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ABSTRACT

We investigate the distribution of per-
formance of the Boolean functions of 3
Boolean inputs (particularly that of the
parity functions), the always-on-6 and
even-6 parity functions. We us enu-
meration, uniform Monte-Carlo ran-
dom sampling and sampling random
full trees. As expected XOR dramat-
ically changes the fitness distributions.
In all cases once some minimum size
threshold has been exceeded, the distri-
bution of performance is approximately
independent of program length. How-
ever the distribution of the performance
of full trees is different from that of
asymmetric trees and varies with tree
depth.

We consider but reject testing the No
Free Lunch (NFL) theorems on these
functions.

1 Introduction

Our investigations of the artificial ant following the Santa Fe
trail [Langdon and Poli, 1998] suggests that, provided pro-
grams are big enough, the distribution of program fitnesses is
roughly independent of their size. That is if we pick a pro-
gram of a certain length at random its as likely to perform as
well as another program of a different length also chosen at
random (provided both exceed some threshold size). If this is
generally true then as the size of the search space grows ap-
proximately exponentially as we allow longer programs then
so to does the number of programs with a certain level of per-
formance. Therefore while a search space with no size or
depth limits will be infinite it will contain an infinite number
of solutions!

We test this result from the Ant problem on a range of other
problems. In Section 2 we describe the Boolean problems.
Section 3 describes how we measure the performance spaces
of these problems and gives our results. The ramped-half-
and-half method [Koza, 1992, page 93] is commonly used to
generate the initial population in genetic programming (GP).
Half the random programs generated by it are full. Therefore
we also explicitly consider the subspace of full trees. This is
followed by a discussion of these results and their implica-
tions (Section 4) and our conclusions (Section 5). Finally in
Appendix A we consider using the Boolean functions to ex-
perimentally test the No Free Lunch theorems and give rea-
sons to reject this idea.

2 Boolean Functions

The Boolean functions have often been used as benchmark
problems. The program trees we will consider are composed
of n terminals (DO, D1, ... D,,_1) which are the Boolean in-
puts to the program and the Boolean logic functions AND,
OR, NAND and NOR [Koza, 1992]. These are sufficient to
construct any Boolean function but we shall also investigate
including the exclusive-or function (XOR) which is asymmet-
ric. Note [Koza, 1992] required all the functions to have the
same arity, this is not required in our approach. The fitness of
each tree is given by evaluating it as a logical expression for
each of the 2™ possible combinations of D,, inputs. Its fitness
is the number of fitness cases when its output agrees with that
of the target Boolean function.
1—1)!

There are n(+1)/2|p|(1=1)/2 x m different
trees of length I [Koza, 1992, page 213] [Alonso and Schott,
1995]. |F| is four (or five if XOR is included). (Note this
formula is simple as each function (internal node) has two
arguments). The number of programs rises rapidly (approx-
imately exponentially) with increasing program length I (see
Figures 1 and 2). Of course if no bounds are placed on the size
or depth of programs then the number of them is unbounded,
i.e. the search space is infinite.
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3.1 3 Input Boolean Program Spaces

Recall that the fitness of a program is determined by the close-
ness of the function the program actually implements and the
target function. E.g if the program implements function O (al-
ways return false) its fitness when searching for 3 input rule
150 (3-even parity) is 4, since it gets half of the 8 test cases
right. That is for each target function there is a fixed sim-
ple mapping between the function implement by a program
and the program’s fitness. So the functionality of a trial so-
lution readily gives its fitness on all the Boolean problems.
Therefore by considering the distribution of the functionality
of each point in the search space, we can consider simultane-
ously the fitness distribution of all of the Boolean functions.

In this section we consider all the Boolean functions for
n = 3. There are 256 of them but they can be split into 80
equivalence classes. Functions are equivalent if permuting
their inputs can produce the same functionality. By symme-
try members of the same equivalence class will occur in the
same numbers in the search space. Therefore we need only
consider one representative function from each class [Koza,
1992, page 215].

