SIMULATION OF ASSOCIATIVE NEURAL NETWORKS

Shaojuan Zhu and Dan Hammerstrom

Center for Biologically Inspired Information Engineering
Department of Electrical and Computer Engineering
OGI School of Science and Engineering

Oregon Health and Science University

ABSTRACT!

The human brain is far superior to a modern computer in
its ability to do associative recall. Many theorists believe
that one of the important functions of primate neocortex is
"associative memory". Palm’s network [1] is one of the
most powerful associative memory models available. To
study variations of this basic model, we have built a multi-
processor based Palm simulator that executes on our
Beowulf cluster and supercomputers at NASA. We have
also created a spiking version that adds temporal
information to the model and is more biologically
plausible. Experimental results are summarized, and the
problems solved are also discussed.

1. INTRODUCTION

Many scientists and researchers believe that the cortex
uses association as the most common computational
substrate. Since the development of the earliest computers,
people have been trying to build intelligent information
processing systems to imitate human cognitive abilities,
such as speech recognition, computer vision and robot
control. However, solutions still elude us for the most
part.

In this paper we show the results of simulation of
simple, but very large associative networks.

2. ASSOCIATIVE MEMORY
2.1. Definition

A memory is a system that both stores information and
recalls information. In the computer memory, data are

! This research was supported in part by the Office of Naval
Research, Contract N00014-00-1-0257, by the Research Institute
for Advanced Computer Science under Cooperative Agreement
NCC 2-1006 between the Universities Space Research
Association and the NASA Ames Research Center, and by
NASA Contracts NCC 2-1253 and NCC-2-1218.

saved in subsequent addressed locations. When data are
needed, the corresponding addresses must be provided to
fetch the data. The brain works in a similar manner, but
has the ability to fetch data based on content, a process
called “association.” For example, given a person’s name,
people can immediately recall a number of related facts
and events.

This kind of memory that stores mappings of specific
input representations to specific output representations is
called an associative memory, which is a system that
“associates” two vectors such that when one is
encountered subsequently, the other can be reliably
recalled. One of the most important features of associative
memories is their ability to recall spatial and temporal data
from incomplete or corrupted inputs.

Generally when we refer to associative processing,
we mean “best match” association, where the memory
returns a vector that most closely matches the input, as
opposed to “exact match” association where only a vector
that exactly matches the input is returned and is the more
common kind of associative memory used in many real
world applications.

There are two kinds of associations: auto-association
and hetero-association. In auto-association, the input and
output spaces are identical, an input vector is associated
with itself. In hetero-association, an input vector is
associated with a completely different output vector.

2.2. Comparison to conventional memory

A traditionally memory holds a list of vectors which are
distinguished by their addresses, when a particular vector
is needed, the exact address of the vector must be
provided. In associative memory, vector retrieval is done
by matching the contents of each location to a key. This
key could represent a subset or a corrupted version of the
desired vector. The memory then returns the vector that is
“closest” to the key. Here, “closest” is based on some
metric, such as Euclidian distance. Likewise, the metric
can be conditioned so that some vectors are more likely
than others, leading to Bayesian-like inference.

Another difference is how the data are actually stored.
In traditional memory, vectors are stored explicitly, with

each set of bits occupying a unique location. In the
associative memory structures described here, all the
vectors are stored in a distributed manner, where, when
more vectors are added, no extra memory is required (up
to a point).

The associative memories we are studying have one
additional characteristic: distributed data representation,
which means the attribute of a vector is represented by a
few active neurons across all the neurons, and every active
neuron corresponds to a few vectors. Palm has shown [2]
that this structure has larger information capacity and
better error tolerance.

3. PALM’S NETWORK
3.1. Network description

The set of mappings to be stored in a Palm associative
network is S={(x",y“)\y:l,2,---,M}~ x# 1is the input, and

y# 1is the corresponding output. Both x# and ,« are

sparsely encoded binary vectors.
In the training procedure, each pair of the mapping is
presented to the network. A “clipped” Hebbian learning
rule is applied to generate the weight matrix:
M

W=yt ()] M
u=1

where V is Boolean OR operation, and - is outer product.

