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Abstract

The Bifurcating Neuron (BN), a chaotic integrate-and-®re neuron, is a model of a neuron augmented by coherent modulation from its

environment. The BN is mathematically equivalent to the sine-circle map, and this equivalence relationship allowed us to apply the

mathematics of one-dimensional maps to the design of BN networks. The study of symmetry in the BN revealed that the BN can be

con®gured to exhibit bistability that is controlled by attractor-merging crisis. Also, the symmetry of the bistability can be controlled by the

introduction of a sinusoidal ¯uctuation to the threshold level of the BN. These two observations led us to the design of the BN Network 1

(BNN-1), a chaotic pulse-coupled neural network exhibiting associative memory. In numerical simulations, the BNN-1 showed a better

performance than the continuous-time Hop®eld network, as far as the spurious-minima problem is concerned and exhibited many biologi-

cally plausible characteristics. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There has been a continuing debate on the way informa-

tion is encoded in neuronal spike trains. The most widely

accepted coding scheme is called rate coding, where infor-

mation is represented by the mean ®ring rate of a neuron,

either in a temporal sense or in a spatial sense (Adrian,

1926; Rieke, Warland, de Ruyter van Steveninck, & Bialek,

1996). Although rate coding has proven to be valid in some

neuronal information paths, e.g. in sensory neurons and

motor neurons, its validity in other parts of the brain is

still questionable. Recent experimental studies are revealing

a growing number of new facts beyond the explanation of

rate coding and are suggesting the possibility of information

coding in the precise timing of neuronal spikes, namely,

`time coding' (Rieke et al., 1996). An especially descriptive

example supporting time coding in the brain is provided by

O'Keefe (1993), who studied the ®ring behavior of hippo-

campal place cells (O'Keefe, 1971) which are located anato-

mically distant from the sensory and motor cortex. They

showed that the ®ring phases of the place cells with respect

to the theta rhythm have a high level of correlation with the

animal's location on a linear runway.

Another topic of growing interest among neuroscientists

is the role of coherent activities in the brain, especially those

in the gamma-band centered around 40 Hz. Some of the

early observations of gamma-band oscillatory activities

were made in the olfactory bulb and cortex of the rabbit

(Freeman & Skarda, 1985), in the olfactory systems of the

cat and the rat (Bressler & Freeman, 1980), in a variety of

structures of the cat brain (Basar, 1983), in the cat primary

visual cortex (Gray & Singer, 1989; Eckhorn et al., 1988), in

the monkey visual cortex (Freeman & van Dijk, 1987), and

in electroencephalogram (EEG) recordings from the human

skull above association and motor areas (Krieger & Dill-

beck, 1987). The observation of a synchronous activity in

the cat visual cortex by Gray & Singer (1989) has been

drawing special attention because, in their experiments,

the synchronous activity was stimulus-speci®c and was

observed across cortical regions, e.g. across multiple visual

association areas, with a small phase variation. Gray and

Singer related their result to the so-called feature-binding

hypothesis (Milner, 1974; von der Malsburg, 1981), which

states that synchrony provides a means to bind together in

time the features that represent a particular stimulus. The

searchlight hypothesis of Crick (1984) is another specula-

tion on the role of synchronous activity in relation to the

question of consciousness.
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Yet another topic of growing interest in neuroscience is

the role of chaotic activities in the brain. Different levels of

chaotic activities have been observed in many experimental

studies of EEG signals, for example, in the simian motor

cortex (Rapp, Zimmerman, Albano, Deguzman & Green-

baum, 1985), in the human brain during a sleep cycle

(Babloyantz, Nicolis & Salazar, 1985) and during an epilep-

tic seizure (Babloyantz & Destexhe, 1986), and in the olfac-

tory bulb of the rabbit (Freeman & Skarda, 1985; Freeman,

1986). The mounting evidence of chaotic activities in the

brain triggered much theoretical re¯ection on the possible

role of chaotic activities in brain functions (Skarda and

Freeman, 1987; Yao & Freeman, 1990; Nicolis, 1986,

1991). For instance, Freeman and his coworkers (Freeman

& Skarda, 1985) observed in a study of the olfactory system

of the rabbit that the nervous activity of the olfactory system

switches from a chaotic to a periodic state whenever a famil-

iar odor is detected. This experimental observation stimu-

lated their re¯ection on the role of chaos in perception

processes and led them to postulate that chaos can serve

as the ground state of a perception process, i.e. an elevated

state that has quick transition routes to many periodic

states.1

While new questions and ®ndings about the brain are

reported every day, these three topics, namely, time coding,

coherent activity, and chaotic activity in the brain, are some

of the most important topics that can change our understand-

ing of the brain's dynamics at the most fundamental level. It

is important to realize, however, that it is not easy to deal

with these topics properly in the framework of traditional

neural network theory for the following reasons. First, the

sigmoidal activation function, which is the neuron model of

most traditional neural networks (Hertz, Krough, & Palmer,

1991; Haykin, 1994), is based on the rate-coding hypoth-

esis; the output of a sigmoidal neuron is a continuous real

value representing the activity level of a neuron. Second,

most traditional neural networks are designed to be dyna-

mically stable and are therefore destined to operate away

from a chaotic regime (Hertz et al., 1991; Haykin, 1994). A

notable example is the Hop®eld network (Hop®eld, 1982)

where the connection matrix is chosen to be symmetric so

that the energy function of the network can always converge

to a static attractor. It is even irrelevant to discuss the

dynamics of non-recurrent networks, i.e. feed-forward

networks, because they do not represent a dynamic system

once they are trained. All these considerations lead to the

conclusion that the exploration and exploitation of new

topics in neuroscience demands a new arti®cial neural

network model.

In fact, the recent trend of arti®cial neural network theory

has seen many new neural models that were inspired by the

new ®ndings in neuroscience. Eckhorn, Arndt, and Dike

(1990) proposed the linking ®eld model to explain the role

of synchronized activity in the visual cortex, and Johnson

(Johnson, 1994; Baek & Farhat, 1998) applied the model to

a problem of pattern recognition. Hop®eld (1995) also

proposed a pattern recognition mechanism bene®ting from

the synchronized activity of pulse-coupled neurons. Free-

man and van Dijk (1985) implemented a model neural

network that can explain the behavior of the olfactory

bulb of the rabbit, and stimulated the design of many new

neural networks that utilize chaotic model neurons. Aihara

et al. (1990) modi®ed the Hop®eld network and developed a

chaotic neural network consisting of neurons capable of

exhibiting chaotic behaviors induced by self-coupling.

Nozawa (1992) derived a chaotic neural network by using

an Euler discretization on the Hop®eld model. Wang and

Smith (1998) developed another type of network by varying

the time step of an Euler discretized Hop®eld network.

