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ABSTRACT1 

 
The human brain is far superior to a modern computer in 
its ability to do associative recall. Many theorists believe 
that one of the important functions of primate neocortex is 
"associative memory". Palm’s network [1] is one of the 
most powerful associative memory models available. To 
study variations of this basic model, we have built a multi-
processor based Palm simulator that executes on our 
Beowulf cluster and supercomputers at NASA. We have 
also created a spiking version that adds temporal 
information to the model and is more biologically 
plausible. Experimental results are summarized, and the 
problems solved are also discussed. 

 

1. INTRODUCTION 
 

Many scientists and researchers believe that the cortex 
uses association as the most common computational 
substrate. Since the development of the earliest computers, 
people have been trying to build intelligent information 
processing systems to imitate human cognitive abilities, 
such as speech recognition, computer vision and robot 
control. However, solutions still elude us for the most 
part. 

In this paper we show the results of simulation of 
simple, but very large associative networks. 

 
2. ASSOCIATIVE MEMORY 

 
2.1. Definition 
 
A memory is a system that both stores information and 
recalls information. In the computer memory, data are 
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saved in subsequent addressed locations. When data are 
needed, the corresponding addresses must be provided to 
fetch the data. The brain works in a similar manner, but 
has the ability to fetch data based on content, a process 
called “association.”  For example, given a person’s name, 
people can immediately recall a number of related facts 
and events. 

This kind of memory that stores mappings of specific 
input representations to specific output representations is 
called an associative memory, which is a system that 
“associates” two vectors such that when one is 
encountered subsequently, the other can be reliably 
recalled. One of the most important features of associative 
memories is their ability to recall spatial and temporal data 
from incomplete or corrupted inputs. 

Generally when we refer to associative processing, 
we mean “best match” association, where the memory 
returns a vector that most closely matches the input, as 
opposed to “exact match” association where only a vector 
that exactly matches the input is returned and is the more 
common kind of associative memory used in many real 
world applications. 

There are two kinds of associations: auto-association 
and hetero-association. In auto-association, the input and 
output spaces are identical, an input vector is associated 
with itself. In hetero-association, an input vector is 
associated with a completely different output vector. 

 
2.2. Comparison to conventional memory 
 
A traditionally memory holds a list of vectors which are 
distinguished by their addresses, when a particular vector 
is needed, the exact address of the vector must be 
provided. In associative memory, vector retrieval is done 
by matching the contents of each location to a key. This 
key could represent a subset or a corrupted version of the 
desired vector.  The memory then returns the vector that is 
“closest” to the key. Here, “closest” is based on some 
metric, such as Euclidian distance. Likewise, the metric 
can be conditioned so that some vectors are more likely 
than others, leading to Bayesian-like inference.  

Another difference is how the data are actually stored.  
In traditional memory, vectors are stored explicitly, with 



each set of bits occupying a unique location.  In the 
associative memory structures described here, all the 
vectors are stored in a distributed manner, where, when 
more vectors are added, no extra memory is required (up 
to a point). 

The associative memories we are studying have one 
additional characteristic: distributed data representation, 
which means the attribute of a vector is represented by a 
few active neurons across all the neurons, and every active 
neuron corresponds to a few vectors. Palm has shown [2] 
that this structure has larger information capacity and 
better error tolerance.  
 

3. PALM’S NETWORK 
 

3.1. Network description 
 
The set of mappings to be stored in a Palm associative 
network is ( ){ }, | 1,2, ,S x y Mµ µ µ= = . x µ  is the input, and 

y µ  is the corresponding output. Both x µ  and y µ  are 
sparsely encoded binary vectors. 

In the training procedure, each pair of the mapping is 
presented to the network. A “clipped” Hebbian learning 
rule is applied to generate the weight matrix:   
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where∨ is Boolean OR operation, and ⋅  is outer product. 
In the recall procedure, an input x̂ is presented to the 

network, for our experiments the recall, or test vectors, 
were noisy versions of the training vector x . The output 
vector retrieved by the network with weight W is  
ˆ ˆ( )y f W x θ= ⋅ −                                                  (2) 

where ⋅  represents the inner production, θ is a global 
threshold and ()f  is a binary-valued transfer function. 

To set the threshold, the “K winners take all rule” (K-
WTA) was proposed by Palm. K is the number of active 
nodes in an output vector, which means that only K 
elements in the output vector are allowed to be “1”. The 
threshold is set adaptively to the value where only those 
nodes that have the K maximum values can be set as “1”. 