Figure 3 shows the number of examples of each function
found when 10 million trees of length 41 were created at ran-
dom. (The 80 equivalence classes are ordered along the x-
axis in order of decreasing frequency). As expected there
is good agreement with [Koza, 1992, Table 9.3]. Figure 4
shows similar plots for a wide range of lengths. (Data for
lengths 1, 3, 5, 7, 9, 11 and 13 were gathered by evaluating
every tree of that length, whereas data for larger trees was
gathered by randomly sampling 10 million programs for each
length. C++ code to generate random programs is available
viahttp://ww. cs. bham ac. uk/ “wbl ).

Figure 4 shows a certain minimum size is required before
the problem can be solved and that the minimum size depends
on the difficulty of the problem. Once this threshold size is ex-
ceeded the proportion of programs which belong to the equiv-
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alence class grows rapidly to a stable value which appears to
be more-or-less independent of program size. Figure 5 shows
these characteristics are retained if we extend the function set
to include XOR. (Adding XOR to the function set greatly ex-
tends the search space and so enumerating all trees of length
13 is no longer feasible, therefore data for length 13 was pro-
duced by random sampling). Note adding the asymmetric
XOR function radically changes the program space. In par-
ticular, as might be expected, the two parity functions (equiv-
alence classes 79 and 80) are much more prevalent. Also the
range of frequencies is much reduced. For example 68 of the
80 equivalence classes have frequencies between 0.1/256 and
10/256 rather than 28 with the standard function set.

While Figures 4 and 5 can be used to estimate the fitness
space of each three input Boolean function across the whole
space, there are some interesting parts of these spaces where
certain functions are more concentrated than elsewhere. Fig-
ure 6 plots the proportion of full trees of different depths
which implement the parity functions. It is clear there are
far more parity functions amongst the full trees than there are
on average. When XOR is added to the function set, see Fig-
ure 7, there are again a higher proportion of parity functions
but the difference between the full trees and the rest of the
search space is less dramatic.

3.2 6 Input Boolean Program Spaces

It is not possible to analyse all the Boolean functions with
more than three inputs. Instead we have concentrated on what
are generally considered to be the easiest and hardest Boolean
functions of six inputs. Namely the always-on-6 function and
the even-6 parity function. Figures 8 and 9 show the propor-
tion of programs of various lengths with each of the possible
scores. Figures 10 and 11 show the same when XOR is added
to the function set. It is clear all four problems have the same
near independence of fitness from length.

Figure 9 shows a huge peak with 90% of points in the
search space having a fitness on the even-6 parity problem
of exactly half marks, i.e. 32. The number of programs with
other scores falls exponentially away either side of the peak.

00014 U T T T T T T T
0.0012 - B
0.001 —
c
2 0.0008 [~ —
£
Q.
2 0.0006 | —
a
0.0004 - Even-3-parity, Full F— o
Odd-3-parity, Full ——
Even-3-parity, Uniform +o—
0.0002 - 0Odd-3-parity, Uniform —— |
O Il 1 1 1 1 1 1 1

31 63 127 255 511 1023 2047 4095

Size
Figure 7 Proportion of 3 input parity functions in full
treeswith XOR

Even sampling 10,000,000 points per length, only three pro-
grams (1 with 27 and two with 37) were found outside the
range 28 ... 36 hits. [Rosca, 1997, Figure 4.1] reports similar
behaviour on the even-5-parity problem. (Note that he used
ramped-half-and-half, only sampled 16,000 programs and did
not consider variation of the fitness distribution with length).
He reports that the fitness distribution for the even-5-parity
problem are even more tightly grouped in a range of 5 val-
ues. This could be due to the smaller study size but allowing
for this, the comparable range for even-6 parity still spans
7 values. Looking at the short programs in Figure 9 shows
they have an even tighter distribution of fitness. If this is also
true for the even-5 parity problem then the range reported in
[Rosca, 1997] will be due to the larger of the trees he sampled,
particularly the full trees. It seems reasonable to suggest that
the difference between a range of fitness values reported by
[Rosca, 1997] on the even-5 parity problem (5) and that we
find on the even-6 parity problem (7 or 9) is indeed due to
the peak in the fitness distribution being wider, rather than an
artifact of the bias inherent in ramped-half-and-half.