In the recall procedure, an input X is presented to the
network, for our experiments the recall, or test vectors,
were noisy versions of the training vector x . The output
vector retrieved by the network with weight 1 is
P=fw-5-0) @)
where - represents the inner production, @ is a global
threshold and f() is a binary-valued transfer function.

To set the threshold, the “K winners take all rule” (K-
WTA) was proposed by Palm. K is the number of active
nodes in an output vector, which means that only K
elements in the output vector are allowed to be “1”. The
threshold is set adaptively to the value where only those
nodes that have the K maximum values can be set as “1”.

Perhaps the most important characteristic of the Palm
model is the use of sparsely encoded vectors, which
results from the K-WTA operation. In addition, the binary
synaptic weights add to the simplicity of the network and
do not affect recall performance. The information content
per bit is higher than with traditional content addressable
memory. Palm shows that the maximum information
capacity occurs when the weight matrix is half full. Also,
the retrieval procedure generally converges within one or
two iterations.

3.2. Csim implementation

We are using Palm’s model as a starting point for
developing very large associative networks. For this
development, we needed a simulation environment that
allowed parallel execution, was portable, and allowed us
to rapidly create complex simulations. For these reasons,
we created Csim (the Cortex SIMulator).

Csim is programmed in C++. The basic structure of
Csim is the Pathway object, which is a template for all
other derived objects, and operates as a communication
region with internal data storage. Pathway objects contain
one or more vector arrays. The entire simulation is vector
oriented.

The various objects required in a simulation are
derived from the Pathway. These derived objects are
either communication objects, performing scatter and
gather for parallel processor implementation, or operators
that perform some functions, such as an inner product or
K-WTA, on data obtained from the input pathways to the
object. A simulator then is built up by instantiating these
derived types and connecting them together. This
collection of objects is under control of the Timing and
Control (TC) module, which initiates the parameters, sets
connections between the different Pathways, runs the
simulation, and deletes the objects after simulation. Csim
has an interactive interface, but is executed in batch mode.
Data output can be generated for analysis and graphical
representation using Matlab. Csim compiles and executes
on Windows 2000 (Visual C++ 6.0), Linux (g++), and
SGI Unix.

Csim can execute on a single processor or multiple
processors. A special set of pathway objects are available
which use MPI calls to send data to the sub-network on
each processor. MPI, the Message Passing Interface, is a
standard for message communication among multiple
processors.

The Csim simulation includes three main parts:
training the network, presenting test data and retrieving
the output, and computing statistics. In the experiments
discussed here, artificial training and test vectors are used.
However, Csim can also take data from real-world
applications.

In the first phase, a set of training vectors is
generated, and the associative network can be formed
iteratively for each training vector. If the multi-process
version is used, the training vector is generated in the root
process, the root process then broadcasts the whole
training vector to all other processes.

The test vectors are noisy versions of the training
vectors, and are generated by randomly flipping some bits
in the training vectors according to a given probability. In
multi-processing mode, the root process creates each test
vector and broadcasts it to the other processes, which
calculate an inner product of the test vector with the
weight sub-matrix for the nodes on that process. The K-
WTA (for the global k) is executed in parallel on all
processes to reduce the data amount communicated

between each process (at most k * number of processes).
The root process receives each process’s k-element vector
and does another K-WTA to get the final k global
winners. It is possible that each process can reduce the
number of elements in its K-WTA, but by using k we
guarantee that the parallel version and the sequential
version get the exact same answers which may not be
necessary in a real application.

Statistics are collected to evaluate the performance of
the network. The Euclidian distance between the training
vectors and the output vectors, and between the training
vectors and the test vectors are used to determine the
“gain” of the network in terms of reduced noise at the
output, that is, Gain = 1 — (ED(Train, Output) / ED(Train,
Test).

