we would need very large n
for optimal compression, and therefore also a very large (exponential size!) code tree to represent
the Huffman code.

Thus, Huffman coding is not adequate for compressing very sparse bit streams. Instead we
prefer Golomb codes described in the following.

A.3.2 Golomb codes

Golomb coding can be used for source coding of geometrically distributed random variables [57].
A random variable X is geometrically distributed if pr[X = k] = pk

0 · p1 for k ∈ IN, p1 ∈ (0; 1), and
p0 := 1 − p1. Thus, for a bit stream where the sparse elements are generated with probability p1,
the random variable X would code the so-called run-length between two sparse elements.

The basic idea of Golomb coding is to code the m most probable values of X (i.e., 1,2,..,m) by
themselves (as ld m-bit binary vectors) following a 0. For this m should be a power of 2. E.g., for
m = 4, the value k = 3 would be coded by 011, the value k = 1 by 001. For the next m values the
same codewords are used, but following an additional 1. E.g., for m = 4, the value k = 7 is coded
by 1011, k = 11 is coded by 11011, and so on. Table A.1 shows the Golomb codewords for m = 2,
m = 4, and m = 8.

Although Golomb coding is possible for any m [57], coding and decoding are especially sim-
ple if m is a power of 2: The codeword of k is k DIV m 1’s followed by a 0 and the binary repre-
sentation of k MOD m. Decoding is similarly simple: Start at the beginning (left end) of the word,
and count the number A of 1’s preceeding the first 0. Then the correct decoding of the word is
m · A + R where R ∈ {0, 1, ...,m − 1} is the number represented by the ld m bits following the
first 0. Thus coding and decoding can be performed using only a constant number of additions
and bit shifts. If the values of X are limited by n (which is true for practical applications such
as compressing matrix rows, cf. section 3.2) then bit shifts and additions can be implemented by
parallel circuitry of depth ∼ ln ln n (e.g., [33]). It may be necessary to generate (when coding)

138 APPENDIX A. INFORMATION THEORY

k codeword m = 2 codeword m = 4 codeword m = 8
0 00 000 0000
1 01 001 0001
2 100 010 0010
3 101 011 0011
4 1100 1000 0100
5 1101 1001 0101
6 11100 1010 0110
7 11101 1011 0111
8 111100 11000 10000
9 111101 11001 10001

10 1111100 11010 10010

Table A.1: Golomb codewords of integers k ∈ IN for parameters m = 2, 4, 8.

and count (when decoding) up to n/m prefix 1’s. However, m can usually be chosen such that
the average number of prefix ones remains constant in n.

Let us assume g := pr[X ≤ m] = (1−p1)m. Then the codeword of X has length ld m+1+i with
probability gi ·(1−g) where i is the number of prefix 1’s. We compare the performance of Golomb
coding to Huffman coding when compressing the outcome of n independent binary random
variables, i.e., a binary random vector of length n, where each component is 1 independently
with probability p1 (e.g., a row of the Willshaw memory matrix, cf. section 3.2). The expected
lengths for the Huffman and Golomb coded vector are lH and lG, respectively, and for large n we
obtain

lH/n = I(p1) := −p1ld p1 − (1− p1)ld (1− p1)(A.21)
≈ −p1 · ld p1(A.22)

lG/n := p1 ·
∞∑
i=0

gi · (1− g) · (ld m + 1 + i)(A.23)

= p1 · (1− g) ·

(
(ld m + 1) ·

∞∑
i=0

gi +
∞∑
i=0

i · gi

)
(A.24)

= p1 · (ld m + 1 +
g

1− g
)(A.25)

= p1 ·
(
−ld ln

1
1− p1

+ ld ln
1
g

+ 1 +
g

1− g

)
(A.26)

≈ −p1ld p1,(A.27)

where we used
∑∞

i=0 gi = 1/(1−g),
∑∞

i=0 igi = g/(1−g)2, and ld m = −ld (− ln(1−p1)/− ln g). The
approximations follow from − ln(1 − p1) ≈ p1 which is valid for p1 → 0 (while g remains fixed).
This shows that for p1 → 0 and any fixed g ∈ (0; 1) (or even 0 < a < g < b < 1 for fixed a and b)
Golomb coding is asymptotically as good as Huffman coding and therefore optimal.

The minimum of the overhead term f (g) := 1 + ld ln(1/g) + g/(1 − g) is obtained for gopt ≈
0.513 ≈ 1/2 (Fig.A.1). Thus for a given p1 we can choose a Golomb code with m = ln gopt/ ln(1−
p1), or m = 2[ld (ln(gopt)/ ln(1−p1))] if we want m to be a power of 2.

A.3. OPTIMAL COMPRESSION OF SPARSE BIT STREAMS 139

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Golomb coding parameter g

ov
er

he
ad

 f(
g)

Figure A.1: Memory overhead f (g) := 1+ld ln(1/g)+g/(1−g) for Golomb coding with parameter
m where g = (1 − p1)m (see text). For small p1 Golomb coding requires factor f (g)/ − ld p1 more
memory than Huffman coding. The factor vanishes for p1 → 0 and fixed g (or g ∈ (a; b) for fixed
0 < a < b < 1). Minimal memory overhead occurs for g ≈ 0.513 ≈ 0.5.

140 APPENDIX A. INFORMATION THEORY

Appendix B

Analysis of associative memory

B.1 Information-theoretical storage capacity

Associative memories are used to store and retrieve a finite number M of patterns (see chap-
ter 3). This can be interpreted as transmitting the original source patterns v1, v2, .., vM over a
memory channel, where at the target site (possibly modified) patterns v̂1, v̂2, .., v̂M are received.
Correspondingly, to obtain the channel capacity of eq.A.7 for given M , we have to maximize
the transinformation between the source and target patterns with respect to the statistics of the
source patterns. Thus we can define the absolute storage capacity,

CA := sup T (v1, v2, .., vM ; v̂1, v̂2, .., v̂M).(B.1)

For neural associative memory it is reasonable to argue that the maximal transinformation occurs
for independently generated random patterns. First, the information of the source patterns is
maximal for independent random patterns. Second, if the patterns are correlated the retrieval
error probabilities seem to be increased (and correspondingly the transinformation decreased).
Further we can assume that the retrieval result v̂µ depends only on the corresponding original
pattern vµ. Then the storage capacity is simply

CA ≈ M · sup T (vµ, v̂µ).(B.2)

In the binary Willshaw model binary patterns vµ ∈ {0, 1}n are stored. A further reasonable
assumption is that a high storage capacity can occur only if all the patterns have about the same
pattern activity, i.e., the the same number of one-entries. Thus we will assume that all patterns
are binary random vectors of length n containing exactly k ones. We might further assume that
ŷµ

i depends approximately only on yµ
i , i.e., that the components of the patterns are transmitted

over the channel independently of each other. Then one can apply the theory of binary channels
(sect. A.2) and one obtains with eq.A.13

CA(n, k,M) ≈ M · n · T (k/n, p01, p10)(B.3)

where k/n := p1 is the fraction of ones in an original pattern, and p01 and p10 are the error proba-
bilities of the binary channel. For the Willshaw model we can define further

CA(n, k) := max
M

CA(n, k,M)(B.4)

CA(n) := max
k

CA(n, k).(B.5)

It is useful to normalize CA with respect to the number of physical memory units (usually bits)
necessary to implement the associative memory. By doing so we finally obtain the normalized
storage capacity C. For example, the classical Willshaw associative memory needs n2 binary
synapses and thus C := CA/n2.

141

142 APPENDIX B. ANALYSIS OF ASSOCIATIVE MEMORY

As a prerequisite one usually demands low error probabilities p01 and p10 for the retrieved
patterns (although larger error probabilities will increase CA). For binary associative memory, the
Willshaw retrieval strategy leads automatically to p10 = 0 (see sect. 3.1.1). By further demanding
a so-called high-fidelity requirement

p01 ≤ ε · k

n
(B.6)

for a small positive ε (cf. sect. 3.1.2) we obtain T (k/n, p01, p10) = (1−eI) ·I(k/n) for a small relative
error eI (see eq. A.18)

eI ≤ (1− k

n
)
I(ε k

n)− I ′(k
n) · ε k

n

I(k
n)

.(B.7)

For sparse patterns with small k/n � 0.5 we obtain from eq. A.19

eI ≤
I(ε k

n)
I(k

n)
− ε ≈ ε · ld ε

ld (k
n)

(B.8)

≈ I(ε)
−ld (k

n)
(B.9)

≤
{

I(ε) , in any case
ε , k/n ≤ ε

.(B.10)

Note that typically sparse patterns with k/n � 1/100 are used. Thus requiring for example
ε = 0.01 implies that the relative error is smaller than one percent. This justifies rewriting eq.B.3

CA(n, k,M) ≈ M · n · I(
k

n
) ≈ M · k · ld (

n

k
).(B.11)

Note that for sufficiently small ε the latter approximation even underestimates CA of eq.B.2 since
then T (vµ, v̂µ) ≈ I(vµ) = ld

(
n
k

)
> kld (n/k).

B.2 Auto association and hetero association

In a sense auto-association and hetero-association are equivalent. Auto-association can be inter-
preted as a special case of hetero-association: When we have stored auto-associatively patterns
u1, u2, ..., uM (each a binary vector of length n with exactly k ones) and perform a retrieval us-
ing an address pattern ũµ containing λk of the k ones of an original pattern uµ and additionally
κk false ones, then the analysis of one-step retrieval is almost identical to the analysis of hetero-
association for M pattern pairs with the same parameters n, k (see chapter 3). But note that the di-
agonal of the memory matrix has different statistical properties for auto- and hetero-association.

On the other hand, hetero-association can be interpreted as a special case of auto-association
[129] because storing hetero-associatively the association of pattern pairs uµ → vµ is equivalent
to storing auto-associatively the concatenation (uµ, vµ), and using for the retrieval only a quarter
of the memory matrix.

However, if we think of pure auto-association of patterns u1, u2, .., uM using the whole mem-
ory matrix we must keep in mind that an address pattern ũµ already contains information about
uµ. This amount of information must be subtracted from the information of the retrieval result ûµ

about the original pattern uµ. For estimating the quality of auto-associative memories we define
therefore in analogy to the storage capacity of eq.B.1 the (absolute) completion capacity

CC,A := sup T (u1, u2, .., uM ; û1, û2, .., ûM)− T (u1, u2, .., uM ; ũ1, ũ2, .., ũM)(B.12)
≈ M · n · (T (k/n, p01, p10)− T (k/n, p̃01, p̃10)) ,(B.13)

B.3. RETRIEVAL AND SEPARATION QUALITY 143

where the latter approximation is for the binary Willshaw model, with k/n being the fraction of
ones in a pattern, p01/10 being the error probabilities in the retrieved patterns, and p̃01/10 being
the error probabilities in the address patterns. Note that bidirectional hetero-associative retrievals
[107, 171] should also be analyzed using the completion capacity since retrievals initiated (for
example) in the first pattern area by a pattern ũµ will result in retrieved patterns ûµ and v̂µ in
both pattern areas.

B.3 Retrieval and separation quality

B.3.1 Retrieval quality

To judge the quality of a single retrieval in the Willshaw associative memory model with n neu-
rons where each patterns contains k ones, we can estimate the error probabilities p01 and p10 from
the number of false ones and false zeros in the retrieved pattern, i.e.,

p̂01 :=
#false ones

n− k
(B.14)

p̂10 :=
#false zeros

k
.(B.15)

With eq.A.13 we can estimate the normalized retrieval quality

rN :=
T (k/n, p̂01, p̂10)

T (k/n, 0, 0)
∈ [0; 1].(B.16)

For a perfect retrieval (without any false ones or zeros) we obtain rN = 1. The advantage of rN

over the error probabilities is that we have only a single measure for the retrieval.

B.3.2 Separation quality

While the normalized retrieval quality is sufficient for the classical scenario of addressing the as-
sociative memory using a single address pattern (plus perhaps noise), we may need an additional
measure if we address with a superposition involving N address patterns. Let A1, A2, ..., AN

⊆ {1, 2, ..., n} be the addressed assemblies (i.e., patterns defined as subsets of the neurons). Fur-
thermore, let S ⊆ {1, 2, ..., n} be the set of neurons activated by the retrieval (i.e., the ones in the
retrieved pattern). For i = 1, 2, ..., N let

Âi := S ∩Ai

be the active neurons of assembly i and let

B := ∪n
i=1Âi

be the set of addressed neurons that are active. The winner of the retrieval is the addressed
assembly Aw with the most active neurons, i.e.

w := arg
n

max
i=1

#Âi.

For the judgment of a retrieval when addressing with several patterns we define three straight-
forward measures. First, we define the completeness

v :=
#Âw

#Aw
∈ [0; 1](B.17)

144 APPENDIX B. ANALYSIS OF ASSOCIATIVE MEMORY

denoting the fraction of active units in the winner assembly. For N = 1 we simply have v = 1− p̂10
(cf. eq.B.15). Second, we define the fault value

f :=
#(S −B)

#S
∈ [0; 1](B.18)

as the fraction of non-addressed active units, i.e., the relative number of active units that do not
belong to one of the addressed assemblies. For N = 1 we simply have f = p01 (cf. eq.B.14). Third,
we can define the separation

s :=
#Âw

#B
∈ [

1
N

; 1](B.19)

as the relative number of active addressed units that belong to the winner assembly. If all active
addressed units belong to the winner assembly we have s = 1. If all addressed assemblies get
equally activated we have s = 1/N . Thus we can further introduce the normalized separation

sN :=
s− 1

N

1− 1
N

∈ [0; 1](B.20)

exhibiting values between zero and one. While we still have sN = 1 if all active units belong to
the winner assemblies, now we have sN = 0 for an equal activation of all addressed assemblies.