Many of these new chaotic networks can be understood

from the viewpoint of the coupled map lattice (CML) intro-

duced by Kaneko (1992, 1993). In this respect, some recent

studies on CML (Holden, Tucker, Zhang, & Poole, 1992)

and its variations (Farhat & Hernandez, 1995) can also be

counted toward the effort to develop chaotic neural

networks. More examples of a new network design include

Natschlaeger and Ruf (1998); Maass and Natschlaeger

(1998). It is important to note, however, that few of these

new network designs address time coding, coherent activity,

and chaotic activity, all together. In reality these three issues

are closely related and often arise concurrently playing their

respective roles. In our study, we focused on the new possi-

bilities that can arise where these three issues converge.

An obvious requirement for an arti®cial neural network

based on time coding is a `time-coding capable' model

neuron: a neuron that can deal with information encoded

in a spike train. One of the simplest examples of such a

model is the integrate-and-®re neuron (Knight, 1972),

where a neuron is approximated by a leaky integrator of a

postsynaptic current. At the other extreme are compartment

models of a neuron (Segev, Fleshman, & Burke, 1989),

where neuronal spatial structure, as well as the dynamics

of various ionic channels, are taken into consideration to
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Nomenclature

xi(t) the internal potential of neuron i

u i(t) the threshold level of neuron i

r (t) the relaxation level of all the neurons in a

network

yi(t) the output of neuron i

ui(t) the input of neuron i

ti(n) the n-th ®ring time of neuron i

si(t) the binary state of neuron i

H(t) the pseudo-energy function of a network

1 This concept is in fact very reminiscent of the concept of `controlling

chaos' (Ott, Grebogi, & Yorke, 1990) in nonlinear control theory where a

strange attractor is regarded as a set of an in®nite number of unstable

periodic orbits (Grebogi, Ott, & Yorke, 1987), one of which can be stabi-

lized by the proper control mechanism.



reproduce the actual behavior of a neuron as closely as

possible. Choosing a model neuron of the proper complexity

is not an easy task because the nature of the approximation

implied by a certain model is often unclear until the model is

tested in a network. An obvious minimum requirement

would be the ability to produce a spike train output, where

information is represented not by the amplitude but by the

time of a spike, and the ability to respond sensitively to the

timing of incoming spikes. Since both of the two extreme

examples, i.e. the integrate-and-®re neuron and the compart-

ment-model-based neurons, appear to satisfy the require-

ment, it is a wise strategy to try ®rst the simplest, and

therefore we chose the integrate-and-®re neuron as the start-

ing point of our neuronal modeling.

The next issue is how to utilize coherence in our model

neuron or model network. Although we are using the expres-

sion `utilizing coherence', this is not well de®ned and

demands further clari®cation. It is easy to design an inte-

grate-and-®re neuron network that autonomously evolves

into a synchronized, or coherent, state (Mirollo & Strogatz,

1990; Bottani, 1995; Abbott & van Vreeswijk, 1993). The

question that remains, however, is what can be done with it.

The problem is that the role coherence plays in the operations

of the network has not been identi®ed clearly. Although the

role of coherence is still the focus of debate, it is necessary to

de®ne a role of coherence that can guide our network design.

The one that we chose over other possibilities states that a

coherent activity in an integrate-and-®re neuron network can

provide a time reference. This role may sound excessively

general or even trivial, but it is certainly essential. In the

absence of a time reference, the information that time coding

can carry would be severely limited. The aforementioned

O'Keefe and Recce (1993) experiment is a good example

for such a role of coherence (the theta rhythm). The fact that

rate coding is common in sensory or motor neurons is also

consistent with such a role of coherence: rate coding must be

the only choice when a common time reference extending

throughout the nervous system is not available. If the role of

coherence in biological systems is to provide a time refer-

ence, we do not need to complicate the design of our network

by adding a mechanism to produce coherence; we can

provide a time reference from outside.

The ®nal issue is how to utilize chaos. A chaotic activity

may arise either from a neuron itself or from the interaction

of non-chaotic neurons. An example of the latter case is

given in Sompolinsky and Crisanti (1988), where a mean-

®eld analysis is used to show that a network of sigmoidal

neurons with random, non-symmetric coupling weights can

be put into a chaotic operating regime when the overall

coupling strength exceeds a certain limit. In fact, this is

not an exceptional case because any nonlinear dynamic

system consisting of at least three state variables is known

to have the potential of exhibiting chaos (Hilborn, 1994). In

this respect, the next example can be the Lorentz system

(Hilborn, 1994), which is a classical example of three-vari-

able dynamic systems capable of exhibiting chaos, because

it may be regarded as a network of non-chaotic neurons,

where each integrator represents a neuron. These two exam-

ples suggest that the possibility of a chaotic network out of

non-chaotic elements is plentiful. However, we decided to

follow the other option, a network of chaotic neurons, for

the following reason. Chaotic activity will be more useful in

the `ready-state' of a network where the network is ready to

respond to an external stimulus. In other words, we have the

following scenario in mind: a stimulus known to a network

causes the interconnections in the network to interfere

constructively, and thereby suppress the initial chaotic

activity in the network. This scenario assumes that the

network is in a chaotic state before strong interaction

among the neurons is established. In short, this scenario

requires chaotic neurons. This scenario is in fact inspired

by the aforementioned experimental observation of Free-

man & Skarda (1985) and also by some recent studies that

show that the behavior of individual neurons in isolation is

more irregular than that of neurons in a network (Rabino-

vitch & Abarbanel, 1998).

Our model neuron is derived from the integrate-and-®re

neuron model for the reason stated above. The behavior of

an integrate-and-®re neuron under a constant feeding is

simple: it repeats a regular cycle of charging and dischar-

ging. This simple picture of an integrate-and-®re neuron is

of course due to an unrealistic assumption about the envir-

onment surrounding the neuron. A neuron in a biological

neural network receives inputs from many different parts of

the brain and is also subject to noise from inside and outside.

Also, the same input can have different effects depending on

the nature and the position of the synapse. Consideration of

every detail of the interaction of a neuron with its environ-

ment would be impractical, so we made the following rather

simplistic assumptions about the arti®cial environment

surrounding an integrate-and-®re neuron. First, the environ-

ment provides a persistent incoherent input to the neuron,

which helps the neuron keep active at an optimal operating

point. Second, the environment also provides a persistent

coherent input to the neuron, which is common to all the

neurons in the same network and serves as a time reference.

