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Abstract

We demonstrate an alternative method for calculating the asymptotic
behaviour of the discrete one-coin quantum walk on the infinite line, via
the Jacobi polynomials that arise in the path integral representation. We
calculate the asymtotics using a method that is significantly easier to use
than the Darboux method. It also provides a single integral representation
for the wavefunction that works over the full range of positions, n, includ-
ing throughout the transitional range where the behaviour changes from
oscillatory to exponential. Previous analyses of this system have run into
difficulties in the transitional range, because the approximations on which
they were based break down here. The fact that there are two different
kinds of approach to this problem (Path Integral vs. Schrodinger wave
mechanics) is ultimately a manifestation of the equivalence between the
path-integral formulation of quantum mechanics and the original formu-
lation developed in the 1920s. We also discuss how and why our approach
is related to the two methods that have already been used to analyse these
systems.

1 Introduction

The discrete quantum walk has been discussed in several recent papers [12
3]. The first authors to discuss the quantum random walk were Y. Aharonov,
Davidovich and Zagury, in [2] where they described a very simple realization
of the quantum random walk in quantum optics. Some further early results
were due to Meyer, in [I1]. He proved that for a discrete (unitary) quantum
walk on the line to have non-trivial behaviour, its motion must be assisted by
an additional “coin” degree of freedom which is conventionally taken to be two
dimensional. This spin-like degree of freedom is sometimes called the chirality,
and can take the values RIGHT and LEFT, or a superposition of these. Meyer
therefore considered the wave function as a two component vector of amplitudes
of the particle being at point n at time ¢. Let

wo = (340

where we shall label the chirality of the top component LEFT and the bottom
RIGHT. This paper is concerned with the dynamics of a test particle performing
an unbiased quantum walk on the integer points on the line. At each time step
the chirality of the particle evolves according to a unitary Hadamard transfor-
mation

R) = —=(R) + L) @)

N

1
L) = —5(R) = L)) (3)
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Figure 1: The discrete quantum walk on the line. The probability distribution is
shown for a walk that started at the origin with its coin in the state |R) after it
has evolved for 100 steps. The distribution is oscillatory between the two peaks
and decays exponentially outside that range. The peaks move away from the
origin with speed #/1/2, and the width of the peaks also decreases with time. By
contrast, the classical random walk has a Gaussian distribution, which spreads
with velocity ~ Vt.

and then the particle moves according to its (new) chirality state. Therefore,
the particle obeys the recursion relations

\IJL(n,t—l—l):—%\IJL(n—i—l,t)—i—%\IfR(n—l,t) (@)
Ut +1) = —=Wy (0 +1,1) + —=Tg(n —1,1). (5)

V2 V2

Meyer and subsequent authors have considered two approaches to the Hadamard
walk, the Path Integral and Schrodinger approaches, which reflect two comple-
mentary ways of formulating quantum mechanics [§]. We refer to the paper by
Ambainis, Bach, Nayak, Vishwanath and Watrous [3] for proper definitions and
references. We shall refine the asymptotic analysis of this paper.

The behaviour of the Hadamard walk is very different from the classical ran-
dom walk on the integer points on the real line. One way of understanding this
is as a result of quantum interference. Destructive interference suppresses the
probability amplitude in the vicinity of the origin, and constructive interference
reinforces it away from the origin. The net effect of this is that the quantum
walk spreads out much faster. Figure[ll shows the discrete quantum walk on the
infinite line at ¢ = 100. We have only plotted the distribution for even values of
n in Figure[l If a walk’s initial distribution has its support confined to a set of
nodes which all have the same parity (all ns either even or odd) the support of
the distribution will “tick” between different parities at each step.



The probability distribution for the quantum walk depends not only on the
evolution law in (f), but also on the initial conditions. Throughout this paper
we will only consider walks that start at n = 0 with the coin in the initial state
|R). The convention that the walk starts in the position n = 0 is inherited from
the motivation for studying these systems as toy models of quantum algorithms:
the computer is always started with its registers in the state |00...). The choice
of initial coin state was made because the Hadamard walk is an unbiased walk
[[2]. This means that even though some starting conditions result in an asym-
metric probability distribution, we can always find some other starting state that
will produce a walk with the opposite bias. The |R) starting state produces a
distribution that is maximally biased to the right. Likewise, if we had chosen to
start the walk in the state |L), this would have produced a distribution that was
maximally biased to the left. This distribution is the exact mirror-image of that
produced by starting in the state |R). Thus, reversing the starting condition
just relabels n to —n. As the coin space is two-dimensional, we can now invoke
the linearity of quantum mechanics, and note that we can obtain the behaviour
for any initial condition |®) = a|R) + b|L) by forming the corresponding linear
combination of the evolutions for the initial condition basis states |R), |L).

