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Abstract

The Bifurcating Neuron (BN), a chaotic integrate-and-fire neuron, is a model of a neuron augmented by coherent modulation from its
environment. The BN is mathematically equivalent to the sine-circle map, and this equivalence relationship allowed us to apply the
mathematics of one-dimensional maps to the design of BN networks. The study of symmetry in the BN revealed that the BN can be
configured to exhibit bistability that is controlled by attractor-merging crisis. Also, the symmetry of the bistability can be controlled by the
introduction of a sinusoidal fluctuation to the threshold level of the BN. These two observations led us to the design of the BN Network 1
(BNN-1), a chaotic pulse-coupled neural network exhibiting associative memory. In numerical simulations, the BNN-1 showed a better
performance than the continuous-time Hopfield network, as far as the spurious-minima problem is concerned and exhibited many biologi-
cally plausible characteristics. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There has been a continuing debate on the way informa-
tion is encoded in neuronal spike trains. The most widely
accepted coding scheme is called rate coding, where infor-
mation is represented by the mean firing rate of a neuron,
either in a temporal sense or in a spatial sense (Adrian,
1926; Rieke, Warland, de Ruyter van Steveninck, & Bialek,
1996). Although rate coding has proven to be valid in some
neuronal information paths, e.g. in sensory neurons and
motor neurons, its validity in other parts of the brain is
still questionable. Recent experimental studies are revealing
a growing number of new facts beyond the explanation of
rate coding and are suggesting the possibility of information
coding in the precise timing of neuronal spikes, namely,
‘time coding’ (Rieke et al., 1996). An especially descriptive
example supporting time coding in the brain is provided by
O’Keefe (1993), who studied the firing behavior of hippo-
campal place cells (O’Keefe, 1971) which are located anato-
mically distant from the sensory and motor cortex. They
showed that the firing phases of the place cells with respect
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to the theta rhythm have a high level of correlation with the
animal’s location on a linear runway.

Another topic of growing interest among neuroscientists
is the role of coherent activities in the brain, especially those
in the gamma-band centered around 40 Hz. Some of the
early observations of gamma-band oscillatory activities
were made in the olfactory bulb and cortex of the rabbit
(Freeman & Skarda, 1985), in the olfactory systems of the
cat and the rat (Bressler & Freeman, 1980), in a variety of
structures of the cat brain (Basar, 1983), in the cat primary
visual cortex (Gray & Singer, 1989; Eckhorn et al., 1988), in
the monkey visual cortex (Freeman & van Dijk, 1987), and
in electroencephalogram (EEG) recordings from the human
skull above association and motor areas (Krieger & Dill-
beck, 1987). The observation of a synchronous activity in
the cat visual cortex by Gray & Singer (1989) has been
drawing special attention because, in their experiments,
the synchronous activity was stimulus-specific and was
observed across cortical regions, e.g. across multiple visual
association areas, with a small phase variation. Gray and
Singer related their result to the so-called feature-binding
hypothesis (Milner, 1974; von der Malsburg, 1981), which
states that synchrony provides a means to bind together in
time the features that represent a particular stimulus. The
searchlight hypothesis of Crick (1984) is another specula-
tion on the role of synchronous activity in relation to the
question of consciousness.
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Nomenclature

xi(1) the internal potential of neuron i

0,1 the threshold level of neuron i

p(®) the relaxation level of all the neurons in a
network

yi®) the output of neuron i

u;(t) the input of neuron i

t(n) the n-th firing time of neuron i

si(1) the binary state of neuron i

H(z) the pseudo-energy function of a network

Yet another topic of growing interest in neuroscience is
the role of chaotic activities in the brain. Different levels of
chaotic activities have been observed in many experimental
studies of EEG signals, for example, in the simian motor
cortex (Rapp, Zimmerman, Albano, Deguzman & Green-
baum, 1985), in the human brain during a sleep cycle
(Babloyantz, Nicolis & Salazar, 1985) and during an epilep-
tic seizure (Babloyantz & Destexhe, 1986), and in the olfac-
tory bulb of the rabbit (Freeman & Skarda, 1985; Freeman,
1986). The mounting evidence of chaotic activities in the
brain triggered much theoretical reflection on the possible
role of chaotic activities in brain functions (Skarda and
Freeman, 1987; Yao & Freeman, 1990; Nicolis, 1986,
1991). For instance, Freeman and his coworkers (Freeman
& Skarda, 1985) observed in a study of the olfactory system
of the rabbit that the nervous activity of the olfactory system
switches from a chaotic to a periodic state whenever a famil-
iar odor is detected. This experimental observation stimu-
lated their reflection on the role of chaos in perception
processes and led them to postulate that chaos can serve
as the ground state of a perception process, i.e. an elevated
state that has quick transition routes to many periodic
states. '

While new questions and findings about the brain are
reported every day, these three topics, namely, time coding,
coherent activity, and chaotic activity in the brain, are some
of the most important topics that can change our understand-
ing of the brain’s dynamics at the most fundamental level. It
is important to realize, however, that it is not easy to deal
with these topics properly in the framework of traditional
neural network theory for the following reasons. First, the
sigmoidal activation function, which is the neuron model of
most traditional neural networks (Hertz, Krough, & Palmer,
1991; Haykin, 1994), is based on the rate-coding hypoth-
esis; the output of a sigmoidal neuron is a continuous real
value representing the activity level of a neuron. Second,
most traditional neural networks are designed to be dyna-

! This concept is in fact very reminiscent of the concept of ‘controlling
chaos’ (Ott, Grebogi, & Yorke, 1990) in nonlinear control theory where a
strange attractor is regarded as a set of an infinite number of unstable
periodic orbits (Grebogi, Ott, & Yorke, 1987), one of which can be stabi-
lized by the proper control mechanism.

mically stable and are therefore destined to operate away
from a chaotic regime (Hertz et al., 1991; Haykin, 1994). A
notable example is the Hopfield network (Hopfield, 1982)
where the connection matrix is chosen to be symmetric so
that the energy function of the network can always converge
to a static attractor. It is even irrelevant to discuss the
dynamics of non-recurrent networks, i.e. feed-forward
networks, because they do not represent a dynamic system
once they are trained. All these considerations lead to the
conclusion that the exploration and exploitation of new
topics in neuroscience demands a new artificial neural
network model.