It is possible to design a network such that it can provide

itself with such incoherent and coherent inputs. For

instance, some extra diffuse connections can be added

between model neurons so that the neurons can feed each

other with an incoherent input. Also, a part of the network

can be used to build a pace maker that can provide a coher-

ent input to other parts of the network. However, any

attempt to model a biological neural network cannot avoid

an approximation at some part or level of modeling. Here,

we are approximating the mechanisms that are responsible

for the incoherent and the coherent input by simply calling

them `the environment'. This way, we can focus on what

happens when a time-coding-aware model network is

subjected to such background activities. In this respect,

our neuron model does not represent a neuron as it is, but

a neuron augmented by incoherent activities and coherent
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activities in its environment. This is akin to the concept of

an electron with an effective mass in solid state physics: an

electron with an effective mass is not a model of an electron

standing alone in the vacuum, but a model of an electron

augmented by the in¯uence of the atoms in the lattice

surrounding it.

The following set of equations de®nes our model neuron:

dx

dt
� c �1�

r�t� � 2r0sin2pft �2�

u�t� � 1 2 d�t� �3�
where x is the internal potential of the neuron, and c, r 0 and f

are positive constants. Eq. (1) describes the constant buildup

of the internal potential due to the constant feed by an inco-

herent source. Eq. (2) describes the oscillating relaxation

level due to a sinusoidal stimulation by a coherent source.

Eq. (3) describes the perturbation d(t) in the threshold level

induced by an input from the presynaptic neuron. Fig. 1a

depicts the behavior of our model neuron in the absence of

an input (i.e. d(t)� 0): it keeps ®ring due to an incoherent

source while the relaxation level is oscillating due to a

coherent source. An important fact to emphasize again

here is that the coherent source serves as a time reference

to the neuron. This fact is clearly demonstrated in Fig. 1b,

that shows the ®ring times of the neuron with respect to a

modulus of 1, which is the period of the sinusoidal oscilla-

tion of the relaxation level. Although the ®ring of the neuron

here is not always phase-locked to the sinusoidal oscillation,

the ®ring time exhibits a clear structure when it is repre-

sented relative to the sinusoidal oscillation. In addition to

providing a time reference, the coherent source turns the

neuron into a chaotic neuron. This fact is also demonstrated

in Fig. 1b, where one can see that the ®ring pattern is bifur-

cating until it becomes chaotic as the amplitude of the sinu-

soidal oscillation increases. This dynamic behavior of a

neuron subjected to an oscillatory input has been a subject

of interest among many researchers (Holden & Ramadan,

1981; Hayashi, Ishizuka, Ohta, & Hirakawa, 1982; Aihara

& Matsumoto, 1986), and a detailed treatment of the same

theme, applied to an integrate-and-®re model, appears in

Farhat and Eldefrawy, 1991, 1992. Farhat and Eldefrawy

discovered that an integrate-and-®re model neuron can

operate in dynamically distinct modes of operation
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Fig. 1. The Bifurcating Neuron: a, the behavior of the BN in the absence of an input: it keeps ®ring due to an incoherent source while the relaxation level is

oscillating due to a coherent source; b, ®ring times of the BN with respect of a modulus of 1, which is the period of the sinusoidal oscillation of the relaxation

level.



depending on the amplitude and frequency of the applied

oscillatory input, and showed that such a model neuron is

mathematically equivalent of the sine-circle map (Hilborn,

1994). Since this equivalence relationship plays a central

role in the development of our networks, we call our neuron

model a Bifurcating Neuron (BF), which is the name that

Farhat and Eldefrawy used to emphasize the bifurcating

behavior of an integrate-and-®re neuron under a sinusoidal

modulation.2

We have been exploring the potential of various types of

BN networks. In this paper, we introduce a BN network that

we call the Bifurcating Neuron Network 1 (BNN-1). The

BNN-1 is a binary associative memory exploiting the bist-

ability of the BN which appears when the average ®ring

frequency of a BN is twice that of the relaxation level oscil-

lation. The two chaotic attractors which account for the

bistability are subject to attractor-merging crisis (Grebogi,

Ott, & Yorke, 1987); merging or separation of the two

attractors is critically dependent on the amplitude of the

relaxation level oscillation. Near the point of crisis, a sinu-

soidal perturbation in the threshold level induced by an

incoming spike train can bias the bistability, thereby indu-

cing a binary transition. The result is a binary associative

memory where a memory is represented by a chaotic attrac-

tor. Fig. 2 is a conceptual illustration of ®xed point attractors

and chaotic attractors in an imaginary energy landscape. A

chaotic attractor lives in a state space occupying a certain

non-zero volume. At ®rst glance, this may seem disadvanta-

geous because a state space of the same size will be able to

accommodate a smaller number of chaotic attractors than

®xed point attractors. However, this is more an advantage

than a disadvantage because it endows a network with

robustness. An associative memory utilizing chaotic attrac-

tors is less subject to the spurious minima problem, which

often arises in networks based on ®xed point attractors.

Another advantage of a chaotic-attractor-based memory, as

implied in Fig. 2, is that the network never dissipates to the

ground level, but maintains its activity even after it settles on

a chaotic attractor. This means that the network will be more

ready to respond to an external stimulus. As will be shown in

the comparison with the continuous-time Hop®eld network,

the BNN-1 is indeed less susceptible to the spurious minima

problem. If the initial state of the network does not fall in

one of the basins of attractions of the patterns embedded in

it, it never converges to a stable pattern, implying `I don't

know'. Otherwise, it would almost always converge to one

of the embedded patterns. Associative memory networks

that overcome the limitations of the Hop®eld network

have been proposed by many authors (Aihara & Takabe,

1990; Nozawa, 1992; Wang & Smith, 1998) as mentioned

earlier. However, the BNN-1 is one of the rare examples of

integrate-and-®re neuron networks that use chaotic attractors

to enhance associative memory performance.

In Section 2, starting with the study of the symmetry in

the sine-circle map, we will investigate the bistability and

the attractor-merging crisis in the BN. In Section 3, we will

be in search of a control parameter to control the bistability

of the BN, and, in Section 4, we will arrive at an ef®cient

pulse-coupling scheme to be used in the BNN-1. In Section

5, we will de®ne an associative memory test and give a test

result for the continuous-time Hop®eld network which can

be used as a benchmark to assess the performance of the

BNN-1. In Section 6, we will complete the mathematical

de®nition of the BNN-1 and build an associative memory

out of it. We will examine closely the recall process of the

BNN-1 and compare it with that of the Hop®eld network. In

the concluding section, we will discuss the unique dynami-

cal characteristics of the BNN-1 that distinguish it from

other types of neural network.