2 Related Work

We now very briefly describe the methods previous authors have used. They
have so far followed two approaches to determine the limiting behaviour of the
i-functions as ¢ — co. The translational invariance of this problem means that
it has a simple description in momentum space, and the Schrodinger approach
relies on that fact. We will describe this in more detail in the section below.
Beginning with the recursion relation (), Nayak and Vishwanath [I2] showed
that

U(k,t) = (M) ¥(k,0) (6)

where

U(k,0) =) " ¥(n,0)e"" (7)

and M, is the matrix

1 _e—ik e—ik
My, = 75 < etk etk ) : (8)

They diagonalize the matrix Mj, finding the eigenvalues A} = e™* and

A2 = (") where wj, = arcsin (Si;’;) , wy € [-7/2,7/2]. They then write

the 9-functions in terms of the eigenvalues ()\}c)t and ()\i)t and their associated
eigenvectors and formally invert the original fourier transform to obtain the



closed form integral representations for the wavefunction,

1+ (=1)n*t /” dk cosk itk
)= — [ 2 )eilwrtthn) 9
Yr(n,?) 2 . ot itk ©)
LE P b s
nt)=-— [ LB € -ilwrtthn) 10
VYr(n,?) 2 2 iTeolk 10)

They then approximate these, using a combination of the method of stationary
phase in one range, and integration by parts in the other. (Note that the Left-
Right labelling convention in [T2] is the opposite to ours.)

There is another approach based on the Path Integral formulation of quan-
tum mechanics, that Ambainis et al. discuss. The -functions are expressed in
terms of Jacobi polynomials (as in Lemma P below) of the form

JTETRER ), G =(t —n)/2—1=(1-y)t/2 1. (11)

One may then derive the asymptotic behaviour of the i-functions as t — oo by
determining the asymptotic behaviour of these Jacobi polynomials as m — oo.
This has been done in two ways. Ambainis et al. use the approach due to Chen
and Ismail 7], which employs the Darbouzr method. Here one begins with the
Srivastava-Singhal generating function

i JOTI) ()27 = (14 w) V(L +v) P[L+ (L +a)u+ (L+b)v] ™ (12)

j=0

where u and v are defined to be power series in w that satisfy the equations
u=—-(w+1)z(1+u)*1+v)+! (13)
v=—(w—-1)z(1+u) 11 +v)" (14)

Chen and Ismail use the Darboux method to calculate the asymptotics of these
Jacobi polynomials. This method starts from the idea that if f(2) =3 < anz"

1/n
L when this limit exists.

then the radius of convergence is R = lim,, oo (m
Suppose there is a comparison function g(z) =3, <, bnz" such that g(z) — f(2)
has a larger radius of convergence than f(z), then b, — a, = O(s™") where s >
R. If the asymptotic behaviour of b, is known, then since a,, ~ b,, then we know
the asymptotic behaviour of a,. Chen and Ismail use the Srivastava-Singhal
description of the generating function for Jacobi polynomials to determine its
singularities on the radius of convergence and give comparison functions at each
singularity to determine the asymptotic behaviour of the Jacobi polynomials.

It is interesting to note that the reciprocals of these two singularities (when

normalized by dividing by (\/5) t) are the eigenvalues that arise in the Schrodinger
method.



3 Overview and Results

The other way to obtain the asymptotic behaviour of these Jacobi polynomials is
to follow the method in Gawronkski and Shawyer’s paper, [9]. This is the third
way to analyse these systems, and will be the way that we follow in much of this
paper. It is a refinement of the methods in the paper by Saff and Varga [T4].
This uses the method of steepest-descents. We will outline this method below
but for further details we recommend 5, [I6] and also the book by Olver [I3]
which describes both the steepest-descent method and the method of Darboux
very clearly.

