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Abstract—This paper presents a new technique for generating non-self (abnormal) . An element of the space is consid-
a set ?)f fuzzy fU:eS t?fa(t can ﬁ?afaCt?fizeghe non-sfelf splacg (ab- ered abnormal if there exists an antibody that matches it.
normal) using only self (normal) samples. Because, fuzzy logic can ; ;
provide a better definition of the boundary between normal and CIeatrIy, rt]he ”f”?“a'%’ IS not al_cr:jspflcpncep()jt. A natfural
abnormal, it can increase the accuracy in solving the anomaly de- wayloc arff’lc erize the normal IS aefining .a egree ot nor-
tection problem. Experiments with synthetic and real data sets are malcy, that is, the set of normal elements is really a fuzzy
performed in order to show the applicability of the proposed ap- set.

proach and to compare with other works reported in the literature.  These issues were addressed with some succe5s in [7]. The
mentioned work proposed a technique inspired by the nega-
tive selection mechanism of the immune system that can de-
l. INTRODUGTION tect foreign patterqs in the abnormal (non-self) space. T_he
) ) ) . pattern detectors (in the non-self space) were evolved using
T HE detection of unusual behavior patterns is an importaftgenetic search, which could differentiate varying degrees of
_problem in computer security as most security breachggnormality in network traffic. The evolved detectors had a

exhibit anomalous system behavior. However, anomalous paijer-rectangular shape that could be interpreted as rules. The

terns can also be generated when normal behavior changesaner demonstrated the usefulness of such a technique to detect

The problem of anomaly detection is also studied in othgryide variety of intrusive activities on networked computers.
contexts. Different terminologies are used in dlﬁgrent appli- The work in [8] presented an improvement of the algorithm
cations, such as “novelty [1] or surpris€ [2] detection”, *faulhroposed in the previous worK|[7]. Specifically, it used a differ-
detection” [3], and “outlier detection”. Accordingly, many apent niching technique to generate the rule detectors. The initial
proaches have been proposed which include statistical [4], M&;orithm used a sequential niching technique, whereas the new
chine learning|[5], data mining [6] and immunological inspiredne ysed deterministic crowding, which proved to be more ef-
techniques [[7][8], [9]. ficient on generating good anomaly detectors.

Approaches inspired on artificial immune systems have beenrhe solution to the crisp distinction between self (normal)
applied successfully to perform anomaly detection on computgid non-self (abnormal) proposed by the mentioned papers is
network security/[9],[[10],[I1]. However, there are some prolisased on dividing the non-self space in different levels. This
lems that have prevented this approach from being applied gfowed to estimate the amount of deviation from the normal
tensively: for a given sample.

« Inorder to guarantee good levels of detection, a large num-This discrete division of the non-self space on levels of devi-
ber of detectors needs to be generated. For some problefiisn can be considered as a previous step to define a real fuzzy
the number of detectors could be unmanageable [12]. Thisaracterization of non-self. So, the idea presented in this pa-
problem is aggravated by the binary representation thatger is to extend the previous wofK [7]] [8] by using fuzzy logic.
being used, in general. Specifically, fuzzy rules will be used, instead of crisp rules, to

« The low level representation of the detectors prevents, ddver the non-self space (i.e. fuzzy detectors).
many cases, extraction of meaningful domain knowledge.

This makes it difficult to implement modules that explain, Il. PREVIOUS WORK
using high level terms, the reasons to report an anomaly. Forrest et al

« A sharp distinction between the normal an the abnorm :

This divides the space on two subse#df (normal) and

[13] developed a negative selection algorithm
€Z‘kISA) based on the principles of self/non-self discrimination in
the NIS. The negative-selection algorithm can be summarized
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more efficient approach will try to minimize the numbeis further divided in different levels of deviation. In Figyre 2,
of generated detectors while maximizing the covering dfiese levels of deviation are shown as concentric regions around
the non-self space. the self zones. The genetic algorithm is run as many times as

« Monitor Sfor changes by continually matching the detecadeviation levels are needed. The difference between each runis
tors in R againstS. If any detector ever matches, then aetermined by a variability parameter which specify the degree
change is known to have occurred, as the detectors are devariation from the normal set.
signed not to match any of the original stringsSn

There are different variations of the algorithm and it was able
to solve anomaly detection problems [9], [15], fault detection
problems|[16],/[1F], to detect novelties in time series [1],[18],
and even applied to function optimization [19].