2. Bistability and attractor-merging crisis of the BN

We started our search for the bistability and the attractor-

merging crisis of the BN with a study of symmetry in the

sine-circle map (recall that the BN is mathematically

equivalent to the sine-circle map) since attractor-merging

crisis is the interaction between two symmetric attractors.

It is known that bimodal, symmetric one-dimensional maps,

such as the cubic map and the sine map, exhibit attractor-

merging crisis (Grebogi, Ott, & Yorke, 1987). The symme-

try that gives rise to the symmetric attractors of such maps is

an inversion symmetry. For instance, if we change every

occurrence of x in the recursion of the sine map,

x�n 1 1� � hsinpx�n�; �4�
to 2x, we see that the recursion is unchanged. Then we ask,

can we also ®nd such symmetry in the sine-circle map? To

answer this question, let us take a look at the recursion of the

sine-circle map:

x�n 1 1� � x�n�1 V 1
K

2p
sin2px�n� �mod 1�: �5�

Apparently, we can see here no such inversion symmetry as

in the case of the sine map. However, we can see a different

type of symmetry: a translation symmetry due to the
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tors in an imaginary energy landscape.

2 The term Bifurcating Neuron was introduced independently by Farhat

(Farhat & Eldefrawy, 1991) and Holden (Holden, Hyde, Muhamad, &

Zhang, 1992).



periodicity of the sine function. If we change every occur-

rence of x in Eq. (5) to x 1 1, the equation remains

unchanged.

Now, we can restate this result in terms of the BN. In the

absence of an input, the set of equations de®ning the BN,

Eqs. (1)± (3), becomes

dx

dt
� 1; u � 1; r�t� � 2r0sin2pft; �6�

where, without loss of generality, we assumed that the

constant buildup rate c is 1. The recursion that accounts

for the ®ring time of the BN is given by

t�n 1 1� � t�n�1 1 1 r0sin2pft�n�: �7�

As in Eq. (5), we can also see here a translational symmetry

due to the periodicity of the sine function. If we change

every occurrence of t in Eq. (7) to t 1 1/f, the equation

remains unchanged.

Fig. 3 shows the bifurcation diagrams of the map de®ned

by Eq. (7) when f� 2. As in the case of the sine-circle map,

the vertical axis represents t(n) (mod 1), i.e. the ®ring time

of the BN with respect to a modulus of 1, where 1 is the

®ring period of the BN in the absence of the relaxation level

oscillation. As we expected, we can see two symmetric

attractors which divide the entire state space [0, 1), in the

sense of a modulus of 1, into two equal intervals. Except that

the onset of the two attractors is not initiated by a pitchfork

bifurcation, the overall pattern of bifurcation is very similar

to that of the sine map. Again, as in the case of the sine map,

there is an unstable ®xed point at t� 0.5, which is separat-

ing the two attractors. When the attractors expand until it

touches the unstable ®xed point, they undergo a crisis and

collapse into a single fully chaotic attractor.

The value of the bifurcation parameter r 0 at which the

attractor-merging crisis takes place will be called a crisis

point point rc
0. A simple graphical method showed that its

value is the solution of the following implicit equation:���������������
rc2

0 2
1

16p2

s
1

1

4p
arccos 2

1

4prc
0

 !
2

1

2
� 0: �8�

It is not possible to obtain an exact analytic solution to this

equation; a numerical method gave an approximate solution

of r < 3:633.

One last thing to point out before ending this section is

that the bistability implied by the two symmetric attractors

is, in fact, a special case of the multi-stability of the BN.

When f� 3, the BN has three symmetric attractors and

exhibits tri-stability. The BN will come to have a multi-

stability with a larger number of symmetric attractors, as f

is increased further. Such a multi-stability of the BN may be

worth further investigation. At this point, however, we do

not have any concrete idea of how to utilize such multi-

stability and have therefore concentrated on the case of

f� 2.

3. Controlling bistability of the BN

Now that the BN is shown to have bistability and exhibit

attractor-merging crisis, the next question is how to couple

them together to form a network that can perform a mean-

ingful function. If the bistability of the BN encodes binary

information, a natural role of the desired coupling scheme is

to control the bistability. In short, we need to ®nd out a

mechanism to break symmetry in the bistability of the BN.

Among other possible ways to break the symmetry, the

following method would be one of the simplest, yet biolo-

gically plausible, ones. In Eq. (6), which led to Fig. 9, the

threshold level u is constant. In the case of biological

neurons, however, the threshold level, as well as the internal

potential, is affected by postsynaptic potentials. One way to

break the symmetry of the bistability is to introduce to the

threshold level a sinusoidal oscillation of half the frequency
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Fig. 3. The bifurcation diagrams of the BN for f� 2, which show the ®ring behavior of the BN as the birfurcation parameter r o changes. These two different

bifurcation diagrams are the results of the following two different initial conditions: a, t(0)� 0.1 and b, t(0)� 0.6.



of the relaxation level oscillation:

u�t� � 1 1 ecos2pt: �9�
Fig. 4 shows the expected behavior of the BN for three

different amplitudes of the threshold oscillation:

1 �20.1, 0 and 0.1. In all three cases, it is assumed that

the driving amplitude r 0 is a little larger than the crisis point

rc
0 < 3:633. This means that, when 1� 0, the BN will be in

a fully chaotic state and can ®re at any point in the state

space [0, 1) (in the sense of a modulus of 1). When

e�20.1, the symmetry that gives rise to the two symmetric

chaotic attractors of the BN, which were shown in Fig. 3, is

now broken. As a result, the ®rst half of the state space

becomes more stable than the second half, thereby the BN

is more likely to ®re in the ®rst half than in the second half.

The situation is reversed when the sign of the modulation

amplitude 1 is reversed. The bottom line is that the transla-

tion symmetry of the BN is broken by the sinusoidal oscilla-

tion of the threshold level of the form given by Eq. (9). In

other words, the preference of the BN over the two

symmetric attractors can be controlled by the sign of 1 .

For the further discussion of the bistability of the BN, we

need to de®ne the binary state of the BN. The BN is consid-

ered to be in the negative state if it is ®ring in the ®rst half of

the state space [0,1) with respect to a modulus 1. Likewise,

it is considered to be in the positive state if it is ®ring in the

second half. The de®nition of the binary state at an arbitrary

time t can become ambiguous when the BN is in a fully

chaotic state as in the case of Fig. 4b. The following de®ni-

tion of the binary state variable of the BN will help clear

such an ambiguity:

s�t� �
21 t�n� [ �0 0:5� �mod 1�
1 t�n� [ �0:5 1� �mod 1�

(
�10�

where t(n) is the last ®ring time of the BN. For ease of

illustration, we will call the ®rst half and the second half

of the state space as n-period and p-period, respectively,

hereafter. Since the two periods are de®ned with respect

to a modulus 1, they will divide the time axis into an

alternating series of n-periods and p-periods, as illustrated

in Fig. 4.

