
Journal of VLSI Signal Processing 32, 67–82, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Agglomerative Learning Algorithms for General Fuzzy
Min-Max Neural Network

BOGDAN GABRYS
Applied Computational Intelligence Research Unit, Division of Computing and Information Systems,

University of Paisley, High Street, Paisley PA1 2BE, Scotland, UK

Received April 30, 2001; Revised September 19, 2001; Accepted November 19, 2001

Abstract. In this paper two agglomerative learning algorithms based on new similarity measures defined for
hyperbox fuzzy sets are proposed. They are presented in a context of clustering and classification problems tackled
using a general fuzzy min-max (GFMM) neural network. The proposed agglomerative schemes have shown robust
behaviour in presence of noise and outliers and insensitivity to the order of training patterns presentation. The
emphasis is also put on the complimentary features to the previously presented incremental learning scheme more
suitable for on-line adaptation and dealing with large training data sets. The performance and other properties of
the agglomerative schemes are illustrated using a number of artificial and real-world data sets.

Keywords: pattern classification, hierarchical clustering, agglomerative learning, neuro-fuzzy system, hyperbox
fuzzy sets

1. Introduction

One of the most significant features of adaptive
intelligent systems is their ability to learn. This learn-
ing is usually accomplished through an adaptive proce-
dure, known as learning rule or algorithm, which gives
a formula of updating the parameters of the system (i.e.
adapting weights in artificial neural networks) in such
a way as to improve some performance measure [1].

All learning algorithms to be found in the neural
network and machine learning literature can be clas-
sified as supervised, unsupervised or reinforcement
learning. The distinctive feature in this classification
is a type and presence of a target signal associated
with each input/training pattern received from the
environment.

There are many different learning rules falling
within each of these three categories. They in turn
can be further divided into incremental (also known
as sequential) or batch learning. In incremental learn-
ing the parameters are updated after every presenta-
tion of an input pattern. In the batch learning, on the

other hand, the parameter updating is performed only
after all training patterns have been taken into consid-
eration. Each of these two approaches has some ad-
vantages over the other. Incremental learning is often
preferred because: first, it requires less storage than
batch learning which can prove very useful when large
volumes of data are available; second, it can be used for
‘on-line’ learning in real-time adaptive systems; third,
because of its stochastic character it can potentially
escape from local minima and arrive at better-quality
solutions. On the other hand, solutions found using in-
cremental learning rules depend, to a greater or lesser
extent, on the order of presentation of the training pat-
terns, which in turn implies the sensitivity of such algo-
rithms to initialization and greater sensitivity to noise
and outliers. Stability and convergence of the incre-
mental learning rules cannot be always proven which
in extreme cases can mean divergence and a complete
breakdown in the algorithm.

There has been a great amount of interest in the
combination of the learning capability and computa-
tional efficiency of neural networks with the fuzzy sets



68 Gabrys

ability to cope with uncertain or ambiguous data [2–6].
An example of such a combination is a general fuzzy
min-max (GFMM) neural network for clustering and
classification [7–10].

The GFMM NN for clustering and classification
constitutes a pattern recognition approach that is based
on hyperbox fuzzy sets [4, 5, 7–10]. The incremen-
tal learning proposed in [10] combines the super-
vised (classification) and unsupervised (clustering)
learning within a single training algorithm. The train-
ing can be described as a dynamic hyperbox expan-
sion/contraction process where hyperbox fuzzy sets are
created and adjusted in the pattern space after every pre-
sentation of an individual training pattern. A general
strategy adopted is that of allowing to create relatively
large clusters of data in the early stages of learning and
reducing (if necessary) the maximum allowable size of
the clusters in subsequent learning runs in order to accu-
rately capture complex nonlinear boundaries between
different classes.

This strategy have been shown to work very well
in most of the cases. However, it has also been found
that the resulting input-output mapping depends on the
order of presentation of the training patterns and the
method is sensitive to noise and outliers.

Overlapping hyperboxes represent another unde-
sired effect resulting from the dynamic nature of
the incremental learning algorithm. Because hyperbox
overlap causes ambiguity and creates possibility of one
pattern fully belonging to two or more different classes,
the overlaps have to be resolved through a contraction
process. This effect occurs purely because hyperbox
expansion decisions have to be made on the basis of
a single (current) input pattern and quite often would
not have been taken in the first place, had the whole
training data been available at the same time.

In this paper two agglomerative learning algorithms
for the GFMM neural network are proposed.

The agglomerative algorithms are part of a larger
group of hierarchical clustering algorithms. Due to
their philosophy of producing hierarchies of nested
clusterings, they have been popular in a wide range
of disciplines from biology, medicine and archeology
to computer science and engineering [11–14]. From
our point of view, the main advantages of hierarchical
clustering procedures are their insensitivity to the order
of data presentation and initialization, their graphical
representation of clusterings in form of dendrograms
which can be easily interpreted even for high dimen-
sional data and their potential resistance to noise and

outliers that will be exploited and illustrated in the later
sections of this paper.

Taking into account the deficiencies observed in the
previously presented incremental learning algorithm
and the general strong qualities of hierarchical cluster-
ing procedures, the agglomerative learning algorithms
for GFMM have been developed. These algorithms can
be used as an alternative or compliment to the incre-
mental version for an off-line training performed on fi-
nite training data sets. The mechanisms for processing
labelled and unlabelled input data introduced for the
incremental version are transferred into the agglom-
erative schemes ensuring that the hybrid clustering/
classification character of GFMM is preserved.

In contrast to the incremental version, the data
clustering process using the agglomerative algorithms
can be described as a bottom-up approach where one
starts with very small clusters (i.e. individual data pat-
terns) and builds larger representations of groups of
original data by aggregating smaller clusters. In this
sense it can also be viewed as a neural network structure
optimization method where an aggregation of two clus-
ters means decreasing the number of neurons required
to encode the data.