Perhaps the most important characteristic of the Palm 
model is the use of sparsely encoded vectors, which 
results from the K-WTA operation. In addition, the binary 
synaptic weights add to the simplicity of the network and 
do not affect recall performance. The information content 
per bit is higher than with traditional content addressable 
memory. Palm shows that the maximum information 
capacity occurs when the weight matrix is half full. Also, 
the retrieval procedure generally converges within one or 
two iterations. 
 
3.2. Csim implementation 
 

We are using Palm’s model as a starting point for 
developing very large associative networks. For this 
development, we needed a simulation environment that 
allowed parallel execution, was portable, and allowed us 
to rapidly create complex simulations.  For these reasons, 
we created Csim (the Cortex SIMulator). 

Csim is programmed in C++. The basic structure of 
Csim is the Pathway object, which is a template for all 
other derived objects, and operates as a communication 
region with internal data storage. Pathway objects contain 
one or more vector arrays. The entire simulation is vector 
oriented.   

The various objects required in a simulation are 
derived from the Pathway. These derived objects are 
either communication objects, performing scatter and 
gather for parallel processor implementation, or operators 
that perform some functions, such as an inner product or 
K-WTA, on data obtained from the input pathways to the 
object.  A simulator then is built up by instantiating these 
derived types and connecting them together.  This 
collection of objects is under control of the Timing and 
Control (TC) module, which initiates the parameters, sets 
connections between the different Pathways, runs the 
simulation, and deletes the objects after simulation.  Csim 
has an interactive interface, but is executed in batch mode.  
Data output can be generated for analysis and graphical 
representation using Matlab. Csim compiles and executes 
on Windows 2000 (Visual C++ 6.0), Linux (g++), and 
SGI Unix. 

Csim can execute on a single processor or multiple 
processors. A special set of pathway objects are available 
which use MPI calls to send data to the sub-network on 
each processor. MPI, the Message Passing Interface, is a 
standard for message communication among multiple 
processors. 

The Csim simulation includes three main parts: 
training the network, presenting test data and retrieving 
the output, and computing statistics. In the experiments 
discussed here, artificial training and test vectors are used.  
However, Csim can also take data from real-world 
applications. 

In the first phase, a set of training vectors is 
generated, and the associative network can be formed 
iteratively for each training vector. If the multi-process 
version is used, the training vector is generated in the root 
process, the root process then broadcasts the whole 
training vector to all other processes. 

The test vectors are noisy versions of the training 
vectors, and are generated by randomly flipping some bits 
in the training vectors according to a given probability.  In 
multi-processing mode, the root process creates each test 
vector and broadcasts it to the other processes, which 
calculate an inner product of the test vector with the 
weight sub-matrix for the nodes on that process. The K-
WTA (for the global k) is executed in parallel on all 
processes to reduce the data amount communicated 



between each process (at most k * number of processes).  
The root process receives each process’s k-element vector 
and does another K-WTA to get the final k global 
winners.  It is possible that each process can reduce the 
number of elements in its K-WTA, but by using k we 
guarantee that the parallel version and the sequential 
version get the exact same answers which may not be 
necessary in a real application. 

Statistics are collected to evaluate the performance of 
the network. The Euclidian distance between the training 
vectors and the output vectors, and between the training 
vectors and the test vectors are used to determine the 
“gain” of the network in terms of reduced noise at the 
output, that is, Gain = 1 – (ED(Train, Output) / ED(Train, 
Test). 

 
4. CSIM EXPERIMENT RESULTS 

 
4.1. Simulations on Beowulf cluster 
 
We have a Linux based Beowulf cluster that consists 8 
1GHz Pentium III processors, each with 512MB memory. 
Csim parallel processing can be performed on this cluster. 
Both C and C++ calls for MPI are available in the cluster 
(and Csim can use either).  

A network of 64K neurons has been trained on 100K 
training vectors, with each vector having 200 active 
nodes. When 100 test vectors, with 10% error probability 
per bit, are given as the input, the corresponding training 
vectors are recalled without error. In such a simulation, 6 
minutes 20 seconds (11.2% is used for inter processor 
communication) is spent on training, and 53 seconds 
(1.3% for inter-processor communication) on retrieval. 

 
Figure 1 
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For the same 64K nodes network, we decreased and 

increased the number of the training vectors. The number 
of active nodes in the training vectors was always 200.  
We tested 100 test vectors with 10% error. The results are 
shown in Figure1. The Performance, which can be viewed 
as the information gain due to the network, is defined as: 
Performance = 1- D(output_train)/D(test_train), 
where D(output_train) represents the average distance 
between the output vectors and the training vectors, and 
D(test_train) represents the average distance between the 
test vectors and the training vectors. If the Performance is 
1, all the training vectors are retrieved perfectly; if it’s 
negative, the information gain is negative, corresponding 
to the situation where information is actually lost. 