Fig. 5 shows bifurcation diagrams of the BN with the

amplitude of the threshold oscillation 1 being the bifurca-

tion parameter. They show the behavior of the ®ring time

(t(n) (mod 1)) of the BN as the amplitude 1 changes. The

®ring times of the BN are con®ned to either half of the state

space when the magnitude of 1 is larger than a certain

threshold, whereas the ®ring times spread over the entire

state space [0, 1) otherwise. The overall shape of the bifur-

cation diagrams tends to recall the sigmoidal curve, which is

a popular model of the neuron response. However, a

pronounced difference is observed in the intermediate

region of the bifurcation parameter: the response of the

BN is not static but dynamic. It is always ready to hop

between the two chaotic attractors. Such an indeterminate
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Fig. 4. The expected ®ring behavior of the BN for three different amplitudes of the threshold oscillation: a, 1 �20.1; b, 1 � 0; and c, 1 � 0.1.



behavior becomes maximized when the bifurcation para-

meter 1 is near zero.

4. Pulse-coupling via harmonic oscillator

Now we are at the stage of completing our formulation of

the coupling scheme for the BNN-1. We have seen that the

symmetry of the BN can be broken by an introduction of

threshold level oscillation and its bistability can be

controlled by the oscillation amplitude. However, the

input that a BN receives from the presynaptic BNs is in

the form of a spike train. Apparently, we need to provide

a linkage between the spike train and the threshold level

oscillation. We can come put with an immediate solution

when we note that the sinusoidal function is the impulse

response of the harmonic oscillator. We propose that the

threshold level of the BN be modeled by the harmonic

oscillator that is subject to an impulsive input:

d2u

dt2
1 g

du

dt
1 v2

0u�t�2 v2
0 � u�t� �11�

where v0 � 2p=
�������������
1 2 1=4Q2

p
, g � v0=Q and Q is the Q-

factor of the harmonic oscillator. The role of the constant

term 2v2
0 on the left side of the equation is to shift the

equilibrium point of the oscillation from 0 to 1, and it cannot

affect the dynamics of the system in any way. The spiky

input u(t) from the presynaptic BNs is driving the harmonic

oscillator. Note that the oscillator parameters are carefully

chosen so that the oscillation frequency is 1 when the oscil-

lator is under-damped. It is expected that the oscillator will

respond to the periodicity of period 1 in the incoming spike

train. This also means that, if the spike intervals are irregu-

lar, the response of the oscillator will be minimal. As an

aside, we emphasize that the proposed coupling scheme

does not require any complicated arithmetics which is dif®-

cult to implement in a circuit. The BNs in the network emit

spikes, and the spikes are delivered to the target BNs as they

are. The only additional component we need is a harmonic

oscillator, which has a natural counterpart such as an RLC

®lter or an active ®lter.

At this point, one may raise the following questions. First,

how can the presynaptic BNs maintain the period and the

phase of its output spike train in order to be effective on the

target BN? The answer lies in the common driving signal

that modulates the relaxation level of all the BNs in the

network. All the BNs will ®re roughly in phase after they

settle down to a steady state. Second, does the harmonic

oscillator have any biological relevance? Our answer to

this question cannot be very meaningful because the BN,

our neuron model, is not a detailed model of the biological

neuron, that involves complicated interactions of the various

ionic channels. Nevertheless, if the biological justi®cation is

still desired, we are ready to explain. One of the most simple

but widely used linear models of dendritic processing is the

alpha function (McKenna, Davis, & Zornetzer, 1992).

Although the theory that leads to the alpha function does

not involve any inductance in the dendrite model, the alpha

function itself is a solution of the second-order linear differ-

ential equation. In fact, it is a solution of Eq. (11) when the

Q-factor is chosen such that the oscillator is critically

damped (Q� 1/2). In this case, v 0 in Eq. (11) corresponds

the exponent of the alpha function.

The only gap that is left for us to ®ll regards the Q-factor.

As we will see later, we require it to be larger than 1/2, i.e.

we need an under-damped harmonic oscillator. At ®rst

glance, the gap seems to be too wide to ®ll because an

under-damped harmonic oscillator needs an inductance,

and an inductance in the neuron membrane sounds rather

unrealistic. On second thought, however, we see some light

in the voltage-dependent conductance of the neuron

membrane: if a neuron membrane experiences a voltage-

dependent conductance change, its equivalent circuit will

behave as if it contains an inductance. Indeed, there are

many theoretical and experimental ®ndings that support

`phenomenological inductance' in the neuron membrane.

Hodgkin and Huxley (1952) model of the squid giant

axon also re¯ected this inductive property. In their model,

the membrane potential behaves in a similar way to the
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Fig. 5. The bifurcation diagrams of the BN, which show the ®ring behavior of the BN as the birfurcation parameter 1 changes, for the following two cases: a,

r 0� 0.3663 < r c
0 and b, r0 � 0:38 . rc

0.



output of an RLC circuit; the membrane potential, according

to their model, exhibits damped oscillation as it returns to

the resting value. A good review on phenomenological

inductance in the neuron membrane is found in Wheeler

(1998). We can at least say that the harmonic oscillator as

a model of the threshold level of the neuron is not entirely

arti®cial.

Fig. 6 shows a small example network to illustrate the

operation of the proposed pulse-coupling scheme. The solid

lines among BNs represent excitatory connections, while

the dashed lines represent inhibitory connections. Suppose

that the BNs are divided into two groups: three BNs ®ring in

the n-period and the other three BNs ®ring in the p-period.

The ®rst temporal plot shows the expected state evolution of

one of the BNs in the ®rst group. The thick downward

arrows represent the spike input from the BNs in the same

group, while the thick upward arrows represent the spike

input from the BNs in the other group. These inputs together

will induce sinusoidal oscillation of the threshold level, as

shown in the plot, and the oscillation is in such a phase as to

reinforce the ®ring of the BN in the n-periods. The second

temporal plot shows the expected state evolution of a BN in

the second group. The situation is similar to that of the ®rst

plot, but this time, the resulting sinusoidal threshold level is

in such phase as to reinforce the ®ring of the BN in the p-

periods. In conclusion, the pulse-coupling scheme seems to

maintain the clustering of a network into such two groups.

Of course, as one can see in the ®gure, the two groups are

determined by the con®guration of the excitatory and inhi-

bitory connections.

5. An associative memory test

Before we give the complete de®nition of the BNN-1 in

the next section, we will de®ne an associative memory test

in this section and use it to assess the performance of the

Hop®eld network against which that of the BNN-1 will be

evaluated.

