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Abstract

Recently, it has been shown that one-dimensional quantum walks can mix more quickly than clas-
sical random walks, suggesting that quantum Monte Carlo algorithms can outperform their classical
counterparts. We study two quantum walks on then-dimensional hypercube, one in discrete time and
one in continuous time. In both cases we show that the quantumwalk mixes in(π/4)n steps, faster
than theΘ(n logn) steps required by the classical walk. In the continuous-time case, the probability
distribution isexactly uniform at this time. More importantly, these walks expose several subtleties in
the definition of mixing time for quantum walks. Even though the continuous-time walk has anO (n)
instantaneous mixing time at which it is precisely uniform,it never approaches the uniform distribution
when the stopping time is chosen randomly as in [AAKV01]. Ouranalysis treats interference between
terms of different phase more carefully than is necessary for the walk on the cycle; previous general
bounds predict an exponential, rather than linear, mixing time for the hypercube.

1 Introduction

Random walks form one of the cornerstones of theoretical computer science. As algorithmic tools, they have
been applied to a variety of central problems, such as estimation of the volume of a convex body [DFK91,
LK99], approximation of the permanent [JS89, JSV00], and discovery of satisfying assignments for Boolean
formulae [Sch99]. Furthermore, the basic technical phenomena appearing in the study of random walks (e.g.,
spectral decomposition, couplings, and Fourier analysis)also support several other important areas such as
pseudorandomness and derandomization (see, e.g., [AS92, (§9,§15)]).

The development of efficientquantum algorithms for problems believed to be intractable for (classical)
randomized computation, like integer factoring and discrete logarithm [Sho97], has prompted the investi-
gation ofquantum walks. This is a natural generalization of the traditional notiondiscussed above where,
roughly, the process evolves in a unitary rather than stochastic fashion.

The notion of “mixing time,” the first time when the distribution induced by a random walk is sufficiently
close to the stationary distribution, plays a central role in the theory of classical random walks. For a given
graph, then, it is natural to ask if a quantum walk can mix morequickly than its classical counterpart. (Since
a unitary process cannot be mixing, we define a stochastic process from a quantum one by performing
a measurement at a given time or a distribution of times.) Several recent articles [AAKV01, ABN+01,
NV00] have answered this question in the affirmative, showing, for example, that a quantum walk on the
n-cycle mixes in timeO (n logn), a substantial improvement over the classical random walk which requires
Θ(n2) steps to mix. Quantum walks were also defined in [Wat01], and used to show that undirected graph
connectivity is contained in a version of quantum LOGSPACE.These articles raise the exciting possibility
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that quantum Monte Carlo algorithms could form a new family of quantum algorithms that work more
quickly than their classical counterparts.

Two distinct notions of quantum walks exist in the literature. The first, introduced by [AAKV01,
ABN+01, NV00], studies the behavior of a “directed particle” on the graph; we refer to these asdiscrete-
time quantum walks. The second, introduced by [CFG01], defines the dynamics by treating the adjacency
matrix of the graph as a Hamiltonian; we refer to these ascontinuous-time quantum walks. The landscape
is further complicated by the existence of two distinct notions of mixing time. The first “instantaneous”
notion [ABN+01, NV00] focuses on particular times at which measurement induces a desired distribution;
the second “average” notion [AAKV01], another natural way to convert a quantum process into a stochastic
one, focuses on measurement times selected at random.

In this article, we analyze both the continuous-time and a discrete-time quantum walk on the hypercube.
In both cases, the walk is shown to have an instantaneous mixing time at(π/4)n. Recall that the classical
walk on the hypercube mixes in timeΘ(n logn), so that the quantum walk is faster by a logarithmic factor.
Moreover, in the discrete-time case the walk mixes in time less than the diameter of the graph, sinceπ/4< 1;
and, astonishingly, in the continuous-time case the probability distribution att = (π/4)n is exactly uniform.
Both of these things happen due to a marvelous conspiracy of destructive interference between terms of
different phase.

These walks showi.) a similarity between the two notions of quantum walks, andii.) a disparity
between the two notions of quantum mixing times. As mentioned above, both walks have an instantaneous
mixing time at time(π/4)n. On the other hand, we show that there isno time at which the continuous walk
approaches the uniform distribution in the sense of [AAKV01]. Thus there are some real subtleties involved
in defining mixing times for quantum walks.

The analysis of the hypercubic quantum walk exhibits a number of features markedly different from
those appearing in previously studied walks. In particular, the dimension of the relevant Hilbert space is, for
the hypercube, exponential in the length of the desired walk, while in the cycle these quantities are roughly
equal. This requires that interference be handled in a more delicate way than is required for the walk on
the cycle; in particular, the general bound of [AAKV01] predicts an exponentially large mixing time for the
discrete-time walk.

We begin by defining quantum walks and discussing various notions of mixing time. We then analyze
the two quantum walks on the hypercube in Sections 2 and 3. (Most of the technical details for the discrete-
time walk are relegated to an appendix.) Finally, in Section4, we discuss mixing times in the sense of
[AAKV01].

1.1 Quantum walks and mixing times

Any graphG = (V,E) gives rise to a familiar Markov chain by assigning probability 1/d to all edges leaving
each vertexv of degreed. Let Pt

u(v) be the probability of visiting a vertexv at stept of the random walk on
G starting atu. If G is undirected, connected, and not bipartite, then limt→∞ Pt

u exists1 and is independent of
u. A variety of well-developed techniques exist for establishing bounds on the rate at whichPt

u achieves this
limit (e.g., [Vaz92]); ifG happens to be the Cayley graph of a group (as are, for example,the cycle and the
hypercube), then techniques from Fourier analysis can be applied (see [Dia88]). Below we will use some
aspects of this approach, especially the Diaconis-Shahshahani bound on the total variation distance [DS81].