B.4 Further analysis of Willshaw associative memory

B.4.1 Derivatives of memory load, storable patterns, and storage capacity

From the classical binomial analysis of the Willshaw model in section 3.1.2 we obtained approxi-
mative formulae for the (maximal) memory load p1 (eq.3.9), the (maximal) number M of storable
patterns (eq.3.10), and the storage capacity C (eq.3.12),

p1 = (εk/n)1/k(B.21)

M = −n2

k2 ln(1− p1)(B.22)

C = − ln(1− p1)
ld (n/k)

k
.(B.23)

For a given number of neurons n it is useful to find an optimal k in order to maximize the storage
capacity or the number of storable patterns. For this we have to know the derivatives

p1
′ :=

dp1

dk
=

p1

k2 (1 + ln
n

εk
)(B.24)

=
p1

k2 (1− k ln p1)(B.25)

M ′ :=
dM

dk
=

n2

k2

(
p1
′

1− p1
+

2 ln(1− p1)
k

)
(B.26)

C ′ :=
dC

dk
=

p1
′

1− p1
· ld (n/k)

k
+ ln(1− p1)

1/ ln 2 + ld (n/k)
k2 .(B.27)

Note that these formulae are only valid if k � n, or, asymptotically, if k is sub-linear in n (see
sections 3.1.2 and 3.6).

B.4.2 Optimal storage capacity for moderately sparse patterns

In section 3.2 it is shown that matrix compression can lead to storage capacity 1 asymptotically if
we compress the memory matrix. In general we have a compression method with a compression

B.4. FURTHER ANALYSIS OF WILLSHAW ASSOCIATIVE MEMORY 145

factor izip(p1) such that we can improve the storage capacity from C to Czip. With izip‘ := dizip/dp1
and the definitions of section B.4.1 we can write

Czip :=
C

izip
(B.28)

Czip′ :=
dCzip

dk
=

C ′izip − Cizip
′p1

′

izip
2 .(B.29)

Local extrema of Czip(k) are obtained for Czip′(k) = 0, or equivalently

C ′izip − Cizip
′p1

′ = 0 (!).(B.30)

As can be seen in Fig. 3.2b, both the storage capacity Ccmpr for optimal compression (see eq.3.15)
and the storage capacity Csprs for sparse matrix representation (see eq.3.14) exhibit local maxima
for moderately sparse patterns with super-logarithmic, but still sub-linear pattern size k(n) (see
section 3.2). In the following we compute the corresponding optimal pattern activities k

cmpr
opt and

k
sprs
opt .

Sparse matrix representation

For the storage capacity Csprs corresponding to sparse matrix representation (see eq.3.14) we have
for moderately sparse patterns with p1 → 1 (cf. section 3.2.2)

izip = (1− p1) ln n(B.31)

izip
′ :=

dizip

dp1
= − ln n.(B.32)

In order to compute the optimal pattern activity k
sprs
opt we can write eq.B.30 with the definitions in

section B.4.1 equivalently as

ln
n

k

(
kp1

′

1− p1
(1− 1

ln(1− p1)
)− 1

)
− 1 = 0 (!).(B.33)

With eq.3.22 we can infer the approximations

p1
′

1− p1
≈

1
k2 (1 + ln n

εk)
1
k ln n

εk

=
1
k

(1 +
1

ln n
εk

)(B.34)

− ln(1− p1) ≈ ln k − ln ln
n

εk
.(B.35)

Inserting in eq.B.33 yields

ln(n/k)
(

(1 +
1

ln n
εk

) · (1− 1
ln k − ln ln n

εk

)− 1
)
− 1 = 0 (!).(B.36)

With the substitutions

λ := ln
n

k
⇔ ln k = ln n− λ(B.37)

α := ln n(B.38)
β := − ln ε(B.39)

γ := ln ln
n

εk
(B.40)

we can rewrite eq.B.36 as

λ

(
(1 +

1
−λ + β

) · (1 +
1

−λ + α− γ
)− 1

)
− 1 = 0 (!)(B.41)

⇔ λ2 + λ(1 + 2β)− β(α− γ).(B.42)

146 APPENDIX B. ANALYSIS OF ASSOCIATIVE MEMORY

The relevant solution of this quadratic equation is

λ1 =
1
2

√
1 + 4β2 + 4β(α− γ + 1)− 1 + 2β

2
(B.43)

≈
√

αβ + β2 − 1 + 2β

2
(B.44)

≈
√

αβ,(B.45)

where the approximations are valid for large n. From eq.B.37 we obtain finally

k
sprs
opt = n · e−λ1(B.46)

∼ n · e0.5−ln ε−
√

(ln ε)2−(ln n) ln ε(B.47)

∼ n · (e
√
− ln ε)−

√
ln n.(B.48)

Note that the approximations are very raw and deliver small relative errors only logarithmically
for large n. On the other hand eq.B.46 contains k implicitly in γ. To make use of eq.B.46 we can
start with eq.B.47 to obtain an initial value for γ, and then iteratively apply eqs.B.40 and B.46.
Figure B.1 illustrates k

sprs
opt (n) and Csprs(ksprs

opt) using different approximations.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ε=0.01

Csprs,opt

Ccmpr,opt

0 20 40 60 80 100

0

20

40

60

80 ε=0.01

ksprs
opt

kcmpr
opt

lo
g

k

10

log n10log n10

st
or

ag
e

ca
pa

ci
ty

a b

Figure B.1: Maximal storage capacities for moderately sparse patterns with super-logarithmic
pattern activity k(n) occur at k

sprs
opt (n) for sparse matrix representation and k

cmpr
opt (n) for optimal

matrix compression. The plots show exact values (solid), and approximations according to
eqs.B.48/B.61 (dash-dotted, gray), and eqs.B.47/B.60 (dashed, gray), and eqs.B.46/B.59 after 5
iterations (dashed, black) for high-fidelity parameter ε = 0.01. a : log10 k

sprs
opt and log10 k

cmpr
opt vs.

log10 n. b : C(ksprs
opt) and C(kcmpr

opt) vs. log10 n.

Optimal matrix compression

For the storage capacity Ccmpr corresponding to optimal matrix compression (see eq.3.15) we
have for moderately sparse patterns with p1 → 1 (cf. section 3.2.2)

izip = I(p1) = −p1ld p1 − (1− p1)ld (1− p1)(B.49)

izip
′ :=

dizip

dp1
= I(p1)′ = −ld p1 + ld (1− p1).(B.50)

In order to compute the optimal pattern activity k
cmpr
opt we can write eq.B.30 with the definitions

in section B.4.1 equivalently as

ln
n

k

(
kp1

′

1− p1
(

1
− ln(1− p1)

− (1− p1)I(p1)′

I(p1)
)− 1

)
− 1 = 0 (!).(B.51)

B.4. FURTHER ANALYSIS OF WILLSHAW ASSOCIATIVE MEMORY 147

With p1 ≈ 1 and 1− p1 ≈ − ln p1 we can approximate

(1− p1)I(p1)′

I(p1)
=

− ln p1 + ln(1− p1)
−p1 ln p1

(1−p1) − ln(1− p1)
≈ ln(1− p1)

1− ln(1− p1)
.(B.52)

Inserting in eq.B.51 yields

ln
n

k

(
kp1

′

1− p1
(1 +

1
− ln(1− p1)(1− ln(1− p1)

)− 1
)
− 1 = 0 (!).(B.53)

With the approximations eqs.B.34 and B.35, and the substitutions eqs.B.37-B.40 we obtain

λ

(
(1 +

1
λ + β

) · (1 +
1

(λ + α− γ) · (1− λ + α− γ)
)− 1

)
− 1 = 0 (!)(B.54)

⇔ λ2(β − 1)− λ(2β(α− γ + 1) + 1) + β(α− γ)(α− γ + 1) = 0 (!).(B.55)

The relevant solution of this quadratic equation is

λ1 =
2β(α− γ + 1) + 1

2(β − 1)
−
√

(2β(α− γ + 1) + 1)2 − 4(β − 1)β(α− γ)(α− γ + 1)
2(β − 1)

(B.56)

≈ (α− ln α) · β −
√

β

β − 1
(B.57)

≈ α · β −
√

β

β − 1
(B.58)

where the approximation is valid for large n. From eq.B.37 we obtain finally

k
cmpr
opt = n · e−λ1(B.59)

≈ n · (
n

ln n
)−
− ln ε−

√
− ln ε

− ln ε−1(B.60)

≈ n1−− ln ε−
√
− ln ε

− ln ε−1 .(B.61)

Note that the approximations are very raw and deliver small relative errors only logarithmically
for large n. On the other hand eq.B.59 contains k implicitly in γ. To make use of eq.B.59 we can
start with eq.B.60 to obtain an initial value for γ, and then iteratively apply eqs.B.40 and B.59.
Figure B.1 illustrates k

cmpr
opt (n) and Ccmpr(kcmpr

opt) using different approximations.

B.4.3 For non-sparse patterns asymptotic storage capacity is generally zero

In section 3.2.3 we have seen for non-sparse linear pattern activity k = cn with 0 < c � 1 that
the classical binomial analysis (see section 3.1.2, in particular eq.3.6) can still yield asymptotic
storage capacities in the range of 1 for compressed memory matrices. However, in section 3.6.3
we have shown that the classical binomial analysis is not valid for linear k. The analysis showed
that for k/n = c the variance of the non-addressed neurons potentials is truly quadratic in the
address pattern size z (typically z = k) whereas the binomial approximation (cf. eqs.3.122 and
3.123) yields variances that are only linear in z.

Our original high-fidelity criterion requires for the probability of a false one in the retrieval re-
sult (i) p01 → 0 and (ii) p01/(k/n) ≈ 0 (see section 3.1.2, cf. [134]). For sub-linear k it was sufficient
to require p01 ≤ εk/n for a constant 0 < ε � 1, whereas for linear k = cn we have to require ε → 0
in order to satisfy (i). However, the estimations of capacity (similar as performed in sections
3.1.2 and 3.2.3 using illegally eq.3.6) are still valid for a weaker high-fidelity criterion with small
constant ε and p01 ≤ εc (see appendix B.1). In the following we will demonstrate by taking into
account the true variance of neuron potentials (section 3.6.3) that the actual asymptotic storage

148 APPENDIX B. ANALYSIS OF ASSOCIATIVE MEMORY

capacity for linear k = cn is generally zero, even if the memory matrix is optimally compressed.
We will see that for linear k = cn and any reasonable fidelity criterion only a constant number of
patterns can be stored asymptotically.

For address pattern size z = k = cn (perfect address pattern) we obtain for the expectation
and variance of the potential XR of a non-addressed neuron from eq. 3.101 and eq. 3.119 using
eq. 3.4

E(XR) = k · p1(B.62)
Var(XR) := E(XR

2)− (E(XR))2(B.63)

≈ k2 − k(2k − 1)(1− (k/n)2)M + k(k − 1)e−2Mc2(1−c/2) − k2 · p1
2(B.64)

≈ k2(1− p1
2)− k(2k − 1)(1− p1) + k(k − 1)(1− p1)d(B.65)

=
(
(1− p1)d − (1− p1)2) k2 +

(
1− p1 − (1− p1)d

)
k(B.66)

= a2k2 + bk = a2k2(1 + b/k),(B.67)

where d := −2c2(1 − c/2)/ ln(1 − c2) is a constant with 0 < d < 2, and a2 := (1 − p1)d − (1 − p1)2,
and b := 1−p1− (1−p1)d. If we assume storing only few patterns such that we have only constant
0 < p1 < 1 for n → ∞ (instead of p1 → 1 as suggested by the binomial analysis for high-fidelity;
cf. eq.3.9) then a and b are also constant and we have σ :=

√
Var(XR) ≈ ak → ∞. In analogy to

the approximation of binomials by Gaussians we hypothesize that also the Willshaw distribution
Wk,n,k,M can be approximated by a Gaussian Nµ,σ with corresponding expectation µ = kp1 and
variance σ2. For the error probability p01 ≈ pr[Nµ,σ ≥ k] that a given non-addressed (’false’)
neuron exceeds the threshold k (Willshaw strategy, see section 3.1.1) we can write

p01 ≈ 1−G

(
k − µ

σ

)
≈ 1−G

(
1− p1

a

)
= 1−G

(
1/

√
1

(1− p1)2−d
− 1

)
(B.68)

where G is the Gaussian error function defined in eq. 4.9. Thus for constant matrix load p1 we
have already a constant positive error probability p01. For p1 ≈ 1 (as suggested by the classical
binomial analysis and high-fidelity) we obtain truly p01 ≈ 1 − G(0) = 0.5 asymptotically for
n → ∞ which contradicts any reasonable fidelity criterion. Since p01 is monotonically increasing
in p1 we have also p01 = 0.5 in the limit p1 → 1 for n →∞.

Thus any reasonable fidelity requirement will forbid p1 → 1 asymptotically for n → ∞.
However, for constant p1 < 1 we can store asymptotically only a constant number of patterns
M = − ln(1−p1)/ ln(1−c2) (see eq. 3.29), and therefore we obtain C = MI(c)/n → 0 (see eq. 3.30).
Since I(p1) is also constant we have asymptotically Ccmpr := C/I(p1) → 0.

Appendix C

Simulation tool Felix++

All simulations described in this work have been implemented using the Felix or Felix++ simu-
lation tools. Originally the C based simulation tool Felix has been developed by Thomas Wen-
nekers at the University of Ulm [197] as a universal simulation environment for physical and, in
particular, neural systems. The development of Felix was motivated by the need for a fast imple-
mentation of multi-layer one- or two-dimensional neural structures such as neuron populations.
For this purpose, Felix provides elementary algorithms for single-cell dynamics, inter-layer con-
nections, and learning. Additionally, there exist also libraries for non-neural applications, e.g.,
for general dynamical systems and elementary image processing.

Simulations can be observed and influenced online via the X11/XView-based graphical user
interface (GUI) of Felix. The Felix GUI provides elements such as switches for conditional execu-
tion of code fragments, sliders for online-manipulation of simulation parameters (like connection
strengths, time constants, etc.), and graphs for the online observation of the states of a simulated
system in xy-plots or gray-scale images (see [197, 88] for more details).

During this work the simulation tool Felix++ has been developed as a C++ based object-
oriented extension of Felix. Felix++ provides additionally classes for neuron models, n - dimen-
sional connections, pattern generation, and data recording. Current installations of Felix++ are
running on PC/Linux as well as on 64bit-SunFire/Solaris9 systems. In the following the archi-
tecture of Felix++ is briefly sketched (for more details see [88]).