Most agglomerative algorithms to be found in the
literature are based on point representatives of clusters
and similarity measures defined for points [11, 14].
Some other similarity measures have been used with
cluster representatives in a form of hyperspheres, hy-
perelipsoids or hyperplanes [12, 13]. In the agglomera-
tive procedures proposed here, the similarity measures
defined for hyperboxes used as cluster representatives
are utilised. The first of the agglomerative schemes
is based on the operations on a full similarity matrix
though using one of the proposed similarity measures
between hyperboxes generally results in asymmetric
similarity matrices. It is in contrast to symmetric ma-
trices normally encountered in other agglomerative
algorithms (with exception of [15]). The potential im-
plications and properties of the algorithm stemming
from this fact will be discussed in Section 3. The second
agglomerative scheme has been developed in response
to high computational complexity associated with oper-
ations on and updating of the full similarity matrix. As
it is well known from the literature [14], similarity (dis-
similarity) matrix based agglomerative algorithms are
of the O(n3) complexity which for large training data
sets implies long training times. The improved train-
ing time of the second algorithm has been achieved by
not using the full similarity matrix during the hyperbox



Agglomerative Learning Algorithms 69

aggregation. This improvement came at a cost of the
outcome of the second algorithm being dependant to
some extent on the order of training data presentation
though to a much lesser degree than the on-line version
proposed previously.

The remaining of this paper is organised as follows.
Section 2 provides a general description of GFMM neu-
ral network operation and definitions of hyperbox fuzzy
sets used as cluster prototypes. In Section 3 the sim-
ilarity measures for hyperbox fuzzy sets and the two
agglomerative learning algorithms for GFMM are pre-
sented. Section 4 illustrates the performance and prop-
erties of the agglomerative learning for some artificial
and real data sets used in pattern recognition problems.
Finally, conclusions are presented in the last section.

2. GFMM Description

GFMM neural network for clustering and classifica-
tion [10] is a generalisation of and extension to the
fuzzy min-max neural networks developed by Simpson
[4, 5]. The main changes in GFMM constitute the
combination of unsupervised and supervised learning,
associated with problems of data clustering and classi-
fication respectively, within a single learning algorithm
and extension of the input data from a single point in
n-dimensional pattern space to input patterns given as
lower and upper limits for each dimension—hyperbox
in n-dimensional pattern space.

The GFMM is represented by a three layer feedfor-
ward neural network shown in Fig. 1. It consists of
2n input layer nodes, m second layer nodes represent-
ing hyperbox fuzzy sets and p + 1 output layer nodes
representing classes.

Figure 1. GFMM neural network for clustering and classification.

The basic idea of fuzzy min-max neural networks is
to represent groups of input patterns using hyperbox
fuzzy sets. A hyperbox fuzzy set is a combination of
a hyperbox covering a part of n-dimensional pattern
space and associated with it membership function. A
hyperbox is completely defined by its min point and
its max point. A membership function acts as a dis-
tance measure with input patterns having a full mem-
bership if they are fully contained within a hyperbox
and the degree of membership decreasing with the in-
crease of distance from the hyperbox. Individual hy-
perboxes representing the same class are aggregated to
form a single fuzzy set class. Hyperboxes belonging to
the same class are allowed to overlap while hyperboxes
belonging to different classes are not allowed to over-
lap therefore avoiding the ambiguity of an input having
full membership in more than one class.

The following are the definitions of input data
format, hyperbox fuzzy sets, hyperbox membership
function and hyperbox aggregation formula that are
used within GFMM.

The input data used during the training stage of
GFMM is specified as a set of N ordered pairs

{Ah, dh} (1)

where Ah = [Al
h Au

h] is the h-th input pattern in a form
of lower, Al

h = (al
h1, al

h2, . . . , al
hn), and upper, Au

h =
(au

h1, au
h2, . . . , au

hn), limits vectors contained within the
n-dimensional unit cube I n; and dh ∈ {0, 1, 2, . . . , p}
is the index of one of the p + 1 classes, where dh = 0
means that the input vector is unlabelled.

The j-th hyperbox fuzzy set, B j is defined as
follows:

B j = {V j , W j , b j (Ah, V j , W j )} (2)

for all j = 1, 2, . . . , m, where V j = (v j1, v j2, . . . , v jn)
is the min point for the j-th hyperbox, W j =
(w j1, w j2, . . . , w jn) is the max point for the j-th
hyperbox, and the membership function for the j-th
hyperbox is:

b j (Ah, V j , W j ) = min
i=1..n

(
min

([
1 − f

(
au

hi − w j i , γi
)]

,

[
1 − f

(
v j i − al

hi , γi
)]))

(3)

where:

f (x, γ ) =




1 if xγ > 1

xγ if 0 ≤ xγ ≤ 1

0 if xγ < 0



70 Gabrys

is two parameter ramp threshold function; γ = [γ1,

γ2, . . . , γn] are sensitivity parameters governing how
fast the membership values decrease; and 0 ≤ b j

(Ah, V j , W j ) ≤ 1. For the simplicity we will refer
to b j (Ah, V j , W j ) as b j in the remaining of the paper.

Hyperbox fuzzy sets from the second layer are ag-
gregated using the aggregation formula (4) in order to
generate an output which represents the degree to which
the input pattern Ah fits within the class k. The transfer
function for each of the third layer nodes is defined as

ck = m
max
j=1

b j u jk (4)

for each of the p + 1 third layer nodes. Node c0 repre-
sents all unlabelled hyperboxes from the second layer.
Matrix U represents connections between the hyper-
box and class layers of the network and the values of
U are assigned as follows:

u jk =
{

1 if B j is a hyperbox for class ck

0 otherwise
(5)

2.1. Summary of the On-Line Learning Algorithm

Since the on-line learning algorithm will be used
together with the proposed agglomerative schemes, its
brief summary follows.

The on-line learning for the GFMM neural network
consists of creating and expanding/contracting hyper-
boxes in a pattern space. The learning process begins
by selecting an input pattern and finding the closest
hyperbox to that pattern that can expand (if necessary)
to include the pattern. If a hyperbox cannot be found
that meets the expansion criteria, a new hyperbox is
formed and added to the system. This growth process
allows existing clusters/classes to be refined over time,
and it allows new clusters/classes to be added without
retraining. One of the undesirable effects of hyperbox
expansion are overlapping hyperboxes. Because hyper-
box overlap causes ambiguity and creates possibility
of one pattern fully belonging to two or more differ-
ent clusters/classes, a contraction process is utilized to
eliminate any undesired hyperbox overlaps.