For simplicity, we restrict our discussion to quantum walkson Cayley graphs; more general treatments
of quantum walks appear in [AAKV01, CFG01]. Before describing the quantum walk models we set down
some notation.

1In fact, this limit exists under more general circumstances; see e.g. [MR95].
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Notation. For a groupG and a set of generatorsΓ such thatΓ = Γ−1, we letX(G,Γ) denote the undirected
Cayley graph ofG with respect toΓ. For a finite setS, we letL(S) = { f : S → C} denote the collection of
C-valued functions onS. This is a Hilbert space under the natural inner product〈 f |g〉= ∑s∈S f (s)g(s)∗. For
a Hilbert spaceV , an operatorU : V →V is unitary if for all ~v,~w ∈V , 〈~v|~w〉 = 〈U~v|U~w〉; if U is represented
as a matrix, this is equivalent to the condition thatU† = U−1 where † denotes the Hermitian conjugate.

There are two natural quantum walks that one can define for such graphs, which we now describe.

The discrete-time walk. This model, introduced by [AAKV01, ABN+01, NV00], augments the space
L(G) with adirection space, each basis vector of which corresponds one of the generators inΓ. A step
of the walk then consists of the composition of two unitary transformations; ashift operator which
leaves the direction unchanged while moving the particle inthe appropriate direction, and alocal
transformation which operates on the direction while leaving the position unchanged. To be precise,
the quantum walk onX(G,Γ) is defined on the spaceL(G ×Γ) ∼= L(G)⊗ L(Γ). Let {δγ | γ ∈ Γ}
be the natural basis forL(Γ), and{δg|g ∈ G} the natural basis forL(G). Then the shift operator is
S : (δg⊗δγ) 7→ (δgγ ⊗δγ), and the local transformation išD = 1⊗D whereD is defined onL(Γ) alone
and1 is the identity onL(G). Then one “step” of the walk corresponds to the operatorU = ĎV . If
we measure the position of the particle, but not its direction, at timet, we observe a vertexv with
probabilityPt(v) = ∑γ∈Γ

∣∣〈U tψ0 | δv ⊗δγ
〉∣∣2 whereψ0 ∈ L(G×Γ) is the initial state.

The continuous-time walk. This model, introduced by [CFG01], works directly withL(G), the Hilbert
space ofC-valued functions onG: L(G) = { f : G → C}. The walk evolves by treating the adjacency
matrix of the graph as a Hamiltonian and using the Schrödinger equation. Specifically, ifH is the
adjacency matrix ofX(G,Γ), the evolution of the system at timet is given byUt , whereUt

eq
= eiHt (here

we use the matrix exponential, andUt is unitary sinceH is real and symmetric). Then if we measure
the position of the particle at timet, we observe a vertexv with probabilityPt(v) = |〈Utψ0|ev〉|2 where
ψ0 is the initial state.

In both cases we start with an initial wave function concentrated at a single vertexu. For the continuous-
time walk, this corresponds to a wave function

ψu(v) = 〈ψu|δv〉 =

{
1 if u = v,

0 otherwise.

For the discrete-time walk, we start with a uniform superposition over all possible directions,

ψu(v,γ) =
〈
ψu|ev ⊗ eγ

〉
=

{
1/
√

|Γ| if u = v,

0 otherwise.

In order to define a discrete quantum walk, one must select a local operatorD on the direction space.
In principle, this introduces some arbitrariness into the definition. However, if we wishD to respect the
permutation symmetry of then-cube, and if we wish to maximize the operator distance betweenD and the
identity, we show in Appendix A that we are forced to choose Grover’s diffusion operator [Gro96], which
we recall below. We call the resulting walk the “symmetric discrete-time quantum walk” on then-cube.
(Watrous [Wat01] also used Grover’s operator to define quantum walks on undirected graphs.)

(Since for largen Grover’s operator is close to the identity matrix, one mightimagine that it would take
Ω(n1/2) steps to even change direction, giving the quantum walk a mixing time of≈ n3/2, slower than the
classical random walk. However, like many intuitions aboutquantum mechanics, this is simply wrong.)

Since the evolution of the quantum walk is governed by a unitary operator rather than a stochastic one,
unlessPt is constant for allt, there can be no “stationary distribution” limt→∞ Pt . In particular, for anyε > 0,
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there are infinitely many (positive, integer) timest for which‖U t −1‖ ≤ ε so that‖U tψu −ψu‖ ≤ ε andPt is
close to the initial distribution. However, there may be particular stopping timest which induce distributions
close to, say, the uniform distribution, and we call theseinstantaneous mixing times:

Definition 1 We say that t is an ε-instantaneous mixing timefor a quantum walk if ‖Pt −U‖ ≤ ε, where

‖A−B‖=
1
2 ∑

v
|A(v)−B(v)|

denotes total variation distance and U denotes the uniform distribution.

For these walks we show:

Theorem 1 For the symmetric discrete-time quantum walk on the n-cube, t = ⌈k(π/4)n⌉ is an ε-instantaneous
mixing time with ε = O (n−7/6) for all odd k.

and, even more surprisingly,

Theorem 2 For the continuous-time quantum walk on the n-hypercube, t = k(π/4)n is a 0-instantaneous
mixing time for all odd k.

Thus in both cases the mixing time isΘ(n), as opposed toΘ(n logn) as it is in the classical case.
Aharonov et al. [AAKV01] define another natural notion of mixing time for quantum walks, in which

the stopping timet is selected uniformly from the set{0, . . . ,T − 1}. They show that the distributions
P̄T = 1

T ∑T−1
t=0 Pt do converge asT → ∞ and study the rate at which this occurs. For a continuous random

walk, we analogously define the distribution̄PT (v) = (1/T )
∫

0,T Pt(v)dt. Then we call a time at which the
resulting distributionP̄T is close to uniform anaverage mixing time:

Definition 2 We say that T is an ε-average mixing timefor a quantum walk if ‖P̄T −U‖ ≤ ε.