C.1 Basic architecture of Felix++

Essentially Felix++ is a collection of C++ libraries supporting fast development of neural net-
works in C++ [178, 180]. Thus Felix++ comprises a number of modules each consisting of a
header (with the suffix “.h”) and a corpus (with the suffix “.cpp” for Felix++/C++ or ”.c” for
Felix/C). The header files contain declarations of classes, types, and algorithms, whereas in the
corpus files the declarations are implemented. Figure C.1 illustrates the architecture of Felix++
by classifying all the modules of Felix++ and Felix in a hierarchy.

C.1.1 The core modules of Felix++

The core of Felix++ contains the most important modules required by all other Felix++ modules.

• F2 types.h/cpp declares some elementary type conventions and some global objects.

• F2 time.h/cpp declares classes for time, for example to evaluate the time necessary for com-
puting a simulation.

• F2 random.h/cpp provides several different random number generators (see [142]).

149

150 APPENDIX C. SIMULATION TOOL FELIX++

Felix++

Auxiliary Modules

Core

Felix

random.h/c

gen_sim.h/c

Core gen_obj.c/h

sim_graph.c/h output.c/h

file_graph.c/hF2_time.h/cpp

F2_random.h/cpp F2_parser.h/cpp

F2_simenv.h/cpp

F2_layout.h/cpp

F2_types.h/cpp

F2_parameter.h/cpp

F2_port.h/cpp

F2_numerics.h/cpp

F2_pattern.h/cpp

F2_record.h/cpp F2_receptor.h/cpp

F2_delay.h/cpp

F2_kernel.h/cpp F2_vector.h/cpp

F2_object.h/cpp

F2_libasso.h/cpp

Simulation Components

SSCOscillator.h/cpp F2_association.h/cpp V1Connection.h/cpp
AssoConnection.h/cpp

RandomConnection.h/cpp
DelayKernelConnection.h/cpp

BlankTopoConnection.h/cpp
DemoBlankTopoConnection.h/cpp

GaussConnection.h/cpp
TopoConnection.h/cpp
CorrelatedNoise.h/cpp
UniformNoise.h/cpp

STDPLearner.h/cpp
F2_integrator.h/cpp

IFNeuron.h/cpp
SGNeuron.h/cpp
SSNeuron.h/cpp
GNeuron.h/cpp

InpNeuron.h/cpp

Library

nn.h/c

vector.h/c

numerics.h/c

images.h/c

#include#include

SIMULATION.cpp

Driver/Communication

Figure C.1: Architecture of Felix++: A simulation is a C++ program that includes headers of Felix
and Felix++. Felix++ contains core modules (e.g., F2 simenv.h/cpp; cf. Fig. C.2), auxiliary modules,
and modules for simulation components such as neuron populations and connections between
neuron populations (cf. Fig. C.3). The Felix modules implement a graphical user interface and
elementary algorithms (see [197] for more details).

• F2 layout.h/cpp declares so-called layouts. A layout can be used to define the topology of
a vector (or in terms of C++, an array). For example a population of 1000 neurons can
be arranged as a 10 × 10 × 10 cuboid. Apart from cuboid layouts also ellipsoid layouts are
defined which are useful in particular for saving memory when modeling isotropic local
connectivity (in three dimensions, for example, an ellipsoidal kernel saves almost 50 percent
of the memory required by a cuboid kernel).

• F2 parameter.h/cpp declares classes for simulation parameters. For example, the mem-
brane time constant field of a neuron class is usually declared as such a parameter. This al-
lows conveniently parsing and online reparsing of the parameters from a parameter file as
well as online manipulation via sliders of the Felix GUI (including updating of other depen-
dent parameters). The parameters declared in this module are essentially arrays equipped
with a cuboid layout (see above). Therefore they can be used not only for single parameter
values, but as well for multi-dimensional parameter collections such as parameter vectors
or matrices.

• F2 parser.h/cpp provides the classes for parsing parameters from a parameter file. Usu-
ally, in Felix++ a component class (e.g., a neuron class) is designed in such a way that a
construction of an object is paralleled by parsing the corresponding parameters from a file.
Furthermore, during the simulation the parameter file can be modified and reparsed by
pressing the reparse-button.

• F2 port.h/cpp declares interfaces for the communication between different simulation com-
ponents, so-called ports. For example, a neuron class may contain an output port represent-
ing the spikes of the neuron, and an input port representing synaptic input to the neuron.
Correspondingly, the constructor of a connection component class requires as parameters

C.1. BASIC ARCHITECTURE OF FELIX++ 151

the output port of a neuron population and the input port of another neuron population
such that the spikes from the first population can be propagated to the dendrites of the
second population.

• F2 simenv.h/cpp declares the simulation environment class TSimulationEnvironment
and the component base class TComponent as well as some base classes for special compo-
nents such as neurons (TNeuron) and connections (TConnection). This module should be
included by any simulation program using Felix++. The simulation environment is essen-
tially a container for the simulation components (see below for more details; cf. Fig. C.2),
but provides also additional infrastructure such as look-up tables (for example for Gaus-
sians), random number generators, and much more. Usually, the construction of a simu-
lation component requires a TSimulationEnvironment as an argument, such that the
component is automatically inserted. After construction of all the components, calls to
methods allocate() will allocate memory shared by multiple components (for example
when integrating differential equations via TIntegrator objects; see below). Before start-
ing the simulation all the components can be initialized by calling the init() method of
the simulation environment. Similarly, during the simulation a call to the step() method
will compute one simulation step.

Components:
 − neuron populations
 − connections
 − etc.

allocate()

init()

step()

Simulation Environment

Figure C.2: The simulation environment object (of class TSimulationEnvironment) is essen-
tially a container object containing all the simulation components such as neuron populations
or connections. The components are inserted during construction. Before starting a simulation
a call to method allocate() is necessary to allocate memory. A call to init() initializes the
components, and each call to step() results in the computation of one simulation step.

C.1.2 Auxiliary modules of Felix++

Besides the core modules there are a number of auxiliary modules that provide additional func-
tionality required by only some of the Felix++ component modules, and perhaps also by the
programmer developing a simulation.

• F2 numerics.h/cpp provides a number of useful constants (e.g., π, e, and ln 2) and func-
tions (e.g., density function of Binomials or Gaussians, information and transinformation
functions for binary random variables, etc.). Further declarations provide classes for look-
up-tables and interpolation.

• F2 kernel.h/cpp declares classes for kernels that can be used, for example, for implement-
ing synaptic connections. Kernels are essentially arrays (e.g., of synaptic weights or delays)
that have been assigned a topology via layouts (see F2 layout.h/cpp). The classes defined
in this module enable, for example, the coordination of a neuron population (layout) to a

152 APPENDIX C. SIMULATION TOOL FELIX++

set of kernels. This happens in a rather flexible manner such that each neuron can be as-
signed individually a kernel index, where also certain regularities of kernel arrangements
can be exploited (such as the regularities occurring for the orientation modules in our visual
model; cf. Fig. 5.2a).

• F2 vector.h/cpp provides basic vector functionality. This module also declares classes for
numerical vector parameters (cf. F2 parameter.h/cpp).

• F2 pattern.h/cpp implements classes for various types of patterns. From the pattern base
type (TMPattern) which corresponds simply to a multi-dimensional array there are de-
rived specialized pattern types such as binary patterns (TMbPattern), sparse binary pat-
terns (TMsbPattern), sparse patterns (TMsPattern), or sparse binary spatio-temporal
patterns (TMsbSTPattern). Additionally, further auxiliary classes have been implemented
in order to facilitate the use of patterns. For example, pattern container classes are de-
clared (TMPatternStock and derivatives of TMPatternGroup) for convenient construc-
tion and parsing of pattern groups from parameter files. The TMPatternRanking class
can be used for analyzing neural activity with respect to a set of patterns (i.e., to deter-
mine the pattern in the set that is most similar to the neural activity pattern). Similarly,
the TMPatternHistogram class can be used to create pattern-specific histograms of state
variables (as used, for example, for the threshold distance histograms in Fig. 4.16d-h).

• F2 delay.h/cpp provides classes based on the definitions in F2 kernel.h/cpp for efficient im-
plementation of synaptic delays.

• F2 object.h/cpp declares classes for generating stimulus objects. Further classes can be used
to put static or moving objects in space (derivatives of TMSpace), or to project the stimulus
configuration onto a two-dimensional surface (derivatives of TMSpaceRepresentation).
In the visual model of chapter 5 these classes have been used in order to project a visual
scene of several stimulus objects onto the retinal area R (see Figs. 5.1a and 5.3a).

• F2 record.h/cpp provides the infrastructure for efficient recording of simulation data.

• F2 receptor.h/cpp declares classes for the efficient implementation of various types of re-
ceptors for synaptic transmitters. Derivatives of class TMReceptorPort can be used, for
example, to implement certain transmitter-dependent synaptic conductances. For our neu-
ron model described in section 2.4 we used class TMOffDynamics for implementation
of excitatory AMPA currents (conductance gex; cf. eq. 2.1) and inhibitory GABA-A cur-
rents (conductance gin; cf. eq. 2.2). More complex receptor dynamics are implemented
by classes TMOnOffDynamicsRP and TMSimpleNMDARPwhere the latter can be used to
model NMDA receptor dependent currents (cf. [101]). Actually neuron classes such as
TSSNeuron (which we have used for our biological simulations) or TGNeuron use the
receptor port classes provided by this module. These models can be equipped with an ar-
bitrary configuration of different receptor ports which can be specified in the parameter file
(see below code fragment C.5).

• F2 libasso.h/cpp encapsulates the C-library for associative memory implemented by Fried-
rich Sommer (cf. [171]).

C.1.3 Component classes of Felix++

Based on the core and auxiliary modules there exists already a large number of simulation com-
ponents. Figure C.3 illustrates the class hierarchy of the Felix++ simulation components. They
can be divided into the following component base classes derived from TComponent :

• TNeuron (defined in module F2 simenv.h/cpp) is the base class for all neuron classes. Cur-
rently there are implementations for gradual neurons (TSGNeuron in module SGNeuron.h/-
cpp and TGNeuron in module GNeuron.h/cpp), spiking neurons (TIFNeuron in module

C.1. BASIC ARCHITECTURE OF FELIX++ 153

TMUniformNoise TMEulerIntegrator

TMRK4cIntegrator

TMSTDPLearnerSMA2000 TMPatternRanking

TMPatternHistogram

TNeuron

TIFNeuron

TSGNeuron

TSSNeuron

TGNeuron

TSSCOscillator

TMInpNeuron

TMAssociationPopulation

TMAutoWillshawTAMP

TNoise

TMCorrelatedNoise

TConnection

TMGaussConnection

TMBlankTopoConnection

TMDemoBlankTopoConnection

TMAssoConnection

TMV1Connection

TMRandomConnection

TMTopoConnection

TMDelayKernelConnection

TMAssociation

TMWillshawAssociation

TMcWillshawAssociation

TMFileInpNeuron

TMInputHandleNeuron

TComponent

TMIntegrator TLearner

TMSTDPLearnerFD2002

TObserverTMSpace

Figure C.3: The class hierarchy for the currently implemented simulation components of Fe-
lix++. From the base class TComponent specialized sub-classes are derived for neuron pop-
ulations (TNeuron), noise generators (TMNoise), connections between neuron populations
(TConnection), integration of differential equations (TMIntegrator), synaptic plasticity
(TLearner), representations of stimulus space (TMSpace), and on-line observation of the simu-
lation state (TObserver).

IFNeuron.h/cpp and TSSNeuron in module SSNeuron.h/cpp), and oscillators (TSSCOscil-
lator in module SSCOscillator.h/cpp) which all can be used for biological modeling. Ad-
ditionally, there are classes adequate for technical implementations of associative memory
(TMAssociationPopulation and TMAutoWillshawTAMP in module F2 association.h/-
cpp). For the simulations of biological models in section 4.6 and chapter 5 we used the
simple spiking neuron class TSSNeuron , whereas for the implementation of Willshaw as-
sociative memory and the spike counter model in section 4.5.4 the technical associative
memory population class TMAutoWillshawTAMP has been used.

• TMNoise (defined in module F2 simenv.h/cpp) is the base class for noise populations. A
noise population provides random numbers generated according to a certain distribution
for another component object such as a neuron population. Derivatives of type TMUni-
formNoise (defined in module UniformNoise.h/cpp) provide uniformly distributed random
numbers with a certain power (or variance). While this type generates independent random
numbers in each simulation step the random numbers generated by derivatives of type
TMCorrelatedNoise can be correlated in space and time. The standard noise type for
neuron populations such as TSSNeuron (or for synaptic noise in connections; see module
F2 receptor.h/cpp) is TMUniformNoise , whereas for the primary visual area P (see chap-
ter 5) correlated noise of type TMCorrelatedNoise has been used.