In summary, the on-line learning algorithm is a four-
step process consisting of Initialization, Expansion,
Overlap Test, and Contraction with the last three steps
repeated for each training input pattern. While the
rational and detailed discussion of each of the four
steps is included in [10], they are briefly described
below.

2.1.1. Initialization. When a new hyperbox needs
to be created its min, V j , and max, W j , points are
initialised in such a way that the hyperbox adjusting
process used in the expansion part of the learning algo-
rithm can be automatically used. The V j and W j are
set initially to:

V j = 1 and W j = 0 (6)

This initialisation means that when the j-th hyper-
box is adjusted for the first time using the input pattern
Ah = [Al

h Au
h] the min and max points of this hyperbox

would be

V j = Al
h and W j = Au

h (7)

identical to the input pattern.

2.1.2. Hyperbox Expansion. When the h-th input
pattern Ah is presented, the hyperbox B j with the high-
est degree of membership and allowing expansion (if
needed) is found. The expansion criterion, that has to
be met before the hyperbox B j can expand to include
the input Ah , consists of the following two parts:

(a) a test for the maximum allowable hyperbox size
(0 ≤ 	 ≤ 1):

(
max

(
w j i , au

hi

) − min
(
v j i , al

hi

)) ≤ 	

for all i = 1 . . . n (8)

and
(b) a test for the class compatibility

if dh = 0 then adjust B j

else

if class(B j ) =




0 ⇒ adjust B j

class(B j ) = dh

dh ⇒ adjust B j

else ⇒ take
another B j

(9)

with the adjust B j operation defined as:

vnew
ji = min

(
vold

ji , al
hi

)
for each i = 1, . . . , n

wnew
ji = max

(
wold

ji , au
hi

)
for each i = 1, . . . , n

If neither of the existing hyperboxes include or can
expand to include the input Ah , then a new hyper-
box Bk is created (see Initialization), adjusted and
labelled by setting class(Bk) = dh .



Agglomerative Learning Algorithms 71

2.1.3. Overlap Test. Assuming that hyperbox B j was
expanded in the previous step, test for overlapping with
Bk if

class (B j ) =




0 ⇒ test for overlaping with all
the other hyperboxes

else ⇒ test for overlaping only if
class (B j ) 
= class (Bk)

(10)

2.1.4. Contraction. If an undesired overlap between
two hyperboxes has been detected it is resolved by
adjusting the two overlapping hyperboxes only along
the dimension with the smallest overlap. Four possible
cases for overlapping and contraction procedures are
discussed in [10].

3. New Learning Algorithms

3.1. Similarity Measures

The membership function (3) has been designed to
account for maximum violation of hyperbox min and
max points by an input pattern Ah . It has been dic-
tated by the engineering application [9] where the worst
possible case needed to be considered when classify-
ing inputs in a form of lower and upper limits. While
(3) is interpreted as a degree of belonging of Ah in a
hyperbox fuzzy set B j it can be easily adapted as a mea-
sure of similarity between two hyperbox fuzzy sets Bh

and B j .
For the agglomerative learning algorithms described

next the following three similarity measures between
two hyperboxes derived from (3) are proposed:

1. The first similarity measure between hyperboxes Bh

and B j , s jh = s(B j , Bh) is taken directly from (3)
and takes the following form:

s(B j , Bh) = min
i=1..n

(min([1 − f (whi − w j i , γi )],

[1 − f (v j i − vhi , γi )])) (11)

The characteristic features of this similarity measure
are:

(a) s j j = 1
(b) 0 ≤ s jh ≤ 1 − s jh = 1 only if Bh is completely

contained within B j

(c) s jh 
= shj —a degree of similarity of Bh to B j is
not equal to a degree of similarity of B j to Bh

(with exception when Bh and B j are points).

The properties (c) and (a) lead to an asymmet-
rical similarity matrix used in the agglomerative
algorithms with ones on its diagonal.

2. The second similarity measure between hyperboxes
Bh and B j , s̃ jh = s̃(B j , Bh), has been designed
to find the smallest “gap” between hyperboxes and
takes the following form:

s̃(B j , Bh) = min
i=1..n

(min([1 − f (vhi − w j i , γi )],

[1 − f (v j i − whi , γi )])) (12)

The characteristic features of this similarity measure
are:

(a) s̃ j j = 1
(b) 0 ≤ s̃ jh ≤ 1 − s̃ jh = 1 if there is any overlap

between hyperboxes Bh and B j

(c) s̃ jh = s̃h j —a degree of similarity of Bh to B j is
equal to a degree of similarity of B j to Bh

The properties (c) and (a) lead to a symmetrical
similarity matrix with ones on its diagonal.

3. The third similarity measure between hyperboxes
Bh and B j , ŝ jh = ŝ(B j , Bh), takes into account the
maximum possible distance (on every dimension
basis) between hyperboxes and takes the following
form:

ŝ(B j , Bh) = min
i=1..n

(min([1 − f (whi − v j i , γi )],

[1 − f (w j i − vhi , γi )])) (13)

The characteristic features of this similarity measure
are:

(a) 0 ≤ ŝ j j ≤ 1 − ŝ j j = 1 only if hyperbox B j is a
point and decreases with increasing size of B j

(b) 0 ≤ ŝ jh ≤ min(ŝ j j , ŝhh) ≤ 1
(c) ŝ jh = ŝh j —a degree of similarity of Bh to B j is

equal to a degree of similarity of B j to Bh

The properties (c) and (a) lead to a symmetrical
similarity matrix with values less or equal to one on
its diagonal.

The illustration of respective similarity measures for
a case of two hyperboxes in a two dimensional space
is shown in Fig. 2.

Before progressing to the description of the agglom-
erative learning algorithms let us make few remarks
concerning the above definitions. Strictly speaking (11)
should not be referred to as a similarity measure since it



72 Gabrys

Figure 2. Graphical illustration of hyperbox similarity measures
given by (11)–(13) which are proportional to the distances shown in
a sense that the shorter the distance the higher the respective hyperbox
similarity value.

does not satisfy the symmetry condition (s jh 
= shj ) as
specified in the definition of similarity (dissimilarity)
measures [14] applicable for vectors. It is also quite
often the case that the term similarity measure is used
when referring to measures between two vectors while
the proximity measure term is used when referring to
“proximity” (similarity) of clusters or sets of vectors.
Although we are aware of these distinctions and the
above definitions will be applied to hyperboxes repre-
senting both clusters and individual data patterns, in the
remaining of the paper we will use the term similarity
measures when referring to (11)–(13).