The associative memory test uses the six binary training

patterns shown in Fig. 7, where a black color represents 21,

while a white color represents 1. We will use the symbol Pk

to denote the binary patterns:

Pk � j k
i

n o
�12�

where k� 1, 2, ¼, K is the index to the patterns and j k
i

represents the binary pixels that can be 21 or 1. Each

pattern contains 64 binary pixels, i.e. i� 1, 2, ¼, I and

I� 64.

After the training patterns are embedded in the weight

matrix of the network under test, the network will be

subjected to 1000 random trials. In each trial, the network

will be started with a random initial state and will then be

allowed a certain amount of time to converge to a stable

pattern. If the network fails to converge to a stable pattern,

the trial will be repeated with a new random initial condition

until the network succeeds in converging to a stable pattern.

Such a retrial will never be necessary for the Hop®eld

network, since it is based on the gradient descent dynamics

and, therefore, is guaranteed to converge to a ®xed point. On

the other hand, if the network is not based on the gradient

descent dynamics, as is the case in the sine map networks, it

may or may not converge to a ®xed point. For such a

network, a failure to converge should not be counted towards
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Fig. 6. A small example network to illustrate the operation of the proposed

pulse-coupling scheme.

Fig. 7. The six random binary training patterns that will be used in the associative memory test: black represents 21 and white represents 1.



a `false recall', since it indicates that the given initial pattern

is unknown or ambiguous to the network. In fact, this type of

response is biologically plausible since it more resembles that

of the biological neural network than the compulsive conver-

gence behavior of the gradient-descent networks. A striking

experimental evidence that supports this point of view is

found in Freeman and Skarda (1985)) and Skarda and

Freeman (1987).

The stable pattern after the network converges will be

compared with the training patterns and the reversed train-

ing patterns by evaluating the following metric:

dk � 1

I

XI

i�1

sij
k
i �13�

where si is the binary representation of the ®nal state of the

network; its de®nition will vary depending on the type of

network. The metric can take values from 21 to 1; dk� 1

indicates the network has converged to the pattern Pk and

dk�21 indicates the network has converged to the reversed

pattern Pk. The metric, taking a value in between, indicates

a `false recall', i.e. the network converges to a false pattern

that is not among the training patterns or their reversed

versions. During the 1000 trials, the respective numbers of

convergences to the training patterns and the reversed

patterns will be counted and tabulated as shown in Table 1.

5.1. The continuous-time Hop®eld network

There are two different versions of the Hop®eld network:

discrete time version and continuous time version (Hertz,

Krough, & Palmer, 1991). We tested both versions and

decided to use the continuous time version for our compar-

ison purposes since the recall quality of the discrete time

version was far below that of the continuous time version. In

the following discussion, we will use the name Hop®eld

network to speci®cally refer to the continuous time version.

The Hop®eld network is de®ned by the following set of

differential equations ( Hertz, Krough, & Palmer, 1991):

ti

dxi

dt
� 2xi�t�1 g

XI

j

wijxj�t�
0@ 1A �14�

where xi (t) is the state or activation of neuron i and ti is the

time constant of neuron i. We will choose it to be identical

for all neurons in the network. In this case, it can be

absorbed in the time variable by a suitable normalization,

and it can therefore be set to 1 without loss of generality.

The weight matrix wij is determined by the Hebbian rule

(Hebb, 1949):

wij �
XK
k�1

j k
i j

k
j �15�

The function g(u) represents the graded response of the

neuron and has a saturation nonlinearity. It is usually chosen

to be tanh(bu). In this case, the parameter b acts like the

annealing parameter or the reciprocal of the temperature

parameter of the Boltzman machine. Therefore, the recall

process of the Hop®eld network is appreciably affected by

the parameter b . When b is large, the network is effectively

operating at a low temperature and converges more rapidly,

but is more likely to be trapped in a spurious minimum.

When b is small, the situation is reversed. Because the

state variable xi does not always saturate after convergence,

especially when b is small, it is necessary to de®ne a binary

state variable:

si�t� � sgn�xi�t��: �16�
The associative memory test was repeated several times for

different values of the parameter b , since the recall quality

of the Hop®eld network is highly dependent on the choice of

b . The test results are shown in Table 1. It shows the respec-

tive numbers of convergences to the training patterns and

the reversed patterns for several different choices of the

parameter b . The best result was obtained when b � 0.1:

in this case, the network could successfully recall a correct

pattern in about 68% of the 1000 trials. In the rest of the

trials, the Hop®eld network was trapped in a spurious mini-

mum and resulted in a false recall.

The time evolution of the Hop®eld network in one of the

successful recall trials is shown in Fig. 8 (the symbol r.s. in

the ®gure represents the random number seed that was used

to determine the random initial condition of the network in

the trial). The top plot shows the transition of the binary

state variables si(t) and the middle plot shows the trajec-

tories of all the state variables xi(t). The bottom plot

shows the time evolution of the pseudo energy function,

which is de®ned as follows:

H�t� � 2
XI

i�1

XI

j�1

wijsi�t�sj�t�: �17�

We call this the `pseudo' energy function because it is not

the Lyapunov function of the Hop®eld network, but is

simply a measure of con¯ict in the binary Hebbian network.

Apparently, it is at a local minimum when si(t) is one of the

training patterns embedded in the weight matrix wij. We

decided to use this pseudo energy function because it can

also be used for the BNN-1 that will be compared with the

Hop®eld network in the following sections.
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Table 1

The recall statistics of the Hop®eld network. The table shows the respective

numbers of convergences to the training patterns and the reversed patterns

for several different choices of the parameter b

b P1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 Total

0.20 50 56 61 57 69 77 28 36 30 32 43 53 592

0.10 51 53 73 67 63 75 88 85 27 20 42 39 683

0.05 38 37 71 57 61 70 0 0 0 0 32 33 399

0.03 21 16 60 48 54 48 0 0 0 0 5 8 260



6. The bifurcating neuron network 1

Consider a network of I BNs that is governed by the

following equation:

dxi

dt
� 1; i � 1; 2;¼; I: �18�

The state variable xi(t) increases linearly until it reaches the

threshold level u i(t) and then drops down to the relaxation

level r i(t). All the BNs in the network have the same relaxa-

tion level:

ri�t� � 2r0sin4pt: �19�
A spike train out of a BN can be represented by a series of

Dirac-delta functions

yi�t� �
X1
n�1

d�t 2 ti�n�� �20�

where ti(n) is the n-th ®ring time of BN i. The weighed sum

of spike trains from the presynaptic BNs induces an oscilla-

tion in the threshold level of the BNs. Eq. (11) now

becomes:

d2ui

dt2
1 g

dui

dt
1 v2

0�ui�t�2 1� � 2d
XI

j�1

wijyj�t� �21�

where d is a coef®cient that controls the overall coupling

strength among the BNs. In the under-damped case, the

impulse response of the threshold level is of the form

e2g=2sinvrt; where vr �
�������������
v2

0 2 g2=4:
q

Since we want the

threshold level oscillation to be most sensitive to an external

stimulus of the unit frequency, it is required that v0 �
2p=

�������������
1 2 1=4Q2

p
and g � v0=Q. The coupling weights wij

are determined by the Hebbian rule (Hebb, 1949):

wij �
XK
k�1

j k
i j

k
j �22�

where Pk ; {jk
i }, k� 1, 2, ¼, K, are the K training patterns

shown in Fig. 7.

