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An Immuno-Fuzzy Approach to Anomaly
Detection

Jonatan Gómez Fabio González Dipankar Dasgupta

Abstract— This paper presents a new technique for generating
a set of fuzzy rules that can characterize the non-self space (ab-
normal) using only self (normal) samples. Because, fuzzy logic can
provide a better definition of the boundary between normal and
abnormal, it can increase the accuracy in solving the anomaly de-
tection problem. Experiments with synthetic and real data sets are
performed in order to show the applicability of the proposed ap-
proach and to compare with other works reported in the literature.

I. I NTRODUCTION

THE detection of unusual behavior patterns is an important
problem in computer security as most security breaches

exhibit anomalous system behavior. However, anomalous pat-
terns can also be generated when normal behavior changes.

The problem of anomaly detection is also studied in other
contexts. Different terminologies are used in different appli-
cations, such as “novelty [1] or surprise [2] detection”, “fault
detection” [3], and “outlier detection”. Accordingly, many ap-
proaches have been proposed which include statistical [4], ma-
chine learning [5], data mining [6] and immunological inspired
techniques [7], [8], [9].

Approaches inspired on artificial immune systems have been
applied successfully to perform anomaly detection on computer
network security [9], [10], [11]. However, there are some prob-
lems that have prevented this approach from being applied ex-
tensively:

• In order to guarantee good levels of detection, a large num-
ber of detectors needs to be generated. For some problems
the number of detectors could be unmanageable [12]. This
problem is aggravated by the binary representation that is
being used, in general.

• The low level representation of the detectors prevents, in
many cases, extraction of meaningful domain knowledge.
This makes it difficult to implement modules that explain,
using high level terms, the reasons to report an anomaly.

• A sharp distinction between the normal an the abnormal.
This divides the space on two subsetsself (normal) and
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non-self (abnormal) . An element of the space is consid-
ered abnormal if there exists an antibody that matches it.
Clearly, the normalcy is not a crisp concept. A natural
way to characterize the normal is defining a degree of nor-
malcy, that is, the set of normal elements is really a fuzzy
set.

These issues were addressed with some success in [7]. The
mentioned work proposed a technique inspired by the nega-
tive selection mechanism of the immune system that can de-
tect foreign patterns in the abnormal (non-self) space. The
pattern detectors (in the non-self space) were evolved using
a genetic search, which could differentiate varying degrees of
abnormality in network traffic. The evolved detectors had a
hyper-rectangular shape that could be interpreted as rules. The
paper demonstrated the usefulness of such a technique to detect
a wide variety of intrusive activities on networked computers.

The work in [8] presented an improvement of the algorithm
proposed in the previous work [7]. Specifically, it used a differ-
ent niching technique to generate the rule detectors. The initial
algorithm used a sequential niching technique, whereas the new
one used deterministic crowding, which proved to be more ef-
ficient on generating good anomaly detectors.

The solution to the crisp distinction between self (normal)
and non-self (abnormal) proposed by the mentioned papers is
based on dividing the non-self space in different levels. This
allowed to estimate the amount of deviation from the normal
for a given sample.

This discrete division of the non-self space on levels of devi-
ation can be considered as a previous step to define a real fuzzy
characterization of non-self. So, the idea presented in this pa-
per is to extend the previous work [7], [8] by using fuzzy logic.
Specifically, fuzzy rules will be used, instead of crisp rules, to
cover the non-self space (i.e. fuzzy detectors).

II. PREVIOUS WORK

Forrest et al. [13] developed a negative selection algorithm
(NSA) based on the principles of self/non-self discrimination in
the NIS. The negative-selection algorithm can be summarized
as follows ([14]):

• Define self as a collectionSof elements in a feature space
U, a collection that needs to be monitored. For instance,
if U corresponds to the space of states of a system repre-
sented by a list of features,S can represent the subset of
states that are considered as normal for the system.

• Generate a setRof detectors, each of which fails to match
any string inS. An approach that mimics what happens
in the NIS would generate random detectors and discard
those that match any element in the self set. However, a
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more efficient approach will try to minimize the number
of generated detectors while maximizing the covering of
the non-self space.