In fact, the recent trend of artificial neural network theory
has seen many new neural models that were inspired by the
new findings in neuroscience. Eckhorn, Arndt, and Dike
(1990) proposed the linking field model to explain the role
of synchronized activity in the visual cortex, and Johnson
(Johnson, 1994; Baek & Farhat, 1998) applied the model to
a problem of pattern recognition. Hopfield (1995) also
proposed a pattern recognition mechanism benefiting from
the synchronized activity of pulse-coupled neurons. Free-
man and van Dijk (1985) implemented a model neural
network that can explain the behavior of the olfactory
bulb of the rabbit, and stimulated the design of many new
neural networks that utilize chaotic model neurons. Aihara
et al. (1990) modified the Hopfield network and developed a
chaotic neural network consisting of neurons capable of
exhibiting chaotic behaviors induced by self-coupling.
Nozawa (1992) derived a chaotic neural network by using
an Euler discretization on the Hopfield model. Wang and
Smith (1998) developed another type of network by varying
the time step of an Euler discretized Hopfield network.
Many of these new chaotic networks can be understood
from the viewpoint of the coupled map lattice (CML) intro-
duced by Kaneko (1992, 1993). In this respect, some recent
studies on CML (Holden, Tucker, Zhang, & Poole, 1992)
and its variations (Farhat & Hernandez, 1995) can also be
counted toward the effort to develop chaotic neural
networks. More examples of a new network design include
Natschlaeger and Ruf (1998); Maass and Natschlaeger
(1998). It is important to note, however, that few of these
new network designs address time coding, coherent activity,
and chaotic activity, all together. In reality these three issues
are closely related and often arise concurrently playing their
respective roles. In our study, we focused on the new possi-
bilities that can arise where these three issues converge.

An obvious requirement for an artificial neural network
based on time coding is a ‘time-coding capable’ model
neuron: a neuron that can deal with information encoded
in a spike train. One of the simplest examples of such a
model is the integrate-and-fire neuron (Knight, 1972),
where a neuron is approximated by a leaky integrator of a
postsynaptic current. At the other extreme are compartment
models of a neuron (Segev, Fleshman, & Burke, 1989),
where neuronal spatial structure, as well as the dynamics
of various ionic channels, are taken into consideration to
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reproduce the actual behavior of a neuron as closely as
possible. Choosing a model neuron of the proper complexity
is not an easy task because the nature of the approximation
implied by a certain model is often unclear until the model is
tested in a network. An obvious minimum requirement
would be the ability to produce a spike train output, where
information is represented not by the amplitude but by the
time of a spike, and the ability to respond sensitively to the
timing of incoming spikes. Since both of the two extreme
examples, i.e. the integrate-and-fire neuron and the compart-
ment-model-based neurons, appear to satisfy the require-
ment, it is a wise strategy to try first the simplest, and
therefore we chose the integrate-and-fire neuron as the start-
ing point of our neuronal modeling.

The next issue is how to utilize coherence in our model
neuron or model network. Although we are using the expres-
sion ‘utilizing coherence’, this is not well defined and
demands further clarification. It is easy to design an inte-
grate-and-fire neuron network that autonomously evolves
into a synchronized, or coherent, state (Mirollo & Strogatz,
1990; Bottani, 1995; Abbott & van Vreeswijk, 1993). The
question that remains, however, is what can be done with it.
The problem is that the role coherence plays in the operations
of the network has not been identified clearly. Although the
role of coherence is still the focus of debate, it is necessary to
define a role of coherence that can guide our network design.
The one that we chose over other possibilities states that a
coherent activity in an integrate-and-fire neuron network can
provide a time reference. This role may sound excessively
general or even trivial, but it is certainly essential. In the
absence of a time reference, the information that time coding
can carry would be severely limited. The aforementioned
O’Keefe and Recce (1993) experiment is a good example
for such a role of coherence (the theta rhythm). The fact that
rate coding is common in sensory or motor neurons is also
consistent with such a role of coherence: rate coding must be
the only choice when a common time reference extending
throughout the nervous system is not available. If the role of
coherence in biological systems is to provide a time refer-
ence, we do not need to complicate the design of our network
by adding a mechanism to produce coherence; we can
provide a time reference from outside.

The final issue is how to utilize chaos. A chaotic activity
may arise either from a neuron itself or from the interaction
of non-chaotic neurons. An example of the latter case is
given in Sompolinsky and Crisanti (1988), where a mean-
field analysis is used to show that a network of sigmoidal
neurons with random, non-symmetric coupling weights can
be put into a chaotic operating regime when the overall
coupling strength exceeds a certain limit. In fact, this is
not an exceptional case because any nonlinear dynamic
system consisting of at least three state variables is known
to have the potential of exhibiting chaos (Hilborn, 1994). In
this respect, the next example can be the Lorentz system
(Hilborn, 1994), which is a classical example of three-vari-
able dynamic systems capable of exhibiting chaos, because

it may be regarded as a network of non-chaotic neurons,
where each integrator represents a neuron. These two exam-
ples suggest that the possibility of a chaotic network out of
non-chaotic elements is plentiful. However, we decided to
follow the other option, a network of chaotic neurons, for
the following reason. Chaotic activity will be more useful in
the ‘ready-state’ of a network where the network is ready to
respond to an external stimulus. In other words, we have the
following scenario in mind: a stimulus known to a network
causes the interconnections in the network to interfere
constructively, and thereby suppress the initial chaotic
activity in the network. This scenario assumes that the
network is in a chaotic state before strong interaction
among the neurons is established. In short, this scenario
requires chaotic neurons. This scenario is in fact inspired
by the aforementioned experimental observation of Free-
man & Skarda (1985) and also by some recent studies that
show that the behavior of individual neurons in isolation is
more irregular than that of neurons in a network (Rabino-
vitch & Abarbanel, 1998).

Our model neuron is derived from the integrate-and-fire
neuron model for the reason stated above. The behavior of
an integrate-and-fire neuron under a constant feeding is
simple: it repeats a regular cycle of charging and dischar-
ging. This simple picture of an integrate-and-fire neuron is
of course due to an unrealistic assumption about the envir-
onment surrounding the neuron. A neuron in a biological
neural network receives inputs from many different parts of
the brain and is also subject to noise from inside and outside.
Also, the same input can have different effects depending on
the nature and the position of the synapse. Consideration of
every detail of the interaction of a neuron with its environ-
ment would be impractical, so we made the following rather
simplistic assumptions about the artificial environment
surrounding an integrate-and-fire neuron. First, the environ-
ment provides a persistent incoherent input to the neuron,
which helps the neuron keep active at an optimal operating
point. Second, the environment also provides a persistent
coherent input to the neuron, which is common to all the
neurons in the same network and serves as a time reference.