In [[7], a new version of the negative algorithm was proposed.
The main differences with respect to the negative selection al-
gorithm of Forrest et al[ [13] are:

« The elements of self/non-self space are represented by

dimensional real vectors.

« The detectors correspond to hyper-rectangleR’thand
have a high level representation as rules.

« The detectors are evolved using a genetic algorithm that
maximizes the covering of the non-self space while mini-
mizing the matching of self points. A niching technique is . , i
used in order to evolve multiple detectors that cover coop-'" [B] an improvement of this algorithm was proposed.
eratively the non-self space. pecifically, it used a different niching technique to generate the

Figure[1 shows an example of the type of coverage generawl? detectors. The initial algorithm used a sequential niching

by this algorithm. The basic structure of these detector rules' hnique, whereas the new one used deterministic crowding,

as follows: which proved to be more efficient on generating good anomaly
RY:If Cond, thennon_self detector rules.

Fig. 2
TWO DIFFERENT SET OF DETECTOR RULES DEFINE TWO LEVELS OF
DEVIATION IN THE NON-SELF SPACE

Ill. PROPOSED APPROACH

R*:1f - Condy  thennon_self The proposed work is a continuation of our effort in improv-

where, ing anomaly detection strategy. Our idea is to extend the ap-
e Cond; =z € [lowi, highi] and ...andz, € proach proposed ifi [7];[8] to use fuzzy rules instead of crisp
[low? , hight ] rules. That is, given a set of self samples, generate fuzzy de-
e (x1,...,2,) is a feature vector tector rules in the non-self space that can determine if a new
« [low!, high]] specifies the lower and upper values for theample is normal or abnormal. As it will be shown after, the
featurez; in the condition part of the rul&’. use of fuzzy rules improves the accuracy of the method and

The condition part of each rule defines a hyper-rectangle in theoduces a measure of deviation from the normal that does not
feature space [0.0,1.0]" ). Then, a set of these rules triesneed of a discrete division of the non-self space.

to cover the non-self space with hyper-rectangles. For the case

n = 2, the condition part of a rule represents a rectangle. Figuse Anomaly detection with fuzzy rules

[@illustrates an example of this kind of cover for= 2. The self/non-self space corresponds (i), 1.0]"; there-

fore, an element: in this space is represented by a vector
| | (®1,...,2,) Where x € [0.0,1.0]. A fuzzy detection rule has
¢\ the following structure:

Sell. A

Ifz,€eTh N...2, €T, then non_self

\L -"j where
cl (z1,...x,): element of the self/non-self space being evaluated

[ r T;: fuzzy set
A fuzzy conjunction operator (in our casajn())
Fig. 1 The fuzzy setT; is defined by a combination of basic fuzzy
APPROXIMATION OF THE NON'SELF SPACE BY RECTANGULAR INTERvAL  S€tS (linguistic variables). Given a set of linguistic variables
RULES. S = {S1,...,Sn} and a subsef; C S associated to each
fuzzy setT;,
This work also proposed a mechanism that allows to esti- T = U Sj,

mate the level of deviation from the normal. The non-self space s;€T;



where( J corresponds to a fuzzy disjunction operator. We usg¢
the addition operator defined as follows:

pavn(@) = minfua () + up (@), 1).