• TConnection (defined in module F2 simenv.h/cpp) is the base class for connections be-
tween neuron populations (or more exactly, between ports; see module F2 port.h/cpp). The
function of derivatives of this type is to propagate information from an output port to an
input port, for example, to propagate the spikes from the output port of one neuron popu-
lation through the network to the input port of another neuron population. The most im-
portant derived type for biological modeling is TMTopoConnection (defined in module
TopoConnection.h/cpp). This generic type is the base class for many further derived classes.
Here a synapse is defined by two state values: A synaptic weight, and a synaptic delay. Cor-
respondingly, an object of type TMTopoConnection essentially contains two kernel arrays
of type TKernel (defined in F2 kernel.h/cpp) representing weights and delays. The kernel
classes can be applied in a very flexible manner allowing implementation of full, sparse,

154 APPENDIX C. SIMULATION TOOL FELIX++

topographical schemes in multiple dimensions. Additionally, efficient algorithms are im-
plemented for several special cases (e.g., for non-sparse bit-packed binary topographical
connectivity). The derivatives of TMTopoConnection merely specify how the synaptic
weight and delay kernels are generated. For example, class TMGaussConnection (de-
fined in module GaussConnection.h/cpp) implements simple topographical connections with
Gaussian kernels. A further derived class TMBlankTopoConnection (defined in module
BlankTopoConnection.h/cpp) provides an interface to TMTopoConnection in order to allow a
more convenient derivation of further connection classes. While TMDemoBlankTopoCon-
nection (defined in module DemoBlankTopoConnection.h/cpp) is merely a demonstration
how to derive from TMBlankTopoConnection , also a number of important connection
classes have been derived. TMAssoConnection (defined in module AssoConnection.h/cpp)
can be used to implement fully connected or multi-dimensional topographically confined
associative connections, for example, of the Willshaw type. TMV1Connection (defined
in module V1Connection.h/cpp) is a specialized connection scheme for the primary visual
cortex as used for the simulations in chapter 5 (see Fig. 5.2). And TMRandomConnection
(defined in module RandomConnection.h/cpp) can be used conveniently for implementing
connections with random connectivity. Another class derived directly from TConnection
is TMDelayKernelConnection (defined in module DelayKernelConnection.h/cpp) which
provides a much simpler and faster scheme for delayed connections than TMTopoConnec-
tion . For implementation of technical associative memory derivatives from class TMAs-
sociation (defined in module F2 association.h/cpp) can be used, such as TMWillshawAs-
sociation and TMcWillshawAssociation for the Willshaw model, where the latter
implements compression of the binary memory matrix.

• TMIntegrator (defined in module F2 integrator.h/cpp) is the base class for numerical inte-
gration of differential equations. Derived classes (defined in the same module) are TMEu-
lerIntegrator which implements a simple first order Euler method, and TMRK4cInte-
grator which implements the fourth order Runge-Kutta method with constant step size
(see [142]). Normally, these integrator objects are used by some of the neuron classes (e.g.,
TSSNeuron).

• TLearner (defined in module F2 simenv.h/cpp) is the base class for plasticity of synaptic
connections. Currently, two derivatives are implemented in the module STDPLearner.h/cpp.
TMSTDPLearnerSMA2000 implements a model of spike-timing dependent synaptic plas-
ticity (STDP) described by Song, Miller, and Abbott [173], while TMSTDPLearnerFD2002
implements an extended model suggested by Froemke and Dan [53]. Both classes are in-
terfaced with connection classes via the kernel classes defined in F2 kernel.h/cpp. Therefore
it is easy to endow connections (e.g., derived from TMTopoConnection) with synaptic
plasticity.

• TMSpace (defined in module F2 object.h/cpp) is the base class for the definition of a space
for stimulus objects (see above module F2 object.h/cpp).

• TObserver (defined in module F2 simenv.h/cpp) is the base class for components observing
on-line the state of the simulation. Derived classes are TMPatternRanking and TMPat-
ternHistogram (for more details see above module F2 pattern.h/cpp).

C.2 Simulation environment and components: Code examples

In the last section we have obtained an overview over the modules of Felix++. In the following
we will have a closer look at the code defining some important Felix++ classes, the simulation
environment, and the base class for components. The code examples shown below are shortened
fragments of the declarations in the Felix++ headers.

C.2. SIMULATION ENVIRONMENT AND COMPONENTS: CODE EXAMPLES 155

C.2.1 Simulation environment: Class TSimulationEnvironment

The simulation environment is essentially a container for the simulation components used in
a simulation program (cf. Fig. C.2), but also provides additional infrastructure such as look-up
tables, random number generators, and some further global variables. The following code frag-
ment taken from the header F2 simenv.h shows parts of the declaration of the class TSimula-
tionEnvironment .

Code fragment C.1
class TSimulationEnvironment {

public:
// part 1: local types
typedef enum { CC_NOISE, // for TNoise component category

CC_CONNECTION, // for TConnection
CC_INTEGRATOR, // for TIntegrator
CC_NEURON, // for TNeuron
CC_LEARNER, // for TLearner
CC_SPACE, // for TSpace
CC_SPACEREPRESENTATION, // for TSpaceRepresentation
CC_OBSERVER, // for observers like TMPatternRanking
CC_ASYNCHRONY // calls to step() are not controlled

} TComponentCategory;
static const int nCategories=9; // number of different component categories

// part 2: parameters
TPar parStepSize; // simulation step size (in milliseconds)
TsPar parDataDirectory; // default directory where simulation data is recorded
TsPar parDataPostFix; // post fix for data file names

// part 3: object fields
const char* parameterFile; // name of root parameter file
TParser parser; // parser for parameters
vector<TComponent*> allComponents; // all components in order of constr.
vector<TComponent*> components[nCategories]; // components ordered after categories

// part 4: time reference
TInt steps; // current simulation step number
TFloat simTime; // current simulation time, simTime:=steps*stepSize;

// part 5: constructors/destructors
TSimulationEnvironment(const char* parFile); // default constructor
˜TSimulationEnvironment(); // destructor

// part 6: methods
void parse(); // parsing of parameters
void reparse(); // reparse parameters
void addComponent(TComponent *c, TComponentCategory cc); // add component c

void allocate(); // simulation phase 2 (after creation phase): memory allocation
void init(); // simulation phase 3: Initialization of TComponents
void step(); // simulation phase 4: compute one simulation step

};

In part 1 an enumeration type is declared for the different component categories such as
neurons, connections, or observers. This corresponds approximately to the different component
classes described in section C.1.3 (see Fig. C.3; see also the container declarations in part 3).

In part 2 parameters are declared such as the simulation step size, or the directory for recorded
simulation data. These parameters are parsed from a parameter file (see code fragment C.5)
during the first execution phase of the simulation program when the simulation environment is
created by calling the constructor (see part 5).

In part 3 some object fields are declared such as the name of the parameter file (which is
passed as an argument to the constructor; see part 5), or the parser used for parsing the param-
eters (see module F2 parser.h/cpp in section C.1.1). Here there are also the declarations of the

156 APPENDIX C. SIMULATION TOOL FELIX++

containers for the simulation components (vectors of the STL library; cf. [178, 180]). The first
container field allComponents contains references to the components in order of the construc-
tion of the components (which is important for reparsing the parameter file), while the second
container field components contains the components ordered for the different categories (see
part 1). The latter ordering is important to assert a defined synchronization of object of the same
component category. For example, the calls to the step() methods of neuron objects should be
before the step() calls of connection objects (cf. part 6). This synchronization will become even
more important when parallelizing Felix++ as planned for future work (cf. [177]).

In part 4 some fields for time reference are defined. Felix++ is a step-based simulation tool
(in contrast to event-based tools). This means that the state of the simulated system is updated
step by step where one simulation step corresponds to a fixed time interval. The parameter
parStepSize (see part 2) defines this time interval. The field steps is initialized by 0, and
incremented for each call to the step() method (see part 6).

Part 5 contains the declarations of the constructors and destructors. In section C.3 an example
is given how and when to apply the constructor in a simulation program.

In part 6 the methods are declared. Method parse() is normally called by the construc-
tor in order to parse the parameter file. Method reparse() is called for reparsing a modified
parameter file, for example, when pressing the reparse-button in an online-simulation. With add-
Component() new simulation components can be added to the component containers (see part
3) which is usually done by the constructor of TComponent (see section C.2.2). Then there are
further three important methods (cf. Fig. C.2): In order to allocate memory shared by differ-
ent simulation components (for example state variables of neurons integrated by components
of type TIntegrator ; see module F2 integrator.h/cpp) a call from the simulation program to
allocate() must occur after the construction of the simulation components (see procedure
main init() in code fragment C.4). A call to method init() initializes the simulated sys-
tem essentially by calling the init() method of each simulation component. Similarly, a call to
method step() computes one simulation step by calling the step() method of each simula-
tion component. The calls to the simulation environment’s init() and step() methods occur
normally from the simulation program’s init() and step() procedures (see code fragment
C.4).

C.2.2 Components: Class TComponent

The class TComponent is the base class for all simulation components such as neurons or con-
nections (see Figs. C.3 and C.1) and implements essentially a common interface of simulation
components to the simulation environment (section C.2.1). The following code fragment taken
from the header F2 simenv.h shows parts of the declaration.

Code fragment C.2
class TComponent : public TParamOwner {

public:
// part 1: object fields
string name; // name of the component
TSimulationEnvironment& simEnv; // reference to the simulation environment
TComponentCategory category; // component category
vector<TfPort*> gradualPorts; // gradual i/o ports of the component
vector<TbPort*> binaryPorts; // binary ports

// part 2: constructors/destructors
TComponent(TSimulationEnvironment& simEnv_arg, const char* name_arg,

TComponentCategory cc_arg);
TComponent(TComponent& pattern, const char* name_arg, TComponentCategory cc_arg);
˜TComponent();

// part 3: methods
virtual void reparse(); // reparse parameters
virtual void allocate(); // allocate memory for TIntegrator
virtual void init(); // initialize component

C.2. SIMULATION ENVIRONMENT AND COMPONENTS: CODE EXAMPLES 157

virtual void step(); // compute one simulation step of component

virtual void derivs() {}; // compute derivatives for TIntegrator
};

Class TComponent is derived from class TParamOwner in order to provide the functionality
of the parameter classes (see module F2 parameter.h/cpp in section C.1.1).

In part 1 object fields are declared. Each simulation component can be assigned a namewhich
considerably relieves search for errors. Field simEnv refers to the simulation environment con-
taining the object, and field category contains information about the component category of
the object (cf. section C.2.1). The fields gradualPorts and binaryPorts are containers for
gradual and binary ports (see module F2 port.h/cpp in section C.1.1) and constitute thereby the
interface for communication between different simulation components. For example, the spikes
of a neuron population will be represented by a binary port of type TbPort and similarly the
dendritic inputs will be represented by a gradual port of type TfPort . Thus a connection com-
ponent can connect two neuron populations, for example, by propagating spikes from the binary
port of the first population through the synaptic network to the gradual input port of the second
population.

In part 2 the constructors and destructors are declared. There are generally two constructor
types for a simulation component. The default (or complete) constructor constructs a simulation
component by parsing the parameters from the parameter file (see code fragment C.5). In con-
trast, the pattern constructor requires as argument a simulation object of the same type where the
parameters of this pattern are used for construction of the new object (see also section C.2.3).

In part 3 a number of virtual methods is defined which are normally overridden by derived
component classes and called by the simulation environment. The reparse() method reparses
the parameters from the parameter file using simEnv → parser . If necessary the allo-
cate() method requests memory shared with other components from a further object managing
the shared memory (for example from an TIntegrator object; see module F2 integrator.h/cpp in
section C.1.3). A call to init() will initialize the simulation component, and a call to step()
will compute one simulation step for the component. The method derivs() can be used in
derived classes to compute the (numerical) derivatives of some of the state variables of the com-
ponent. This method is normally called by a TIntegrator object in order to integrate the dif-
ferential equation associated with a component state.

C.2.3 Class TSSNeuron: a simple spiking neuron model

To illustrate how a concrete simulation component can be derived from the base class TCompo-
nent we will have a closer look at the class TSSNeuron implementing a simple spiking neuron
model. Actually, this class (with a parameter file as shown in code fragment C.5) has been used
to implement the model described in section 2.4 for the biological simulations in section 4.6 and
chapter 5. The following code fragment taken from the header SSNeuron.h shows parts of the
declaration.

Code fragment C.3
class TSSNeuron : public TNeuron, public TIntegratorClient {

public:
// part 1: parameters
string scopeID; // scope id for parsing parameters
TVecPar tau_x; // membrane time constant
TVecPar theta; // asymptotic threshold
TVecPar refAbs; // absolute refractory time
TVecPar refRel; // relative refractory parameter
TVecPar tau_h; // decay time constant of habituation
TVecPar thetaInc_h; // threshold increment after each spike
TCompartmentReceptors* receptorPorts; // receptorPorts

// part 2: integrator for membrane potential

158 APPENDIX C. SIMULATION TOOL FELIX++

TDerivScope derivScope;
TIntegrator* integrator; // integrator

// part 3: ports
TbPort *out; // output queue for spikes
TfPort *lastOut; // output queue for last spikes
TfPort* excIn; // default excitatory in-port
TfPort* inhIn; // default inhibitory in-port

// part 4: state variables
TFloat *current; // synaptic currents
TFloat *x; // membrane potential
TByte *y; // output variable (refers to out)
TFloat *last; // last spike time (refers to lastOut)
TFloat *habituation; // habituation (fatigue) - increased threshold

// part 5: constructors/destructors
TSSNeuron(TSimulationEnvironment& simEnv_arg, const char* name_arg, // complete cnstr.

TLayout* layout_arg, vector<TNoise*>* noiseSources_arg);
TSSNeuron(TSimulationEnvironment& simEnv_arg, const char* name_arg, // default "

TLayout* layout_arg, vector<TNoise*>* noiseSources_arg,
TIntegrator* integrator_arg, int parse);

TSSNeuron(TSSNeuron& pattern, const char* name_arg, // patterned "
TLayout* layout_arg, vector<TNoise*>* noiseSources_arg);

˜TSSNeuron(); // destructor

// part 6: methods
void allocate(); // get memory from integrator
void derivs() {}; // compute ...
void derivs(int id, TFloat t,TFloat* x,TFloat* dxdt); // derivatives for integrator

void init(); // initialize states to zero values
void step(); // one simulation step
void reparse(); // reparse parameters
void handleUpdatedParameters(); // handle updated parameters
void setParameterValues(); // update parameter values
friend ostream & operator<<(ostream& os , const TSSNeuron & neuron); // output op.
friend istream & operator>>(istream& parser, TSSNeuron & neuron); // input op.

};

Class TSSNeuron is derived from TNeuron (which in turn is derived from TComponent ; see
Fig. C.3) and from TIntegratorClient . The derivation from the latter class is necessary for
any class requiring integration of differential equations by a TIntegrator object (see module
F2 integrator.h/cpp in section C.1.3).