The similarity measures introduced above will now
be used in the agglomerative process where in each step
of the procedure two most similar hyperboxes (accord-
ing to one of these measures) are aggregated to form a
new hyperbox fuzzy set.

3.2. Agglomerative Algorithm Based on Full
Similarity Matrix (AGGLO-SM)

The proposed training algorithm begins with initializa-
tion of the min points matrix V and the max points
matrix W to the values of the training set patterns
lower Al and upper Au limits respectively. Labels for
a set of hyperboxes generated (initialised) in this way
are assigned using the labels given in the training data
set class(Bk) = dk , for all k = 1, . . , N . If the GFMM
neural network was to be used at this stage the
resulting pattern recognition would be equivalent to the
nearest neighbour method with (3) acting as a distance
(similarity) measure for finding nearest neighbours.

In the next step a similarity matrix S is calculated
using one of the similarity measures defined above.

This similarity matrix is asymmetrical for similar-
ity measure (11) and symmetrical for similarity mea-
sures (12) and (13). This fact has implications on
how to decide whether a pair of hyperboxes are to be
aggregated.

For the symmetrical similarity matrix among all
possible pairs of hyperboxes (Bk, Bl) the pair (Bh, B j )
with maximum similarity value s jh is sought. This can
be expressed as:

s̃ jh = max(s̃kl) for all k = 1 . . . m − 1,

l = k + 1 . . . m (14)

or

ŝ jh = max(ŝkl) for all k = 1 . . . m − 1,

l = k + 1 . . . m (15)

for S derived from (12) and (13) respectively.
For the asymmetrical similarity matrix derived using

(11) the selection of a pair of hyperboxes (Bh, B j ) to
be aggregated is made by finding the maximum value
from (a) the minimum similarity values min(skl , slk); or
(b) the maximum similarity values max(skl , slk) among
all possible pairs of hyperboxes (Bk, Bl). This can be
expressed as:

s jh = max(min(skl , slk)) for all k = 1 . . . m − 1,

l = k + 1 . . . m (16)

or

s jh = max(max(skl , slk)) for all k = 1 . . . m − 1,

l = k + 1 . . . m (17)

Once the Bh and B j have been selected for aggrega-
tion before the aggregate Bh and B j operation is carried
out, check if the following tests are passed:

(a) the overlap test (see [10] for details of hyperbox
overlap test)
After temporarily aggregating hyperboxes Bh and
B j check if the newly formed hyperbox does not
overlap with any of the hyperboxes representing
different classes. If it does, take another pair of
hyperboxes for potential aggregation.
What is interesting about the similarity measure
(12) is the fact that it can be used for determining if
two hyperboxes overlap. As shown in the previous



Agglomerative Learning Algorithms 73

section s̃ jh = 1 if there is an overlap between hy-
perboxes Bh and B j . Since we do not need to find
out for which dimension the smallest overlap oc-
curs, as it was required in the incremental version of
the training algorithm, the similarity measure (12)
can therefore be conveniently used for the overlap
test purposes.

(b) a test for the maximum allowable hyperbox size
(0 ≤ 	 ≥ 1):

(max(w j i , whi ) − min(v j i , vhi )) ≤ 	

for all i = 1 . . . n (18)

(c) a test for the minimum similarity threshold (0 ≤
smin ≤ 1)

s jh ≥ smin (19)

(d) a test for the class compatibility

if class (Bh) = 0 then aggregate Bh and B j

else

if class (B j ) =




0 ⇒ aggregate Bh and B j

class (B j ) = class (Bh)

class (Bh) ⇒ aggregate Bh and B j

else ⇒ take another pair of
hyperboxes

(20)

If the above conditions are met the aggregation is
carried out in the following way:

(a) update B j so that a new B j will represent aggre-
gated hyperboxes Bh and B j

vnew
ji = min

(
vold

ji , vold
hi

)
for each i = 1, . . , n

(21)

wnew
ji = max

(
wold

ji , wold
hi

)
for each i = 1, . . , n

(22)

(b) remove Bh from a current set of hyperbox fuzzy
sets (in terms of neural network shown in Fig. 1
it would mean a removal of the h-th second layer
node).

(c) update the similarity matrix S by removing the
h-th row and column and updating entries in the j-
th row and column representing newly aggregated
hyperboxes using vnew

ji and wnew
ji .

The above described process is repeated until there
are no more hyperboxes that can be aggregated.

3.3. The Second Agglomerative
Algorithm (AGGLO-2)

High computational complexity of the above described
algorithm is mainly due to the need for calculating and
sorting the similarity matrix S containing the similar-
ity values for all possible pairs of hyperboxes. While
for a given training set and the parameters 	 and smin

this ensures that the outcome of the training is always
the same (does not depend on the order of input data
presentation) it can be prohibitively slow for very large
data sets.

The second agglomerative algorithm presented here
attempts to reduce the computational complexity by
not using the full similarity matrix during the process
of selection and aggregation of pairs of hyperboxes.

Similarly to the first training algorithm, the min
points matrix V and the max points matrix W are
initialized to the values of the training set patterns
lower Al and upper Au limits respectively. The hy-
perboxes are labelled using the training data set labels
class (Bk) = dk , for all k = 1, . . , N .

Rather than calculating the similarity values between
all possible pairs of hyperboxes, the algorithm is based
on cycling through the current set of hyperboxes se-
lecting them in turn for possible aggregation with the
remaining m − 1 hyperboxes.

In the first step the hyperbox fuzzy set B j is selected
as a first candidate for aggregation and similarity values
between B j and the remaining m − 1 hyperboxes are
calculated.

The similarity values are sorted in the descending
order and Bh with the highest similarity value s jh is
selected for potential aggregation which similarly to
(14)–(17) can be expressed as:

s̃ jh = max(s̃ jl) for all l = 1 . . . m, l 
= j (23)

for the similarity measure (12);

ŝ jh = max(ŝ jl) for all l = 1 . . . m, l 
= j (24)

for the similarity measure (13);

s jh = max(min(s jl , sl j )) for all l = 1 . . . m, l 
= j
(25)



74 Gabrys

or

s jh = max(max(s jl , sl j )) for all l = 1 . . . m, l 
= j
(26)

for the similarity measure (11).
Once the Bh and B j have been selected for aggrega-

tion the remaining steps (i.e. the four tests and aggre-
gation itself) are the same as in the algorithm based on
the full similarity matrix.