 In Figure 1, for 250K training vectors, even though 
not all the outputs are perfectly recalled, the information 
gain is positive. But for more training vectors, the 
information gain is negative, which means the network is 
overloaded and too many interference occurs. For 45K 
training vectors, the retrieval is perfect, even with error 
rates approaching 50% (not shown in Figure 1), the 
memory can recall the stored vectors without error. 

The same 64K node Palm network with 45K training 
vectors was tested on 100 test vectors with 10% error. The 
effect of changing the active number of nodes in the 
training vectors is shown in Figure 2. We can see that for 
500 active nodes, the retrieved vectors are not perfect, but 
there is still large information gain. Increasing the number 
of active nodes to more than 575 makes the weight matrix 
too dense to effectively recall the output. 

 
Figure 2    
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    In all the experiments, the total simulation time and 

the time spent in MPI routines was collected to indicate 
the efficiency of multiple processing, which was measured 
by the percent of time the nodes were waiting for 
information to be communicated. We set the number of 
training vectors to 45K, each with 200 active nodes, and 
the number of test vectors to 100. So, the larger the vector 
size, the sparser the network. Figure 3 indicates that the 
larger the network, the less percentage of time is spent on 
inter-processor communication. 

 
Figure 3 
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The largest network simulated on the Beowulf cluster 

consists of 128K neurons. We trained 100K vectors, each 
with 200 active nodes. The training procedure takes about 
6 minutes and 51 seconds, of which 11.2% is spent in MPI 
intercommunication. To retrieve 100 test vectors with 
10% error probability, 1 minute and 55 seconds were 
required, only 0.5% of the time was in MPI 
intercommunication.  

The cluster results indicate that: the larger the 
network and the sparser the vector, the more vectors can 
be stored and the better retrieval performance.  This also 



led to more efficient parallel processing. The asymptotic 
association capacity of ln 2  can be obtain when the 
number of ones per vector is of the order of logn , which 
confirms Palm’s analytical results [2].  

 
4.2. Simulations on NASA supercomputers 
 
Initial simulations and Csim debug were done on our 
Beowulf system, but the larger simulations were done on 
NASA’s SGI 2000 Origin Supercomputers at the Ames 
Research Center. The two we used were, Steger, with 256 
processors and 64GB memory in total, and Lomax with 
512 processors and 192GB memory.  Both machines are 
based on the 250 MHz MIPS 12K processor connected via 
high-speed inter-processor communication (1.2GB/node).  
The Origin 2K is a shared memory “NUMA” (Non-
Uniform Memory Access) architecture.  Our usage of the 
machine was limited due to long access queues, so most 
simulations were of 256K neurons, however, we did 
occasional simulations of 512K nodes.                                                                                         

As expected, the behavior of the larger simulations 
could be extrapolated from the smaller. For example, for a 
network of 256K nodes and 180K training vectors with 40 
active nodes, when presented with test vectors with 20% 
probability of error, all training vectors were recovered 
perfectly. The execution time (64 processors) is 4min 7 
secs, and 13% of that time was spent in MPI calls – a 
large number considering the interconnect bandwidth of 
the Origin 2000.  

Interestingly the largest simulations (512K) were not 
as robust as we thought they would be. They were more 
sensitive to the number of active nodes and the total 
number of training vectors. Part of the reason could be 
quantization effects that occur during the global K-WTA 
operation. A Palm network interconnection matrix for a 
512K-node network has a 50% fill factor, so the fan-in 
(convergence) onto a node is about 256K inputs, even 
with only a few elements active in the input vector, each 
neuron will respond to some degree to the input.  Using 
limited precision and binary inputs and weights, many 
nodes will have the same value after the inner product 
operation.  In this case it is impossible to use the adaptive 
threshold deterministically to get exactly K winners. 

 
5. PULSED PALM NETWORK 

 
These first simulations convinced us that the Palm model 
is sufficiently powerful to use as a basis for our 
association memory development.  However, there are 
still many other problems we will need to solve before a 
practical solution is possible.  The Palm model used above 
has no temporal dimension, so we next investigated the 
development of a temporal based Palm model. 
 It has always been difficult to add temporal feature 
detection to neural network models. Although there is no 
agreement as to how inter-neuron information is encoded, 

many neuroscientists agree that the firing time or the inter-
spike interval of a neuron is important in encoding 
information in real neurons. This realization has led to the 
design of spiking neural models [3]. 
 