In part 1 of code fragment C.3 parameters of the neuron model are declared. When com-
paring with the notation used in section 2.4 (cf. table 2.1 and code fragment C.5) parameter
field tau x corresponds to parameter τx, theta to Θ∞, refAbs to Ra, refRel to Rr, tau h to
τh, and thetaInc h to H . Field scopeID contains information about which parameter scope
(see below) in the parameter file has been used to parse the parameters for this object. Field
receptorPorts points to a container object for receptor ports (see module F2 receptor.h/cpp in
section C.1.2) which becomes allocated during object construction. This field is used for imple-
menting different excitatory or inhibitory synaptic currents (see code fragment C.5).

In part 2 field integrator declares the integrator object for integrating the differential equa-
tion for the membrane potential (cf. eq. 2.4). Currently, either a Euler or a Runge-Kutta method
can be used (see module F2 integrator.h/cpp in section C.1.3). The field derivScope just serves to
identify the memory for the state variable x (see part 4) which is administrated by the integrator
object.

Part 3 declares the ports of the object (see module F2 port.h/cpp in section C.1.1). Port out is
the output queue for the spikes of the neuron population, port lastOut contains information
about the time of the last spike for each neuron. Input ports excIn and inhIn are essentially
queues for synaptic input from other neuron populations mediated by connection objects (see

C.3. STRUCTURE OF A FELIX++ SIMULATION 159

type TConnection in section C.1.3).
In part 4 the state variables of the neurons are declared. Array current is essentially the

sum of the synaptic input currents for each neuron as computed by receptorPorts (see part
1). Array x corresponds to the membrane potential x of the neuron model in section 2.4 (cf.
eq. 2.4). Similarly y corresponds to the spike output variable y (eq. 2.6), last corresponds to the
time point s of the last spike for each neuron (cf. eq. 2.5), and habituation corresponds to the
neuronal habituation or fatigue h (cf. eq. 2.3).

In part 5 the constructors and destructors are declared (cf. part 2 in section C.2.2). The first
constructor is the so-called complete constructor which is normally used in a simulation program
for creating an object of type TSSNeuron for the first time. The third constructor is the pattern
constructor which is normally used for further creations of TSSNeuron objects. While for the
complete constructor the parameters (see part 1) are parsed from the parameter file (see code
fragment C.5), the pattern constructor copies the parameters from a pattern object passed as the
first argument. The second constructor in the code fragment is the so-called default constructor
which is normally used by the constructor of another class derived from TSSNeuron . In contrast
to the complete constructor, automatic parsing (which should be done only by the constructor of
the derived class) can be suppressed by passing an additional flag argument parse .

Finally part 6 contains the declarations of the methods allocate() , derivs() , init() ,
step() , and reparse() which override the declarations explained above for the base class
TComponent (see part 3 in section C.2.2). There are a few remaining methods: handleUpdat-
edParameters() and setParameterValues() manage updating of the object state if one of
the parameters (see part 1) is changed (for example when reparsing the parameter file), while
the input/output operators operator>>() and operator<<() are used for parsing the ob-
ject parameters from the parameter file, or for printing the parameter data, for example, when
debugging.

C.3 Structure of a Felix++ simulation

C.3.1 A skeleton simulation program

A Felix++ simulation is basically a C++ program that includes header files of Felix and/or Fe-
lix++. The structure of a Felix++ simulation typically looks similar to the following code frag-
ment:

Code fragment C.4
// Part 1: Felix2 declarations
// ------------------------------------
#include "F2_simenv.h"
... // further includes (e.g., of Felix++ headers)

#define STANDALONE 1
... // further macro definitions
TSimulationEnvironment* senv;
TSSNeuron* popPe;
... // declaration of further simulation components

// Part 2: Felix1 (GUI) declarations
// ------------------------------------
extern "C" {

#include "nn.h"
... // include of further Felix headers

}
#if STANDALONE

NO_DISPLAY
#else

BEGIN_DISPLAY
... // declaration of Felix GUI (switches, sliders, graphs, etc.)
END_DISPLAY
NO_OUTPUT // Felix1 output mechanisms usually not used

160 APPENDIX C. SIMULATION TOOL FELIX++

#endif

// Part 3: main_init()
// ------------------------------------
int main_init() {

senv = new TSimulationEnvironment(parameterFile);
... // further utility declarations/creations
popPe = new TSSNeuron(*senv,"popPe",popLT_Pe,0,integrator1,1);
... // further creation of objects
senv->allocate();
... // assigning of GUI variables
return 0;

}

// Part 4: init()
// ------------------------------------
int init() {

senv->init();
... // further initialization
return 0;

}

// Part 5: step()
// ------------------------------------
int step() {

senv->step();
... // further step()-stuff
return 0;

}

// Part 6: main()
// ------------------------------------
#if STANDALONE

int main(int nArgs, char** args) {
main_init();
init();
for(int i=0;i<1000;i++) step();

... // further stuff, e.g. saving simulation data
}

#endif

In part 1 Felix++ header files (and also other headers) are included, macros are defined such as
STANDALONE(which switches between online and batch mode; see below parts 2 and 6), and the
simulation environment and the simulation components are declared. For the sake of flexibility it
is recommended to declare the simulation environment and the components as pointer variables
which are allocated in the main init() method (see part 3). For example, if the simulation
environment and components would be already constructed here, it would not be possible to
pass the name of the parameter file as an argument to the simulation program. In this example
only the simulation environment senv and a neuron population popPe of type TSSNeuron
(see section C.2.3) are declared. Usually the construction of the simulation environment and the
simulation components is paralleled with the parsing of a parameter file (see below the code
fragment C.5)

In part 2 the graphical user interface (GUI) of the simulation is declared (only necessary for
online simulations, i.e., if the flag macro STANDALONEis inactive). For this purpose, first the
Felix headers (see Fig. C.1) must be included (in extern ‘‘C’’ brackets since Felix has been
implemented in C). Then the GUI components of Felix can be specified in the #else branch of
the #if directive (see [197] for details).

Part 3 is the main init() procedure. Here the simulation environment and subsequently the
simulation components are created by calling the corresponding constructors. After construct-
ing all simulation components a call to the allocate() method of the simulation environment
might be necessary (e.g., for simulation components such as TSSNeuron employing integrators;

C.3. STRUCTURE OF A FELIX++ SIMULATION 161

see module F2 integrator.h/cpp in section C.1.3; cf. section C.2.3). The main init() procedure is
normally called only once at the beginning of the simulation to construct the simulation objects.
This is done either by the main() procedure (see part 6) for batch simulations (for activated flag
macro STANDALONE=1) or by the Felix GUI for online simulations (for STANDALONE=0).

In part 4 the init() procedure is defined. It contains normally at least the call to the init()
method of the simulation environment, but possibly also further initialization code for the sim-
ulation. The init() procedure should be called after main init() to initialize the states of
the simulation objects before the actual simulation computations start (see part 5). In contrast
to main init() the init() procedure can be called more than once either from the main()
procedure (see part 6) for batch simulations or for online simulations by pressing the init button
(or the run button) in the main simulation window [197].

Part 5 is the step() procedure which computes one simulation step. It contains normally at
least the call to the step() method of the simulation environment, but possibly also further code
for the simulation. The step() procedure is called either from the main() procedure (see part
6) for batch simulations or for online simulations by pressing the step button (or the run button)
in the main simulation window.

Part 6 defines the main() procedure for batch simulations with activated macro flag STAND-
ALONE=1(see part 1). This procedure must contain calls to main init() and init() before
the calls to the step() procedure.

C.3.2 The parameter file

The construction of the simulation environment and the simulation components in main init()
(see part 3 in section C.3.1) is usually paralleled by the parsing of the parameter file in order to read
in the parameters to be used for the respective simulation objects. The following code fragment
shows parts of the parameter file for our skeleton simulation program above (code fragment C.4).

Code fragment C.5
#{ TSimulationEnvironment Simulation1 % parameter scope for simulation environment

stepSize : 0.1
dataDirectory : /private/aknoblau/simdata/BC2

}

#{ SSNeuron popPe % parameter scope for neuron population
tau_x(exp,sig,min,max) : 10 0 1 0
theta(exp,sig,min,max) : 10 0 1 0
refAbs(exp,sig,min,max) : 2 0 1 0
refRel(exp,sig,min,max) : 3 0.5 1.75 4.25
tau_h(exp,sig,min,max) : 150 0 1 0
thetaInc_h(exp,sig,min,max) : 0.6 1.0 0.2 1.0

#{ TMCompartmentReceptors receptors
nReceptorPorts : 2
#{ TMOffDynamicsRP AMPA

tau_OFF(exp,sig,min,max) : 5 0 1 0
E(exp,sig,min,max) : 80 0 1 0
g0(exp,sig,min,max) : 0 0 1 0
powerInpNoise(exp,order,sig,min,max) : 0.025 1 0 1 0
qLen : 600

}
#{ TMOffDynamicsRP GABAA

tau_OFF(exp,sig,min,max) : 7 0 1 0
E(exp,sig,min,max) : -10 0 1 0
g0(exp,sig,min,max) : 0 0 1 0
powerInpNoise(exp,order,sig,min,max) : 0.02 1 0 1 0
qLen : 100

}
}

}

162 APPENDIX C. SIMULATION TOOL FELIX++

A parameter file is divided into various parameter scopes. A parameter scope is a group of
parameters which has been put into scope brackets according to the syntax #{ <scope type>
<scope ID> <parameter1> <parameter2> ... }. The scope type is given by the class
of the object to be parsed, while the scope ID can be chosen arbitrarily.

This parameter file contains two global parameter scopes, one for the simulation environment
senv and another for the neuron population popPe (cf. part 3 in code fragment C.4). Parameter
scopes can be organized hierarchically: For example scope SSNeuron popPe contains a sub-
scope for the receptorPorts object (see part 1 in code fragment C.4) which in turn can contain
an arbitrary number of further sub-scopes for different receptor dynamics.

In the example there are two scopes for the receptor dynamics (cf. module F2 receptor.h/cpp in
section C.1.2) implementing the dynamics of the synaptic conductances of the neuron model de-
scribed in section 2.4. The parameters in scope TMOffDynamicsRP AMPA specify the dynamics
of the excitatory conductance gex (eq. 2.1) which is implemented by the corresponding object of
type TMOffDynamicsRP . Parameter tau OFFcorresponds to τex (see eq. 2.1) and parameter E
corresponds to Eex (see eq. 2.4). The additional parameters determine conductance baseline (g0),
noise power (powerInpNoise), and the queue length (qLen ; measured in simulation steps) for
incoming spikes propagated by connection objects (see class TConnection in section C.1.3). The
latter parameter determines the maximal possible axonal delay for the connection projecting onto
this receptor port.

The parameters in scope TMOffDynamicsRP GABAA have the analogous relation to the dy-
namics of the inhibitory conductance gin (see eqs. 2.2 and 2.4).

Many parameters are specified not by a single value but by a vector of four values to define
individual parameters for each member of a population. Parameter refRel (in scope popPe),
for example, specifies that the parameter Rr of our neuron model (see eq. 2.5 in section 2.4)
is distributed according to a Gaussian with mean 3, standard deviation 0.5, but limited to the
interval [1.75; 4.25]. In contrast, if the standard deviation is 0 and/or the left interval border
larger than the right one then the parameter is the same for all members of the population (see
parameter tau x , for example).

C.3.3 Compiling and running simulations

In sections C.3.1 and C.3.2 we have discussed how a Felix++ simulation program and the corre-
sponding parameter file should be structured. Here we explain how one obtains an executable
program from the source file. This process is illustrated in Figure C.4.

A simulation source file named SIMULATION.cpp can be compiled by the command “Felix2
SIMULATION”. Felix2 is a script that compiles the source file and sets the correct include- and
link-paths by calling the Makefile . Compiling using Felix2 yields as output the executable
SIMULATION. When running this requires the dynamic (or shared) libraries as shown in Fig-
ure C.4.

C.3. STRUCTURE OF A FELIX++ SIMULATION 163

SIMULATION.cpp

SIMULATION.par

executablesource

Felix++
headers

Felix
headers

"Felix2 SIMULATION"
 SIMULATION

Felix++ Felix XView etc.
shared libraries

parameter file
libf2_f2.so

libf_f2.so
libolgx.so

libX11.so

libxf_f2.so
libxview.so

Figure C.4: Compilation and Linkage of a Felix++ simulation program. The simulation source
file includes Felix++ and/or Felix headers (cf. Fig. C.1). The source file SIMULATION.cpp then
is compiled by the command “Felix2 SIMULATION ” which generates an executable SIMULA-
TION. Running the executable SIMULATION requires the parameter file and dynamic (“shared”)
libraries of Felix++, Felix, and the X system.

164 APPENDIX C. SIMULATION TOOL FELIX++

Appendix D

Symbol reference

Typographical conventions

To save brackets in formulas we use the following conventions

a/bc := a/(b · c)(D.1)
ln x := loge(x)(D.2)
ld x := log2(x)(D.3)

ln a/b := (ln a)/b(D.4)

For approximations and asymptotic behavior we use

a ≈ b ⇔ a/b = 1 + ε(D.5)
f (n) → c ⇔ lim

n→∞
f (n) = c(D.6)

f (n) � g(n) ⇔ lim
n→∞

(f (n)− g(n)) = 0(D.7)

f (n) ∼ g(n) ⇔ f (n)/g(n) → c for n →∞(D.8)
f (n) = O(g(n)) ⇔ f (n) < c · g(n) for all n > n0(D.9)

where c, n0, and 0 < ε � 1 are constants.