The saddle-points that feature in this method are also related to the eigen-
values that arise in the Schrodinger method. We will detail this relationship
below. If ¢ is a saddlepoint then exp(h(¢)) is an eigenvalue from the Schrédinger
method, for a function h(¢) that we define below.

We now describe our results. We shall see that it is possible to obtain explicit
asymptotic expansions that are uniformly convergent. The system displays two
types of behaviour, with the transitions between the different behaviours gov-
erned by a parameter, & = n/t. The behaviour changes qualitatively over three
ranges, which are respectively 0 < |a| < \/iﬁ — &, % —e < |a| < % + ¢, and
% +e < |a] < 1—¢, where ¢ is a positive number. Our methods give error terms

of the form O(t~~1/2) where N is some positive integer, and the expansion for
each range holds uniformly. We stop at O(t~5/2) since we have no application
for the more precise estimates.

The first range is arguably the most interesting. Here the asymptotic be-
haviour of the ¥-functions is oscillatory as t — oco. We will use a result by
Gawronkski and Shawyer [9] who obtained the leading term and the factor
14 O(t™!) for the error term for Jacobi polynomials. When this result is ap-
plied to the i-functions, we obtain a refinement of Theorem 2 of [3] who found
the leading term.

The second, boundary, range is treated using the method of coalescing
saddle-points as described in R. Wong’s book [I6]. A uniform asymptotic expan-
sion is possible which involves the Airy function. This is also interesting because
the ¢-functions change from an oscillating, polynomially bounded asymptotic
behaviour to an exponentially small behaviour as || changes from below 1//2
to above 1/ V2. The calculation of the asymptotics for these polynomials is
novel to the best of the authors’ knowledge. The third range is the immediate
vicinity of |a| = 1/4/2. As the behaviour of our integral representation is well
understood, we can obtain uniformly convergent asymptotics thoughout this
transitional range.

The main interest of our results lies not in the more accurate asymptotic
expansions for the ¥-functions in the first and third ranges of «, although Am-
bainis et al. did ask for a uniform method to do the asymptotics for these ranges.
In fact, Gawronkski and Shawyer have already provided this method [9]. The
fact that the uniform asymptotic behaviour for the Jacobi polynomials for the



transistion from polynomially bounded oscillating behaviour to exponential de-
cay can be found in terms of the Airy function seems rather more interesting.
It is somewhat surprising that this has not (to our knowledge) been published
before for this family of polynomials: Wong’s book [T6] shows how to obtain the
asymptotic behaviour in terms of Airy functions. Perhaps the reason for this
omission is simply the previous lack of an application, which the quantum walk
now provides.

4 The Feynman Path Integral

We begin with the Feynman path integral appproach following Meyer. We will
represent the components of the vector-valued wavefunction as a normalized
sum over signed paths. Meyer [I1] proved

Lemma 1 (Meyer [T1]). Let —n <t < n. Define l = 152, The amplitudes of
position n after t steps of the Hadamard walk are:

ontnt =225 (1) () o (19)

s =723 (1) () o (16)

except for the endpoints where t = n, which have to be handled separately.

(See [I] for the endpoints. For a derivation of these formulae, see Appendix
A of [6].)

We will follow the approach used by Ambainis et al. [3] and Meyer [I1] but
in greater detail to obtain the following lemma. The standard notation in [I] for

Jacobi polynomials is to write them as pAS )(z), but to avoid confusion with

a = n/t we will write these as gt (2). (Note that in the following lemma, we
have reintroduced the external phase that was omitted in [I1] and [3].)

Lemma 2 (Ambainis et al.[3]). When n =t mod 2 and J** (z) denotes a
Jacobi polynomial,

. —(Emygn/2=1 gt (0), when 0 < n <t
Gr(n,t)(—1)"M/2 = {_22/21J(1,—n) (/2

(t3n)/2—1(0); when —t <n <.
(17)
Also,
baln t)(_l)(t*")/z _ (_1)n+12—n/2—1:]((f_j$/12)_1(O), when 0 <n <t
’ (—1)rtien/2 g v b (0), when —t < n < 0.
(18)



Remark: As Ambainis et al. [3] point out

Yelon ) = —duni=2,0),  va(-nt) = —yalnt).  (19)