The exact relationship between instantaneous and average mixing times is unclear. In fact, while the
continuous walk on the hypercube possesses 0-instantaneous mixing times at all odd multiples of(π/4)n,
the limiting distribution ofP̄T is not the uniform distribution, and we will show that anε > 0 exists such that
no time is anε-average mixing time. For the discrete-time walk, the limiting distributionis uniform and we
show that the general bound given in [AAKV01] predicts an exponential, rather than linear, average mixing
time for the hypercube.

2 The symmetric discrete-time walk

In this section we prove Theorem 1. We treat then-cube as the Cayley graph ofZ
n
2 with the regular basis

vectors~ei = (0, . . . ,1, . . . ,0) with the 1 appearing in theith place. Then the discrete-time walk takes place
in the Hilbert spaceL(Zn

2× [n]) where[n] = {1, . . . ,n}. Here the first component represents the position of
the particle in the hypercube, and the second component represents the “direction” currently associated with
the particle.

As in [AAKV01, NV00], we will not impose a group structure on the direction space, and will Fourier
transform only over the position space. For this reason, we will express an elementψ in L(Zn

2)⊗L([n]) as a
functionΨ : Z

n
2 → C

n, where theith coordinate ofΨ(~x) is the projection ofψ into δ~x ⊗δi, i.e. the complex
amplitude of the particle being at position~x with directioni. The Fourier transform of such an elementΨ is
Ψ̃ : Z

n
2 → C

n, where

Ψ̃(~k) = ∑
~x

(−1)
~k·~x Ψ(~x).
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Then the shift operator for the hypercube is

S : Ψ(x) 7→
n

∑
i=1

πiΨ(~x⊕~ei)

where~ei is the ith basis vector in then-cube, andπi is the projection operator for theith direction. The
reason for considering the Fourier transform above is that the shift operator is locally diagonal in this basis:
specifically it mapsΨ̃(~k) 7→ S~k Ψ̃(~k) where

S~k =




(−1)k1 0
(−1)k2

. . .
0 (−1)kn




For the local transformation, we use Grover’s diffusion operator onn states,Di j = 2/n−δi j.
The advantage of Grover’s operator is that, like then-cube itself, it is permutation symmetric. We use

this symmetry to rearrangeU~k = S~kD to put the negated rows on the bottom,

U~k =




2/n−1 2/n · · ·
2/n 2/n−1 2/n

...
. . .

−2/n +1 −2/n · · ·
−2/n −2/n −2/n +1

...
...




where the top and bottom blocks haven− k andk rows respectively; herek is the Hamming weight of~k.
The eigenvalues ofU~k then depend only onk. Specifically,U~k has the eigenvalues+1 and−1 with

multiplicity k−1 andn− k−1 respectively, plus the eigenvaluesλ,λ∗ where

λ = 1− 2k
n

+
2i
n

√
k(n− k) = eiωk

andωk ∈ [0,π] is described by

cosωk = 1− 2k
n

, sinωk =
2
n

√
k(n− k)

Its eigenvectors with eigenvalue+1 span the(k−1)-dimensional subspace consisting of vectors with support
on thek “flipped” directions that sum to zero, and similarly the eigenvectors with eigenvalue−1 span the
(n− k−1)-dimensional subspace of vectors on then− k other directions that sum to zero. We call these the
trivial eigenvectors. The eigenvectors ofλ,λ∗ = e±iωk are

vk,v
∗
k =

1√
2

( ∓i√
n− k︸ ︷︷ ︸
n−k

,
1√
k︸︷︷︸

k

)
.

We call these thenon-trivial eigenvectors for a given~k. Over the space of positions and directions these
eigenvectors are multiplied by the Fourier coefficient(−1)

~k·~x, so as a function of~x and direction 1≤ j ≤ n
the two non-trivial eigenstates of the entire system, for a given~k, are

v~k(~x, j) = (−1)
~k·~x 2−n/2

√
2

×
{

1/
√

k if ~k j = 1
−i/

√
n− k if ~k j = 0
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with eigenvalue eiωk , and its conjugatev∗~k with eigenvalue e−iωk .
We take for our initial wave function a particle at the originu = (0, . . . ,0) in an equal superposition of

directions. Since its position is aδ-function in real space it is uniform in Fourier space as wellas over the
direction space, giving

Ψ̃0(~k) =
2−n/2
√

n
(1, . . . ,1)

This is perpendicular to all the trivial eigenvectors, so their amplitudes are all zero. The amplitude of its
component along the non-trivial eigenvectorv~k is

a~k = 〈Ψ0|v~k〉 =
2−n/2
√

2

(√
k
n
− i

√
1− k

n

)
(1)

and the amplitude ofv∗~k is a∗~k . Note that|a~k|2 = 2−n/2, so a particle is equally likely to appear in either
non-trivial eigenstate with any given wave vector.

At this point, we note that there are an exponential number ofeigenvectors in which the initial state has
a non-zero amplitude. In Section 4, we show that the general bound of Aharonov et al. [AAKV01] predicts
an exponential mixing time. In general, this bound performspoorly whenever the number of important
eigenvalues is greater than the mixing time.

Instead, we will use the Diaconis-Shahshahani bound on the total variation distance in terms of the
Fourier coefficients of the probability [Dia88]. IfPt(~x) is the probability of the particle being observed at
position~x at timet, andU is the uniform distribution, then the total variation distance is bounded by

‖Pt −U‖2 ≤ 1
4 ∑

~k 6= (0, . . . ,0)
~k 6= (1, . . . ,1)

∣∣∣P̃t(~k)
∣∣∣
2
=

1
4

n−1

∑
k=1

(
n
k

)∣∣P̃t(k)
∣∣2 . (2)

Here we exclude both the constant term and the parity term~k = (1, . . . ,1); since our walk changes position
at every step, we only visit vertices with odd or even parity at odd or even times respectively. ThusU here
means the uniform distribution with probability 2n−1 on the vertices of appropriate parity.