Index symbols

µ pattern or assembly index

i, j neuron indices

165

166 APPENDIX D. SYMBOL REFERENCE

Associative memory

A binary memory matrix

u, v pattern vectors (originally used for storing)

ũ address pattern used for the retrieval

û, v̂ retrieval result patterns

Θ threshold

x neuron potentials

n length of the pattern vectors, or number of neurons per population

m length of the pattern vectors for the associated patterns (usually m = n)

k pattern activity: number of active neurons (one-entries) in a pattern

p1 matrix load: fraction of one-entries in the binary memory matrix

p1,max maximal matrix load allowed for high-fidelity (often we write simply p1)

M number of patterns stored in the memory matrix

Mmax maximal M allowed for high-fidelity (often we write simply M)

ε high-fidelity parameter

λ an address pattern contains λk correct one-entries

κ an address pattern contains κk false one-entries

z total number of one-entries in an address pattern, i.e. z = (λ + κ)k

k1 number of (correct) ones in an address pattern (k1 := λk)

k1,hifi minimal number of (correct) ones in an address pattern to obtain high-fidelity

p01 error probability of a false one-entry in a given component of the retrieval result

p10 error probability of a missing one in a given component of a retrieved pattern

CA absolute storage capacity (i.e., not normalized)

C storage capacity normalized to the required physical memory or synapse number

Csprs normalized storage capacity for index representations of sparse memory matrices

Ccmpr normalized storage capacity for optimally compressed memory matrices

tret time (or number of steps) required for a retrieval

fI information current or information flow: retrieved information per time step

E information current fI normalized to a reference information current fI
ref

N number of simultaneously presented address patterns

cA, cH , cΣ spike counters

Model of cortical areas

R, P, C cortical areas

R neuron population of area R

P , PS , PT neuron populations of area P

C, CS , CT neuron populations of area C

Bibliography

[1] L.F. Abbot and S.B. Nelson. Synaptic plasticity: taming the beast. Nature Neuroscience,
3:1178–1183, 2000.

[2] M. Abeles. Local cortical circuits. Springer, Berlin Heidelberg New York, 1982.

[3] M. Abeles. Corticonics: Neural circuits of the cerebral cortex. Cambridge University Press,
Cambridge UK, 1991.

[4] M. Abeles, H. Bergman, I. Gat, I. Meilijson, E. Seidemann, N. Tishby, and E. Vaadia. Cortical
activity flips among quasi stationary states. Proceedings of the National Academy of Science,
USA, 92:8616–8620, 1995.

[5] M. Abeles, H. Bergman, E. Margalit, and E. Vaadia. Spatio-temporal firing patterns in
frontal cortex of behaving monkeys. Journal of Neurophysiology, 70:1629–1643, 1993.

[6] A.M.H.J. Aertsen, M. Erb, and G. Palm. Dynamics of functional coupling in the cerebral
cortex: an attempt at a model-based interpretation. Physica D, 75:103–128, 1994.

[7] A.M.H.J. Aertsen, M. Erb, G. Palm, and A. Schüz. Coherent assembly dynamics in the
cortex: multi-neuron recordings, network simulations and anatomical considerations. In
Proceedings Symposium Oscillatory Event Related Brain Dynamics. Plenum, 1994.

[8] M. Agu, K. Yamanaka, and H. Takahashi. A local property of the phasor model of neural
networks. IEICE Transactions on Information and Systems, vol.E79–D, no.8:1209–1211, 1996.

[9] C. Allen and C.F. Stevens. An evaluation of causes for unreliability of synaptic transmis-
sion. Proceedings of the National Academy of Science USA, 91:10380–10383, 1994.

[10] J. Anderson, I. Lampl, I. Reichova, M. Carandini, and D. Ferster. Stimulus dependence
of two-state fluctuations of membrane potential in cat visual cortex. Nature Neuroscience,
3(6):617–621, 2000.

[11] A. Arieli, A. Sterkin, A. Grinvald, and A. Aertsen. Dynamics of ongoing activity: Explana-
tion of the large variability in evoked cortical responses. Science, 273:1868–1871, 1996.

[12] H.B. Barlow. Single units and sensation: a neuron doctrine for perceptual psychology.
Perception, 1:371–394, 1972.

[13] A.P. Bartsch and J.L. van Hemmen. Combined Hebbian development of geniculocortical
and lateral connectivity in a model of primary visual cortex. Biological Cybernetics, 84:41–55,
2001.

[14] H.J. Bentz, M. Hagstroem, and G. Palm. Information storage and effective data retrieval in
sparse matrices. Neural Networks, 2:289–293, 1989.

[15] G. Bi and M. Poo. Synaptic modifications in cultured hippocampal neurons: dependence
on spike timing, synaptic strength, and postsynaptic cell type. The Journal of Neuroscience,
18(24):10464–10472, 1998.

167

168 BIBLIOGRAPHY

[16] A. Bibbig. Oszillationen, Synchronisation, Mustertrennung und Hebb’sches Lernen in Netzwerken
aus erregenden und hemmenden Neuronen (in German). PhD thesis, Department of Neural
Information Processing, University of Ulm, Germany, 2000.

[17] A. Bibbig, H.J. Faulkner, M.A. Whittington, and R.D. Traub. Self-organized synaptic plas-
ticity contributes to the shaping of γ and β oscillations in vitro. The Journal of Neuroscience,
21(22):9053–9067, 2001.

[18] R. Blake and N. Logothetis. Visual competition. Nature Reviews Neuroscience, 3:1–12, 2002.

[19] T.V.P. Bliss and G.L. Collingridge. A synaptic model of memory: long-term potentiation in
the hippocampus. Nature, 361:31–39, 1993.

[20] T. Bonhoeffer and A. Grinvald. Iso-orientation domains in cat visual cortex are arranged in
pinwheel-like patterns. Nature, 353:429–431, 1991.

[21] T. Bonhoeffer and A. Grinvald. The layout of iso-orientation domains in area 18 of cat
visual cortex: optical imaging reveals a pinwheel-like organization. Journal of Neuroscience,
13:4157–4180, 1993.

[22] E.G. Boring. A new ambiguous figure. American Journal of Psychology, 42:444, 1930.

[23] G.N. Borisyuk, R.M. Borisyuk, and Y.B. Kazanovich. Temporal structure of neural activity
and models of information processing in the brain. In Miller [118], chapter 13, pages 331–
349.

[24] H. Bosch and F. Kurfess. Information storage capacity of incompletely connected associa-
tive memories. Neural Networks, 11(5):869–876, 1998.

[25] J.M. Bower and C. Beeman, editors. The book of GENESIS: Exploring realistic neural models
with the GEneral NEural SImulation System. Springer, New York, 1995.

[26] V. Braitenberg. Cell assemblies in the cerebral cortex. In R. Heim and G. Palm, editors,
Lecture notes in biomathematics (21). Theoretical approaches to complex systems., pages 171–188.
Springer-Verlag, Berlin Heidelberg New York, 1978.

[27] V. Braitenberg and A. Schüz. Anatomy of the cortex. Statistics and geometry. Springer-Verlag,
Berlin, 1991.

[28] I.N. Bronstein and K.A. Semendjajew. Taschenbuch der Mathematik (in German). Nauka,
Teubner, Deutsch, Moscow, Stuttgart, Thun, 1991.

[29] J. Buckingham and D. Willshaw. Performance characteristics of associative nets. Network:
Computation in Neural Systems, 3:407–414, 1992.

[30] J. Buckingham and D. Willshaw. On setting unit thresholds in an incompletely connected
associative net. Network: Computation in Neural Systems, 4:441–459, 1993.

[31] J.T. Buckingham. Delicate nets, faint recollections: a study of partially connected associa-
tive network memories. PhD thesis, University of Edingburgh, 1991.

[32] S. Cash and R. Yuste. Linear summation of excitatory inputs by CA1 pyramidal neurons.
Neuron, 22:383–394, 1999.

[33] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. MIT Press, Cam-
bridge, MA, 1990.

[34] T.M. Cover and J.A. Thomas. Elements of information theory. Wiley, New York, 1991.

[35] F. Crick and C. Koch. Towards a neurobiological theory of consciousness. Sem. Neurosci.,
2:263–275, 1990.

BIBLIOGRAPHY 169

[36] H.H. Dale. Pharmacology and the nerve endings. Proceedings of the Royal Society of Medicine,
28:319–332, 1935.

[37] R. Desimone. Face-selective cells in the temporal cortex of monkeys. Journal of Cognitive
Neuroscience, 3(1):1–8, 1991.

[38] A. Destexhe, Z.F. Mainen, and T.J. Sejnowski. Kinetic models of synaptic transmission. In
Koch and Segev [102], chapter 1, pages 1–25.

[39] J.C. Eccles. Physiology of synapses. Springer, Berlin, 1964.

[40] R. Eckhorn. Oscillatory and non-oscillatory synchronizations in the visual cortex and their
possible roles in associations of visual features. In J.van Pelt, M.A. Corner, H.B.M. Uylings,
and F.H. Lopes da Silva, editors, Progress in Brain Research, volume 102, chapter 28, pages
405–426. Elsevier Science BV, 1994.

[41] R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H.J. Reitboeck. Co-
herent Oscillations: A mechanism of feature linking in the visual cortex? Biol. Cybern.,
60:121–130, 1988.

[42] R. Eckhorn, A. Bruns, M. Saam, A. Gail, A. Gabriel, and H.J. Brinksmeyer. Flexible cortical
gamma-band correlations suggest neural principles of visual processing. Visual Cognition,
8(3/4/5):519–530, 2001.

[43] A.K. Engel, P. König, A.K. Kreiter, and W. Singer. Interhemispheric synchronization of
oscillatory neuronal responses in cat visual cortex. Science, 252:1177–1179, 1991.

[44] A.K. Engel, P. König, and W. Singer. Direct physiological evidence for scene segmentation
by temporal coding. Proc. Natl. Acad. Sci. USA, 88:9136–9140, 1991.

[45] A.K. Engel, A.K. Kreiter, P. König, and W. Singer. Synchronization of oscillatory neuronal
responses between striate and extrastriate visual cortical areas of the cat. Proc. Natl. Acad.
Sci. USA, 88:6048–6052, 1991.

[46] M. Fahle and G. Palm. Perceptual rivalry between illusory and real contours. Biological
Cybernetics, 66:1–8, 1991.

[47] M.J. Farah and T.E. Feinberg, editors. Patient-based approaches to cognitive neuroscience. MIT-
Press, Cambridge, MA, 2000.

[48] M.J. Farah and T.E. Feinberg. Visual object agnosia. In Patient-based approaches to cognitive
neuroscience. [47], chapter 6, pages 79–84.

[49] T.E. Feinberg and M.J. Farah. A historical perspective on cognitive neuroscience. In Farah
and Feinberg [47], chapter 1, pages 3–20.

[50] D.J. Felleman and D.C. Van Essen. Distributed hierarchical processing in the primate cere-
bral cortex. Cerebral Cortex, 1:1–47, 1991.

[51] J.A. Fodor and Z.W. Pylyshyn. Connectionism and cognitive architecture: A critical analy-
sis. Cognition, 28:3–71, 1988.

[52] A. Frien, R. Eckhorn, R. Bauer, T. Woelbern, and H. Kehr. Stimulus-specific fast oscillations
at zero phase between visual areas V1 and V2 of awake monkey. NeuroReport, 5(17):2273–
2277, 1994.

[53] R.C. Froemke and Y. Dan. Spike-timing-dependent synaptic modification induced by nat-
ural spike trains. Nature, 416:433–438, 2002.

170 BIBLIOGRAPHY

[54] A.P. Georgopoulos, J.F. Kalaska, R. Caminiti, and J.T. Massey. On the relations between the
directions of two-dimensional arm movements and cell discharge in primate motor cortex.
Journal of Neuroscience, 2:1527–1537, 1982.

[55] W. Gerstner, R. Ritz, and J.L. van Hemmen. A biologically motivated and analytically
soluble model of collective oscillations in the cortex, I. Theory of weak locking. Biological
Cybernetics, 68:363–374, 1993.

[56] G.M. Ghose and J. Maunsell. Specialized representations in visual cortex: A role for bind-
ing? Neuron, 24:79–85, 1999.

[57] S.W. Golomb. Run-length encodings. IEEE Transactions on Information Theory, 12:399–401,
1966.

[58] P. Gouras. Color vision. In Kandel et al. [82], chapter 31, pages 467–480.

[59] C.M. Gray. The temporal correlation hypothesis of visual feature integration: Still alive and
well. Neuron, 24:31–47, 1999.

[60] C.M. Gray, P. König, A.K. Engel, and W. Singer. Oscillatory responses in cat visual cortex
exhibit inter-columnar synchronization which reflects global stimulus properties. Nature,
338:334–337, 1989.

[61] C.M. Gray and W. Singer. Stimulus specific neural oscillations in orientation columns of
cat visual cortex. Proceedings of the National Academy of Sciences, USA, 86:1698–1702, 1989.

[62] D. Hammerstrom. A VLSI architecture for high-performance, low-cost, on-chip learning.
In Proceedings of the IEEE International Joint Conference on Neural Networks 1990, pages II:537–
543. IEEE Press, 1990.

[63] N.R. Hardingham and A.U. Larkman. The reliability of excitatory synaptic transmission in
slices of rat visual cortex in vitro is temperature dependent. Journal of Physiology (London),
507:249–256, 1998.

[64] D.O. Hebb. The organization of behavior. A neuropsychological theory. Wiley, New York, 1949.

[65] B. Hellwig. A quantitative analysis of the local connectivity between pyramidal neurons in
layers 2/3 of the rat visual cortex. Biological Cybernetics, 82:111–121, 2000.

[66] M.L. Hines and N.T. Carnevale. The NEURON simulation environment. Neural Computa-
tion, 9:1179–1209, 1997.

[67] A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. Journal of Physiology (London), 117:500–
544, 1952.

[68] K.P. Hoffmann and C. Wehrhahn. Zentrale Sehsysteme (in German). In J. Dudel, R. Men-
zel, and R.F. Schmidt, editors, Neurowissenschaft (in German), chapter 18, pages 405–426.
Springer-Verlag, Berlin/New York, 1996.

[69] J.J. Hopfield. Neural networks and physical systems with emergent collective computa-
tional abilities. Proceedings of the National Academy of Science, USA, 79:2554–2558, 1982.

[70] J.J. Hopfield. Neurons with graded response have collective computational properties like
those of two-state neurons. Proceedings of the National Academy of Science, USA, 81(10):3088–
3092, 1984.

[71] J.J. Hopfield and D.W. Tank. Computing with neural circuits. Science, 233:625–633, 1986.

BIBLIOGRAPHY 171

[72] D. Horn, D. Sagi, and M. Usher. Segmentation, binding, and illusory conjunctions. Neural
Computation, 3:510–525, 1991.