• Monitor S for changes by continually matching the detec-
tors in R againstS. If any detector ever matches, then a
change is known to have occurred, as the detectors are de-
signed not to match any of the original strings inS.

There are different variations of the algorithm and it was able
to solve anomaly detection problems [9], [15], fault detection
problems [16], [17], to detect novelties in time series [1], [18],
and even applied to function optimization [19].

In [7], a new version of the negative algorithm was proposed.
The main differences with respect to the negative selection al-
gorithm of Forrest et al. [13] are:

• The elements of self/non-self space are represented byn-
dimensional real vectors.

• The detectors correspond to hyper-rectangles inRn and
have a high level representation as rules.

• The detectors are evolved using a genetic algorithm that
maximizes the covering of the non-self space while mini-
mizing the matching of self points. A niching technique is
used in order to evolve multiple detectors that cover coop-
eratively the non-self space.

Figure 1 shows an example of the type of coverage generated
by this algorithm. The basic structure of these detector rules is
as follows:

R1: If Cond1 thennon_self
...

...
...

Rk: If Condk thennon_self

where,
• Condi =x1 ∈ [lowi

1, highi
1] and . . . and xn ∈

[lowi
n, highi

n]
• (x1, ..., xn) is a feature vector
• [lowj

i , highj
i ] specifies the lower and upper values for the

featurexi in the condition part of the ruleRj .
The condition part of each rule defines a hyper-rectangle in the
feature space ([0.0, 1.0]n ). Then, a set of these rules tries
to cover the non-self space with hyper-rectangles. For the case
n = 2, the condition part of a rule represents a rectangle. Figure
1 illustrates an example of this kind of cover forn = 2.

Fig. 1
APPROXIMATION OF THE NON-SELF SPACE BY RECTANGULAR INTERVAL

RULES.

This work also proposed a mechanism that allows to esti-
mate the level of deviation from the normal. The non-self space

is further divided in different levels of deviation. In Figure 2,
these levels of deviation are shown as concentric regions around
the self zones. The genetic algorithm is run as many times as
deviation levels are needed. The difference between each run is
determined by a variability parameter which specify the degree
of variation from the normal set.

Fig. 2
TWO DIFFERENT SET OF DETECTOR RULES DEFINE TWO LEVELS OF

DEVIATION IN THE NON-SELF SPACE.

In [8] an improvement of this algorithm was proposed.
Specifically, it used a different niching technique to generate the
rule detectors. The initial algorithm used a sequential niching
technique, whereas the new one used deterministic crowding,
which proved to be more efficient on generating good anomaly
detector rules.

III. PROPOSED APPROACH

The proposed work is a continuation of our effort in improv-
ing anomaly detection strategy. Our idea is to extend the ap-
proach proposed in [7], [8] to use fuzzy rules instead of crisp
rules. That is, given a set of self samples, generate fuzzy de-
tector rules in the non-self space that can determine if a new
sample is normal or abnormal. As it will be shown after, the
use of fuzzy rules improves the accuracy of the method and
produces a measure of deviation from the normal that does not
need of a discrete division of the non-self space.

A. Anomaly detection with fuzzy rules

The self/non-self space corresponds to[0.0, 1.0]n; there-
fore, an elementx in this space is represented by a vector
(x1, . . . , xn) where xi ∈ [0.0, 1.0]. A fuzzy detection rule has
the following structure:

If x1 ∈ T1 ∧ . . . xn ∈ Tn then non_self,

where
(x1, . . . xn): element of the self/non-self space being evaluated
Ti: fuzzy set
∧: fuzzy conjunction operator (in our case,min())
The fuzzy setTi is defined by a combination of basic fuzzy
sets (linguistic variables). Given a set of linguistic variables
S = {S1, . . . , Sm} and a subset̂Ti ⊆ S associated to each
fuzzy setTi,

Ti =
⋃

Sj∈T̂i

Sj ,
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where
⋃

corresponds to a fuzzy disjunction operator. We used
the addition operator defined as follows:

µA∪B(x) = min{µA(x) + µB(x), 1}.