To find P̃t(~k), we first needΨ̃t(~k). As Nayak and Vishwanath [NV00] did for the walk on the line, we
start by calculating thetth matrix power ofU~k. This is

U t
~k

=




a +(−1)t a · · ·
a a +(−1)t c
...

. . .
b− (−1)t b · · ·

−c b b− (−1)t

...
. . .




where

a =
cosωkt − (−1)t

n− k
, b =

cosωkt +(−1)t

k
, and c =

sinωkt√
k(n− k)

Starting with the uniform initial state, the wave function after t steps is

Ψ̃t(~k) =
1√
n

(
cosωkt +

√
k

n− k
sinωkt

︸ ︷︷ ︸
n−k

, cosωkt −
√

n− k
k

sinωkt
︸ ︷︷ ︸

k

)
(3)
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We could, at this point, calculateΨt(~x) by Fourier transforming this back to real space. However, this
calculation turns out to be significantly more awkward than calculating the Fourier transform of the probabil-
ity distribution,P̃t(~k), which we need to apply the Diaconis-Shahshahani bound. SincePt(~x) = Ψt(~x)Ψt(~x)∗,
and since multiplications in real space are convolutions inFourier space, we perform a convolution overZ

n
2:

P̃t(~k) = ∑
~k′

Ψ̃t(~k
′) · Ψ̃t(~k⊕~k′)

where the inner product is defined on the direction space,u · v = ∑n
i=1 uiv∗i . We write this as a sum overj,

the number of bits of overlap between~k′ and~k, andl, the number of bits of~k′ outside the bits of~k (and so
overlapping with~k⊕~k′). Thus~k′ has weightj + l, and~k⊕~k′ has weightk− j + l.

Calculating the dot product̃Ψt(~k′) · Ψ̃t(~k⊕~k′) explicitly from Equation 3 as a function of these weights
and overlaps, we have

P̃t(k) =
1
2n

k

∑
j=0

n−k

∑
l=0

(
k
j

)(
n− k

l

)[
cosω j+lt cosωk− j+lt + A sinω j+lt sinωk− j+lt

]
(4)

where

A =
cosωk − cosω j+l cosωk− j+l

sinω j+l sinωk− j+l

The reader can check that this givesP̃t(0) = 1 for the trivial Fourier component wherek = 0, andP̃t(n) =
(−1)t for the parity term wherek = n.

Using the identities cosa cosb = (1/2)(cos(a− b) + cos(a + b)) and sina sinb = (1/2)(cos(a− b)−
cos(a+ b)) we can re-write Equation 4 as

P̃t(k) =
1
2n

k

∑
j=0

n−k

∑
l=0

(
k
j

)(
n− k

l

)[(
1−A

2

)
cosω+t +

(
1+ A

2

)
cosω−t

]
=

1
2n

k

∑
j=0

n−k

∑
l=0

(
k
j

)(
n− k

l

)
Y (5)

whereω± = ω j+l ±ωk− j+l.
The terms cosω±t in Y are rapidly oscillating with a frequency that increases with t. Thus, unlike the

walk on the cycle, the phase is rapidly oscillating everywhere, as a function of eitherl or j. This will make
the dominant contribution tõPt(k) exponentially small whent/n = π/4, giving us a small variation distance
when we sum over all~k.

To give some intuition for the remainder of the proof, we pause here to note that if Equation 5 were an
integral rather than a sum, we could immediately approximate the rate of oscillation ofY to first order at
the peaks of the binomials, wherej = k/2 andl = (n− k)/2. One can check that dωk/dk ≥ 2/n and hence
dω+/dl = dω−/d j ≥ 4/n. Since|A| ≤ 1, we would then write

P̃t(k) =O
1
2n

k

∑
j=0

n−k

∑
l=0

(
k
j

)(
n− k

l

)(
e4i jt/n + e4ilt/n

)

which, using the binomial theorem, would give

∣∣P̃t(k)
∣∣=O

∣∣∣∣∣
1+e4it/n

2

∣∣∣∣∣

k

+

∣∣∣∣∣
1+e4it/n

2

∣∣∣∣∣

n−k

= cosk
2t
n

+ cosn−k 2t
n

(6)

In this case the Diaconis-Shahshahani bound and the binomial theorem give

‖Pt −U‖2 ≤ 1
4 ∑

0<k<n

(
n
k

)(
cosk

2t
n

+ cosn−k 2t
n

)2

≤ 1
2

[(
2cos2

2t
n

)n

+

(
1+cos2

2t
n

)n

−1

]
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Figure 1: Graph (a) plots an exact calculation of the total variation distance aftert steps of the quantum walk for
hypercubes of dimension 50, 100, and 200, as a function oft/n. At t/n = π/4 the variation distance is small even
though the walk has not had time to cross the entire graph. This happens because the distribution is roughly uniform
across the equator of then-cube where the vast majority of the points are located. Graph (b) shows the probability
distribution on the 200-dimensional hypercube after 157≈ (π/4)n steps. The probability distribution has a plateau of
2−199 at the equator, matching the uniform distribution up to parity. Shown is the log of the probability as a function
of Hamming distance from the starting point.

If we could taket to be the non-integer value(π/4)n, these cosines would be zero.
This will, in fact, turn out to be the right answer. But since Equation 5 is a sum, not an integral, we have

to be wary ofresonances where the oscillations are such that the phase changes by a multiple of 2π between
adjacent terms, in which case these terms will interfere constructively rather than destructively. Thus to show
that the first-order oscillation indeed dominates, we have asignificant amount of work left to do. The details
of managing these resonances can be found in Appendix B. The process can be summarized as follows:
i.) we compute the Fourier transform of the quantityY in Equation 5, since the sum of Equation 5 can be
calculated for a single Fourier basis function using the binomial theorem;ii.) the Fourier transform ofY can
be asymptotically bounded by the method of stationary phase. The dominant stationary point corresponds
to the first-order oscillation, but there are an infinite number of other stationary points as well; soiii.) we
use an entropy bound to show that the contribution of the other stationary points is exponentially small.