[73] D.H. Hubel and T.N. Wiesel. Functional architecture of macaque monkey visual cortex.
Proceedings of the Royal Society of London Series B, 198:1–59, 1977.

[74] D.A. Huffman. A method for the construction of minimum redundancy codes. Proceedings
of the Institute of Radio Engineers, 40:1098–1101, 1952.

[75] R.C. James. Photo of a dalmatian., 1966. in: R.L. Gregory. The intelligent eye. McGraw-Hill,
New York, 1973.

[76] W. James. Psychology. Holt, New York, 1890.

[77] O. Jensen and J.E. Lisman. Novel lists of 7+/-2 known items can be reliably stored in an
oscillatory short-term memory network: Interaction with long-term memory. Learning and
Memory, 3:257–263, 1996.

[78] W. Kahle. Nervensystem und Sinnesorgane. Thieme Verlag, Stuttgart, 1991.

[79] E.R. Kandel. Brain and behavior. In Kandel et al. [82], chapter 1, pages 5–17.

[80] E.R. Kandel. Nerve cells and behavior. In Kandel et al. [82], chapter 2, pages 18–32.

[81] E.R. Kandel. Perception of motion, depth, and form. In Kandel et al. [82], chapter 30, pages
440–466.

[82] E.R. Kandel, J.H. Schwartz, and T.M. Jessell, editors. Principles of neural science. Elsevier,
New York, 1991.

[83] C.U.A. Kappers, G.C. Huber, and E.C. Crosby. The comparative anatomy of the nervous system
of vertebrates, including man. Macmillan & Co., Ltd., 1936.

[84] S. Kastner and L.G. Ungerleider. Mechanisms of visual attention in the human cortex.
Annu.Rev.Neurosci., 23:315–341, 2000.

[85] T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A. Arieli. Spontaneously emerging
cortical representations of visual attributes. Nature, 425:954–956, 2003.

[86] A. Knoblauch. Assoziativspeicher aus spikenden Neuronen und Synchronisation im vi-
suellen Kortex (in German). Diploma thesis, Department of Neural Information Processing,
University of Ulm, Germany, 1999.

[87] A. Knoblauch. Optimal matrix compression yields storage capacity 1 for binary Willshaw
associative memory. In O. Kaynak, E. Alpaydin, E. Oja, and L. Xu, editors, Artificial Neural
Networks and Neural Information Processing - ICANN/ICONIP 2003., LNCS 2714, pages 325–
332. Springer Verlag, Berlin, 2003.

[88] A. Knoblauch. Felix++ Manual. in preparation, 2004.

[89] A. Knoblauch and G. Palm. Pattern separation and synchronization in spiking associative
memories and visual areas. Neural Networks, 14:763–780, 2001.

[90] A. Knoblauch and G. Palm. Spiking associative memory and scene segmentation by syn-
chronization of cortical activity. In S. Wermter, J. Austin, and D. Willshaw, editors, Emerging
Neural Computational Architectures Based on Neuroscience, pages 407–427. Springer-Verlag,
2001.

[91] A. Knoblauch and G. Palm. Scene segmentation by spike synchronization in reciprocally
connected visual areas. I. Local effects of cortical feedback. Biological Cybernetics, 87(3):151–
167, 2002.

172 BIBLIOGRAPHY

[92] A. Knoblauch and G. Palm. Scene segmentation by spike synchronization in reciprocally
connected visual areas. II. Global assemblies and synchronization on larger space and time
scales. Biological Cybernetics, 87(3):168–184, 2002.

[93] A. Knoblauch and G. Palm. Attentional effects in a model of two reciprocally connected
visual areas. In F. Detje, D. Dörner, and H. Schaub, editors, The logic of cognitive systems.
Proceedings of the fifth international conference on cognitive modeling., pages 271–272. Univer-
sitätsverlag Bamberg, 2003.

[94] A. Knoblauch and G. Palm. Binding and synchronization in reciprocally connected cortical
areas. In N. Elsner and H. Zimmermann, editors, The neurosciences from basic research to
therapy. Proceedings of the 29th Göttingen Neurobiology Conference and the 5th meeting of the
German Neuroscience Society 2003, pages 1045–1046. Thieme, Stuttgart, 2003.

[95] A. Knoblauch and G. Palm. Cortical assemblies of language areas: Development of cell
assembly model for Broca/Wernicke areas. Technical report, Department of Neural In-
formation Processing, University of Ulm, 2003. Report 5 of the MirrorBot project of the
European Union.

[96] A. Knoblauch and G. Palm. Synchronization of neuronal assemblies in reciprocally con-
nected cortical areas. Theory in Biosciences, 122:37–54, 2003.

[97] A. Knoblauch and F.T. Sommer. Synaptic plasticity, conduction delays, and inter-areal
phase relations of spike activity in a model of reciprocally connected areas. Neurocomputing,
52–54:301–306, 2003.

[98] A. Knoblauch and F.T. Sommer. Spike-timing-dependent synaptic plasticity can form “zero
lag” links for cortical oscillations. to appear in Neurocomputing (also in Proceedings of CNS
2003), 2004.

[99] A. Knoblauch, F.T. Sommer, and G. Palm. Phase relations of cortical oscillators coupled
reciprocally by delayed connections. in preparation, 2003.

[100] A. Knoblauch, F.T. Sommer, and G. Palm. Spike-timing-dependent synaptic plasticity as a
mechanism for long-range synchronization. in preparation, 2003.

[101] A. Knoblauch, T. Wennekers, and F.T. Sommer. Is voltage-dependent synaptic transmission
in NMDA receptors a robust mechanism for working memory? Neurocomputing, 44-46:19–
24, 2002.

[102] C. Koch and I. Segev, editors. Methods in neuronal modeling. MIT Press, Cambridge, Mas-
sachusetts, 1998.

[103] T. Kohonen. Correlation Matrix memories. IEEE Transactions on Computers, C-21:353–359,
1972.

[104] T. Kohonen. Associative memory: a system theoretic approach. Springer, Berlin, 1977.

[105] T. Kohonen. Self-organization and associative memory. Springer, Berlin, 1988.

[106] P. König, A.K. Engel, P.R. Roelfsema, and W. Singer. How precise is neuronal synchroniza-
tion? Neural Computation, 7:469–485, 1995.

[107] B. Kosko. Bidirectional associative memories. IEEE Transactions on Systems, Man, and Cy-
bernetics, 18:49–60, 1988.

[108] A.K. Kreiter and W. Singer. Stimulus-dependent synchronization of neuronal responses in
the visual cortex of the awake macaque monkey. J. of Neurophys., 16(7):2381–2396, 1996.

BIBLIOGRAPHY 173

[109] N.K. Logothetis, D.A. Leopold, and D.L. Sheinberg. What is rivalling during binocular
rivalry? Nature, 380:621–624, 1996.

[110] M. London and I. Segev. Synaptic scaling in vitro and in vivo. Nature Neuroscience, 4(9):853–
854, 2001.

[111] R.J. MacGregor. Neural and Brain Modeling. Academic Press, San Diego, 1987.

[112] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann. Regulation of synaptic efficacy by
coincidence of postsynaptic APs and EPSPs. Science, 275:213–215, 1997.

[113] D. Marr. Vision. W.H.Freeman, New York, 1982.

[114] J.L. Marroquin. Human visual perception of structure. Master thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 1976.

[115] A. Mason, A. Nicoll, and K. Stratford. Synaptic transmission between individual pyramidal
neurons of the rat visual vortex in vitro. The Journal of Neuroscience, 11(1):72–84, 1991.

[116] C. Mason and E.R. Kandel. Central visual pathways. In Kandel et al. [82], chapter 29, pages
420–439.

[117] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[118] R. Miller, editor. Time and the Brain. Conceptual Advances in Brain research. Harwood
Academic Publishers, Amsterdam, 2000.

[119] M.L. Minsky and S. Papert. Perceptrons: An introduction to computational geometry. MIT
Press, Cambridge, MA, 1969.

[120] U. Mitzdorf. Current source-density method and application in cat cerebral cortex: in-
vestigation of evoked potentials and EEG phenomena. Physiological Reviews, 65(1):37–100,
1985.

[121] J. Moran and R. Desimone. Selective attention gates visual processing in the extrastriate
cortex. Science, 229:782–784, 1985.

[122] M.H.J. Munk, L.G. Nowak, J.I. Nelson, and J. Bullier. Structural basis of cortical synchro-
nization. II. Effects of cortical lesions. Journal of Neurophysiology, 74(6):2401–2414, 1995.

[123] J.I. Nelson, P.A. Salin, M.H.J. Munk, M. Arzi, and J. Bullier. Spatial and temporal coherence
in corticocortical connections: a cross-correlation study in areas 17 and 18 in the cat. Visual
Neuroscience, 9:21–38, 1992.

[124] H. Neumann and W. Sepp. Recurrent V1-V2 interaction in early visual boundary process-
ing. Biological Cybernetics, 81:425–444, 1999.

[125] L.G. Nowak and J. Bullier. Cross correlograms for neuronal spike trains. Different types of
temporal correlation in neocortex, their origin and significance. In Miller [118], chapter 2,
pages 53–96.

[126] L.G. Nowak, M.H.J. Munk, A.C. James, P. Girard, and J. Bullier. Cross-correlation study of
the temporal interactions between areas V1 and V2 of macaque monkey. J. Neurophysiol.,
81:1057–1074, 1999.

[127] L.G. Nowak, M.H.J. Munk, J.I. Nelson, A.C. James, and J. Bullier. Structural basis of cortical
synchronization. I.Three types of interhemispheric coupling. Journal of Neurophysiology,
74(6):2379–2400, 1995.

174 BIBLIOGRAPHY

[128] M.W. Oram and D.I. Perrett. Modeling visual recognition from neurobiological constraints.
Neural Networks, 7:945–972, 1994.

[129] G. Palm. On associative memories. Biological Cybernetics, 36:19–31, 1980.

[130] G. Palm. Neural Assemblies. An Alternative Approach to Artificial Intelligence. Springer, Berlin,
1982.

[131] G. Palm. Associative memory and threshold control in neural networks. In J.L. Casti and
A. Karlqvist, editors, Real Brains - Artificial Minds. North-Holland, New York, Amsterdam,
London, 1987.

[132] G. Palm. Computing with neural networks. Science, 235:1227–1228, 1987.

[133] G. Palm. Cell assemblies as a guideline for brain research. Concepts in Neuroscience, 1:133–
148, 1990.

[134] G. Palm. Memory capacities of local rules for synaptic modification. A comparative review.
Concepts in Neuroscience, 2:97–128, 1991.

[135] G. Palm. Cell assemblies, coherence, and corticohippocampal interplay. Hippocampus,
3:219–226, 1993.

[136] G. Palm. On the internal structure of cell assemblies. In A. Aertsen, editor, Brain Theory.
Elsevier, Amsterdam, 1993.

[137] C.C.H. Petersen, R.C. Malenka, R.A. Nicoll, and J.J. Hopfield. All-or-none potentiation at
CA3-CA1 synapses. Proceedings of the National Academy of Science, USA, 95:4732–4737, 1998.

[138] P.F. Pinsky and J. Rinzel. Intrinsic and network rhythmogenesis in a reduced Traub model
for CA3 neurons. Journal of Computational Neuroscience, 1:39–60, 1994.

[139] E. Pöppel. Temporal mechanisms in perception. International Review of Neurobiology, 37:185–
202, 1994.

[140] E. Pöppel. Grenzen des Bewußtseins. Wie kommen wir zur Zeit, und wie entsteht Wirklichkeit?
Insel Verlag, Frankfurt, 1997.

[141] E. Pöppel and K. Schill. Time perception: problems of representation and processing. In
M.A. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 987–990. MIT
Press, Cambridge, MA., 1995.

[142] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes in C. Cam-
bridge University Press, Cambridge, UK, 1992.

[143] F. Pulvermüller. Words in the brain’s language. Behavioral and Brain Sciences, 22:253–336,
1999.

[144] D.A. Rachkovskij and E.M. Kussul. Binding and normalization of binary sparse distributed
representations by context-dependent thinning. Neural Computation, 13:411–452, 2001.

[145] W. Rall and H. Agmon-Snir. Cable theory for dendritic neurons. In Koch and Segev [102],
chapter 2, pages 27–92.

[146] J.H. Reynolds, L. Chelazzi, and R. Desimone. Competitive mechanisms subserve attention
in macaque areas V2 and V4. The Journal of Neuroscience, 19(5):1736–1753, 1999.

[147] J.H. Reynolds and R. Desimone. The role of neural mechanisms of attention in solving the
binding problem. Neuron, 24:19–29, 1999.

BIBLIOGRAPHY 175

[148] M. Riesenhuber and T. Poggio. Are cortical models really bound by the “binding problem”?
Neuron, 24:87–93, 1999.

[149] D.L. Ringach. States of mind. Nature, 425:912–913, 2003.

[150] R. Ritz, W. Gerstner, U. Fuentes, and J.L. van Hemmen. A biologically motivated and
analytically soluble model of collective oscillations in the cortex. II. Applications to binding
and pattern segmentation. Biol. Cybern., 71:349–358, 1994.

[151] A. Robert. From contour integration to image schemas: a modern perspective on Gestalt
psychology. Technical Report 97.02, Department of Cognitive Science, University of Cali-
fornia at San Diego, 1997.

[152] A.J. Rockel, R.W. Hiorns, and T.P.S. Powell. The basic uniformity of the neocortex. Brain,
103:221–244, 1980.

[153] R. Rojas. Theorie der neuronalen Netze. Springer Verlag, Berlin, 1993.

[154] F. Rosenblatt. Principles of neurodynamics: perceptrons and the theory of brain mechanisms.
Spartan Books, Washington, D.C., 1961.

[155] D. Rumelhart and J. McClelland. Parallel distributed processing.. MIT Press, Cambridge, MA,
1986.

[156] S. Russel and P. Norvig. Artificial intelligence. Prentice-Hall, London, 1995.

[157] B. Sagi, S.C. Nemat-Nasser, R. Kerr, R. Hayek, C. Downing, and R. Hecht-Nielsen. A bio-
logically motivated solution to the cocktail party problem. Neural Computation, 13(7):1575–
1602, 2001.