The following is an example of a fuzzy detector rule in a
self/non-self space with dimensionn = 3 and using linguistic
variablesS = {S, M, L}:

If x1 ∈ S ∧ x2 ∈ (S ∪M) ∧ x3 ∈ (M ∪ L) then non_self

In our experiments, the basic fuzzy sets correspond to a fuzzy
division of the real interval[0.0, 1.0] using triangular and trape-
zoidal fuzzy membership functions. Figure 3 shows an example
of such a division using five basic fuzzy sets representing the
linguistic variablesLow, Medium-Low, Medium, Medium-High
andHigh.

Fig. 3
PARTITION OF THE INTERVAL [0.0,1.0] IN BASIC FUZZY SETS.

Given a set of rules:
R1: If Cond1 then non_self

...
...

...
Rk: If Condk then non_self

,

whereCondi corresponds to the condition part of the ruleRi,
the abnormality degree of a samplex is defined by

µnon_self(x) = max
i=1,...m

{Condi(x)} ,

whereCondi(x) represents the fuzzy true value produced by
the evaluation ofCondi in x. µnon_self(x) represents the de-
gree of membership ofx to the non-self set; thus, a value close
to zero means thatx is normal and a value close to 1 indicates
that it is abnormal.

B. Evolving fuzzy detector rules

In our previous work [7], we used a genetic algorithm (GA)
combined with a niching technique to evolve a set of detec-
tor rules that cover cooperatively the non-self space. In the
present work, we use the same algorithm, but using determin-
istic crowding [20] as niching technique since it was shown to
perform better than sequential niching [21], as it was demon-
strated in [8].

The input to the GA is a set of n-dimensional feature vectors
Self = {x1, ..., xm}, which represents samples of normal be-
havior, the population size and the number of generations. The
algorithm is shown in Figure 4.

Initialize population with random individuals;
for j = 1 tonumGenerations
for k = 1 topopulation_size/2
Select two individuals with uniform probability
and without replacement;
Apply crossover to generate a child;
Mutate the child;
if dist(child,parent1)< dist(child,parent2)
and fitness(child)> fitness(parent1)
Substitute parent1 with child;

elseifdist(child,parent1)≥ dist(child,parent2)
and fitness(child)> fitness(parent2)
Substitute parent2 with child;

endif
endfor

endfor
Extract the best individuals from the population;

Fig. 4
GENETIC ALGORITHM TO EVOLVE FUZZY RULE DETECTORS

1) Chromosome representation:Each individual (chromo-
some) in the genetic algorithm represents the condition part of
a rule, since the consequent part is the same for all the rules
(the sample belongs to non-self). As it was described before,
a condition is a conjunction of atomic conditions. Each atomic
condition,xi ∈ Ti, corresponds to a gene in the chromosome
that is represented by a sequence(si

1, . . . , s
i
m) of bits, where

m = |S| (the size of the set of linguistic variables) andsi
j = 1

if and only if Sj ⊆ Ti. That is, the bitsi
j is ’on’ if and only

if the corresponding basic fuzzy setSj is part of the composite
fuzzy setTj . Figure 5 shows the structure of the chromosome
which isn × m bits long (n is the dimension of the space and
m is the number of basic fuzzy sets).

s1
1, . . . , s

1
m . . . sn

1 , . . . , sn
m

gene 1 gene n

Fig. 5
STRUCTURE OF THE CHROMOSOME REPRESENTING THE CONDITION PART

OF A RULE. EACH GENE REPRESENTS AN ATOMIC CONDITIONxi ∈ Ti

AND EACH BIT si
j IS ’ ON’ IF AND ONLY IF THE CORRESPONDING BASIC

FUZZY SET Sj IS PART OF THE COMPOSITE FUZZY SETTj .

2) Fitness Evaluation:The fitness of a ruleRi is calculated
taking into account the following two factors:

• The fuzzy true value produced when the condition part of
the rule,Condi, is evaluated for each elementx from the
self set: is a number of elements in the training setS, that
belongs to the subspace represented by the rule:

selfCovering(R) =

∑
x∈Self

Condi(x)

|Self |

• The fuzzy measure of the volume of the subspace repre-
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sented by the rule:

volume(R) =
n∏

i=1

measure(Ti),

where measure(Ti) corresponds to the area under the
membership function of the fuzzy setTi.