It is possible to design a network such that it can provide
itself with such incoherent and coherent inputs. For
instance, some extra diffuse connections can be added
between model neurons so that the neurons can feed each
other with an incoherent input. Also, a part of the network
can be used to build a pace maker that can provide a coher-
ent input to other parts of the network. However, any
attempt to model a biological neural network cannot avoid
an approximation at some part or level of modeling. Here,
we are approximating the mechanisms that are responsible
for the incoherent and the coherent input by simply calling
them ‘the environment’. This way, we can focus on what
happens when a time-coding-aware model network is
subjected to such background activities. In this respect,
our neuron model does not represent a neuron as it is, but
a neuron augmented by incoherent activities and coherent
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Fig. 1. The Bifurcating Neuron: a, the behavior of the BN in the absence of an input: it keeps firing due to an incoherent source while the relaxation level is
oscillating due to a coherent source; b, firing times of the BN with respect of a modulus of 1, which is the period of the sinusoidal oscillation of the relaxation

level.

activities in its environment. This is akin to the concept of
an electron with an effective mass in solid state physics: an
electron with an effective mass is not a model of an electron
standing alone in the vacuum, but a model of an electron
augmented by the influence of the atoms in the lattice
surrounding it.

The following set of equations defines our model neuron:

dx

= (1)
p(t) = — posin2ft (2)
or) = 1 — 8(1) 3)

where x is the internal potential of the neuron, and ¢, py and f
are positive constants. Eq. (1) describes the constant buildup
of the internal potential due to the constant feed by an inco-
herent source. Eq. (2) describes the oscillating relaxation
level due to a sinusoidal stimulation by a coherent source.
Eq. (3) describes the perturbation &(¢) in the threshold level
induced by an input from the presynaptic neuron. Fig. la
depicts the behavior of our model neuron in the absence of
an input (i.e. 8(¢f) = 0): it keeps firing due to an incoherent

source while the relaxation level is oscillating due to a
coherent source. An important fact to emphasize again
here is that the coherent source serves as a time reference
to the neuron. This fact is clearly demonstrated in Fig. 1b,
that shows the firing times of the neuron with respect to a
modulus of 1, which is the period of the sinusoidal oscilla-
tion of the relaxation level. Although the firing of the neuron
here is not always phase-locked to the sinusoidal oscillation,
the firing time exhibits a clear structure when it is repre-
sented relative to the sinusoidal oscillation. In addition to
providing a time reference, the coherent source turns the
neuron into a chaotic neuron. This fact is also demonstrated
in Fig. 1b, where one can see that the firing pattern is bifur-
cating until it becomes chaotic as the amplitude of the sinu-
soidal oscillation increases. This dynamic behavior of a
neuron subjected to an oscillatory input has been a subject
of interest among many researchers (Holden & Ramadan,
1981; Hayashi, Ishizuka, Ohta, & Hirakawa, 1982; Aihara
& Matsumoto, 1986), and a detailed treatment of the same
theme, applied to an integrate-and-fire model, appears in
Farhat and Eldefrawy, 1991, 1992. Farhat and Eldefrawy
discovered that an integrate-and-fire model neuron can
operate in dynamically distinct modes of operation
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Fig. 2. A conceptual illustration of fixed point attractors and chaotic attrac-
tors in an imaginary energy landscape.

depending on the amplitude and frequency of the applied
oscillatory input, and showed that such a model neuron is
mathematically equivalent of the sine-circle map (Hilborn,
1994). Since this equivalence relationship plays a central
role in the development of our networks, we call our neuron
model a Bifurcating Neuron (BF), which is the name that
Farhat and Eldefrawy used to emphasize the bifurcating
behavior of an integrate-and-fire neuron under a sinusoidal
modulation.’

We have been exploring the potential of various types of
BN networks. In this paper, we introduce a BN network that
we call the Bifurcating Neuron Network 1 (BNN-1). The
BNN-1 is a binary associative memory exploiting the bist-
ability of the BN which appears when the average firing
frequency of a BN is twice that of the relaxation level oscil-
lation. The two chaotic attractors which account for the
bistability are subject to attractor-merging crisis (Grebogi,
Ott, & Yorke, 1987); merging or separation of the two
attractors is critically dependent on the amplitude of the
relaxation level oscillation. Near the point of crisis, a sinu-
soidal perturbation in the threshold level induced by an
incoming spike train can bias the bistability, thereby indu-
cing a binary transition. The result is a binary associative
memory where a memory is represented by a chaotic attrac-
tor. Fig. 2 is a conceptual illustration of fixed point attractors
and chaotic attractors in an imaginary energy landscape. A
chaotic attractor lives in a state space occupying a certain
non-zero volume. At first glance, this may seem disadvanta-
geous because a state space of the same size will be able to
accommodate a smaller number of chaotic attractors than
fixed point attractors. However, this is more an advantage
than a disadvantage because it endows a network with
robustness. An associative memory utilizing chaotic attrac-
tors is less subject to the spurious minima problem, which
often arises in networks based on fixed point attractors.
Another advantage of a chaotic-attractor-based memory, as
implied in Fig. 2, is that the network never dissipates to the
ground level, but maintains its activity even after it settles on
a chaotic attractor. This means that the network will be more
ready to respond to an external stimulus. As will be shown in

% The term Bifurcating Neuron was introduced independently by Farhat
(Farhat & Eldefrawy, 1991) and Holden (Holden, Hyde, Muhamad, &
Zhang, 1992).

the comparison with the continuous-time Hopfield network,
the BNN-1 is indeed less susceptible to the spurious minima
problem. If the initial state of the network does not fall in
one of the basins of attractions of the patterns embedded in
it, it never converges to a stable pattern, implying ‘I don’t
know’. Otherwise, it would almost always converge to one
of the embedded patterns. Associative memory networks
that overcome the limitations of the Hopfield network
have been proposed by many authors (Aihara & Takabe,
1990; Nozawa, 1992; Wang & Smith, 1998) as mentioned
earlier. However, the BNN-1 is one of the rare examples of
integrate-and-fire neuron networks that use chaotic attractors
to enhance associative memory performance.

In Section 2, starting with the study of the symmetry in
the sine-circle map, we will investigate the bistability and
the attractor-merging crisis in the BN. In Section 3, we will
be in search of a control parameter to control the bistability
of the BN, and, in Section 4, we will arrive at an efficient
pulse-coupling scheme to be used in the BNN-1. In Section
5, we will define an associative memory test and give a test
result for the continuous-time Hopfield network which can
be used as a benchmark to assess the performance of the
BNN-1. In Section 6, we will complete the mathematical
definition of the BNN-1 and build an associative memory
out of it. We will examine closely the recall process of the
BNN-1 and compare it with that of the Hopfield network. In
the concluding section, we will discuss the unique dynami-
cal characteristics of the BNN-1 that distinguish it from
other types of neural network.