The fitness distribution of the even-6 parity problem is
much tighter than that of the binomial distribution that would
be produced by selecting Boolean functions uniformly at ran-
dom from the 22" available. I.e. centred on % with variance
of 2 [Rosca, 1997, page 62]. The measured variance is only
0.12 rather than 1.5. Such a tight fitness distribution and in
particular the absence of a high fitness tail suggests that the
problem will be hard for any adaptive algorithm.

As expected adding XOR to the function set greatly in-
creases the even-6 parity fitness distribution’s width and it re-
tains its near independence of program size (see Figure 11).
The standard deviation is now 0.92 rather than 0.34. How-
ever the more dramatic effect of the wider distribution is the
number of solutions (i.e. programs scoring 64 hits) is now
measurable and is about 2 10~7.

Figure 8 shows the distribution of number of trues returned
is a saw toothed curve. The proportion of programs which
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have one of the odd scores on the always-on-6 problem is
about 0.3%. The proportion which have an even score, not
divisible by four, is about 1%, scores divisible by 4 about 2%,
those by 8 3%, those by 16 6% and those by 32 10%. Note
the central peak in the even-6 parity fitness distribution (see
Figure 9) is not solely due to a large number of programs
which implement always-on-6 or always-off-6. Only 18.6%
of programs are of these two types.

Figure 10 shows the distribution of number of trues re-
turned when XOR is added to the function set is a little
changed (cf. Figure 8) but retains its saw toothed appearance
and near independence of program size.

3.3 Even-6 Parity and Always-On-6 Full Trees

Restricting our search to just the full trees yields a similar
fitness distribution for the even-6 parity problem, see Fig-
ure 13. However the distribution of fitness values is consid-
erably wider with a range of 25-38 (twice that for the whole
search space) and a standard deviation of 0.68. Adding XOR
to the function set (see Figure 15) further widens the distribu-
tion (the standard deviation becomes 1.8). Even when includ-
ing XOR, solutions are so rare that their proportion is difficult
to estimate accurately. Given this the proportion of solutions
in the full trees appears to be the same as in the rest of the
search space (with the same program length) despite an over-
all spreading of the fitness distribution. (The only even-6 par-
ity programs found by random search through full trees con-
tained either 15 or 31 nodes). Both with XOR and without the
distribution of hits on the even-6 parity problem returned by
full trees shows some dependence on depth of tree but this is
much less dramatic than is the case with the three input parity
functions, see Figures 6 and 7. However, as with asymmetric
trees, this appears to die away as the programs become bigger.
Searching just the full trees yields a similar fitness distri-
bution for the always-on-6 problem as for the whole search
space (compare Figures 8 and 12). However the peaks corre-
sponding to functions returning true multiples of 4, 8, 16 or
32 times are now far less prominent and instead always-on-
6 itself and its compliment, always-off-6, now dominate and
together represent 35% of all trees, compared to 18% when
consider asymmetric trees as well. Also the troughs at odd
numbers of hits are also less prominent, each representing
about 0.5% rather than about 0.3% of all programs. Adding
XOR to the function set (see Figure 14) has the effect of fur-
ther smoothing the distribution. The peaks at either extreme
are now 8% with a typical odd values near 32 being 1.4% and
even being 1.8%. Both with XOR and without the distribu-
tion of the number of trues returned by full trees shows some
dependence on depth of tree. However, as with even-6 parity,
this appears to fade away as the programs become bigger.

4 Discussion

If we compare Figures 4, 5, 8, 9, 10 and 11 with a similar
plot for the artificial ant problem on the Santa Fe trail [Lang-
don and Poli, 1998, Figure 2] we see in all cases a certain

minimum size is required before any solutions with a cer-
tain functionality exist, and that this threshold increases with
the difficulty of the functionality. Once this threshold size is
exceeded the proportion of programs grows rapidly to a sta-
ble value which appears to be more-or-less independent of
program size. Conversely the proportion of the search space
which implements easy functionality starts high and then falls
with increasing program length, again converging to a stable
value which is more-or-less independent of further increases
in program length. We have demonstrated this property on
the 256 3-input Boolean functions, 4 6-input Boolean func-
tions as well as the ant problem. We expect this property to
hold in many cases, however demonstrating it on 261 prob-
lems is not sufficient to prove it holds in general. But it does
add experimental weight to some of our claims about the na-
ture of program fitness landscapes and their influence on the
bloating phenomena [Langdon and Poli, 1997].