To illustrate our result, we have calculated the probability distribution, and the total variation distance
from the uniform distribution (up to parity), as a function of time for hypercubes of dimension 50, 100,
and 200. In order to do this exactly, we use the walk’s permutation symmetry to collapse its dynamics
to a function only of Hamming distance. In Figure 1(a) we see that the total variation distance becomes
small whent/n = π/4, and in Figure 1(b) we see how the probability distributionis close to uniform on a
“plateau” across the hypercube’s equator. Since this is where the vast majority of the points are located, the
total variation distance is small even though the walk has not yet had time to cross the entire graph.

3 The continuous-time walk

In this section we prove Theorem 2. Childs, Farhi and Gutmann[CFG01] define quantum walks in a different
way, in which the unitary operator is generated from a HamiltonianH using Schrödinger’s equation. IfH
is simply the adjacency matrix of the graph, thenUt = eiHt = 1+ iHt + (iHt)2/2+ · · · giving a walk in
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continuous time. The amplitude of makings steps is the coefficient(it)s/s! of Hs, which up to normalization
is Poisson-distributed with meant. They point out that this avoids the need to extend the Hilbert space of the
particle with a direction space, and to define some local operation on it such as Grover’s operator, in order
to make the walk unitary. While this approach is less familiar in computer science, a quantum computer
which is allowed to evolve in continuous time according to a certain Hamiltonian seems just as physically
reasonable as one which uses a clock to evolve in discrete time as traditional computers do.

In the case of the hypercube, this walk turns out to be particularly easy to analyze. The adjacency matrix,
normalized by the degree, is

H(~x,~y) =

{
1/n d(~x,~y) = 1
0 d(~x,~y) 6= 1

(7)

whered is the Hamming distance. The eigenvectors ofH andUt are simply the Fourier basis functions:
if v~k(~x) = (−1)

~k·~x thenHv~k = (1−2k/n)v~k andUt v~k = eit(1−2k/n) v~k where we again usek to denote the

Hamming weight of~k. If our initial wave vector has a particle at~x = (0, . . . ,0), then its initial Fourier
spectrum is uniform, and at timet we have

Ψ̃t(~k) = 2−n/2 eit(1− 2k
n ).

Again writing the probabilityP as the convolution ofΨ with Ψ∗ in Fourier space, we have

P̃t(~k) = ∑
~k′

Ψ̃t(~k
′)Ψ̃∗

t (~k⊕~k′) =
1
2n ∑

~k′

e2it(|~k⊕~k′|−k′)/n

We write this as a sum over all possible overlapsj between~k′ and~k, and overlapsl between~k′ and~k⊕~k′.
Noting thatk′ = j + l and|~k⊕~k′| = k− j + l, this gives

P̃t(k) =
1
2n

k

∑
j=0

n−k

∑
l=0

e2it(k−2 j)/n = cosk
2t
n

(8)

Finally, the Diaconis-Shahshahani bound on the total variation distance betweenPt and the uniform
distribution is

‖Pt −U‖2 ≤ 1
4

n

∑
k=1

(
n
k

)∣∣P̃t(k)
∣∣2 =

(
1+cos2

2t
n

)n

−1

Astonishingly, att = (π/4)n and its odd multiples, this gives a total variation distancewhich is exactly zero,
showing that if we sample at these times the probability distribution is exactly uniform. Note that this is
possible even whent < n since the continuous-time walk has some probability for taking more thant steps
(and, in fact, paths with different numbers of steps interfere with each other). Thus the continuous-time
walk has the same mixing time as the discrete-time one, but with such a beautiful conspiracy of interference
that every position has an identical probability. This concludes the proof of Theorem 2. For an alternative
derivation based on hypercube’s structure as a product graph, see Appendix C.

4 Average mixing times

In this section we discuss the mixing time as defined in [AAKV01], where we choose to stop the quantum
walk at a timet uniformly distributed in the interval[0,T ]. As mentioned in the Introduction, this gives a
probability distributionP̄T = (1/T )∑T−1

t=0 Pt . Since the Fourier transform is a linear operation, we can look

9



at the Fourier transform of̄PT instead. In the case of the symmetric discrete-time walk, Equation 5 shows
that fork > 0, the Fourier coefficient of̄PT consists of a sum of oscillating terms proportional to cosω±t. As
T → ∞, these oscillations cancel, so we are left with just the constant termk = 0 andP̄T indeed approaches
the uniform distribution.

One could calculate an average mixing time for the symmetricdiscrete-time walk using the methods of
Appendix B. We do not do that here. However, we will now show that the general bound of [AAKV01] pre-
dicts an average mixing time for then-cube which is exponential inn. The authors of that paper showed that
the variation distance between̄PT and the uniform distribution (or more generally, the limiting distribution
limT→∞ P̄T ) is bounded by a sum over distinct pairs of eigenvalues,

‖P̄T −U‖ ≤ 2
T ∑

i, j s.t. λi 6=λ j

|ai|2∣∣λi −λ j

∣∣ (9)

whereai = 〈ψ0|vi〉 is the component of the initial state along the eigenvectorvi. Since this bound includes
eigenvaluesλ j for whicha j = 0, we note that it also holds when we replace|ai|2 with |aia∗j |, using the same
reasoning as in [AAKV01].