If Bh and B j fail on any of the four tests the hyper-
box with the second highest similarity value is used
for potential aggregation with B j and the process is re-
peated until there are no more hyperboxes which could
be aggregated with B j or if the aggregation takes place.

After the first aggregation has been performed there
will be only m − 2 hyperboxes for further processing.
Now the next hyperbox is selected for aggregation and
the similarity values with the remaining m − 2 hyper-
boxes are calculated and the above described process
repeated.

The training stops when after cycling through a
whole set of hyperboxes there has not been a single
aggregation performed.

The agglomeration of hyperboxes can be controlled
by specifying different values for the parameters 	 and
smin during the training process. For instance, in order to
encourage creation of clusters in the densest areas first
(i.e. aggregation of the most similar hyperboxes) smin

can be initially set to a relatively high value and reduced
in steps after all possible hyperboxes for a higher level
of smin have been aggregated. In this way we are able
to produce (simulate) a hierarchy of nested clusterings
using AGGLO-2 which is explicitly created when using
the agglomerative procedure based on the full similarity
matrix. A similar effect can be obtained when using the
parameter 	 by starting with relatively small values of
	 initially allowing to create small hyperbox fuzzy
sets, and increasing the value of 	 in subsequent steps
with inputs to the next level consisting of the hyperbox
fuzzy sets from the previous level.

3.4. Agglomerative Learning in Clustering
and Classification

As mentioned in the introduction and reflected in the
above agglomerative learning algorithms, the GFMM
neural network combines the supervised and unsuper-
vised approaches within a single training algorithm. It
can be used in a pure clustering (none of the training
data are labelled—dh = 0 for all training patterns),

pure classification (all training data are labelled) or
hybrid clustering-classification (the training data is a
mixture of labelled and unlabelled patterns) problems.

3.4.1. Clustering. In case of pure clustering a hier-
archy of nested clusterings can be obtained using the
agglomerative procedures starting with N clusters rep-
resenting training data patterns and potentially ending
with a single cluster after N agglomerations have been
performed. Similarly to other hierarchical clustering
procedures a specific clustering can be obtained by set-
ting the appropriate value for smin or using one of the
cluster validity criteria [14].

3.4.2. Classification. The GFMM neural network for
classification belongs to a class of classification meth-
ods (i.e. nearest neighbour, unpruned decision trees,
neural networks with a sufficient number of hidden
nodes etc.) which have the capacity to learn the train-
ing data set perfectly. However, since the real world
data to be classified are usually noisy or distorted in
some way the classifier with zero resubstitution error
rate would also model the noise and often produce class
boundaries which are unnecessarily complex. It would
also generally perform rather badly on unseen data.

The agglomerative learning procedures described in
this paper, if applied to the full training data set, would
result in creation of a neuro-fuzzy classifier which
would have the zero resubstitution error rate. There-
fore, in order to avoid overfitting and achieve good
generalisation performance a suitable hyperbox fuzzy
sets pruning procedure has to be used.

3.4.2.1. Hyperbox Fuzzy Sets Pruning Procedures.
The hyperbox fuzzy sets pruning procedures which we
have used with the agglomerative learning algorithms
are based on assessing the contribution of individual
hyperbox fuzzy sets to the performance of the GFMM
classifier carried out during a 2-fold cross-validation or
multiple 2-fold cross validation.

Two types of pruning approaches have been adopted
which can be summarised as follows:

(a) after splitting the data set into training and vali-
dation sets and completing the training, perform a
validation procedure by finding out how many of
the validation set data patterns have been correctly
classified and misclassified by each of the hyper-
box fuzzy sets. Retain in the final classifier model
only the hyperbox fuzzy sets which classify at



Agglomerative Learning Algorithms 75

least the same number of patterns correctly as
incorrectly.

(b) by performing a multiple cross-validation pro-
cedure estimate the minimum cardinality of a
hyperbox fuzzy set for which the hyperbox fuzzy
set should still be retained in the final GFMM
classifier model. Once the minimum cardinality is
estimated the training is performed for the whole
training set and hyperbox fuzzy sets represent-
ing a number of input patterns smaller than this
minimum cardinality are rejected.

4. Simulation Results

The simulation experiments covering pure clustering,
pure classification and hybrid clustering classification
problems, have been carried out for a number of artifi-
cially created and real data sets taken from the reposi-
tory of machine learning databases and some of them
are reported in the sections below. The emphasis is put
on illustration of strong and weak points of the ag-
glomerative learning procedures and the flexibility of
applying both on-line and agglomerative learning dur-
ing different stages of designing a GFMM classifier for
various data sets.

The following experiments have been divided into
two groups: the first concerning a clustering problem
and the second group considering various classification
problems. In the following sections the training times
for various data sets have been quoted but they should
be used as an indication of the relative performance
of the two agglomerative learning algorithms since
no attempts for optimizing the programs have been
made. All the simulations have been carried out in the
MATLAB environment on a computer with an Intel
Celeron 650 MHz processor and Microsoft Windows
2000 operating system.

4.1. Clustering

First a potential resistance of an agglomerative scheme
to noise and outliers will be illustrated using a pure
clustering problem. The two dimensional example used
here consisted of two relatively dense clusters each
consisting of 50 data patterns generated uniformly
between [0.2 0.3] for the first cluster and [0.5 0.6]
for the second cluster and additional 50 data patterns
uniformly distributed in the input space representing
noise. The hyperboxes have been initialised to the in-

dividual data points so the algorithm started with 150
hyperboxes. The data and clusters formed using (14)–
(17) are shown in Fig. 3. The fact that the clusters are
formed in the densest areas first with additional in-
formation about clusters cardinality has been used for
filtering out outliers and the noisy data. In the exam-
ple from Fig. 3 in order to remove noise, a very simple
approach based on removing hyperboxes with a num-
ber of elements below a certain fixed level has been
used. However, a number of different techniques falling
into a cluster validation domain discussed in [14] could
have been used instead but this is outside the scope of
this paper.