4. CSIM EXPERIMENT RESULTS
4.1. Simulations on Beowulf cluster

We have a Linux based Beowulf cluster that consists 8
1GHz Pentium III processors, each with 512MB memory.
Csim parallel processing can be performed on this cluster.
Both C and C++ calls for MPI are available in the cluster
(and Csim can use either).

A network of 64K neurons has been trained on 100K
training vectors, with each vector having 200 active
nodes. When 100 test vectors, with 10% error probability
per bit, are given as the input, the corresponding training
vectors are recalled without error. In such a simulation, 6
minutes 20 seconds (11.2% is used for inter processor
communication) is spent on training, and 53 seconds
(1.3% for inter-processor communication) on retrieval.

Figure 1
(0]
o 1.5
S ¢
g 0.5 N\
e o Ny
8 70.5J 45 64 80 100 150 175 200 250 0

number of training vctors (K)

For the same 64K nodes network, we decreased and
increased the number of the training vectors. The number
of active nodes in the training vectors was always 200.
We tested 100 test vectors with 10% error. The results are
shown in Figurel. The Performance, which can be viewed
as the information gain due to the network, is defined as:
Performance = 1- D(output_train)/D(test_train),
where D(output train) represents the average distance
between the output vectors and the training vectors, and
Dutest_train) represents the average distance between the
test vectors and the training vectors. If the Performance is
1, all the training vectors are retrieved perfectly; if it’s
negative, the information gain is negative, corresponding
to the situation where information is actually lost.

In Figure 1, for 250K training vectors, even though
not all the outputs are perfectly recalled, the information
gain is positive. But for more training vectors, the
information gain is negative, which means the network is
overloaded and too many interference occurs. For 45K
training vectors, the retrieval is perfect, even with error
rates approaching 50% (not shown in Figure 1), the
memory can recall the stored vectors without error.

The same 64K node Palm network with 45K training
vectors was tested on 100 test vectors with 10% error. The
effect of changing the active number of nodes in the
training vectors is shown in Figure 2. We can see that for
500 active nodes, the retrieved vectors are not perfect, but
there is still large information gain. Increasing the number
of active nodes to more than 575 makes the weight matrix
too dense to effectively recall the output.

Figure 2

performance

number of acitive nodes

In all the experiments, the total simulation time and
the time spent in MPI routines was collected to indicate
the efficiency of multiple processing, which was measured
by the percent of time the nodes were waiting for
information to be communicated. We set the number of
training vectors to 45K, each with 200 active nodes, and
the number of test vectors to 100. So, the larger the vector
size, the sparser the network. Figure 3 indicates that the
larger the network, the less percentage of time is spent on
inter-processor communication.

Figure 3

"‘\0_\.\.\‘

MPI percent

o N & o o

2 45 64 80 100 120 140

vector size (K)

The largest network simulated on the Beowulf cluster
consists of 128K neurons. We trained 100K vectors, each
with 200 active nodes. The training procedure takes about
6 minutes and 51 seconds, of which 11.2% is spent in MPI
intercommunication. To retrieve 100 test vectors with
10% error probability, 1 minute and 55 seconds were
required, only 0.5% of the time was in MPI
intercommunication.

The cluster results indicate that: the larger the
network and the sparser the vector, the more vectors can
be stored and the better retrieval performance. This also

led to more efficient parallel processing. The asymptotic
association capacity of In2 can be obtain when the
number of ones per vector is of the order of logn, which

confirms Palm’s analytical results [2].
4.2. Simulations on NASA supercomputers

Initial simulations and Csim debug were done on our
Beowulf system, but the larger simulations were done on
NASA’s SGI 2000 Origin Supercomputers at the Ames
Research Center. The two we used were, Steger, with 256
processors and 64GB memory in total, and Lomax with
512 processors and 192GB memory. Both machines are
based on the 250 MHz MIPS 12K processor connected via
high-speed inter-processor communication (1.2GB/node).
The Origin 2K is a shared memory “NUMA” (Non-
Uniform Memory Access) architecture. Our usage of the
machine was limited due to long access queues, so most
simulations were of 256K neurons, however, we did
occasional simulations of 512K nodes.