The following is an example of a fuzzy detector rule in
self/non-self space with dimension= 3 and using linguistic
variablesS = {S, M, L}:

If 1 € SNz € (SUM) Axs € (MU L) then non_self

In our experiments, the basic fuzzy sets correspond to a fuz
division of the real intervg)0.0, 1.0] using triangular and trape-
zoidal fuzzy membership functions. Fig{ije 3 shows an examy
of such a division using five basic fuzzy sets representing t
linguistic variabled ow, Medium-LowMedium, Medium-High

othitialize population with random individuals;

for j = 1 tonumGenerations
for k=1 topopulation_siz&
Select two individuals with uniform probability
and without replacement;
Apply crossover to generate a child,;
Mutate the child;
if dist(child,parentlXx dist(child,parent2)
and fitness(childp fitness(parentl)
Substitute parentl with child;
7y elseifdist(child,parent1)> dist(child,parent2)
and fitness(childp fitness(parent2)
hle Substitute parent2 with child;
he endif
endfor

endfor

andHigh. o .
Extract the best individuals from the population;

4 Fig. 4
L
ga i I, LML T MEI  ET GENETIC ALGORITHM TO EVOLVE FUZZY RULE DETECTORS
%
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= - 1) Chromosome representatiorEach individual (chromo-
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Universe of Discourse |

some) in the genetic algorithm represents the condition part of
a rule, since the consequent part is the same for all the rules
(the sample belongs to non-self). As it was described before,
a condition is a conjunction of atomic conditions. Each atomic
condition,z; € T3, corresponds to a gene in the chromosome
that is represented by a sequersg, . .., s?,) of bits, where
m = |S] (the size of the set of linguistic variables) asg'd: 1
if and only if S; C T;. That is, the bitsj- is 'on’ if and only
if the corresponding basic fuzzy sgf is part of the composite

: : : fuzzy setT;. Figurel$ shows the structure of the chromosome
RF:If  Cond, thennon_self which isn x m bits long ¢ is the dimension of the space and

whereCond; corresponds to the condition part of the ritg,  m is the number of basic fuzzy sets).

the abnormality degree of a samplés defined by ‘ ‘ ‘
B 1 1Y

genen

Fig. 5
whereCond;(z) represents the fuzzy true value produced b¥rrycTure oF THE CHROMOSOME REPRESENTING THE CONDITION PART
the evaluation oCond; in . ppen selfl’) represents the de- o A RuLE. EACH GENE REPRESENTS AN ATOMIC CONDITION:; € T}
gree of membership of to the non-self set; thus, a value close axp each eit 5% 1S"ON' IF AND ONLY IF THE CORRESPONDING BASIC
to zero means that is normal and a value close to 1 indicates
that it is abnormal.

Fig. 3
PARTITION OF THE INTERVAL [0.0,1.0]IN BASIC FUZZY SETS

Given a set of rules:
RY:If Cond; thennon_self

T

s 5L

gene 1

Nnon_selfx) = nax {Cond;(x)},

FUzZzZY SETS]' IS PART OF THE COMPOSITE FUZZY SETJ‘.

B. Evolving fuzzy detector rules 2) Fitness Evaluation: The fitness of a rul&’ is calculated

In our previous work[[[7], we used a genetic algorithm (GAyaking into account the following two factors:
combined with a niching technique to evolve a set of detec-« The fuzzy true value produced when the condition part of
tor rules that cover cooperatively the non-self space. In the the rule,Cond;, is evaluated for each elemenfrom the
present work, we use the same algorithm, but using determin- self set: is a number of elements in the training$ghat
istic crowding [20] as niching technique since it was shown to  belongs to the subspace represented by the rule:
perform better than sequential niching [21], as it was demon-

strated in[[8]. > Condi(z)
The input to the GA is a set of n-dimensional feature vectors ) weSelf
Self = {z',...,2™}, which represents samples of normal be- sel fCovering(R) = Self]|

havior, the population size and the number of generations. The

algorithm is shown in Figure] 4. The fuzzy measure of the volume of the subspace repre-



sented by the rule: TABLE |
DATA SETS USED FOR EXPERIMENTATION

volume(R) = H measure(T;),
i=1

Data Set Training Testing
Normal | Abnormal
where measure(T;) corresponds to the area under the Mackey-Glass| 497 396 101
membership function of the fuzzy sét. Darpa 99 4000 5136 56
The fitness is defined as: KDD-Cup 99 | 76222 19056 396745