There are three global network parameters to be deter-

mined: the amplitude of the relaxation level oscillation r 0,

the Q-factor of the threshold level oscillation, and the

coupling coef®cient d.

² The amplitude of the relaxation level oscillation r0 should

be a little above the crisis point so that all the BNs in the

network can be in a fully chaotic state initially.

² In a preliminary numerical simulation, it turned out that

the network performance as an associative memory does

not depend sensitively on the choice of the Q-factor,
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Fig. 8. The time evolution of the Hop®eld network in one of the successful recall trials: (top) the transition pattern of the binary state variables si(t); (middle)

the trajectories of all state variables xi(t); and (bottom) the trend of the pseudo energy function H(t) during the recall process.



provided it is not too small. The behavior of the network

was not very different for the following two cases: Q� 2

and Q� 3.

² The coupling strength d can be determined only by trial

and error. If it is too small, the network can never settle to a

stable pattern. On the other hand, if it is too large, the

network tended to settle down too early to a spurious

pattern. A preliminary simulation showed that, when

I� 64 and K� 6, d� 0.012 was a reasonable choice.

A series of computer simulations was carried out to exam-

ine the dynamics of the BNN-1 with the following network

parameters: I� 64; r0� 0.367 and 0.368; Q� 2, 2.5, and 3;

d� 0.01, 0.012, and 0.014. The BNN-1 spends more time

before it recalls a stored pattern compared with the Hop®eld

network. In fact, this is more of an advantage than a disad-

vantage: the network performs a more thorough search for

stored patterns. This means that the BNN-1 would be less

susceptible to the spurious local minima problem. We used

the same associative memory test that was de®ned in the

previous section to assess the recall quality of the BNN-1.

We repeated the same test for many different values of the

parameters r0, Q and d, and the result is tabulated in Table 2.

For almost all the combinations of the parameters, the BNN-1

appears to outperform the Hop®eld network, whose test result

was shown in the previous section. In particular, when

r0� 0.368, Q� 2.0 and d� 0.012, the BNN-1 successfully

recalled a stored pattern without a single exception, i.e. it was

literally free from the interference of any spurious local

minima.

Fig. 9 shows the time evolution of the BNN-1 in one of

the successful recalls. The top plot shows the transition

pattern of the binary states of all the BNs in the network.

A negative state (s(t)�21) is represented in black, while a

positive state (s(t)� 1) is represented in white. It took the

network about 60 unit time before it could recall a stored

pattern. This plot can give the wrong impression that the

network is converging to a static pattern. Of course, this is

not true, and the network stays in a chaotic state throughout

the whole recall process. This fact is shown clearly in the

middle plot that shows the ®ring time series of all the BNs in

the network. For an initial transient period, the BNs ®re at

any point in the state space, i.e. both in the n-period and in

the p-period. Around t� 20, the BNs start to form two

groups, one with BNs ®ring in the n-period and the other

with BNs ®ring in the p-period. Such clusters, in fact,

exactly correspond to the two groups of BNs that we

pictured in Fig. 6. The stabilization of the two groups,
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Fig. 9. The time evolution of the BNN-1 in one of the successful recall trials: (top) the transition pattern of the binary state variables si(t); (middle) the

trajectories of all the ®ring time series ti(t); and (bottom) the trend of the pseudo energy function H(t).



therefore, indicates the completion of a recall process. Note,

however, that the network is still exhibiting chaos, though it

is not full-blown, even after the recall process is completed.

Comparing Figs. 8 and 9 makes it more clear what we meant

to say in Fig. 2: Fig. 8 depicts a convergence to the bottom

of a basin of attraction while Fig. 9 depicts a convergence to

a chaotic attractor that spans almost an entire basin of attrac-

tion.

The bottom plot in Fig. 9 shows the trend of the pseudo-

energy function of the BNN-1, which is de®ned by Eq. (17).

Note that the pseudo-energy function is not always decreas-

ing but is sometimes increasing, as if the BNN-1 is striving

to get out of a spurious minimum. This behavior is in sharp

contrast with that of the Hop®eld network shown in Fig. 8,

where the pseudo-energy function can only move down

destined by the gradient descent dynamics of the Hop®eld

network.

Another recall process of the BNN-1 is shown in Fig. 10.

In this case, the network failed to converge to any of the

stored patterns. For some length of the initial period, it

appears to stabilize, but can never settle down to a stable

pattern. This behavior is considered to be a very useful

feature of the BNN-1 since it can be interpreted as an `I

don't know' state. If the network had been following the

gradient descent dynamics like the Hop®eld network, it

would have converged to a static pattern anyway, regardless

of the validity of the convergent pattern. If a network can

say `I don't know', we can know that the initial pattern (the

initial state) does not resemble any of the training patterns or

the reversed patterns.

Before we conclude this section, it may be worth look-

ing at what is going on inside the network to convince

ourselves of its proper operation. Fig. 11 shows the time

evolution of the internal state of the ®rst six BNs in the

network during the recall process that was depicted in Fig.

10. The left and right plots show the state of the BNs in

the initial phase and in the ®nal phase of the recall

process, respectively. Notice the spontaneous develop-

ment of sinusoidal oscillation on the threshold level as

the recall process proceeds. Initially, the threshold level

is ¯at or random, so the BNs have a chance to switch

between the n-period and the p-period freely. As the sinu-

soidal oscillation develops, the BNs are forced to choose

one of the two periods, and in a phase-locked manner.

The phase-locking, after a recall process is complete,

binds all the BNs together to maintain the recalled

pattern. The whole process is autonomous, i.e. no external

control of the network parameters is necessary to guide its

stabilization.