For the quantum walk on the cycle of lengthn, this bound gives an average mixing time ofO (n logn).
For then-cube, however, there are exponentially many pairs of eigenvectors with distinct eigenvalues, all of
which have a non-zero component in the initial state. Specifically, for each Hamming weightk there are

(n
k

)

non-trivial eigenvectors each with eigenvalue eiωk and e−iωk . These complex conjugates are distinct from
each other for 0< k < n, and eigenvalues with distinctk are also distinct. The number of distinct pairs is
then

n−1

∑
k=1

(
n
k

)2

+ 4
n

∑
k,k′=0

(
n
k

)(
n
k′

)
= Ω(4n)

Taking |ak| = 2−n/2/
√

2 from Equation 1 and the fact that|λi −λ j| ≤ 2 since theλi are on the unit circle,
we see that Equation 9 gives an upper bound on theε-average mixing time of sizeΩ(2n/ε). In general, this
bound will give a mixing time ofΩ(M/ε) whenever the initial state is distributed roughly equally over M
eigenvectors, and when these are roughly equally distributed overω(1) distinct eigenvalues.

For the continuous-time walk, on the other hand, Equation 8 shows thatP̄T approaches the average of
cosk 2t/n. In fact, it is equal to this average wheneverT is a multiple of(π/2)n. For k odd this average is
zero, but fork even it is

1
π

∫ π

0
dx cosk x =

2kπ

Γ
(

1
2 − k

2

)2
k!

Since these Fourier coefficients do not vanish,P̄T does not approach the uniform distribution even in the
limit T → ∞. In particular, the Fourier coefficient of̄PT for k = 2 is

˜̄PT (2) =
1
T

∫ T

0
dt cos2

2t
n

=
1
2

+
sin 4T/n

8T/n
(10)

This integral is minimized whenT = 1.12335n, at which point̃P̄T (2) = 0.39138+. Since˜̄PT (2) is bounded
below by this, it is easy to show that the total variation distance‖P̄T −U‖ is bounded away from zero as a
result. Thus there existsε > 0 such that noε-average mixing time exists.
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A Grover’s diffusion operator

In general, the selection of the local operatorD on the direction space appears to introduce a certain amount
of artificiality into the definition of a discrete-time quantum walk. If we ask, however, that the operator obey
the permutation symmetry of the hypercube, then there is a one-parameter family of such unitary operators
up to multiplication by an overall phase.

To see this, supposeD is unitary and permutation-symmetric. Then it can have onlytwo distinct entries,
namely those on the diagonal and off it. LetDi j = a if i = j andb if i 6= j. Then unitarity requires that
|a|2+(n−1)|b|2 = 1 and 2Reab∗)+(n−2)|b|2 = 0. The first of these two equations describes a circle, and
their difference gives another,|a− b|2 = 1. The intersection of these circles gives at most two valuesfor b
which differ only by a phase (and by conjugation ifa is real). Solutions exist when 1−2/n ≤ |a| ≤ 1.

To show that Grover’s operator is the member of this family farthest from the family of diagonal unitary
matrices{c1 : |c| = 1}, recall that theoperator norm of a matrixA is ‖A‖ = TrA†A. Then the distance from
D to this family is

‖D− c1‖ = n|a− c|2 +(n2−n)|b|2 = 2n(1−Reac∗)

When c has the same phase asa this is minimized at 2n(1− a), and this minimum is maximized when
|a| = 1−2/n. This corresponds to Grover’s operator times an overall phase; in this paper we takea to be
real and negative.
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B Resonances in the discrete-time walk

In order to evaluate Equation 5, we use Fourier analysis again — this time on functions ofj andl, or rather
on the rescaled variables

x = cosω j = 1− 2 j
n

, y = cosωl = 1− 2l
n

We Fourier transform the quantityY in Equation 5. Since we are interested in oscillations of frequencyΘ(t),
we write

Y (x,y) = ∑
px, py∈Z

Ỹ
(πpx

t
,

πpy

t

)
e−iπ(pxx+pyy) (11)

so that ast goes to infinity, we may treat this as the integral

Y (x,y) =

∫∫
Ỹ (βx,βy)e−it(βxx+βyy) dβx dβy. (12)

Then, using the binomial theorem, we have

P̃t(k) =
∫∫

dβx dβy Ỹ (βx,βy)e−it((1− k
n)βx+

k
n βy) cosk

βxt
n

cosn−k βyt
n

(13)

We will show thatỸ peaks at values ofβx and βy corresponding to the first-order oscillation, namely
(βx,βy) = (2,0) and(0,2). This gives a form similar to Equation 6, so that if 2t/n = π/2 the total vari-
ation distance will be exponentially small.

We calculateỸ by inverting Equation 12,

Ỹ (βx,βy) =
1
4

∫ +1

−1

∫ +1

−1
dxdyY (x,y)eit(βx x+βyy)

where the normalization is due to the range ofx andy. We divide this integral into two terms, both of which
are of the form

∫∫
dxdy

(
1∓A

2

)
cosω±t eit(βxx+βyy) = O

(∫∫
dxdy

(
1∓A

2

)
eit(ω±+βxx+βyy)

)
(14)

We can evaluate the right-hand integral in Equation 14 usingthe method of stationary phase, also known as
steepest descent, which Nayak and Vishwanath [NV00] use to find the asymptotic form of the wave function
on the line. In general, iff is a slowly varying function then the asymptotic integral

lim
t→∞

∫∫
f (x,y)eitφ(x,y)dxdy

is dominated by contributions from the points(x,y) in the domain of integration whereφ has zero gradient.
(See, e.g., [BH75].) Ifr is the smallest integer such that therth derivative ofφ at (x,y) is nonzero, we
say that(x,y) is rth-order. In general, such asymptotic integrals are dominated by contributions from the
stationary points of highest order.