It has to be said that the main idea behind hierarchi-
cal clustering algorithms is to produce a hierarchy of
nested clusterings instead of a single clustering. This
type of algorithm has been especially used in social sci-
ences or biological taxonomy. One potential advantage
of the hyperbox representation is an easy access to the
limits (range of values) for each dimension for clusters
at given levels.

Such a full hierarchy of clusterings is shown in Fig. 4
on the right in a form of dendrogram. This dendrogram
has been obtained for the AGGLO-SM learning proce-
dure using Eq. (15). The single clustering which was
produced at the similarity level 0.9 represented by the
dashed line in Fig. 4 is shown in Fig. 3(b). Figure 4
(left) also shows the aggregation levels at each of 150
aggregation steps using the AGGLO-SM algorithm and
formulas (14) to (17). It illustrates an interesting phe-
nomenon called crossover which refers to the fact that
a new cluster can be formed at a higher similarity level
than any of its components. This effect can be also
observed on the dendrogram shown in Fig. 7. The op-
posite to the crossover is monotonicity which implies
that each cluster is formed at a lower similarity level
than any of its components. Only the agglomerative al-
gorithm based on the similarity measure (13) satisfies
the monotonicity criteria (Fig. 4—left, line a).

In order to determine the performance of the two ag-
glomerative procedures the execution times for creating
a full hierarchy of clusterings have been recorded which
were: 27 seconds for the AGGLO-SM and 7 seconds
for the AGGLO-2. The time for AGGLO-2 has been
obtained for the procedure with 100 similarity lev-
els (100 hierarchy levels) changing from 1 to 0 with
a step 0.01. In this way a pseudo dendrogram could
be created for AGGLO-2 representing a hierarchy
of nested clusterings while significantly reducing the
training time.



76 Gabrys

Figure 3. Illustration of a robust behaviour of an agglomerative algorithm for noisy data (a) using formula (14) and clustering obtained using
formulas (b) (15) (c) (17) and (d) (16).

Carrying out various experiments, it has been found
that agglomerative algorithms using formulas (14) and
(17) are similar to the conventional single link algo-
rithm and agglomerative algorithms using formulas
(15) and (16) are similar to the conventional complete
link algorithm.

4.2. Classification

Though agglomerative algorithms are usually applied
for generating hierarchies of nested clusterings, as
illustrated in the previous example, the following
examples concern the use of the two proposed agglom-
erative learning procedures for five non-trivial data sets
representing different classification problems.

The first two 2 dimensional, synthetic data sets
represent cases of nonlinear classification problems
with highly overlapping classes and a number of data
points which can be classified as outliers or noisy sam-
ples. Using two dimensional problems also offer a
chance of visually examining the effects of applying
different similarity measures. In addition these data sets
have been used in a number of studies with tests car-
ried out for a large number of different classifiers and
multiple classifier systems [16, 17].

The other three data sets have been obtained
from the repository of machine learning databases
(http://www.ics.uci.edu/∼mlearn/MLRepository.html)
and concern the problems of classifying iris plants
(IRIS data set), three types of wine (Wine data set) and
radar signals used to describe the state of ionosphere



Agglomerative Learning Algorithms 77

Figure 4. Left: Aggregation levels during the hyperbox aggregation process for clustering data using (a) (15), (b) (16), (c) (17) and (d) (14).
Right: Dendrogram for the same clustering data obtained for (15). The clusters at the similarity level 0.9 from the dendrogram (dashed line) are
shown graphically at Fig. 3(b). The similarity level of 0.9 is also highlighted by the dashed line in the left plot and applies to line a.

(Ionosphere data sets). The repository also contains
the details of these data sets with some statistics and
experimental results. The sizes and splits for training
and testing for all five data sets are shown in Table 1.
For the reference purposes some testing results for

Table 1. The sizes of data sets used in classification experiments.

No. of data points

Data set No. of inputs No. of classes Total Train Test

Normal mixtures 2 2 1250 250 1000

Cone-torus 2 3 800 400 400

IRIS 4 3 150 75 75

Wine 13 3 178 90 88

Ionosphere 34 2 351 200 151

Table 2. Testing error rates (%) for four well known classifiers and
five data sets.

Classifier

Quadratic Multilayer
discriminant Nearest perceptron with

Data set classifier Parzen neighbour backpropagation

Normal 10.2 10.9 15.0 9.2
mixtures

Cone-torus 16.75 12.25 15.25 13.75

IRIS 2.61 4.09 4.0 4.39

Wine 3.24 3.41 3.41 3.16

Ionosphere 1.99 3.97 7.28 2.65

four well known classifiers available in PRTOOLS
3.1 (ftp:// ftp.ph.tn.tudelft.nl/pub/bob/prtools) are also
shown in Table 2.

4.2.1. Classification of the Normal Mixtures Data.
The normal mixtures data has been introduced by
Ripley [17]. The training data consists of 2 classes with
125 points in each class. Each of the two classes has bi-
modal distribution and the classes were chosen in such
a way as to allow the best-possible error rate of about
8%. The training set and an independent testing set
of 1000 samples drawn from the same distribution are
available at http://www.stats.ox.ac.uk/∼ripley/PRNN/.

The agglomerative learning procedures had been
used during the 2-fold cross validation repeated 100
times and the cardinality of the hyperboxes to be re-
tained in the final model was estimated. The cardinality
for the normal mixtures data for all similarity measures
was found to be 4. The agglomerative procedures were
subsequently applied to the full training set and all the
hyperboxes with 4 or less input data inside were re-
moved. The resulting hyperboxes and misclassification
rates for the testing set are shown in Fig. 5. The classi-
fication performance is surprisingly good with 3 out of
4 procedures resulting in error rates very close to the
Bayes classifier optimal error rate of around 8%.

Another experiment carried out for this data set
involved the investigation of the difference in the
training times for the AGGLO-SM, the AGGLO-2 and
a combination of the on-line learning algorithm and the
AGGLO-SM. As it can be seen in Table 3 there is a large



78 Gabrys

Figure 5. The training data and hyperboxes created for the normal mixture data set using the AGGLO-SM and all similarity measures. The
performance for the testing set (Err) and the total number of hyperboxes retained after the pruning procedure (Hyp) are also shown.

difference in the training time between the AGGLO-
2 and the AGGLO-SM, though both may seem very
fast in comparison to the training times of some neural
networks with backpropagation learning algorithm. In
order to speed up the training times of the AGGLO-

Table 3. Training times and classification performance of the AGGLO-SM (using (17)), the AGGLO-2 (using (26)) and
combined on-line + AGGLO-SM learning algorithms for normal mixtures data.