2. Bistability and attractor-merging crisis of the BN

We started our search for the bistability and the attractor-
merging crisis of the BN with a study of symmetry in the
sine-circle map (recall that the BN is mathematically
equivalent to the sine-circle map) since attractor-merging
crisis is the interaction between two symmetric attractors.
It is known that bimodal, symmetric one-dimensional maps,
such as the cubic map and the sine map, exhibit attractor-
merging crisis (Grebogi, Ott, & Yorke, 1987). The symme-
try that gives rise to the symmetric attractors of such maps is
an inversion symmetry. For instance, if we change every
occurrence of x in the recursion of the sine map,

x(n + 1) = msinwx(n), “4)

to —x, we see that the recursion is unchanged. Then we ask,
can we also find such symmetry in the sine-circle map? To
answer this question, let us take a look at the recursion of the
sine-circle map:
K .
x(n+ 1) =x(n) + 02+ 2—sm27rx(n) (mod 1). ®)
™
Apparently, we can see here no such inversion symmetry as

in the case of the sine map. However, we can see a different
type of symmetry: a translation symmetry due to the
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Fig. 3. The bifurcation diagrams of the BN for f= 2, which show the firing behavior of the BN as the birfurcation parameter p, changes. These two different
bifurcation diagrams are the results of the following two different initial conditions: a, #(0) = 0.1 and b, #(0) = 0.6.

periodicity of the sine function. If we change every occur-
rence of x in Eq. (§) to x + 1, the equation remains
unchanged.

Now, we can restate this result in terms of the BN. In the
absence of an input, the set of equations defining the BN,
Egs. (1)- (3), becomes

dx

— =1, 0=1,
dr

p(t) = — posin2ft, (6)

where, without loss of generality, we assumed that the
constant buildup rate c¢ is 1. The recursion that accounts
for the firing time of the BN is given by

tin + 1) = t(n) + 1 + pysin2wft(n). @)

As in Eq. (5), we can also see here a translational symmetry
due to the periodicity of the sine function. If we change
every occurrence of ¢ in Eq. (7) to ¢t + 1/f, the equation
remains unchanged.

Fig. 3 shows the bifurcation diagrams of the map defined
by Eq. (7) when f= 2. As in the case of the sine-circle map,
the vertical axis represents #(n) (mod 1), i.e. the firing time
of the BN with respect to a modulus of 1, where 1 is the
firing period of the BN in the absence of the relaxation level
oscillation. As we expected, we can see two symmetric
attractors which divide the entire state space [0, 1), in the
sense of a modulus of 1, into two equal intervals. Except that
the onset of the two attractors is not initiated by a pitchfork
bifurcation, the overall pattern of bifurcation is very similar
to that of the sine map. Again, as in the case of the sine map,
there is an unstable fixed point at t = (.5, which is separat-
ing the two attractors. When the attractors expand until it
touches the unstable fixed point, they undergo a crisis and
collapse into a single fully chaotic attractor.

The value of the bifurcation parameter p, at which the
attractor-merging crisis takes place will be called a crisis
point point pj. A simple graphical method showed that its

value is the solution of the following implicit equation:

)—lzo. ®)

16m? 4w 41rpj 2

2 1 1 (

Py — ——— T ——arccos| —
It is not possible to obtain an exact analytic solution to this
equation; a numerical method gave an approximate solution
of p = 3.633.

One last thing to point out before ending this section is
that the bistability implied by the two symmetric attractors
is, in fact, a special case of the multi-stability of the BN.
When f=3, the BN has three symmetric attractors and
exhibits tri-stability. The BN will come to have a multi-
stability with a larger number of symmetric attractors, as f
is increased further. Such a multi-stability of the BN may be
worth further investigation. At this point, however, we do
not have any concrete idea of how to utilize such multi-
stability and have therefore concentrated on the case of

f=2.

3. Controlling bistability of the BN

Now that the BN is shown to have bistability and exhibit
attractor-merging crisis, the next question is how to couple
them together to form a network that can perform a mean-
ingful function. If the bistability of the BN encodes binary
information, a natural role of the desired coupling scheme is
to control the bistability. In short, we need to find out a
mechanism to break symmetry in the bistability of the BN.

Among other possible ways to break the symmetry, the
following method would be one of the simplest, yet biolo-
gically plausible, ones. In Eq. (6), which led to Fig. 9, the
threshold level 0 is constant. In the case of biological
neurons, however, the threshold level, as well as the internal
potential, is affected by postsynaptic potentials. One way to
break the symmetry of the bistability is to introduce to the
threshold level a sinusoidal oscillation of half the frequency
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Fig. 4. The expected firing behavior of the BN for three different amplitudes of the threshold oscillation: a, ¢ = —0.1; b, ¢ =0; andc, & =0.1.
of the relaxation level oscillation: chaotic state as in the case of Fig. 4b. The following defini-
tion of the binary state variable of the BN will help clear
0(r) = 1 + ecos2r. ) Y p

Fig. 4 shows the expected behavior of the BN for three
different amplitudes of the threshold oscillation:
e=—0.1, 0 and 0.1. In all three cases, it is assumed that
the driving amplitude p is a little larger than the crisis point
pG = 3.633. This means that, when & = 0, the BN will be in
a fully chaotic state and can fire at any point in the state
space [0, 1) (in the sense of a modulus of 1). When
e = —0.1, the symmetry that gives rise to the two symmetric
chaotic attractors of the BN, which were shown in Fig. 3, is
now broken. As a result, the first half of the state space
becomes more stable than the second half, thereby the BN
is more likely to fire in the first half than in the second half.
The situation is reversed when the sign of the modulation
amplitude ¢ is reversed. The bottom line is that the transla-
tion symmetry of the BN is broken by the sinusoidal oscilla-
tion of the threshold level of the form given by Eq. (9). In
other words, the preference of the BN over the two
symmetric attractors can be controlled by the sign of ¢.
For the further discussion of the bistability of the BN, we
need to define the binary state of the BN. The BN is consid-
ered to be in the negative state if it is firing in the first half of
the state space [0,1) with respect to a modulus 1. Likewise,
it is considered to be in the positive state if it is firing in the
second half. The definition of the binary state at an arbitrary
time ¢ can become ambiguous when the BN is in a fully

such an ambiguity:

{ —-1 ) €005  (modl)
s(t) = (10)
1 tweE[051) (modl)

where #(n) is the last firing time of the BN. For ease of
illustration, we will call the first half and the second half
of the state space as n-period and p-period, respectively,
hereafter. Since the two periods are defined with respect
to a modulus 1, they will divide the time axis into an
alternating series of n-periods and p-periods, as illustrated
in Fig. 4.