The fitness is defined as:

fitness(R) = C·(1−selfCovering(R))+(1−C)·volume(R),

whereC, 0 ≤ C ≤ 1, is a coefficient that determines the
amount of penalization that a rule suffers if it covers normal
samples. The closer the coefficient to 1 the higher the penaliza-
tion. In our experimentation, we used values between 0.8 and
0.9.

3) Individual’s Distance Calculation: A good measure of
distance between individuals is important for deterministic
crowding niching, since it allows the algorithm to replace in-
dividuals with closer individuals. This allows the algorithm to
preserve the and form niches.

In this work we use the Hamming distance, because there is
a strong relation between each single bit in the chromosome
with a single fuzzy set of some particular attribute of the search
space. For example, if thesj

i bit (see Figure 5), in both parent
and child fuzzy rule detectors is set to one, both individuals
include the atomic sentencexi ∈ sj , i.e., they use thejth fuzzy
set to cover some part of theith attribute. Then, the more bits
the parent and the child have in common, the more common
area they will cover.

IV. EXPERIMENTATION

In order to determine the performance of the proposed ap-
proach (Evolving Fuzzy Rules Detectors -EFR), experiments
were conducted with three different data sets as shown in ta-
ble I. For determining the scalability of the proposed approach,
each individual performs a random sampling of the training set.
The size of the sampling was fixed to 400 data elements. Also,
two different algorithms were tested in order to compare the
performance of the proposed approach: Evolving Rule Detec-
tors (ERD), a non fuzzy method as explained in section II, and
Parallel Hill Climbing of Fuzzy Rules Detectors (PHC), which
is an optimization algorithm based on random mutations of po-
tential solutions population. The algorithms were run 1000 iter-
ations with a population size of 200 individuals. The mutation
probability for the ERD algorithm was fixed to 0.1 and the ERD
was run four times, each time with a different level of deviation
(0.1, 0.2, 0.3, and 0.4). The crisp detectors (hyper rectangles)
generated by each run are combined to define the final set of
detectors produced by the ERD.

There are two elements that define the cost function of an
anomaly detection system: the false alarm rate (FA), the system
produces an alarm in normal conditions, and the detection rate
(DR), the system detects an attack. A good intrusion detection
system is one that has low FA and high DR. In order to compare
the performance of the proposed approach we generated a ROC
curve [22] for each of the algorithm tested. Also the reported
DR is the detection rate obtained for each algorithm when the
FA was fixed to 3%.

TABLE I
DATA SETS USED FOR EXPERIMENTATION

Data Set Training Testing

Normal Abnormal

Mackey-Glass 497 396 101

Darpa 99 4000 5136 56

KDD-Cup 99 76222 19056 396745

A. Mackey-Glass Time series

We used the Mackey-Glass equation to generate time series
data. It is a non-linear, delay-differential equation whose dy-
namics exhibit chaotic behavior for some parameter values. The
equation is:

dx

dt
=

ax(t− τ)
1 + xc(t− τ)

− bx(t)

1) Experimental settings: The Mackey-Glass parameters
used in the experimentation werea = 0.2, b = 0.1, andc = 10.
This set of parameters are the general choice in the literature
[1], [23]. The normal samples were produced from a time se-
ries with 500 elements generated usingτ = 30 and discarding
the first 1000 samples to eliminate the initial value effect. The
features are extracted using a sliding overlapping window of
sizen = 4. Five fuzzy sets, as shown in figure 3, were defined
for each feature extracted.