fitness(R) = C-(1—sel fCovering(R))+(1—C)-volume(R),
whereC, 0 < C < 1, is a coefficient that determines theA. Mackey-Glass Time series

amount of penalization that a rule suffers if it covers normal Wi d the Mackev-Gl tion t e ti :
samples. The closer the coefficient to 1 the higher the penaliza- € used Ine Vlackey-t1ass equation 1o generate time series

tion. In our experimentation, we used values between 0.8 a gfa. Itis a non-linear, delay-differential equation whose dy-

0.9 namics exhibit chaotic behavior for some parameter values. The
3) Individual's Distance Calculation: A good measure of equation Is:

distance between individuals is important for deterministic de _ _az(t— ) — ba(t)

crowding niching, since it allows the algorithm to replace in- d 1+z(t—7)

dividuals with closer individuals. This allows the algorithm to

preserve the and form niches 1) Experimental settings: The Mackey-Glass parameters

ellj_lsﬁed in the experimentation were= 0.2, b = 0.1, andc = 10.
a strong relation between each single bit in the chromoso Ais set of parameters are the general choice in the literature

with a single fuzzy set of some particular attribute of the sear J*.[’ [23]. The normal samples were produced from a time se-

space. For example, if tr‘# bit (see Figur+:|5), in both parent”es with 500 elements generated using- 30 and discarding

and child fuzzy rule detectors is set to one, both individuaige first 1000 samples to eliminate the initial value effect. The

include the atomic sentenae € s, i.e., they use thth fuzzy €atures are extracted using a sliding overlapping window of

set to cover some part of thth attribute. Then, the more bits > 26" = 4. Five fuzzy sets, as shown in figue 3, were defined
. ) far each feature extracted.
the parent and the child have in common, the more common .
: 2) Results and AnalysisThe proposed approach performs
area they will cover.
better than the other two tested methods, see F[dure 6. More-
IV. EXPERIMENTATION over, the PHC reach_es a better per_formance than the _ERI_D al-
gorithm. This behavior can be attributed to the fuzzyfication

In order to determine the performance of the proposed & e search space, because the fuzzy rule detectors provide a
proach (Evolving Fuzzy Rules Detector&FR), experiments patier characterization of the normal-abnormal boundaries.
were conducted with three different data sets as shown in ta-

ble[l. For determining the scalability of the proposed approach, :
each individual performs a random sampling of the training set.
The size of the sampling was fixed to 400 data elements. Also,
two different algorithms were tested in order to compare the
performance of the proposed approach: Evolving Rule Detec-
tors ERD), a non fuzzy method as explained in secfign Il, and ;
Parallel Hill Climbing of Fuzzy Rules DetectorRKIC), which
is an optimization algorithm based on random mutations of po- 5
tential solutions population. The algorithms were run 1000 iter-
ations with a population size of 200 individuals. The mutation o7 ‘ ‘
probability for the ERD algorithm was fixed to 0.1 and the ERD ’

was run four times, each time with a different level of deviation _

(0.1, 0.2, 0.3, and 0.4). The crisp detectors (hyper rectangles) Fig. 6

generated by eaCh run are Combined to deﬁne the ﬁna| set &OCCURVES GENERATED BY THE THREE ALGORITHMS TESTED WITH
detectors produced by the ERD. THE MACKEY GLASS DATA SET

There are two elements that define the cost function of an
anomaly detection system: the false alarm r&fg)( the system
produces an alarm in normal conditions, and the detection rateTable[T] compares the performance of the tested algorithms
(DR), the system detects an attack. A good intrusion detectiower the Mackey-Glass data set. When the FA rate is fixed to
system is one that has low FA and high DR. In order to compas®&o, the proposed approach is able to detect a higher percent-
the performance of the proposed approach we generated a REE of abnormal samples (row 1) than the other two approaches
curve [22] for each of the algorithm tested. Also the reportgdows 2 and 3). Also, the number of fuzzy rule detectors (rows
DR is the detection rate obtained for each algorithm when thheand 2) are considerably small compared with the number
FA was fixed to 3%. of crisp detectors (row 3). Therefore, the fuzzyfication of the



search space allows a simple characterization of the abnormalk traffic behavior, compose each record of the 10% data set
(non-self) space. (twenty-two of them numerical). Also, the number of records
in the 10% is huge (492021).