Fig. 5 shows bifurcation diagrams of the BN with the
amplitude of the threshold oscillation & being the bifurca-
tion parameter. They show the behavior of the firing time
(#(n) (mod 1)) of the BN as the amplitude ¢ changes. The
firing times of the BN are confined to either half of the state
space when the magnitude of ¢ is larger than a certain
threshold, whereas the firing times spread over the entire
state space [0, 1) otherwise. The overall shape of the bifur-
cation diagrams tends to recall the sigmoidal curve, which is
a popular model of the neuron response. However, a
pronounced difference is observed in the intermediate
region of the bifurcation parameter: the response of the
BN is not static but dynamic. It is always ready to hop
between the two chaotic attractors. Such an indeterminate
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Fig. 5. The bifurcation diagrams of the BN, which show the firing behavior of the BN as the birfurcation parameter & changes, for the following two cases: a,

po=0.3663 ~ p§and b, p, = 0.38 > .

behavior becomes maximized when the bifurcation para-
meter & is near zero.

4. Pulse-coupling via harmonic oscillator

Now we are at the stage of completing our formulation of
the coupling scheme for the BNN-1. We have seen that the
symmetry of the BN can be broken by an introduction of
threshold level oscillation and its bistability can be
controlled by the oscillation amplitude. However, the
input that a BN receives from the presynaptic BNs is in
the form of a spike train. Apparently, we need to provide
a linkage between the spike train and the threshold level
oscillation. We can come put with an immediate solution
when we note that the sinusoidal function is the impulse
response of the harmonic oscillator. We propose that the
threshold level of the BN be modeled by the harmonic
oscillator that is subject to an impulsive input:

d*e de
gt @ 0(1) — @b = u(t) (11)

where wy = 2m/y/1 — 1/4Q%, v= w,/Q and Q is the Q-
factor of the harmonic oscillator. The role of the constant
term —wj on the left side of the equation is to shift the
equilibrium point of the oscillation from O to 1, and it cannot
affect the dynamics of the system in any way. The spiky
input u(¢) from the presynaptic BNs is driving the harmonic
oscillator. Note that the oscillator parameters are carefully
chosen so that the oscillation frequency is 1 when the oscil-
lator is under-damped. It is expected that the oscillator will
respond to the periodicity of period 1 in the incoming spike
train. This also means that, if the spike intervals are irregu-
lar, the response of the oscillator will be minimal. As an
aside, we emphasize that the proposed coupling scheme
does not require any complicated arithmetics which is diffi-
cult to implement in a circuit. The BNs in the network emit
spikes, and the spikes are delivered to the target BNs as they
are. The only additional component we need is a harmonic

oscillator, which has a natural counterpart such as an RLC
filter or an active filter.

At this point, one may raise the following questions. First,
how can the presynaptic BNs maintain the period and the
phase of its output spike train in order to be effective on the
target BN? The answer lies in the common driving signal
that modulates the relaxation level of all the BNs in the
network. All the BNs will fire roughly in phase after they
settle down to a steady state. Second, does the harmonic
oscillator have any biological relevance? Our answer to
this question cannot be very meaningful because the BN,
our neuron model, is not a detailed model of the biological
neuron, that involves complicated interactions of the various
ionic channels. Nevertheless, if the biological justification is
still desired, we are ready to explain. One of the most simple
but widely used linear models of dendritic processing is the
alpha function (McKenna, Davis, & Zornetzer, 1992).
Although the theory that leads to the alpha function does
not involve any inductance in the dendrite model, the alpha
function itself is a solution of the second-order linear differ-
ential equation. In fact, it is a solution of Eq. (11) when the
Q-factor is chosen such that the oscillator is critically
damped (Q = 1/2). In this case, w, in Eq. (11) corresponds
the exponent of the alpha function.

The only gap that is left for us to fill regards the Q-factor.
As we will see later, we require it to be larger than 1/2, i.e.
we need an under-damped harmonic oscillator. At first
glance, the gap seems to be too wide to fill because an
under-damped harmonic oscillator needs an inductance,
and an inductance in the neuron membrane sounds rather
unrealistic. On second thought, however, we see some light
in the voltage-dependent conductance of the neuron
membrane: if a neuron membrane experiences a voltage-
dependent conductance change, its equivalent circuit will
behave as if it contains an inductance. Indeed, there are
many theoretical and experimental findings that support
‘phenomenological inductance’ in the neuron membrane.
Hodgkin and Huxley (1952) model of the squid giant
axon also reflected this inductive property. In their model,
the membrane potential behaves in a similar way to the
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Fig. 6. A small example network to illustrate the operation of the proposed
pulse-coupling scheme.

output of an RLC circuit; the membrane potential, according
to their model, exhibits damped oscillation as it returns to
the resting value. A good review on phenomenological
inductance in the neuron membrane is found in Wheeler
(1998). We can at least say that the harmonic oscillator as
a model of the threshold level of the neuron is not entirely
artificial.

Fig. 6 shows a small example network to illustrate the
operation of the proposed pulse-coupling scheme. The solid
lines among BNs represent excitatory connections, while
the dashed lines represent inhibitory connections. Suppose
that the BNs are divided into two groups: three BN firing in
the n-period and the other three BNs firing in the p-period.
The first temporal plot shows the expected state evolution of
one of the BNs in the first group. The thick downward
arrows represent the spike input from the BNs in the same
group, while the thick upward arrows represent the spike
input from the BNs in the other group. These inputs together
will induce sinusoidal oscillation of the threshold level, as
shown in the plot, and the oscillation is in such a phase as to

reinforce the firing of the BN in the n-periods. The second
temporal plot shows the expected state evolution of a BN in
the second group. The situation is similar to that of the first
plot, but this time, the resulting sinusoidal threshold level is
in such phase as to reinforce the firing of the BN in the p-
periods. In conclusion, the pulse-coupling scheme seems to
maintain the clustering of a network into such two groups.
Of course, as one can see in the figure, the two groups are
determined by the configuration of the excitatory and inhi-
bitory connections.

5. An associative memory test

Before we give the complete definition of the BNN-1 in
the next section, we will define an associative memory test
in this section and use it to assess the performance of the
Hopfield network against which that of the BNN-1 will be
evaluated.