2) Results and Analysis:The proposed approach performs
better than the other two tested methods, see Figure 6. More-
over, the PHC reaches a better performance than the ERD al-
gorithm. This behavior can be attributed to the fuzzyfication
of the search space, because the fuzzy rule detectors provide a
better characterization of the normal-abnormal boundaries.
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Fig. 6
ROC CURVES GENERATED BY THE THREE ALGORITHMS TESTED WITH

THE MACKEY GLASS DATA SET

Table II compares the performance of the tested algorithms
over the Mackey-Glass data set. When the FA rate is fixed to
3%, the proposed approach is able to detect a higher percent-
age of abnormal samples (row 1) than the other two approaches
(rows 2 and 3). Also, the number of fuzzy rule detectors (rows
1 and 2) are considerably small compared with the number
of crisp detectors (row 3). Therefore, the fuzzyfication of the
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search space allows a simple characterization of the abnormal
(non-self) space.

TABLE II
COMPARATIVE PERFORMANCE IN THEMACKEY-GLASS PROBLEM

Algorithm DR% # Detectors

EFR 95.05 14

PHC 94.06 32

ERD 93.07 78

In addition, the EFR algorithm is able to generate a more
compact representation of the abnormal space than the PHC al-
gorithm. Clearly, applying crossover along with a crowding
strategy generates better fuzzy rule detectors than those pro-
duced by applying only mutation. Moreover, the EFR and PHC
algorithms were tested using 15 fuzzy sets instead of 5, in order
to determine their performance using a high fuzzy resolution (in
this case, the size of the chromosome is three times the size of
the original chromosome). Figure 7 compares the ROC curves
for the EFR and PHC using 5 and 15 fuzzy sets per feature.
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Fig. 7
ROC CURVES GENERATED BYEFR AND PHC WITH 5 AND 15 FUZZY SETS

PER FEATURE

As expected, the performance of the proposed approach
(EFR) using 15 fuzzy sets is better than the parallel hill climb-
ing (PHC) using 15 fuzzy sets too. When the fuzzy resolu-
tion (number of fuzzy sets) is increased, the performance of the
PHC decreases drastically while the performance of the EFR
decreases smoothly. Then the performance of PHC is strongly
affected by the dimensionality of the search space (size of the
chromosome); this can be an evidence that mutation alone is not
enough to find good solutions in this high dimensional search
space. Also, the EFR performance remains comparable with
the PHC performance using five fuzzy sets.

B. KDD Cup 99

This data set is a version of the 1998 DARPA intrusion de-
tection evaluation data set prepared and managed by MIT Lin-
coln Labs [24]. Experiments were conducted on the ten percent
that is available at the University of Irvine Machine Learning
repository1. Forty-two attributes, that usually characterize net-

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

work traffic behavior, compose each record of the 10% data set
(twenty-two of them numerical). Also, the number of records
in the 10% is huge (492021).

1) Experimental settings:We generated a reduced version
of the 10% data set including only the numerical attributes,
i.e., the categorical attributes were removed from the data set.
Therefore, the reduced 10% data set is composed by thirty-three
attributes. The attributes were normalized between 0 and 1 us-
ing the maximum and minimum values found. An 80% of the
normal samples were picked randomly and used as training data
set, while the remaining 20% was used along with the abnormal
samples as a testing set. Five fuzzy sets were defined for the 33
attributes. For reducing the time complexity of the ERD al-
gorithm, 1% of the normal data set (randomly generated), was
used as a training data set.
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Fig. 8
ROC CURVES GENERATED BY THE THREE ALGORITHMS TESTED WITH

THE KDD-CUP 99 DATA SET

2) Results and Analysis:The performance reached by the
PHC and EFR algorithms are almost the same while are better
than the performance reached by ERD, see Figure 8. Table III
compares the performance of the tested algorithms and some
results reported in the literature. The FA-DR reported in table
III is the closest value to the optimal point (0,1). Amazingly, the
number of detectors using fuzzyfication is very small compared
to the number of detectors using the crisp characterization. It
can be due to the high dimensionality of the data set (33 at-
tributes).