1) Experimental settings:We generated a reduced version
of the 10% data set including only the numerical attributes,
i.e., the categorical attributes were removed from the data set.
Therefore, the reduced 10% data set is composed by thirty-three

TABLE 1l
COMPARATIVE PERFORMANCE IN THEMACKEY-GLASS PROBLEM

Algorithm ‘ DR% ‘ # Detectors

EFR 95.05 14 attributes. The attributes were normalized between 0 and 1 us-
PHC 94.06 32 ing the maximum and minimum values found. An 80% of the
ERD 93.07 8 normal samples were picked randomly and used as training data

set, while the remaining 20% was used along with the abnormal

In addition, the EFR algorithm is able to generate a mo%\mples as a testing set. Five fuzzy sets were defined for the 33
compact representation of the abnormal space than the PHC3ibutes. For reducing the time complexity of the ERD al-
gorithm. Clearly, applying crossover along with a crowdinQO”thm' 1% (_)f_the normal data set (randomly generated), was
strategy generates better fuzzy rule detectors than those pfegd as a training data set.
duced by applying only mutation. Moreover, the EFR and PHC
algorithms were tested using 15 fuzzy sets instead of 5, in order
to determine their performance using a high fuzzy resolution (in 035 [
this case, the size of the chromosome is three times the size of '
the original chromosome). Figuré 7 compares the ROC curves .
for the EFR and PHC using 5 and 15 fuzzy sets per feature.

1

Fig. 8
ROC CURVES GENERATED BY THE THREE ALGORITHMS TESTED WITH
THE KDD-CuP 99 DATA SET

2) Results and AnalysisThe performance reached by the

Fig. 7 PHC and EFR algorithms are almost the same while are better
ROC CURVES GENERATED BYEFRAND PHCwWITH 5 AND 15Fuzzy seTs  than the performance reached by ERD, see Figure 8. Table Il
PER FEATURE compares the performance of the tested algorithms and some

results reported in the literature. The FA-DR reported in table
[MT}is the closest value to the optimal point (0,1). Amazingly, the
As expected, the performance of the proposed approawimber of detectors using fuzzyfication is very small compared
(EFR) using 15 fuzzy sets is better than the parallel hill climiie the number of detectors using the crisp characterization. It
ing (PHC) using 15 fuzzy sets too. When the fuzzy resolgan be due to the high dimensionality of the data set (33 at-
tion (number of fuzzy sets) is increased, the performance of thidutes).
PHC decreases drastically while the performance of the EFR
decreases smoothly. Then the performance of PHC is strongly
affected by the dimensionality of the search space (size of the
chromosome); this can be an evidence that mutation alone is not

TABLE 11l
COMPARATIVE PERFORMANCE IN THEKDD CuP 99 PROBLEM

enough to find good solutions in this high dimensional search | Algorithm | DR% | FA% | # Detectors
space. Also, the EFR performance remains comparable with EFR 98.22 | 19 14
the PHC performance using five fuzzy sets. PHC 99.17 | 3.9 32
ERD 96.02 | 1.9 699
B. KDD Cup 99 EFRID[25] 98.95 | 7.0
This data set is a version of the 1998 DARPA intrusion de- RIPPER-AA[26] | 94.26 | 2.02

tection evaluation data set prepared and managed by MIT Lin-

coln Labs|[[24]. Experiments were conducted on the ten percen}ACCOrding to tablET]l, the performance of EFR is comparable

that is available at the University of Irvine Machine Learning . . i
. . . ith the performance of approaches reported in the literature
reposnorﬂ Forty-two attributes, that usually characterize net-_ .
and in many cases performs better. For example, when EFR