Online + AGGLO-SM

	 = 0.01 	 = 0.02 	 = 0.05 	 = 0.1 	 = 0.2
Training algorithm AGGLO-2 AGGLO-SM (223) (175) (101) (51) (23)

Training time (s) 24 (s) 143 (s) 128 (s) 77 (s) 27 (s) 7.6 (s) 1.8 (s)
(18 + 110) (14 + 63) (8 + 19) (4 + 3.6) (0.2 + 1.6)

Testing set error rate (%) 7.9 7.8 7.8 8.0 8.4 10 14.3

The numbers in brackets under the value of parameter 	 represent the number of hyperboxes returned from the on-line stage
of learning and passed as inputs to the AGGLO-SM. The numbers in brackets in the training time row show the split training
times for the on-line and the AGGLO-SM learning algorithms respectively.

SM, the on-line learning can be used for an initial data
clustering in order to reduce the number of inputs to be
processed by the agglomerative procedure. By increas-
ing the value of the parameter 	 used within on-line
learning algorithm to control the maximum size of the



Agglomerative Learning Algorithms 79

hyperboxes which can be created, the training times can
be significantly reduced. However, the performance of
the GFMM classifier generated in this way suffered as
also shown in Table 3.

4.2.2. Classification of the Cone-Torus Data. The
cone-torus data set has been introduced by Kuncheva
[16] and used throughout the text of her book to il-
lustrate the performance of various classification tech-
niques. The cone-torus training data set consists of
three classes with 400 data points generated from three
differently shaped distributions: a cone, half a torus,
and a normal distribution. The prior probabilities for
the three classes are 0.25, 0.25 and 0.5. The training
data and a separate testing set consisting of further 400
samples drawn from the same distribution are available
at http://www.bangor.ac.uk/ ∼mas00a/.

As for the normal mixtures data set, the agglom-
erative learning procedures had been used during the
2-fold cross validation repeated 100 times and the car-
dinalities of the hyperboxes to be retained in the
final model were estimated. The results of the test-
ing for the AGGLO-2 learning algorithm are shown
in Table 4. The upper part of Table 4 contains the
results of the testing after the pruning procedure. As
mentioned earlier in the paper the basic idea be-
hind pruning is to remove hyperboxes representing
noisy data and improve the generalisation performance.
Once such “noisy” hyperboxes have been removed,
it is possible that some of the remaining hyperboxes
could be further aggregated. This is illustrated in the
bottom part of Table 4 where the GFMM classifier has
been retrained but only using the hyperboxes retained
after initial pruning. The created hyperboxes during

Table 4. Application of the AGGLO-2 learning algorithm to the cone-torus data set.

Similarity values formulas

Eq. (23) Eq. (26) Eq. (25) Eq. (24)

Pruning based on an estimation of the cardinality of the Hyperboxes
to be retained in the final model

Training time (s) 68.43 54.25 71.25 112.72

No of hyperboxes 30 33 30 31

Cardinality of retained >3 >3 >3 >1
hyperboxes

Training error (%) 11 11.25 8.5 9.5

Testing error (%) 12.25 11 12 12.75

Pruning (as above) + retraining using only the hyperboxes
retained after the pruning

No of hyperboxes 17 18 22 21

Training error (%) 10.75 11 8.5 8.25

Testing error (%) 10.5 11 11.5 13.25

the pruning and retraining procedure are shown in
Fig. 6.

As shown in Table 4, the retraining after pruning
resulted in a significant reduction of the number of
hyperboxes while not affecting significantly the clas-
sification performance. If anything a slight improve-
ment of the performance in three cases out of four was
observed.

We have yet again observed a much faster training
for the AGGLO-2 algorithm which was just over
68 seconds for the smallest “gap” similarity mea-
sure in comparison to the training time for the algo-
rithm based on full similarity matrix (AGGLO-SM)
which for the same similarity measure was in excess of
455 seconds.

4.2.3. The Other Classification Data Sets. In com-
parison to results for IRIS, Wine and Ionosphere data
sets obtained for incremental learning presented in
[10], the agglomerative algorithms resulted in a very
similar recognition performance (e.g. the recognition
rates for the classifiers based on (14) and (23) are
shown in Table 5) and generally fewer hyperboxes
were required to encode the data. It is due to the
earlier mentioned feature of creating clusters (hyper-
boxes) in the densest areas first and ability to discard
clusters representing small number of input data. The
results are also much more stable due to the remov-
ing of the dependency on the order of the training
data presentation and need for resolving of undesired
overlaps.

While for the two dimensional data sets it was very
easy to visualise the created clusters by plotting the
hyperboxes directly in the input pattern space, it is not



80 Gabrys

Table 5. Summary of classification results for IRIS, Wine and Ionosphere data sets for both the AGGLO-SM
(using (17)) and the AGGLO-2 (using (26)) learning algorithms.

Training Training No. of Classification error Classification error
Data set algorithm time (s) hyperboxes for the training set (%) for the testing set (%)

IRIS AGGLO-2 1.29 4 2.67 4

AGGLO-SM 6.02 3 2.67 4

Wine AGGLO-2 5.21 6 1.14 1.14

AGGLO-SM 27.8 4 1.14 2.67

Ionosphere AGGLO-2 53.63 118 0 3.31

AGGLO-SM 455.65 117 0 3.31

Figure 6. The result of the GFMM training using the AGGLO-2 and all similarity measures for the cone-torus data. The hyperboxes shown
have been created by using the pruning procedure and retraining (see Table 4).

possible for higher dimensional problems. Although,
hyperbox representations are much more transpar-
ent than some fully connected neural networks with
nonlinear transfer functions since the hyperbox min

and max points could be relatively easily interpreted
by experts, the visualization of clusterings of high
dimensional data in a form of dendrogram is a very
attractive feature of the agglomerative algorithms. An



Agglomerative Learning Algorithms 81

Figure 7. Dendrogram for IRIS data set obtained using the AGGLO-SM with formula (16).

example of a dendrogram for IRIS data set is shown in
Fig. 7.