Proof of Lemma & We use two formulae from Abromowitz and Stegun [I]
to prove these results. The first is the Pfaff-Kummer transformation H] (15.3.4
of [I)
2Fi(a, by z) = (1—2)7° 2F1(@,C—b§0;il)- (20)
- —
The second is the representation of a Jacobi polynomial as a o F}, see 15.4.6 of

u

i
sF (—ju+1+v+jiut1;z) = o i’l)‘J;“’”)(l —22). (21)
J

Now the first sum, say S, in Lemma[is oFi(1 —1,—(t —1);1;—1) so by &)
S =22y p(1— (t—n)/2, -1+ (t—n)/24+n+1+1;1;1/2).  (22)
Now by Il we obtain

— -n - (O,TlJrl)
§ =22t 1 (0). (23)

This proves the first part of Lemma B for n > 0. To derive the second part, for
n < 0 we see

S= oF(—(t+n)/2,1 -1+ (n—1)/2;1;-1)
= 22, By (= (t4n) /2, 14 (n+1)/2—n—1;1;1/2) = 20+m/2 7070 D (0).
(24)

The results for the first sum are now proved.
The second sum, say 7', can be treated in much the same way since

T=(01-t)oFi(A—=1,1—t+1;2,—1) =211 —t) o F1 (1 —=1,2— 1+t —1;2;1/2)
=221 ) P (—(1=1),241— 14 n;2;1/2)

= (1= 2L ()1 (25)

The result for nonnegative n now follows. If n is negative

t
T= P (—(ntt)/2+1,1—1;2-1) "

2
t
= ";nQ(t-i-n)/?—l o1 (—(t+n)/2 = 1,24 (n+1)/2 —1—;2;1/2)
t
- ";n2(t+n)/2—1 SF (—((t+n)/2=1),2+ (n+1)/2—1) — ;2;1/2)

t+n n)/2—1 7(1,—n)
= T e 00 26)



This completes the proof of Lemma
We consider first of all ¢ (n,t), n > 0. (As was observed by Ambainis et
al., there is a symmetry between positive and negative n.) We let

m=(1-a)t/2-1 (27)
so that - 5
«@ «
1 =1 t = 28
n ta l1-—a + l-«a (28)
and ( Lio | 2am)
0,n+1 0-+0-m, 155 + 321
J((1¥c:3t}2—1(0) = Jm ' (0). (29)

4.1 The oscillatory range:|a| < 1/y/2 —¢

For0<a <212 —¢ 0<e<2'2 we may use either the Chen-Ismail [7]
results or the Gawronkski-Shawyer [9] results. We use the results by Gawronkski
and Shawyer since they have been proved to hold uniformly over this range of
a. For the sake of consistency of notation and ease of reference we will state the
Gawronkski and Shawyer result in a more restricted form than they obtained
in their paper, but it is sufficient for our purposes.

Gawronkski and Shawyer write, using the integral representation in equation
(4.46) of Szegd’s book [1H],

Jamtybm8) (4) — i/emh(c)g(c)dg (30)
r

211

h(¢) = In (%) +aln (%) +bln (i—z) (31)
0~ (5) (29 2

and I' is a contour circling the origin. These integrals are of the form

where

I(m) = /F g(Q)e ™) d¢ (33)

and as such can be approximated in the limit as m — oo using the method of
steepest descents [B] [[3] [T6]. This relies the fact that in this limit (i.e., ¢ — 00)
the only parts of the integrand that contribute significantly to the integral are
those regions where the function in the exponent, h, has a maximum. This is
because in the long time limit the exponential term in the integrand behaves
more and more like d-function(s) centred on point(s) where h is maximal. (Note
that a stationary point of & is only a maximum along a given contour of integra-
tion, I'. This is because the stationary points of an analytic function can only
be saddle-points, so whether they appear to be maxima or minima depends on
the path taken through them.)



In order to make use of this phenomenon, we need to be able to assume that
the imaginary part of h is approximately constant in the vicinity of these saddle-
points, otherwise the integrand will oscillate unmanageably in the asymptotic
limit. (We don’t care if it oscillates wildly elsewhere, as the contribution from
those regions will be negligibly small.) The way to achieve this is to choose the
contour so that it passes through these saddle-points along the path of steepest
descent for the real part of the exponent.