Lhttp://kdd.ics.uci.edu/databases/kddcup99/kddcup99.htm. is compared with RIPPER-AA the detection rate is almost the



same (close to 2%) but EFR has a higher DR (4% more abnorcompares the performance of the tested algorithms over the
mal samples detected). Now, compared with the crisp approdaarpa 99 data set. The EFR and PHC algorithms ( both of
(ERD) the performance is also superior (2.2% more abnormbem based on fuzzy rules detectors), outperformed the ERD
samples detected). Clearly, the fuzzy characterization of thkorithm (based on a crisp characterization), see Table IV.
abnormal space reduces the number of false alarm while fil@ose methods increase the DR in at least 5%. The perfor-
detection rate is increased. mance reached by EFR and by PHC are almost the same, but
Besides the detection rate reached by the PHC algorithntli® number of fuzzy rules detectors generated by EFR is lower
higher than the reached by EFR, the false alarm rate is atban the generated by PHC. In this way the proposed approach
higher (3.9%) than in the EFR (1.9%). Also, the number @enerates a simpler characterization of the abnormal space than
fuzzy rules detectors generated by PHC is big (32) comparetiC does.
with the generated by EFR (12).

TABLE IV
COMPARATIVE PERFORMANCE IN THEDARPA 99 PROBLEM
C. Darpa 99
This data set, was also obtained from the MIT-Lincoln Lab Algorithm [ DR% | # Detectors
[24]. 1t represents both normal and abnormal information col- EFR 04.63 7
lected in a test network, where simulated attacks were per- PHC 94.63 9
formed. The data set is composed of network traffic data (tcp- ERD 89.37 35

dump, inside and outside network traffic), audit data (bsm), and
file systems data. We used the outside tcpdump network data
for a specific computer (e.g., hostname: marx), and then we ap-
plied the tooltcpstatto get traffic statistics. The first week’s
data was used for training (attack free), and the second week’s
data for testing (this includes some attacks). We only consid-This paper presented a new technique that allows to generate
ered the network attacks in our experiments. a set of fuzzy rules that characterize the non-self space (ab-
1) Experimental Settings:Three parameters were selectedormal) using as input only self (normal) samples. This work
(bytes per second, packets per second and ICMP packets g¢peended a previous work that used crisp rules as detectors. The
second), to detect some specific type of attacks. These paragperiments performed showed that the proposed approach per-
ters were sampled each minute (usiogsta) and normalized. forms better than the previous one and comparable with other
Because each parameter can be seen as a time series funaigslts reported in the literature. The following are the main
the features were extracted using a sliding overlapping wind@awlvantages of the new approach:
of sizen = 3. Therefore, two sets of 9-dimensional feature , |t provides a better definition of the boundary between nor-
vectors were generated: one as training data set and the other mal and abnormal. The previous approach used a discrete
as testing data set. Ten fuzzy sets were defined for each feature division of the non-self space, whereas the new approach
extracted. does not need such a a division since the fuzzy character
2) Results and AnalysisThe performance reached by the  of the rules provide a natural estimate of the amount of
PHC and EFR algorithms are almost the same while are better deviation from normal.
than the performance reached by ERD, see Figure 9. These rg- |t shows an improved accuracy on the anomaly detection
sults confirm the hypothesis that a good fuzzyfication of the  problem. This can be attributed to the fuzzy representation
search space allows fuzzy rule based algorithms to reach a of the rules which reduce the search space, allowing the
higher performance level than the algorithm based on a crisp  evolutionary algorithm to find better solutions.
characterization of the search space. « It generates a more compact representation of the non-self
space by reducing the number of detectors. This is also a
consequence of the expressiveness of the fuzzy rules.

oss F/ Our future work will explore the application of more advanced
B o | genetic algorithm representations such as structured/GA [27]

h and perform a more extensive testing with other real data sets.

V. CONCLUSIONS AND FUTURE WORK

1
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