The associative memory test uses the six binary training
patterns shown in Fig. 7, where a black color represents —1,
while a white color represents 1. We will use the symbol £,
to denote the binary patterns:

=1t} (12)
where k=1, 2, ..., K is the index to the patterns and 5{‘
represents the binary pixels that can be —1 or 1. Each
pattern contains 64 binary pixels, i.e. i=1, 2, ..., [ and
I=64.

After the training patterns are embedded in the weight
matrix of the network under test, the network will be
subjected to 1000 random trials. In each trial, the network
will be started with a random initial state and will then be
allowed a certain amount of time to converge to a stable
pattern. If the network fails to converge to a stable pattern,
the trial will be repeated with a new random initial condition
until the network succeeds in converging to a stable pattern.
Such a retrial will never be necessary for the Hopfield
network, since it is based on the gradient descent dynamics
and, therefore, is guaranteed to converge to a fixed point. On
the other hand, if the network is not based on the gradient
descent dynamics, as is the case in the sine map networks, it
may or may not converge to a fixed point. For such a
network, a failure to converge should not be counted towards

Fig. 7. The six random binary training patterns that will be used in the associative memory test: black represents —1 and white represents 1.
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Table 1

The recall statistics of the Hopfield network. The table shows the respective
numbers of convergences to the training patterns and the reversed patterns
for several different choices of the parameter 3

S

B .@] ?] 92 .@2 93 3 ://]4 .@4 95 ﬁS '@6 ﬁﬁ Total

020 50 56 61 57 69 77 28 36 30 32 43 53 592
0.10 51 53 73 67 63 75 88 85 27 20 42 39 683
005 38 37 71 57 61 70 0 O O O 32 33 399
003 21 16 60 48 54 48 0 O O O 5 8 260

a ‘false recall’, since it indicates that the given initial pattern
is unknown or ambiguous to the network. In fact, this type of
response is biologically plausible since it more resembles that
of the biological neural network than the compulsive conver-
gence behavior of the gradient-descent networks. A striking
experimental evidence that supports this point of view is
found in Freeman and Skarda (1985)) and Skarda and
Freeman (1987).

The stable pattern after the network converges will be
compared with the training patterns and the reversed train-
ing patterns by evaluating the following metric:
1< L,
- D siéi (13)

i=1

dk:

where s; is the binary representation of the final state of the
network; its definition will vary depending on the type of
network. The metric can take values from —1to 1; d, =1
indicates the network has converged to the pattern &, and
d, = —1 indicates the network has converged to the reversed
pattern 2. The metric, taking a value in between, indicates
a ‘false recall’, i.e. the network converges to a false pattern
that is not among the training patterns or their reversed
versions. During the 1000 trials, the respective numbers of
convergences to the training patterns and the reversed
patterns will be counted and tabulated as shown in Table 1.

5.1. The continuous-time Hopfield network

There are two different versions of the Hopfield network:
discrete time version and continuous time version (Hertz,
Krough, & Palmer, 1991). We tested both versions and
decided to use the continuous time version for our compar-
ison purposes since the recall quality of the discrete time
version was far below that of the continuous time version. In
the following discussion, we will use the name Hopfield
network to specifically refer to the continuous time version.

The Hopfield network is defined by the following set of
differential equations ( Hertz, Krough, & Palmer, 1991):

dx; !

g = O+ g Do wi(o) (14)
J

where x; (¢) is the state or activation of neuron i and 7; is the

time constant of neuron i. We will choose it to be identical

for all neurons in the network. In this case, it can be

absorbed in the time variable by a suitable normalization,
and it can therefore be set to 1 without loss of generality.
The weight matrix w; is determined by the Hebbian rule
(Hebb, 1949):

K
wy = > & & (15)
k=1

The function g(u) represents the graded response of the
neuron and has a saturation nonlinearity. It is usually chosen
to be tanh(Bu). In this case, the parameter 8 acts like the
annealing parameter or the reciprocal of the temperature
parameter of the Boltzman machine. Therefore, the recall
process of the Hopfield network is appreciably affected by
the parameter 3. When  is large, the network is effectively
operating at a low temperature and converges more rapidly,
but is more likely to be trapped in a spurious minimum.
When B is small, the situation is reversed. Because the
state variable x; does not always saturate after convergence,
especially when (3 is small, it is necessary to define a binary
state variable:

5i(f) = sgn(x;(1)). (16)

The associative memory test was repeated several times for
different values of the parameter 3, since the recall quality
of the Hopfield network is highly dependent on the choice of
3. The test results are shown in Table 1. It shows the respec-
tive numbers of convergences to the training patterns and
the reversed patterns for several different choices of the
parameter 3. The best result was obtained when 8 =0.1:
in this case, the network could successfully recall a correct
pattern in about 68% of the 1000 trials. In the rest of the
trials, the Hopfield network was trapped in a spurious mini-
mum and resulted in a false recall.

The time evolution of the Hopfield network in one of the
successful recall trials is shown in Fig. 8 (the symbol r.s. in
the figure represents the random number seed that was used
to determine the random initial condition of the network in
the trial). The top plot shows the transition of the binary
state variables sif) and the middle plot shows the trajec-
tories of all the state variables xi(f). The bottom plot
shows the time evolution of the pseudo energy function,
which is defined as follows:

I 1

H(t) == wsi0)s;). 17)

i=1 j=1

We call this the ‘pseudo’ energy function because it is not
the Lyapunov function of the Hopfield network, but is
simply a measure of conflict in the binary Hebbian network.
Apparently, it is at a local minimum when s,(f) is one of the
training patterns embedded in the weight matrix w;. We
decided to use this pseudo energy function because it can
also be used for the BNN-1 that will be compared with the
Hopfield network in the following sections.
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Fig. 8. The time evolution of the Hopfield network in one of the successful recall trials: (top) the transition pattern of the binary state variables s«(f); (middle)
the trajectories of all state variables x(¢); and (bottom) the trend of the pseudo energy function H(t) during the recall process.