As expected, the behavior of the larger simulations
could be extrapolated from the smaller. For example, for a
network of 256K nodes and 180K training vectors with 40
active nodes, when presented with test vectors with 20%
probability of error, all training vectors were recovered
perfectly. The execution time (64 processors) is 4min 7
secs, and 13% of that time was spent in MPI calls — a
large number considering the interconnect bandwidth of
the Origin 2000.

Interestingly the largest simulations (512K) were not
as robust as we thought they would be. They were more
sensitive to the number of active nodes and the total
number of training vectors. Part of the reason could be
quantization effects that occur during the global K-WTA
operation. A Palm network interconnection matrix for a
512K-node network has a 50% fill factor, so the fan-in
(convergence) onto a node is about 256K inputs, even
with only a few elements active in the input vector, each
neuron will respond to some degree to the input. Using
limited precision and binary inputs and weights, many
nodes will have the same value after the inner product
operation. In this case it is impossible to use the adaptive
threshold deterministically to get exactly K winners.

5. PULSED PALM NETWORK

These first simulations convinced us that the Palm model
is sufficiently powerful to use as a basis for our
association memory development. However, there are
still many other problems we will need to solve before a
practical solution is possible. The Palm model used above
has no temporal dimension, so we next investigated the
development of a temporal based Palm model.

It has always been difficult to add temporal feature
detection to neural network models. Although there is no
agreement as to how inter-neuron information is encoded,

many neuroscientists agree that the firing time or the inter-
spike interval of a neuron is important in encoding
information in real neurons. This realization has led to the
design of spiking neural models [3].

5.1. Description of spiking neuron model

The state y(r) of neuron i (1<i< N), which is

analogous to its somatic potential, is determined by two
processes: the input from presynaptic neurons and the
threshold of itself:

w(0= 3 3w, (08,6~ 1)+ n(i-1) ®)
=1 f=1

where VIVU i; the efficacy of the connection between neuron

iandj; g,_j(t_tjf_') is the postsynaptic potential of neuron

Jj contributing to neuron j; p(s—t), the threshold,

describes the refractory effect of the output neuron ; that

fires at -

In our simulation, to implement the neuron model in
equation (3), we use y(r) as
—o0 O0<t=<r, 4
n(t) = ! @)
_Uo/(t_fm/) Tyop <t
where [is the absolute refractory period. In the
simulation, after each firing, we set the state to 0 in the

refractory period.
The postsynaptic potential function g(¢) we used is

t-T, t-T
&) =—1 4

exp(l—

s s

where { (1) is Heaviside function, 7 , is the time delay.

YH(-T,) %)

Hebbian learning is used during the training
procedure, which can be implemented by the timing
window
Aw[/(s)—{ Aexp(s/z,,) s<0 (6)

—Aexp(-s/z7,;,) s>0

where s=t/ —t- Also, w, (1) is constrained to lie within

the interval g < w, (1) < W,

5.2. Implementation and Results

The use of spiking neurons is not new. However, most
spiking models have typically been an end in themselves.
There has been very little work on taking existing “value”
based models and converting them to spiking
representations. Our goal was to implement a pulse
(“spiking”) version of the Palm model. Using the
equations above turned out to be sufficient, though there
were some issues related to how we represented the
training and test vectors and the K-WTA operation.

We implemented the spiking Palm network initially
using our Matlab library. Vector representation is
illustrated in Figure 4. Now that we have a working

model, we have also implemented the same model in
Csim. In the spiking network, for a binary input vector,
“1” will be represented by a spike that stochastically fires
within a certain time interval, that is, the vector becomes a
set of pulses that occur near, but not at exactly the same
time. In Figure 4, (a) is one of the training vectors
(0001000100110000) stored in the network; in (b), a test
vector (0001000100100001) is presented; (c) illustrates
the state (somatic potential), and the threshold of the
output neurons. The dashed lines in (c) indicate the
threshold, which is determined by K-WTA rule. Only
those neurons whose somatic potential are greater than the
threshold can fire. In (c), the corresponding output vector
is 001000100110000, which is exactly the stored memory
vector shown in (a).