We therefore choose the path I' so it goes through the two saddle-points
¢T,¢™ determined by

R'(¢) =0(or (14 a)¢* —2al+1—a=0). (34)

Thus the imaginary part of h(¢) is fixed which implies that the real part of h(¢)
has a maximum at the saddle-point. (The numbers eh(<+), eM¢7) are the recip-
rocals of the singularities found by Chen and Ismail using Darboux’s method.)
Gawronkski and Shawyer use a steepest descent contour which goes through
the saddle-points at ¢ = (T or ¢~ and the points ¢ = £1. The contour must be
modified slightly near the singularities at ( = £1. The contours are leaf-shapes
defined by

S(h(Q)) = S(h(¢T))- (35)
So (for example) when « = 1/2 this is

S(In(¢?—1)—In2—-In¢+2In(1+¢)) = S(In((¢T)*~1)—In2—In ¢t +2In(1+¢™))
(36)
where
L at+ivl-2a2 1442
&= 1+a -3
Figure Pl is an example of the steepest descent curve for the oscillatory range of
.

(37)

The Gawronkski and Shawyer result is stated in terms of the parameters
A,B,D,C1,Cxs,0,p(0) and £() defined as follows:

2

o ™
Cosez—m SO 5 §9<7T, (38)
A=0, B=aq, D=1-a? (39)
1+a
Ci=1 Cy= . 40
=1, =t (40)

They then show that p(f) increases monotonically from 0 to m as 6 increases
from 0 to 7 or equivalently as |a| increases from 0 to 1/v/2. Furthermore

o(60) = (— _ arctan ( i g; D ian 9/2)) , (41)

0 +a [0 1+B?2—-D
£(0) = §+Z+ — <§— arctan <Ttan6‘/2)). (42)

Here —m/2 < arctanu < 7/2 for real u.

10



Figure 2: Steepest descent and ascent curves for the oscillatory range of a. The
descent curve is the leaf-shape, and the two lines running off to +oo are the
steepest ascent curves.

Theorem 1 (Gawronkski and Shawyer [9]).

om. 1t 4 2am -
Jorom e tats (0) = (mm(1 + B) sin6/2cos0/2) /% x

(511 + B) ((C2 = 1)2/4+ Cacos?0/2) %) 77 77 (sin(mp(6) + £(6)) + O(1/m)
(43)
asm (i.e., t) — o0.

Now, by direct substitution,

1/2
(7m(1 + B) sin(6/2) cos(8/2) /% = 2 (ﬁ) (44)
Cy'(1+B)=1-a (45)
((C2 —1)2/4+ Cycos2(8/2)) "/ = m (46)
Thus from equations [{3)), ), ) and HEH),
0.2 ) ) ) 1 1/2
J(0:20/(=a)+(1+a)/(1-a)) () — 9 (m) y
9(a((l=ajt=1)/(1=a)+(1+e)/(1=c))/2 gip) (1 — a)t/2 — 1)p(0) + £(6)) (1+O(1/t)()47)

11



We have that
o 14+« at

at_l—a+2(1—o¢):7+% (48)
SO
20m | lta n/2
J’r(:} et (0) = %3{37#)1/2 sin((1—a)t/2—1)p(0)+£(0))(1+O(1/t)).
(49)
Now it follows that for —t <n <'t,
Ul t) = ——Y2sin((1 - a)t/2 — 1)p(0) + &LO)(1 + O(L/1) (50)
E (mtv/1 — 2a2)1/2 P r
where
p(0) = 1 f - 12__aa arctan (ﬁ) (51)
£n(9) = 1fa+7r/4— 11_Zarctan (\/%). (52)

When we consider ¢r(n,t), 0 < n < t we find that the power of 2 does
not change. (Gawronkski and Shawyer use the symbol « as a dummy variable
in their Jacobi polynomials. To avoid confusion, we will call this parameter
k.) For v¢r,(n,t), k was set to be zero. To do the calculation for g (n,t) we
need to set k = 1. Note also that we must reset 7 (which they call 3) to be
7 =0b=2a/(1l — «). Thus p(f) does not change. However, £(0) does change as
we will specify below. We (as Gawronkski and Shawyer do) use

™ . 1+ A2 -B*>+D 9
2 Ahj%)lJr ( 24 ta _) (53)
to obtain
0) = () — = a 54
CR( )—CL( )—E—l—arctan ﬁ . ( )

Thus we have:

Theorem 2. Let ¢ > 0 be any constant and « be in the interval (—1/v/2 +
,1/v/2 —¢). Then as t — oo we have uniformly for 0 < |a| < 1/v/2 —¢,

o /2 —«
dr(n,1) = G - a) = ﬂ*_f%)l 5 sin ((%t —1)p(6) + §R<9>) (1+0(1/1))

(55)

V2 . l-«
Yr(n,t) = (i =202z 0 ((Tf —1)p(0) + §L(9)> (14 0(1/t)) (56)
with p, &, and &r defined by equations [&l), &) and @B). Here
0 = arccos(—a?/(1 — a?)), g <6 <. (57)

12



Remark: The term of the form 1/4/1 — 2a2 gives us forewarning that this
term is going to become very large when |a| = 1/4/2. This is consistent with the
graph in figure[ll In fact this term actually diverges at this value of a, but this
is a symptom of the breakdown of this approximation, which is why we included
the € in the statement of the theorem. In this transitional range, Theorem
below is the appropriate form to use.

Our Theorem B agrees with Theorem 2 of Ambainis et al., as expected, and
it also gives an estimate for the error term. We skip the proof that the answers
are identical for the ¢-functions as the probability function p(n,t) defined by

p(n,t) = ¥ (n,t) + i (n,t) (58)

is more interesting and we will show that for this function and its moments, our
answers are identical. We will use the identity sin? A = (1 — cos24)/2. Recall
that a = n/t, where we temporarily think of ¢ as fixed and let n vary. We may
then use B(n,t) to denote a bounded function with bounded derivatives and
A(n,t) for a function such that it and its derivatives are bounded away from 0,
thus for g (n,t) we have

Al 1) = 25 % ppp) + SO 20) (59)
(14« 1/2 V2
B(n,t) = (1 —a) (VT —2a7)1/? (60)
and for ¢r,(n,t) we have instead
V2
This enables us to write:
/Otz B(n,t) cos(A(n, t)t) da =
o2 d (sin(A(n,t)t) sin(A(n,t)t)A” (n,t) B
[ (g (Seg”) + B ™) da=
o2 d (sin(A(n,t)t)
/a1 B(n,t)% (W) da+ O(1/t) =
{B(n,t}4 iifg(tm)t)h:_ /n ”t B/(nji/s(i;l,(ginjt)t) do+0(1/t) = O(1/t)
(63)

by a simple integration by parts, where oy = ny/t1, as = na/ta. If we write
p(a) = tp(n,t) (following Ambainis et al.) and note that the O-term is uniform

13



for —1/\/5 +e<a< 1/\/5 — ¢, then that observation and our Theorem B give
us that

[ [ (g (122) ) o 0

provided |a| < 1/v/2 — ¢. Note for the quantum walk p(a) is 0 when n and ¢
have unequal parity so for the quantum walk we have

s 1 s 1
/al (@) da_;/m T e oar (65)

To confirm that we have a probability distribution, we must verify that the
function integrates to 1 :

—e+1/V2 1 [etl/vE 1
p(a) da ~ —/ da (66)
/5—1/\/5 TJec1yvz (1 —a)vV1—2a2
1 [et/ve 1
~ = da. 67
T /5—1/\/5 (1—-a?)V1—2a? (67)

If we let cosk = —a/v/1—a?, and sink = v1 —2a2/y/1 — a2, then we can

write

dk 1

= 68
da (1—-a2)V1—2a2 (68)
SO
1 —e+1/V2 1 8(—¢)
_/ p(a) da = —/ dk =1 —271715(¢) (69)
T Je—1/V2 T J—n+5(e)

where lim._,g d(¢) = 0, as required. The correction term appears because we
have only performed the integration over the oscillatory range of the probability
function, as this is where it has almost all of its support.

We can now write down the m-th moment of the distribution:

1 [yv2 a™
1 / da. (70)
T J_1vz (1—a)V1—2a?