6. The bifurcating neuron network 1

Consider a network of I BNs that is governed by the
following equation:
du;
dr
The state variable x;(f) increases linearly until it reaches the
threshold level 6,(f) and then drops down to the relaxation

level p;(f). All the BNs in the network have the same relaxa-
tion level:

=1, i=12,..,I (18)

pi(t) = —ppsindt. (19)

A spike train out of a BN can be represented by a series of
Dirac-delta functions

Yty = 8(t = 1(n) (20)
n=l1

where t,(n) is the n-th firing time of BN i. The weighed sum

of spike trains from the presynaptic BNs induces an oscilla-

tion in the threshold level of the BNs. Eq. (11) now

becomes:

a6 de, !
+y—" + w1 — 11 = —d > wyy;(0) 1)
j=1

dr? dt

where d is a coefficient that controls the overall coupling
strength among the BNs. In the under-damped case, the
impulse response of the threshold level is of the form
ef’//zsinwrt, where o, =./w} — ¥/4. Since we want the
threshold level oscillation to be most sensitive to an external
stimulus of the unit frequency, it is required that w, =
2m/A/1 — 1/4Q? and y = wy/Q. The coupling weights wij
are determined by the Hebbian rule (Hebb, 1949):

K
wy = > & (22)
k=1

where 2 = {g{f}, k=1,2,..., K, are the K training patterns
shown in Fig. 7.

There are three global network parameters to be deter-
mined: the amplitude of the relaxation level oscillation p,
the Q-factor of the threshold level oscillation, and the
coupling coefficient d.

e The amplitude of the relaxation level oscillation p, should
be a little above the crisis point so that all the BNs in the
network can be in a fully chaotic state initially.

e In a preliminary numerical simulation, it turned out that
the network performance as an associative memory does
not depend sensitively on the choice of the Q-factor,
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Fig. 9. The time evolution of the BNN-1 in one of the successful recall trials: (top) the transition pattern of the binary state variables s,(f); (middle) the
trajectories of all the firing time series #,(r); and (bottom) the trend of the pseudo energy function H(t).

provided it is not too small. The behavior of the network
was not very different for the following two cases: Q = 2
and O = 3.

e The coupling strength d can be determined only by trial
and error. If it is too small, the network can never settle to a
stable pattern. On the other hand, if it is too large, the
network tended to settle down too early to a spurious
pattern. A preliminary simulation showed that, when
I=064 and K= 6, d =0.012 was a reasonable choice.

A series of computer simulations was carried out to exam-
ine the dynamics of the BNN-1 with the following network
parameters: [ = 64; p, = 0.367 and 0.368; Q = 2, 2.5, and 3;
d=0.01, 0.012, and 0.014. The BNN-1 spends more time
before it recalls a stored pattern compared with the Hopfield
network. In fact, this is more of an advantage than a disad-
vantage: the network performs a more thorough search for
stored patterns. This means that the BNN-1 would be less
susceptible to the spurious local minima problem. We used
the same associative memory test that was defined in the
previous section to assess the recall quality of the BNN-1.
We repeated the same test for many different values of the
parameters po, O and d, and the result is tabulated in Table 2.
For almost all the combinations of the parameters, the BNN-1

appears to outperform the Hopfield network, whose test result
was shown in the previous section. In particular, when
po=10.368, 0 =2.0 and d = 0.012, the BNN-1 successfully
recalled a stored pattern without a single exception, i.e. it was
literally free from the interference of any spurious local
minima.

Fig. 9 shows the time evolution of the BNN-1 in one of
the successful recalls. The top plot shows the transition
pattern of the binary states of all the BNs in the network.
A negative state (s(f) = —1) is represented in black, while a
positive state (s(f) = 1) is represented in white. It took the
network about 60 unit time before it could recall a stored
pattern. This plot can give the wrong impression that the
network is converging to a static pattern. Of course, this is
not true, and the network stays in a chaotic state throughout
the whole recall process. This fact is shown clearly in the
middle plot that shows the firing time series of all the BNs in
the network. For an initial transient period, the BNs fire at
any point in the state space, i.e. both in the n-period and in
the p-period. Around r= 20, the BNs start to form two
groups, one with BNs firing in the n-period and the other
with BNs firing in the p-period. Such clusters, in fact,
exactly correspond to the two groups of BNs that we
pictured in Fig. 6. The stabilization of the two groups,
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Table 2
The recall performance of the current network. The numbers in the table represent the number of successful recalls of the patterns specified in the column
headings
Po 0 d PP, PP, PP PP, PP PP Total
0.367 2.0 0.010 57/90 160/85 117/136 71/69 14/19 68/59 945
0.367 2.0 0.012 52/69 121/85 103/117 138/150 20/22 72/39 988
0.367 2.0 0.014 42/74 124/78 105/110 152/157 28/20 57/45 992
0.367 2.5 0.010 38/68 95/51 87/105 163/173 23/30 46/32 911
0.367 2.5 0.012 40/64 104/69 82/94 156/182 30/20 42/29 912
0.367 2.5 0.014 48/67 116/64 93/104 121/139 23/19 46/43 883
0.367 3.0 0.010 34/62 102/42 87/87 124/126 28/24 41/30 787
0.367 3.0 0.012 46/64 104/48 82/91 77/86 28/19 40/31 716
0.367 3.0 0.014 39/64 106/56 93/94 23/17 26/20 38/35 611
0.368 2.0 0.010 58/102 183/116 138/159 47/35 12/8 83/50 991
0.368 2.0 0.012 55/87 152/79 110/130 114/107 21/17 73/55 1000
0.368 2.0 0.014 46/78 143/82 108/127 134/142 22/17 53/46 998
0.368 2.5 0.010 38/64 108/66 96/109 172/181 19/19 51/35 958
0.368 2.5 0.012 34/68 109/59 91/101 163/190 28/19 45/34 941
0.368 2.5 0.014 53/74 124/69 98/107 114/135 24/26 49/40 913
0.368 3.0 0.010 36/69 93/46 92/94 142/162 30.13 42/34 853
0.368 3.0 0.012 44/62 104/54 86/96 87/116 27/19 43/33 771
0.368 3.0 0.014 40/71 98/61 92/93 20/22 23/17 41/35 613

therefore, indicates the completion of a recall process. Note,
however, that the network is still exhibiting chaos, though it
is not full-blown, even after the recall process is completed.
Comparing Figs. 8 and 9 makes it more clear what we meant
to say in Fig. 2: Fig. 8 depicts a convergence to the bottom
of a basin of attraction while Fig. 9 depicts a convergence to
a chaotic attractor that spans almost an entire basin of attrac-
tion.

The bottom plot in Fig. 9 shows the trend of the pseudo-
energy function of the BNN-1, which is defined by Eq. (17).
Note that the pseudo-energy function is not always decreas-
ing but is sometimes increasing, as if the BNN-1 is striving
to get out of a spurious minimum. This behavior is in sharp
contrast with that of the Hopfield network shown in Fig. 8,
where the pseudo-energy function can only move down
destined by the gradient descent dynamics of the Hopfield
network.