5.1. Description of spiking neuron model 
 
The state ( )iu t  of neuron i  (1 i N≤ ≤ ), which is 
analogous to its somatic potential, is determined by two 
processes: the input from presynaptic neurons and the 
threshold of itself: 

1 1
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where ijw is the efficacy of the connection between neuron 

i  and j ; ( )f
ij jt tε −  is the postsynaptic potential of neuron 

j contributing to neuron i ; ( )i it tη − , the threshold, 
describes the refractory effect of the output neuron i  that 
fires at 

it . 
 In our simulation, to implement the neuron model in 

equation (3), we use )(tη  as  
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where refτ  is the absolute refractory period. In the 
simulation, after each firing, we set the state to 0 in the 
refractory period. 

The postsynaptic potential function )(tε  we used is  

( ) exp(1 ) ( )d d
d

s s

t T t Tt H t Tε
τ τ
− −

= − −
                                             (5) 

where )(tH  is Heaviside function, 
dT  is the time delay. 

Hebbian learning is used during the training 
procedure, which can be implemented by the timing 
window 
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where f
j is t t= − . Also, ( )ijw t  is constrained to lie within 

the interval0 ( )ij lw t W≤ ≤ . 
 
5.2. Implementation and Results 
 
The use of spiking neurons is not new.  However, most 
spiking models have typically been an end in themselves.  
There has been very little work on taking existing “value” 
based models and converting them to spiking 
representations.  Our goal was to implement a pulse 
(“spiking”) version of the Palm model. Using the 
equations above turned out to be sufficient, though there 
were some issues related to how we represented the 
training and test vectors and the K-WTA operation.  

We implemented the spiking Palm network initially 
using our Matlab library. Vector representation is 
illustrated in Figure 4. Now that we have a working 



model, we have also implemented the same model in 
Csim. In the spiking network, for a binary input vector, 
“1” will be represented by a spike that stochastically fires 
within a certain time interval, that is, the vector becomes a 
set of pulses that occur near, but not at exactly the same 
time.  In Figure 4, (a) is one of the training vectors 
(0001000100110000) stored in the network; in (b), a test 
vector (0001000100100001) is presented;  (c) illustrates 
the state (somatic potential), and the threshold of the 
output neurons. The dashed lines in (c) indicate the 
threshold, which is determined by K-WTA rule. Only 
those neurons whose somatic potential are greater than the 
threshold can fire. In (c), the corresponding output vector 
is 001000100110000, which is exactly the stored memory 
vector shown in (a). 

 

Figure 4 
 

 
 

The performance of the spiking model is very close 
to, and sometimes even better than, that of the standard 
Palm model. Although only small networks were 
simulated in Matlab, the pulsed Palm network is 
surprisingly robust to random temporal noise (jitter). In 
our simulation, we did not use the lateral inhibitive 
connections to compete for firing, instead a simple K-
WTA on the maximum neuron state (potential) was used. 
An important fact about the spiking network is that if the 
postsynaptic exponential function is replaced by piece-
wise linear function, the network behavior does not 
change. This is a convenient way to implement the spiking 
model in FPGA hardware. 

 
6. CONCLUSIONS 

 
Palm networks are robust and scale reasonably well.  In 
addition, we have developed a version of the model that 
operates in the temporal domain.  However, there are still 
several potential problems with this computational model: 
 1. The current network model is not trained 
interactively as one would expect from a biologically 
inspired computation algorithm. We are looking at several 

dynamic learning techniques. One excellent example is 
the Bayesian Confidence Propagation network [4]. 
 2. The network requires that input data be mapped to 
a sparse representation, likewise output data must be 
mapped back into the original representation.  Algorithms 
are available [5] for creating sparse representations based 
on correlations within the input data. And once a sparse 
representation is determined, networks can be developed 
that perform the mapping from an external representation 
into the sparse representation and back again.  Currently, 
this requires a fairly custom implementation for each 
application.  We are also investigating more general, pre- 
and post-processing strategies. 
 3. Even though the vectors themselves are sparsely 
activated, as more information is added to the network, the 
weight matrix can become quite full; recall that optimal 
capacity is at 50% non-zero entries; for a 1M network that 
translates to about 64GB.  However biology demonstrates 
significant sparse connectivity.  Cortical systems, for 
example, have a connectivity that is several orders of 
magnitude sparser.  According to Braitenberg [6], there 
are two kinds of connections in cortex: metric and 
ametric. The metric connections are very dense 
connections to a node’s local neighborhood.  The ametric 
connections are much sparser, random, point-to-point 
connections to densely connected groups. We have begun 
studying creating large networks by sparsely connecting, 
smaller, highly connected networks. Such a structure 
begins to approximate the architecture proposed by 
Braitenberg and Schüz.  Furthermore it is hypothesized 
that large groups of modules may have different learning 
and connectivity patterns, which allows them to specialize 
on certain types of functionality, creating a larger, more 
complex system. 
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