7. Conclusion

We found out that the BN can exhibit bistability (in fact,

multi-stability), which is controlled by attactor-merging

crisis. Also, we found out the introduction of a sinusoidal

perturbation in the threshold level of the BN can break the

symmetry of the bistability. These ®ndings led us to the

design of the BNN-1, where each BN is operating in a

chaotic mode, but can still encode a binary value. We

assessed the capability of the BNN-1 as an associative

memory and found out that the network would almost

always converge to a stored pattern when the network para-

meters were properly selected. This result was in sharp

contrast to the case of the Hop®eld network, which suffered

from spurious local minimum problem.

Before we conclude this paper, we will summarize some

characteristics and attributes of the BNN-1 that distinguish

G. Lee, N.H. Farhat / Neural Networks 14 (2001) 115±131 127

Table 2

The recall performance of the current network. The numbers in the table represent the number of successful recalls of the patterns speci®ed in the column

headings

r 0 Q d P1/P1 P2/P2 P3/P3 P4/P4 P5/P5 P6/P6 Total

0.367 2.0 0.010 57/90 160/85 117/136 71/69 14/19 68/59 945

0.367 2.0 0.012 52/69 121/85 103/117 138/150 20/22 72/39 988

0.367 2.0 0.014 42/74 124/78 105/110 152/157 28/20 57/45 992

0.367 2.5 0.010 38/68 95/51 87/105 163/173 23/30 46/32 911

0.367 2.5 0.012 40/64 104/69 82/94 156/182 30/20 42/29 912

0.367 2.5 0.014 48/67 116/64 93/104 121/139 23/19 46/43 883

0.367 3.0 0.010 34/62 102/42 87/87 124/126 28/24 41/30 787

0.367 3.0 0.012 46/64 104/48 82/91 77/86 28/19 40/31 716

0.367 3.0 0.014 39/64 106/56 93/94 23/17 26/20 38/35 611

0.368 2.0 0.010 58/102 183/116 138/159 47/35 12/8 83/50 991

0.368 2.0 0.012 55/87 152/79 110/130 114/107 21/17 73/55 1000

0.368 2.0 0.014 46/78 143/82 108/127 134/142 22/17 53/46 998

0.368 2.5 0.010 38/64 108/66 96/109 172/181 19/19 51/35 958

0.368 2.5 0.012 34/68 109/59 91/101 163/190 28/19 45/34 941

0.368 2.5 0.014 53/74 124/69 98/107 114/135 24/26 49/40 913

0.368 3.0 0.010 36/69 93/46 92/94 142/162 30.13 42/34 853

0.368 3.0 0.012 44/62 104/54 86/96 87/116 27/19 43/33 771

0.368 3.0 0.014 40/71 98/61 92/93 20/22 23/17 41/35 613



it from other types of arti®cial neural networks.

² In the BNN-1, the average ®ring rate of every BN is

always 1, no matter how chaotic the ®ring may be.

This means that the BNs make use of the relative timing

of the output spikes in their interaction. If we had used

the average ®ring rate of the BN as its output, the network

would have been able to produce nothing. This is in sharp

contrast to the sigmoidal neural networks.

² The BNN-1 is always operating in a chaotic mode, and

therefore the inter-spike intervals of the individual BNs

can never be constant. Stofky & Kock (Softky & Koch,

1993) reported high variability of the inter-spike intervals

in their analysis of data from the cat and the primary

visual cortex (V1) and extrastriate cortex (MT) neurons.

Their ®nding was inconsistent with the neural networks

that are based on the leaky integrate-and-®re neuron

model (Knight, 1972), but are, apparently, in agreement

with our network.

² The chaotic activity in our network is self-organizing.

Given a random initial condition, it always starts with a

maximally chaotic, transient period. However, as its

recall proceeds, the chaotic activity decreases gradually.

After the recall process is complete, the collective activ-

ity of the network can be described as a regular series of

spike bursts. This characteristic strongly reminds us of

the experimental ®nding of Freeman (Freeman & Skarda,

1985; Freeman, 1986; Skarda & Freeman, 1987) which

was described earlier.

² The self-organizing chaotic activity will be of a practical

value when the BNN-1 is applied to solving an optimiza-

tion problem since no external control of the degree of

chaos is required. The chaotic activity decreases automa-

tically as it approaches a stable pattern. This is not at all

very common in other networks that are designed to solve

optimisation problems, and many of them require a form

of parameter scheduling, such as the temperature sche-

duling in the simulated annealing algorithm (Kirkpatrick,

Gelatt, & Vecchi, 1983; Geman & Geman, 1984). The

Boltzman machines (Hinton & Sejnowski, 1983; Ackley,

Hinton & Sejnowski, 1985), the Gaussian machine

(Akiyama, Yamashira, Kajiura, Anzai, & Aiso, 1991),

gain sharpening of the Hop®eld network (Hop®eld &

Tank, 1985), and mean ®eld approximation annealing

(Peterson & Anderson, 1987) are some examples that

require a kind of parameter scheduling.

² The BNN-1 is particularly suited for circuit implementa-

tion. The oscillatory dynamics of a BN can be realized by

a relaxation oscillator circuit using a simple element,

such as a programmable unijunction transistor (PUT).
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Fig. 10. The time evolution of the BNN-1 in one of the `unsuccessful' recall trials: (top) the transition pattern of the binary state variables si(t); (middle) the

trajectories of all the ®ring time series ti(t); and (bottom) the trend of the pseudo energy function H(t).
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Fig. 11. The time evolution of the ®rst six BNs in the network during the recall process shown in Fig. 9.

Fig. 12. The experimental setup to test one possible circuit model of the BN: a series combination of a harmonic oscillator and a relaxation oscillator. An

arbitrary waveform generator is providing a spike train input to the BN, and a time interval analyzer is measuring the ®ring time of the BN.



Also, the response of the threshold level of a BN to an

incoming spike train can be modeled by a simple RLC

circuit or an active ®lter circuit. In addition, summing of

the fanning-in spike trains does not require an analog

summing ampli®er. Instead, a simpler circuit, such as

an OR gate circuit, will be suf®cient since the spikes in

the trains are spread nearly uniformly in time. The circuit

implementation of the BNN-1 is one of our ongoing

projects. Fig. 12 shows a preliminary experiment to test

one possible circuit model of the BN: a series combina-

tion of a harmonic oscillator (a low-pass Sallen and Key

®lter (Chen, 1995) and a relaxation oscillator (a PUT

oscillator). An arbitrary waveform generator is providing

a spike train input to the BN, and a time interval analyzer

is measuring the ®ring time of the BN. The bifurcation

diagrams obtained from the experimental setup is shown

in Fig. 13 where the amplitude of the input spike train is

the bifurcation parameter. This experimental result

shows that the simple BN circuit is clearly capable of

reproducing the essential dynamical characteristics of

the BN, i.e. the bistability and the attractor-merging crisis

of the BN.
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