On average half the random trees sampled using the
ramped-half-and-half method [Koza, 1992, page 93] are full.
Therefore, particularly if the depth parameter is increased be-
yond the usual 6 (equivalent to maximum size of 63), the
chances of finding at random both the even-3 and the odd-
3 parity functions are considerably higher using it than using
uniform search. In contrast ramped-half-and-halfis less likely
to find solutions to the Santa Fe ant trail problem than uniform
search (see [Langdon and Poli, 1998, Table 3]). This suggests
that the best method to use to create the initial random popu-
lation is problem dependent.

In [Koza, 1992, Chapter 9] GP performance is shown not
to be the same as random search. Indeed in the case of all but
a few of the simplest problems which both GP and random
search easily solve, GP performance is shown to be superior
to random search. [Koza, 1992, Chapter 9] treats in detail all
the 256 Boolean functions with 3 bit inputs. (See also [Lang,
1995] and [Koza, 1995]). When [Koza, 1992, page 211] com-
pares the performance of GP with random search on these
problems it explicitly assumes that programs of one length
(41) are typical of the whole search space. In Section 3.1
we have verified this assumption. It should be noted that the
subspaces consisting of short trees or full trees are not typi-
cal of the whole space. In particular full trees are much more
likely to implement one of the parity functions than asymmet-
ric trees which form most of the search space.

5 Conclusions

In two very different classes of problems (the Ant and
Boolean problems) we have now shown that the fitness space
is in a gross manner independent of program length. In gen-
eral the number of programs of a given length grows approx-
imately exponentially with that length. Thus the number of
programs with a particular fitness score or level of perfor-
mance also grows exponentially, in particular the number of
solutions also grows exponentially.
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A NoFreeLunch Theorems (NFL)

Roughly speaking NFL says “the average performance of
[search] algorithms across all possible problems is identical”
[Wolpert and Macready, 1997, page 67]. There are only 256
(223) three input Boolean functions however it is not prac-
tical to use them to experimentally confirm any of the NFL
theorems. This is because the number of fitness functions
(i.e. problems) is too big.

In GP we consider only a small number of fitness functions,
typically only one. The three input boolean functions are
unusual in that 256 fitness functions have been investigated.
However this is still a miniscule proportion of all the possible
fitness functions and so NFL does not apply. Indeed the per-
formance of three search algorithms (GP [Koza, 1992], hill
climbing [Lang, 1995] and uniform random search) are not
identical when averaged across all 256 three input Boolean
functions.

Conventionally the fitness of a Boolean function of n inputs
is defined as the number of times its output matches that re-
quired when tested upon all possible combinations of inputs.
The total number of test patterns is 2”. Therefore the fitness
function yields a value in 0 ... 2™ and the total number of
possible fitness functions is (142")/2l where || is the size of
the search space. If we consider searching in the space of trees
then |z| is already very big and so considering all (1 + 27)//
fitness functions is infeasible. (A program to calculate |z]| is
available from ftp nodef t p. mad- sci enti st. comdirec-
tory pub/ geneti c- pr ogr amm ng/ code sub-directory
gp- code infile nt r ees. cc and via my home page).

If instead of considering searching the space of trees, we
consider search in the space of the 22" Boolean functions
themselves then there are only (1 + 2")22" possible fitness
functions. In the case of n = 3 this is 9256 = 1.93233 10244,
Clearly comparing the performance of two or more search al-
gorithms on this number of problems is still infeasible.

If we limit ourselves to n = 2, i.e. the 16 (222) Boolean

functions of 2 bits, there are only (1 + 22)2° = 516 =
1.525878 10! possible fitness functions. While it might be
feasible to evaluate the performance of various search algo-
rithms on them and so experimentally confirm NFL, such a
demonstration is unlikely to be persuasive due to the small
size of the search space. The small number of points in the
search space makes it likely that stochastic search techniques
such as GAs will resample one or more points. NFL explic-
itly requires the algorithms not to do so. Any measured differ-
ence in performance between algorithms is likely to be due to
this and stochastic noise inherent in randomised search tech-
niques.
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