Figure 4
Training vector Test vector Soma potential and threshold
0001000100110000 0001000100100001 of 16 cutput nevrons
@ : O) P
{ | B D]
[b | iinii——]
Al I |]
LA T kA [T |
i P | i
[f | i b
i P [i {
LA T A I i =i——. i
o] 1 R it ——
of 1 | ———]
i\ b A [~lai— 1
LA
|
|
{

]

The performance of the spiking model is very close
to, and sometimes even better than, that of the standard
Palm model. Although only small networks were
simulated in Matlab, the pulsed Palm network is
surprisingly robust to random temporal noise (jitter). In
our simulation, we did not use the lateral inhibitive
connections to compete for firing, instead a simple K-
WTA on the maximum neuron state (potential) was used.
An important fact about the spiking network is that if the
postsynaptic exponential function is replaced by piece-
wise linear function, the network behavior does not
change. This is a convenient way to implement the spiking
model in FPGA hardware.

6. CONCLUSIONS

Palm networks are robust and scale reasonably well. In
addition, we have developed a version of the model that
operates in the temporal domain. However, there are still
several potential problems with this computational model:

1. The current network model is not trained
interactively as one would expect from a biologically
inspired computation algorithm. We are looking at several

dynamic learning techniques. One excellent example is
the Bayesian Confidence Propagation network [4].

2. The network requires that input data be mapped to
a sparse representation, likewise output data must be
mapped back into the original representation. Algorithms
are available [5] for creating sparse representations based
on correlations within the input data. And once a sparse
representation is determined, networks can be developed
that perform the mapping from an external representation
into the sparse representation and back again. Currently,
this requires a fairly custom implementation for each
application. We are also investigating more general, pre-
and post-processing strategies.

3. Even though the vectors themselves are sparsely
activated, as more information is added to the network, the
weight matrix can become quite full; recall that optimal
capacity is at 50% non-zero entries; for a 1M network that
translates to about 64GB. However biology demonstrates
significant sparse connectivity. Cortical systems, for
example, have a connectivity that is several orders of
magnitude sparser. According to Braitenberg [6], there
are two kinds of connections in cortex: metric and
ametric. The metric connections are very dense
connections to a node’s local neighborhood. The ametric
connections are much sparser, random, point-to-point
connections to densely connected groups. We have begun
studying creating large networks by sparsely connecting,
smaller, highly connected networks. Such a structure
begins to approximate the architecture proposed by
Braitenberg and Schiiz. Furthermore it is hypothesized
that large groups of modules may have different learning
and connectivity patterns, which allows them to specialize
on certain types of functionality, creating a larger, more
complex system.

7. REFERENCES

[1] Gunther Palm, F.S., Friedrich T. Sommer, and Alfred
Strey, Neural Associative Memories, in Associative
Processing and Processors, E.A.K.a.C.C. Weems,
Editor. 1997, IEEE Computer Society: Los Alamitos,
CA. p. 307-326.

[2] Palm, G. and F.T. Sommer, Information capacity in
recurrent McCulloch-Pitts networks with sparsely
coded memory states. Network, 1992. 3: p. 177-186.

[3] Wolfgang Maass, C.M.B., Pulsed Neural Networks.
1999, Cambridge MA: MIT Press.

[4] Lansner, A. and A. Holst, 4 Higher Order Bayesian
Neural Network with Spiking Units. Int. J. Neural
Systems, 1996. 7(2): p. 115-128.

[5] Field, D.J., What is the goal of sensory coding?, in
Unsupervised Learning, G. Hinton and T.J.
Sejnowski, Editors. 1999, MIT Press: Cambridge,
MA. p. 101-143.

[6] V.Braitenberg, A.S., Cortex: Statistics and Geometry
of Neuronal Connectivity. 1998: Springer-Verlag.