5. Summary and Conclusions

Two agglomerative learning algorithms utilising
hyperbox fuzzy sets as cluster representatives have
been presented in this paper. New similarity measures
defined for hyperbox fuzzy sets have been introduced
and used in the agglomerative schemes preserving the
hybrid clustering/classification character of GFMM
NN. A robust behaviour in presence of noise and
outliers and insensitivity to training data presentation
have been identified as main and the most valuable
complimentary features to the previously proposed
incremental learning.

A definite drawback of the agglomerative method
based on the full similarity matrix is that for large data
sets it can be very slow due to the size of the similarity
matrix containing similarity values for all pairs of hy-
perboxes. This, however, can be overcome to a certain
extent by using the incremental learning in the initial
stages of GFMM training with a relatively small value
of parameter 	. The conducted experiments showed
that a significant training time reduction could be ob-
tained with increasing 	. However, the vulnerability
of including noise and outliers in the clusters formed
at this stage was also increased.

In response to the potentially long training times for
the agglomerative procedure based on the full similarity
matrix, a second agglomerative learning algorithm has
been developed which avoids calculating and sorting
of the full similarity matrix. As a result, the compu-
tational complexity of the second algorithm has been
substantially reduced leading to a significant reduction
of training times. At the same time, the testing has
shown no significant difference in the GFMM classifi-
cation performance using any of the two agglomerative
learning algorithms.

Acknowledgments

Research reported in this paper has been supported
by the Nuffield Foundation grant (NAL/00259/G).
The author would also like to acknowledge the help-
ful comments of the anonymous referees which con-
tributed to the improvement of the final version of this
paper.

References

1. M.H. Hassoun, Fundamentals of Artificial Neural Networks,
Cambridge, MA: The MIT Press, 1995.

2. S. Mitra and K. Pal, “Self-Organizing Neural Network As
a Fuzzy Classifier,” IEEE Trans. on Systems, Man and
Cybernetics, vol. 24, no. 3, 1994.



82 Gabrys

3. W. Pedrycz, “Fuzzy Neural Networks with Reference Neurons
as Pattern Classifiers,” IEEE Trans. on Neural Networks, vol. 3,
no. 5, 1992.

4. P.K. Simpson, “Fuzzy Min-Max Neural Networks—Part 1: Clas-
sification,” IEEE Trans. on Neural Networks, vol. 3, no. 5, 1992,
pp. 776–786.

5. P.K. Simpson, “Fuzzy Min-Max Neural Networks—Part 2:
Clustering,” IEEE Trans. on Fuzzy Systems, vol. 1, no. 1, 1993,
pp. 32–45.

6. R.R. Yager and L.A. Zadeh (Eds.), Fuzzy Sets, Neural Networks,
and Soft Computing, Van Nostrand Reinhold, 1994.

7. B. Gabrys, “Data Editing for Neuro Fuzzy Classifiers,” in
Proceedings of the SOCO’2001 Conference, Paisley, UK, 2001.

8. B. Gabrys, “Pattern Classification for Incomplete Data,” in
Proceedings of 4th International Conference on Knowledge-
Based Intelligent Engineering Systems & Allied Technologies
KES’2000, Brighton, vol. 1, 2000, pp. 454–457.

9. B. Gabrys and A. Bargiela, “Neural Networks Based Decision
Support in Presence of Uncertainties,” J. of Water Resources
Planning and Management, vol. 125, no. 5, 1999, pp. 272–280.

10. B. Gabrys and A. Bargiela, “General Fuzzy Min-Max Neural
Network for Clustering and Classification,” IEEE Trans. on
Neural Networks, vol. 11, no. 3, 2000, pp. 769–783.

11. J. Boberg and T. Salakoski, “General Formulation and Eval-
uation of Agglomerative Clustering Methods with Metric and
Non-metric Distances,” Pattern Recognition, vol. 26, no. 9, 1993,
pp. 1395–1406.

12. H. Frigui and R. Krishnapuram, “Clustering by Competitive
Agglomeration,” Pattern Recognition, vol. 30, no. 7, 1997,
pp. 1109–1119.

13. H. Frigui and R. Krishnapuram, “A Robust Competitive Clus-
tering Algorithm with Applications in Computer Vision,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 21,
no. 5, 1999, pp. 450–465.

14. S. Theodoridis and K. Koutroumbas, Pattern Recognition,
San Diego, CA: Academic Press, 1999.

15. K. Ozawa, “Classic: A Hierarchical Clustering Algorithm Based
on Asymetric Similarities,” Pattern Recognition, vol. 16, no. 2,
1983, pp. 201–211.

16. L.I. Kuncheva, Fuzzy Classifier Design, Heidelberg: Physica-
Verlag, 2000.

17. B.D. Ripley, Pattern Recognition and Neural Networks,
Cambridge University Press, 1996.

Bogdan Gabrys received an MSc degree in Electronics and
Telecommunication (Specialization: Computer Control Systems)
from the Silesian Technical University, Poland in 1994 and a PhD
in Computer Science from the Nottingham Trent University, UK in
1998.

Dr Gabrys now works as a Lecturer at the University of Paisley,
Division of Computing and Information Systems. His current re-
search interests include a wide range of machine learning and hybrid
intelligent techniques encompassing data and information fusion,
multiple classifier systems, processing and modelling of uncertainty
in pattern recognition, diagnostic analysis and decision support sys-
tems. He published around 20 research papers in the areas of math-
ematical modelling, simulation, artificial neural networks, compu-
tational intelligence, soft computing, pattern recognition, decision
support, and optimisation. Dr Gabrys has also reviewed for various
journals, co-edited special issues of journals, chaired sessions and
been on programme committees of a number of international con-
ferences with the Computational Intelligence and Soft Computing
theme.

Dr Gabrys is a corresponding person for a Key Node in the
European Network on Intelligent Technologies for Smart Adaptive
Systems (EUNITE) and committee member in the Research Theory
& Development Group on Integration of Methods. He is a member
of the Institute of Electrical and Electronics Engineers (IEEE) and
the Institute for Learning and Teaching (ILT) in Higher Education.
gabr-ci0@paisley.ac.uk