In Equation 14 the slowly varying function is(1∓A)/2, and the phase function is

φ±(x,y) = ω± + βxx+ βyy
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Its derivatives are

∂φ±
∂x

= − 1
sinω j+l

± 1
sinωk− j+l

+ βx

∂φ±
∂y

= − 1
sinω j+l

∓ 1
sinωk− j+l

+ βy

For bothφ+ andφ−, setting these to zero gives four stationary points(x0,y0), where the anglesω j+l , ωk− j+l

are described by

sinω j+l =
2

βx + βy
sinωk− j+l =

2
|βx −βy|

(15)

cosω j+l = x0 + y0−1 = ±

√

1−
(

2
βx + βy

)2

cosωk− j+l = 1− 2k
n
− x0 + y0 = ±

√

1−
(

2
βx −βy

)2

Note that the signs of the cosines can be chosen independently, and all four possibilities exist for bothφ+

andφ−. Choosing both cosines to be positive gives

x0 =
1
2



√

1−
(

2
βx + βy

)2

−

√

1−
(

2
βx −βy

)2

+1− k

n

y0 =
1
2



√

1−
(

2
βx + βy

)2

+

√

1−
(

2
βx −βy

)2

+

k
n

(16)

The other three solutions are given by choosing one or both ofthe cosines in Equation 15 to be negative,
which affects the signs of the square roots in Equation 16. For these solutions to be real, we requireβy ≥
|βx|+ 2 for the stationary points ofφ+, andβx ≥ |βy|+ 2 for the stationary points ofφ−. Thusβy −βx ≥ 2
for φ+ andβx −βy ≥ 2 for φ−, and in both casesβx + βy ≥ 2.

To find the order of these stationary points, we calculateφ’s second derivatives at(x0,y0):

∂2φ±
∂x2 =

∂2φ±
∂y2 = − cosω j+l

sin3 ω j+l
∓ cosωk− j+l

sin3ωk− j+l

∂2φ±
∂x∂y

=
∂2φ±
∂y∂x

= − cosω j+l

sin3 ω j+l
± cosωk− j+l

sin3ωk− j+l
(17)

Given the restrictions onβx andβy for the stationary points to be real, for each ofφ+ andφ− the second
derivatives are zero at exactly one pair of frequencies, namely βx = 0 andβy = 2 for φ+, andβx = 2 and
βy = 0 for φ−. We will call these thedominant stationary points. Note that at these frequencies we have
ω j+l = ωk− j+l = π/2 and the four stationary points coincide at the peak of the binomials in Equation 5
where j = k/2 andl = (n− k)/2. Moreover, these frequencies are exactly the first-order oscillations ofY
appearing in Equation 6.

Computing the third order derivatives atω j+l = ωk− j+l = π/2 gives

∂3φ±
∂x3 =

∂3φ±
∂x∂y2 = −

[
1

sin3ω j+l
+

3cos2 ω j+l

sin5ω j+l

]
±
[

1

sin3ωk− j+l
+

3cos2ωk− j+l

sin5 ωk− j+l

]
= −1±1

∂3φ±
∂y3 =

∂3φ±
∂x2 ∂y

= −
[

1

sin3ω j+l
+

3cos2 ω j+l

sin5ω j+l

]
∓
[

1

sin3ωk− j+l
+

3cos2ωk− j+l

sin5 ωk− j+l

]
= −1∓1
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Thus the dominant stationary points are third order, and in their vicinity φ± takes the form

φ± =
1
6

(
−(x+ y)3± (x− y)3)+O (x4,y4)

Thus if we rotateπ/4 to new variablesa = x+y andb = x−y, we transformφ into the sum of two decoupled
functions in the vicinity of the dominant stationary point,and write the integral of Equation 14 as the product
of two one-dimensional integrals. For one-dimensional integrals with a third-order stationary pointx0, this
takes the form [BH75,§7]

lim
t→∞

∫
dx f (x)eitφ(x) =

Γ(1/3)

t1/3
f (x0)eitφ(x0)

eiπsgn(σ)/6

3|σ|1/3
+ o(t−1/3)

whereσ = φ′′′(x0) is the third derivative atx0. Since we have the product of two such integrals, and since
f (x0) = (1∓A)/2 = O (1) and|σ| = 2, the contribution of the dominant stationary point toP̃t(k) is

[
P̃t(k)

]
dominant= O

(
t−2/3

(
cosk

2t
n

+cosn−k 2t
n

))
(18)

We now need to calculate the contribution of the other stationary points. These are second-order, and
their contribution takes the form

lim
t→∞

∫∫
dxdy f (x,y)eitφ(x,y) =

2π
t ∑

(x,y)

f (x,y)eitφ(x,y) eiπδx,y/2
√

|det∂2φx,y|
+O

(
1
t2

)
(19)

where∂2φx,y is the matrix of second derivatives ofφ at (x,y), andδx,y is +1, 0, or−1 depending on whether
zero, one, or both of its eigenvalues are negative. From Equation 17 we have

det∂2φ± = ±4
cosω j+l cosωk− j+l

sin3 ω j+l sin3ωk− j+l

Focusing on the oscillating part of Equation 13, we have
∫∫

dβx dβy eitψ±(βx,βy) cosk
βxt
n

cosn−k βyt
n

(20)

where

ψ±(βx,βy) = φ±(x0,y0) −
(

1− k
n

)
βx −

k
n

βy

Since this really is an integral in the limitn → ∞, the cosk, cosn−k terms create sharper and sharper peaks
whereβx, βy are multiples of 4. We can approximateψ at each peak to first order as a function ofβx andβy.
For the stationary point ofφ± where the sign of both cosines is positive,ψ± is given by

ψ±(βx,βy) = sin−1 2
βx + βy

− sin−1 2
βx −βy

+

√(
βx + βy

2

)2

−1±

√(
βx −βy

2

)2

−1

Its derivatives with respect toβx andβy are

∂ψ±
∂βx

=
1
2



√

1−
(

2
βx + βy

)2

−

√

1−
(

2
βx −βy

)2

= x0−

(
1− k

n

)
=

k−2 j0
n

∂ψ±
∂βy

=
1
2



√

1−
(

2
βx + βy

)2

+

√

1−
(

2
βx −βy

)2

= y0−

k
n

=
n− k−2l0

n
(21)
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and similarly for the other stationary points(x0,y0); we can also derive this directly from the definition of
ψ± and the fact that we are at a stationary point ofφ±. In other words, the derivatives ofψ are proportional
to the distance of the stationary points off the binomial peaks.