[158] C.D. Salzman and Newsome W.T. Neural mechanisms for forming a perceptual decision.
Science, 264:231–237, 1994.

[159] U. Schöning. Theoretische Informatik kurz gefasst (in German). BI Wissenschaftsverlag,
Mannheim, 1992.

[160] F. Schwenker, F.T. Sommer, and G. Palm. Iterative retrieval of sparsely coded associative
memory patterns. Neural Networks, 9:445–455, 1996.

[161] I. Segev, R.E. Burke, and M. Hines. Compartmental models of complex neurons. In Koch
and Segev [102], chapter 3, pages 93–136.

[162] M.I. Sereno, A.M. Dale, J.B. Reppas, K.K. Kwong, J.W. Belliveau, T.J. Brady, B.R. Rosen, and
R.B.H. Tootell. Borders of multiple visual areas in humans revealed by functional MRI.
Science, 268:889–893, 1995.

[163] M.N. Shadlen and J.A. Movshon. Sychrony unbound: A critical evaluation of the temporal
binding hypothesis. Neuron, 24:67–77, 1999.

[164] C.E. Shannon and W. Weaver. The mathematical theory of communication. University of Illinois
Press, Urbana/Chicago, 1949.

[165] L. Shastri and V. Ajjanagadde. From simple associations to systematic reasoning: a con-
nectionistic representation of rules, variables and dynamic bindings. Behavioral and Brain
Sciences, 16(3):417–494, 1993.

[166] D.L. Sheinberg and N.K. Logothetis. The role of temporal cortical areas in perceptual orga-
nization. Proceedings of the National Academy of Sciences, USA, 94:3408–3413, 1997.

[167] W. Singer. Neuronal synchrony: A versatile code for the definition of relations? Neuron,
24:49–65, 1999.

176 BIBLIOGRAPHY

[168] W. Singer and C.M. Gray. Visual feature integration and the temporal correlation hypothe-
sis. Annu.Rev.Neurosci., 18:555–586, 1995.

[169] F.T. Sommer. On cell assemblies in a cortical column. Neurocomputing, 32-33:517–522, 2000.

[170] F.T. Sommer and G. Palm. Bidirectional retrieval from associative memory. In Advances in
Neural Information Processing Systems 10 (NIPS 1997), pages 675–681. MIT Press, Cambridge,
MA., 1998.

[171] F.T. Sommer and G. Palm. Improved bidirectional retrieval of sparse patterns stored by
hebbian learning. Neural Networks, 12:281–297, 1999.

[172] F.T. Sommer and T. Wennekers. Associative memory in networks of spiking neurons. Neu-
ral Networks, 14(6/7):825–834, 2001.

[173] S. Song, K.D. Miller, and L.F. Abbott. Competitive Hebbian learning through spike-timing-
dependent synaptic plasticity. Nature Neuroscience, 3(9):919–926, 2000.

[174] K. Steinbuch. Die Lernmatrix. Kybernetik, 1:36–45, 1961.

[175] M. Steriade and F. Amzica. Intracortical and corticothalamic coherency of fast spontaneous
oscillations. Proc. Natl. Acad. Sci. ,USA, 93:2533–2538, 1996.

[176] M. Steriade, F. Amzica, and D. Contreras. Synchronization of fast (30-40 Hz) spontaneous
cortical rhythms during brain activation. J.Neurosci., 16(1):392–417, 1996.

[177] A. Strey. EpsiloNN - A specification language for the Efficient Parallel Implementation of
Neural Networks. In Biological and artificial computation: From neuroscience to technology.,
Lecture Notes in Computer Science 1240, pages 714–722. Springer, Berlin, 1997.

[178] B. Stroustrup. C++ programming language. Third Edition. Addison-Wesley, Reading, Mas-
sachusetts, 1997.

[179] H. Swadlow. Information flow along neocortical axons. In Miller [118], chapter 4, pages
131–155.

[180] T. Swan. GNU C++ for Linux. Que, Indianapolis, 1999.

[181] J. Szentagothai. The ’module concept’ in cerebral cortex architecture. Brain Research, 95:475–
496, 1975.

[182] J. Szentagothai. The neuron network of the cerebral cortex: a functional interpretation.
Proceedings of the Royal Society of London Series B, 201:219–248, 1978.

[183] S.J. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system. Nature,
381:520–522, 1996.

[184] M.J. Tovée. An introduction to the visual system. Cambridge University Press, Cambridge,
1996.

[185] R.D. Traub, R.K.S. Wong, R. Miles, and H. Michelson. A model of a CA3 hippocampal
pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of
Neurophysiology, 66(2):635–650, 1991.

[186] A. Treisman. Feature binding, attention and object perception. Phil. Trans. R. Soc. London B,
353:1295–1306, 1998.

[187] A. Treisman. Solutions to the binding problem: progress through controversy and conver-
gence. Neuron, 24:105–110, 1999.

BIBLIOGRAPHY 177

[188] A. Treisman and G. Gelade. A feature-integration theory of attention. Cognitive Psychology,
12:97–136, 1980.

[189] M.V. Tsodyks and M.V. Feigelman. The enhanced storage capacity in neural networks with
low activity level. Europhysics Letters, 6:101–105, 1988.

[190] M.V. Tsodyks, T. Kenet, A. Grinvald, and A. Arieli. Linking spontaneous activity of single
cortical neurons and the underlying functional architecture. Science, 286:1943–1946, 1999.

[191] C. von der Malsburg. The correlation theory of brain function. Technical Report Interner
Report 81-2, Max-Planck Institut für Biophysikalische Chemie, Göttingen, Germany, 1981.

[192] C. von der Malsburg. Am I thinking assemblies? In G. Palm and A. Aertsen, editors, Brain
Theory, pages 161–176. Springer-Verlag, Berlin/Heidelberg, 1986.

[193] C. von der Malsburg. Binding in models of perception and brain function. Current Opinion
in Neurobiology, 5:520–526, 1995.

[194] C. von der Malsburg. The what and why of binding: The modeler’s perspective. Neuron,
24:95–104, 1999.

[195] C. von der Malsburg and J. Buhmann. Sensory segmentation with coupled neural oscilla-
tors. Biological Cybernetics, 67:233–242, 1992.

[196] C. von der Malsburg and W. Schneider. A neural cocktail-party processor. Biological Cyber-
netics, 54:29–40, 1986.

[197] T. Wennekers. Synchronisation und Assoziation in Neuronalen Netzen (in German). Shaker
Verlag, Aachen, 1999.

[198] T. Wennekers and G. Palm. Controlling the speed of synfire chains. In C.v.d. Malsburg,
W.v. Seelen, J.C. Vorbrüggen, and B. Sendhoff, editors, Proceedings of the ICANN 1996, pages
451–456, Berlin, Heidelberg, New York, 1996. Springer Verlag.

[199] T. Wennekers and G. Palm. On the relation between neural modelling and experimental
neuroscience. Theory in Bioscience, 116:273–289, 1997.

[200] T. Wennekers and G. Palm. How imprecise is neuronal synchronization. Neurocomputing,
26-27:579–585, 1999.

[201] T. Wennekers and G. Palm. Cell assemblies, associative memory and temporal structure in
brain signals. In Miller [118], chapter 10, pages 251–273.

[202] T. Wennekers, F.T. Sommer, and G. Palm. Iterative retrieval in associative memories by
threshold control of different neural models. In H.J. Herrmann, D.W. Wolf, and E. Pöppel,
editors, Supercomputing in Brain Research: From Tomography To Neural Networks, pages 301–
319. World Scientific, Singapore, 1995.

[203] J.R. Wickens and R. Miller. A formalisation of the neural assembly concept. 1.Constraints
on neural assembly size. Biological Cybernetics, 77:351–358, 1997.

[204] D.J. Willshaw, O.P. Buneman, and H.C. Longuet-Higgins. Non-holographic associative
memory. Nature, 222:960–962, 1969.

[205] J.M. Wolfe and K.R. Cave. The psychophysical evidence for a binding problem in human
vision. Neuron, 24:11–17, 1999.

[206] C. Zetzsche. Sparse coding: the link between low level vision and associative memory. In
R. Eckmiller, G. Hartmann, and G. Hauske, editors, Parallel processing in neural systems and
computers., pages 273–276. Elsevier, North-Holland, 1990.

178 BIBLIOGRAPHY

Lebenslauf und wissenschaftlicher Werdegang

Persönliche Angaben

Name Andreas Knoblauch
Geburtsdatum 25. August 1972
Geburtsort Geislingen an der Steige
Staatsangehörigkeit deutsch
Familienstand verheiratet mit Kattia Chaves Monge, BBA
Eltern Hermann Knoblauch, Konditormeister

Gertrud Knoblauch (geb. Winkler), Einzelhandelskauffrau
Geschwister Stefanie Knoblauch, Erzieherin

Ausbildung

1979 - 1983 Grundschule in Böhmenkirch
1983 - 1992 Helfensteingymnasium in Geislingen an der Steige
1992 - 1993 Zivildienst an der Sozialstation Donzdorf
1993 - 2000 Studium der Informatik mit Nebenfach Elektrotechnik an der

Universität Ulm
seit 2000 Promotionsstudium an der Abteilung Neuroinformatik der Uni-

versität Ulm

Prüfungen

19.05.1992 Abitur
27.09.1995 Vordiplom in Informatik mit Nebenfach Elektrotechnik
14.01.2000 Diplom in Informatik mit Nebenfach Elektrotechnik

Berufstätigkeit

1988 - 2000 Computeradministration für Lebensmittelmarkt Knoblauch in
Böhmenkirch

1995 - 2000 Wissenschaftliche Hilfskraft an der Universität Ulm
seit 2000 Wissenschaftlicher Angestellter an der Abteilung Neuroinfor-

matik der Universität Ulm

	Overview
	Motivation and classification
	Organization

	Introduction
	Neurobiology of the brain
	Anatomy of the brain
	Neurons, synapses, and Hebbian learning
	Architecture of the cerebral cortex
	Visual system

	Distributed representations, neural assemblies, and binding
	Distributed representations
	Neural assemblies
	The binding problem
	The temporal correlation hypothesis

	Associative memory
	The Willshaw model
	Neural associative memory and technical applications
	Willshaw associative memory as a model for a cortical column
	Alternative models of associative memory

	Simulation tools and models of neurons and synapses

	Willshaw associative memory
	Classical analysis of the Willshaw model
	Storing and retrieving patterns
	Classical analysis of one-step retrieval

	Matrix compression yields storage capacity 1
	Ultra-sparse patterns
	Moderately-sparse patterns
	Non-sparse patterns

	Fault tolerance
	Missing ones in the address patterns
	False ones in the address patterns

	Retrieval efficiency for sequential implementations
	Look-up-tables with M=nd
	Classical Willshaw model
	Compressed Willshaw model with ultra-sparse patterns
	Compressed Willshaw model with moderately-sparse patterns

	Retrieval efficiency for parallel implementations
	Classical Willshaw model
	Parallel implementation of the compressed Willshaw model
	Compressed Willshaw model with ultra-sparse patterns
	Compressed Willshaw model with moderately-sparse patterns

	A critique of the classical binomial analysis
	The binomial approximation of the Willshaw distribution can be bad
	Oscillatory modulations in the membrane potential distribution
	Underestimation of the variance of membrane potentials
	Consequences
	An experiment to test the hypothesis of cell assemblies in the brain

	Implications
	Implications for technical applications
	Implications for biological models

	Spiking associative memory
	Addressing with superpositions
	Pattern separation
	Spike counter model
	Analysis of the spike counter model
	Single noisy address patterns
	Asymptotic analysis
	Superpositions of several noisy address patterns
	Relevance and applicability of the analysis
	Refined analysis

	Technical implementations of the spike counter model
	Model extension
	Sequential implementations
	Parallel implementations
	Simulation experiments
	Summary

	Biological implementations of the spike counter model
	Implications
	Summary of the chapter
	Why spikes?

	Model of visual cortical areas
	Modeling
	Model of the primary visual cortex
	Reciprocal connection to a central cortical area

	Interaction between two cortical areas
	Single stimulus
	Multiple stimuli

	Relation to neurophysiological results
	Two-bars experiment
	Inter-areal synchronization
	Synchronization on larger time scales
	Attention and biased competition
	Synchronization on larger space scales

	Summary of the mechanisms in the model
	Local synchronization
	Fast oscillations
	Intra-areal long-range synchronization
	Inter-areal long-range synchronization
	Attentional switching between two activation states
	Binding

	Binding in the brain
	Is there a binding problem in the brain?
	Critique of the strong Temporal Correlation Hypothesis
	Postulations of the strong TCH and phase coding
	Critique of phase coding in the gamma range
	Functional relevance of fine timing
	Different time and space scales for binding by synchronization

	Sketch of a more global model of binding in cortical areas
	Classification of different binding problems
	Possible solutions

	Conclusions
	Contributions to the theory of Willshaw associative memory
	Contributions to the theory of cell assemblies

	Zusammenfassung (in German)
	Information theory
	Basic information theory
	Information of random variables
	Transinformation and transinformation rate
	Channels and channel capacity

	Binary channels
	Optimal compression of sparse bit streams
	Huffman codes
	Golomb codes

	Analysis of associative memory
	Information-theoretical storage capacity
	Auto association and hetero association
	Retrieval and separation quality
	Retrieval quality
	Separation quality

	Further analysis of Willshaw associative memory
	Derivatives of memory load, storable patterns, and storage capacity
	Optimal storage capacity for moderately sparse patterns
	For non-sparse patterns asymptotic storage capacity is generally zero

	Simulation tool Felix++
	Basic architecture of Felix++
	The core modules of Felix++
	Auxiliary modules of Felix++
	Component classes of Felix++

	Simulation environment and components: Code examples
	Simulation environment: Class TSimulationEnvironment
	Components: Class TComponent
	Class TSSNeuron: a simple spiking neuron model

	Structure of a Felix++ simulation
	A skeleton simulation program
	The parameter file
	Compiling and running simulations

	Symbol reference