TABLE III
COMPARATIVE PERFORMANCE IN THEKDD CUP 99 PROBLEM

Algorithm DR% FA% # Detectors

EFR 98.22 1.9 14

PHC 99.17 3.9 32

ERD 96.02 1.9 699

EFRID[25] 98.95 7.0 -

RIPPER-AA[26] 94.26 2.02 -

According to table III, the performance of EFR is comparable
with the performance of approaches reported in the literature
and in many cases performs better. For example, when EFR
is compared with RIPPER-AA the detection rate is almost the
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same (close to 2%) but EFR has a higher DR (4% more abnor-
mal samples detected). Now, compared with the crisp approach
(ERD) the performance is also superior (2.2% more abnormal
samples detected). Clearly, the fuzzy characterization of the
abnormal space reduces the number of false alarm while the
detection rate is increased.

Besides the detection rate reached by the PHC algorithm is
higher than the reached by EFR, the false alarm rate is also
higher (3.9%) than in the EFR (1.9%). Also, the number of
fuzzy rules detectors generated by PHC is big (32) compared
with the generated by EFR (12).

C. Darpa 99

This data set, was also obtained from the MIT-Lincoln Lab
[24]. It represents both normal and abnormal information col-
lected in a test network, where simulated attacks were per-
formed. The data set is composed of network traffic data (tcp-
dump, inside and outside network traffic), audit data (bsm), and
file systems data. We used the outside tcpdump network data
for a specific computer (e.g., hostname: marx), and then we ap-
plied the tooltcpstat to get traffic statistics. The first week’s
data was used for training (attack free), and the second week’s
data for testing (this includes some attacks). We only consid-
ered the network attacks in our experiments.

1) Experimental Settings:Three parameters were selected
(bytes per second, packets per second and ICMP packets per
second), to detect some specific type of attacks. These parame-
ters were sampled each minute (usingtcpstat) and normalized.
Because each parameter can be seen as a time series function,
the features were extracted using a sliding overlapping window
of sizen = 3. Therefore, two sets of 9-dimensional feature
vectors were generated: one as training data set and the other
as testing data set. Ten fuzzy sets were defined for each feature
extracted.

2) Results and Analysis:The performance reached by the
PHC and EFR algorithms are almost the same while are better
than the performance reached by ERD, see Figure 9. These re-
sults confirm the hypothesis that a good fuzzyfication of the
search space allows fuzzy rule based algorithms to reach a
higher performance level than the algorithm based on a crisp
characterization of the search space.
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Fig. 9
ROC CURVES GENERATED BY THE THREE ALGORITHMS TESTED WITH

THE DARPA 99 DATA SET

compares the performance of the tested algorithms over the
Darpa 99 data set. The EFR and PHC algorithms ( both of
them based on fuzzy rules detectors), outperformed the ERD
algorithm (based on a crisp characterization), see Table IV.
Those methods increase the DR in at least 5%. The perfor-
mance reached by EFR and by PHC are almost the same, but
the number of fuzzy rules detectors generated by EFR is lower
than the generated by PHC. In this way the proposed approach
generates a simpler characterization of the abnormal space than
PHC does.

TABLE IV
COMPARATIVE PERFORMANCE IN THEDARPA 99 PROBLEM

Algorithm DR% # Detectors

EFR 94.63 7

PHC 94.63 9

ERD 89.37 35

V. CONCLUSIONS AND FUTURE WORK

This paper presented a new technique that allows to generate
a set of fuzzy rules that characterize the non-self space (ab-
normal) using as input only self (normal) samples. This work
extended a previous work that used crisp rules as detectors. The
experiments performed showed that the proposed approach per-
forms better than the previous one and comparable with other
results reported in the literature. The following are the main
advantages of the new approach:

• It provides a better definition of the boundary between nor-
mal and abnormal. The previous approach used a discrete
division of the non-self space, whereas the new approach
does not need such a a division since the fuzzy character
of the rules provide a natural estimate of the amount of
deviation from normal.

• It shows an improved accuracy on the anomaly detection
problem. This can be attributed to the fuzzy representation
of the rules which reduce the search space, allowing the
evolutionary algorithm to find better solutions.

• It generates a more compact representation of the non-self
space by reducing the number of detectors. This is also a
consequence of the expressiveness of the fuzzy rules.

Our future work will explore the application of more advanced
genetic algorithm representations such as structured GA [27]
and perform a more extensive testing with other real data sets.
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