The entire(βx,βy)-plane can be tiled with 4×4 squares centered on these peaks. Integrating Equation 20
on one such tile, say around the peakβx = 4p, βy = 4q, gives

∫ 4p+2

4p−2

∫ 4q+2

4q−2
dβx dβy e

it
(

∂ψ
∂βx

βx+
∂ψ
∂βy

βy

)

cosk
βxt
n

cosn−k βyt
n

=
π2n2

2nt2

(
k

1
2(k−n ∂ψ

∂βx
)

)(
n− k

1
2(n− k−n ∂ψ

∂βy
)

)
=

π2n2

2nt2

(
k
j0

)(
n− k

l0

)

=O exp

[
n

(
k
n

h

(
j0
k

)
+

(
1− k

n

)
h

(
l0

n− k

)
− ln2

)]
= exp(nZ) (22)

whereh(z) = −z lnz− (1− z) ln(1− z) is the entropy function. Note that if the quantityZ in Equation 22
is less than− ln

√
2 for all stationary points other than the dominant ones, then their contribution to|P̃(k)|2

will be 2−γn whereγ > 1, in which case summing over allk will give an exponentially small contribution,
O (2(1−γ)n), to the total variation distance. To confirm this, note thatZ is maximized by the other stationary
points closest to the origin, such as the stationary point ofφ+, with both cosines positive, whereβx = 0
and βy = 4. From Equation 21 this gives∂ψ/∂βx = 0 and∂ψ/∂βy =

√
3/2, and soj0 = k/2 and l0 =

((1−
√

3
2 )n−k)/2. Both binomials are non-zero only in the intervalk ∈

(
0,(1−

√
3

2 )n
)

andZ is maximized

at k = 0, where

Z = h

(
1
2
−

√
3

4

)
− ln2 = −0.447< ln

1√
2

= −0.346

The other second-order stationary points are this far or farther from the origin, giving values ofj0 and l0
farther off the binomial peaks, and therefore smaller entropies.

Recalling Equation 19 above, our final concern is the sum of the heights of these peaks,

∑
βx,βy

1√∣∣det∂2φβx ,βy

∣∣

taken over all second-order stationary points(βx,βy). Since these occur whenβx,βy are multiples of 4, from
Equation 15 we have

∣∣cosω j+l cosωk− j+l

∣∣≥ 3/4. Then

∣∣det∂2φ±(βx,βy)
∣∣≥ 3∣∣sin3ω j+l sin3ωk− j+l

∣∣ =
3
64

|βx + βy|3 |βx −βy|3

and it is sufficient to show that the sum

∑
βx 6=βy

|βx + βy|−3/2 |βx −βy|−3/2

converges. Again rotating byπ/4 to variablesa = βx + βy andb = βx −βy, we get the sum

∑
a,b

|a|−3/2|b|−3/2 ≤
(

∑
a
|a|−3/2

)2
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Observing that∑a>0a−3/2 converges shows that the contribution of the second-order stationary points is
exponentially small.

Now we return to the dominant contribution toP̃t(k), Equation 18. If we could havet = (π/4)n exactly,
this dominant term would be zero, leaving us with the second-order stationary points and an exponentially
small total variation distance. However, in the discrete-time walkt must be an integer. Settingt = ⌈(π/4)n⌉,
we have cos2t/n = O (1/n). Using the binomial theorem and Equation 18, the Diaconis-Shahshahani bound
gives

‖Pt −U‖2 =O n−4/3 ∑
0<k<n

(
n
k

)(
2cos2k 2t

n
+2cosn

2t
n

)

≤ 2n−4/3
[(

2cos
2t
n

)n

+

(
1+cos2

2t
n

)n

−1

]
= O (n−7/3)

and so the total variation distance is‖Pt −U‖ = O (n−7/6), completing the proof of Theorem 1.

C A graph product derivation of the continuous-time walk

As an alternate derivation for the continuous-time walk, wecan calculate the wave functionψt directly by

exploiting the hypercube’s simple structure as a product graph. Letσx be the Pauli matrix
(

0 1
1 0

)
. Then

we can rewrite Equation 7 as

H =
1
n

n

∑
j=1

1⊗·· ·⊗σx ⊗·· ·⊗1

where thejth term in the sum hasσx appearing in thejth place in the tensor product. Then using the identity
(A⊗B)(C⊗D) = AB⊗CD, and the fact that eA+B = eAeB whenA andB commute, we have

U = eiHt =
n

∏
j=1

1⊗·· ·⊗eitσx/n ⊗·· ·⊗1 =
[
eitσx/n

]⊗n
=

(
cost/n i sin t/n
i sin t/n cost/n

)⊗n

whereA⊗n is the tensor product ofn copies ofA. If ψ0 = |0· · ·0〉 = |0〉⊗n, then

ψt = Utψ0 =
[(

cos
t
n

)
|0〉+

(
i sin

t
n

)
|1〉
]⊗n

and we see that the continuous-time walk is equivalent ton non-interacting one-qubit systems. Then the
amplitude for observing the particle at a position~x with Hamming weightx is

ψt(~x) =
(

cos
t
n

)n−x(
i sin

t
n

)x

which whent = k(π/4)n for k odd gives|ψt(x)|2 = 2−n, the uniform distribution.
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