Another recall process of the BNN-1 is shown in Fig. 10.
In this case, the network failed to converge to any of the
stored patterns. For some length of the initial period, it
appears to stabilize, but can never settle down to a stable
pattern. This behavior is considered to be a very useful
feature of the BNN-1 since it can be interpreted as an ‘I
don’t know’ state. If the network had been following the
gradient descent dynamics like the Hopfield network, it
would have converged to a static pattern anyway, regardless
of the validity of the convergent pattern. If a network can
say ‘I don’t know’, we can know that the initial pattern (the
initial state) does not resemble any of the training patterns or
the reversed patterns.

Before we conclude this section, it may be worth look-
ing at what is going on inside the network to convince
ourselves of its proper operation. Fig. 11 shows the time
evolution of the internal state of the first six BNs in the

network during the recall process that was depicted in Fig.
10. The left and right plots show the state of the BNs in
the initial phase and in the final phase of the recall
process, respectively. Notice the spontaneous develop-
ment of sinusoidal oscillation on the threshold level as
the recall process proceeds. Initially, the threshold level
is flat or random, so the BNs have a chance to switch
between the n-period and the p-period freely. As the sinu-
soidal oscillation develops, the BNs are forced to choose
one of the two periods, and in a phase-locked manner.
The phase-locking, after a recall process is complete,
binds all the BNs together to maintain the recalled
pattern. The whole process is autonomous, i.e. no external
control of the network parameters is necessary to guide its
stabilization.

7. Conclusion

We found out that the BN can exhibit bistability (in fact,
multi-stability), which is controlled by attactor-merging
crisis. Also, we found out the introduction of a sinusoidal
perturbation in the threshold level of the BN can break the
symmetry of the bistability. These findings led us to the
design of the BNN-1, where each BN is operating in a
chaotic mode, but can still encode a binary value. We
assessed the capability of the BNN-1 as an associative
memory and found out that the network would almost
always converge to a stored pattern when the network para-
meters were properly selected. This result was in sharp
contrast to the case of the Hopfield network, which suffered
from spurious local minimum problem.

Before we conclude this paper, we will summarize some
characteristics and attributes of the BNN-1 that distinguish
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Fig. 10. The time evolution of the BNN-1 in one of the ‘unsuccessful’ recall trials: (top) the transition pattern of the binary state variables s;(r); (middle) the
trajectories of all the firing time series #,(r); and (bottom) the trend of the pseudo energy function H(t).

it from other types of artificial neural networks.

e In the BNN-1, the average firing rate of every BN is
always 1, no matter how chaotic the firing may be.
This means that the BNs make use of the relative timing
of the output spikes in their interaction. If we had used
the average firing rate of the BN as its output, the network
would have been able to produce nothing. This is in sharp
contrast to the sigmoidal neural networks.

e The BNN-1 is always operating in a chaotic mode, and
therefore the inter-spike intervals of the individual BNs
can never be constant. Stofky & Kock (Softky & Koch,
1993) reported high variability of the inter-spike intervals
in their analysis of data from the cat and the primary
visual cortex (V1) and extrastriate cortex (MT) neurons.
Their finding was inconsistent with the neural networks
that are based on the leaky integrate-and-fire neuron
model (Knight, 1972), but are, apparently, in agreement
with our network.

e The chaotic activity in our network is self-organizing.
Given a random initial condition, it always starts with a
maximally chaotic, transient period. However, as its
recall proceeds, the chaotic activity decreases gradually.
After the recall process is complete, the collective activ-
ity of the network can be described as a regular series of

spike bursts. This characteristic strongly reminds us of
the experimental finding of Freeman (Freeman & Skarda,
1985; Freeman, 1986; Skarda & Freeman, 1987) which
was described earlier.

e The self-organizing chaotic activity will be of a practical
value when the BNN-1 is applied to solving an optimiza-
tion problem since no external control of the degree of
chaos is required. The chaotic activity decreases automa-
tically as it approaches a stable pattern. This is not at all
very common in other networks that are designed to solve
optimisation problems, and many of them require a form
of parameter scheduling, such as the temperature sche-
duling in the simulated annealing algorithm (Kirkpatrick,
Gelatt, & Vecchi, 1983; Geman & Geman, 1984). The
Boltzman machines (Hinton & Sejnowski, 1983; Ackley,
Hinton & Sejnowski, 1985), the Gaussian machine
(Akiyama, Yamashira, Kajiura, Anzai, & Aiso, 1991),
gain sharpening of the Hopfield network (Hopfield &
Tank, 1985), and mean field approximation annealing
(Peterson & Anderson, 1987) are some examples that
require a kind of parameter scheduling.

e The BNN-1 is particularly suited for circuit implementa-
tion. The oscillatory dynamics of a BN can be realized by
a relaxation oscillator circuit using a simple element,
such as a programmable unijunction transistor (PUT).



G. Lee, N.H. Farhat / Neural Networks 14 (2001) 115-131

0

< R

15 20 185 190 195 200

g.9.
m illator and a rela
suring the firing time of thy

Fig. 12. The experimental setup to test one possible circuit model of the BN: a series combination of a harmonic osc

arbitrary waveform generator is providing a spike train input to the BN, and a time interval analyzer is mea;
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Fig. 13. The bifurcation diagrams obtained from the experimental setup shown in Fig. 12: a, when the relaxation level amplitude is near the crisis point, and b,

when the relaxation level is a little above the crisis point.

Also, the response of the threshold level of a BN to an
incoming spike train can be modeled by a simple RLC
circuit or an active filter circuit. In addition, summing of
the fanning-in spike trains does not require an analog
summing amplifier. Instead, a simpler circuit, such as
an OR gate circuit, will be sufficient since the spikes in
the trains are spread nearly uniformly in time. The circuit
implementation of the BNN-1 is one of our ongoing
projects. Fig. 12 shows a preliminary experiment to test
one possible circuit model of the BN: a series combina-
tion of a harmonic oscillator (a low-pass Sallen and Key
filter (Chen, 1995) and a relaxation oscillator (a PUT
oscillator). An arbitrary waveform generator is providing
a spike train input to the BN, and a time interval analyzer
is measuring the firing time of the BN. The bifurcation
diagrams obtained from the experimental setup is shown
in Fig. 13 where the amplitude of the input spike train is
the bifurcation parameter. This experimental result
shows that the simple BN circuit is clearly capable of
reproducing the essential dynamical characteristics of
the BN, i.e. the bistability and the attractor-merging crisis
of the BN.
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