Thus the first moment is

1 vz a2 —1 1/v2 1
_/ da+—/ do
m™Jo1va (1= a?)V1—2a2 TJ_1vz (1—a)vV1—2a2

1

VE s
=—— ———da+1=1-1/v2. (71
7T/_1/\/§ V1—2a2 / (1)

The second moment can be seen to be also equal to 1—1/\/5.
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4.2 The exponential range: |a| > 2/v2+¢

We now consider the range o > 1/\/5 + e where 0 < e < 1 — 1/\/5 The
Gawronkski and Shawyer results are an extension and refinement of the results
of Saff and Varga [I4]. We state the results as Saff and Varga do. They write

gm0 (0) = [ e @g(ic (72)
r
where
h(¢) = In(¢? —1)—1n2—1n§+12_—aa1n(1+0, (73)
- 81—yl
o0 = 3501 +0°1- 0 (74)
They choose ¢ to be the saddle-point (~, where
_ 2 _

Using the saddlepoint method they derive
Theorem 3 (Saff and Varga [14]).

1/2
(v,2am/(14+a)+3 ~ 1 - - 27#

G2 H0)+5(0) ~ i exp[mh(¢7)]g(¢ )<mh”(<_)> o

where 241 1 2

" + a
N (<):_2m+g—m. (77)

Now

L _a—VRPoT1 a+VEIIST_ ottavl? o1
(1o e . T e N ( )
el ”20‘1_13@27_1- (79)

Then according to Saff and Varga,

1—a? 14+

m 2am/(1—a)
JG2am/(1=a) 450y <a2 + 207 - 1) (1 +2a— 222 — 1) .

5
1 (1420—v2a2 -1 1+v2a2 -1\ 1+« < o )1/2
o 1+a 1+a a—+v2a2 -1 ¢)

where 2" (¢) is defined in (7).
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Gawronkski and Shawyer show that the ~ symbol can be replaced by 1+
O(1/t) and that this expansion holds uniformly for o € [1/v/2 +¢,1 — €.
Note that when a — 1/+/2,

(225)(520)
J1(T'Ly,2am/(1—a)+ﬁ) (0)‘1/771 N 1+ \/5 _ 2at/2 _ 271/2 (81)
1+1/v2

so the asymptotic estimate above metamorphoses into the asymptotic estimate
in Theorem I We shall state our results for positive o as those for negative o
follow immediately. These results refine the estimates of Ambainis et al. [3].

Theorem 4. If a > 1/v/2 + ¢, then uniformly for o € [1/v/2 +¢,1 —¢],

Un(n,1) = Cr B(@)(1+ 0(1/0) (52
Y1.n.0) = Cuzor BY@)(1+0(1/1) (53)

where B(a), Cr, Cr are defined in the asymptotic expansion of
2771/271‘]7(7;}/,201771/(1704)4»[5)(0) (84)

following from the above. (Note that for Cr,, v =0 and 8 = (1 + a)/(1 — «)
while for Cr, v =1, 8 =2a/(1 — «) in the above.) Thus

14+20—v22 =1\ [a2+vV2aZ2 -1\ °
Ble) = T+a TToa (%)
and
14+v2a2 -1
Cr = tVae x Ci(a) (86)
1420 —v2a2 — 1
where
1ta
1 [(14+2a—vV2a2—1.\""° 1+a 2
CL(Oz): ) X
V2m I+a a—+v2a? -1 l-«a

a++v2a? -1 2_ (1+ a)?
l-«a (1—0[)(204—}-1—\/%)

Ca(v2a2 =1 - (1+2a))(1+a)? e (87)
14+ a(l —a++v2a?2—-1))2

to reconstruct the complete wavefunction. The asymptotics for « in the range
—1+e<a< —1/v2—¢ follow from the spatial symmetry between —n and n.

Figure Bl shows the steepest descent curves for this range.

Remark: Saff and Varga show that B(«a) is a decreasing function of « for
a € [1/v/2+¢,1—¢]. Thus the ¢— functions decrease exponentially in ¢ in this
range.
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Figure 3: Steepest descent and ascent curves for |a| > 1/v/2. The teardrop
shape and the line from (T are both steepest descent curves, but only the
contour that surrounds the origin gives a valid integral. The remainder of the
lines are steepest ascent curves.

4.3 The transitional range: 27?2 —c <a <272 4+ ¢

We now consider the range 1/v/2—¢ < a < 1/v/24¢. Theorems 2 and B exhibit
an oscillating sine term times t~'/2 for |a| < 1/4/2 — ¢ and an exponentially
small estimate for |a| > 1/v/2 + ¢. Saff and Varga [14] show that if o = 1/v/2
then

oo /3
- 3 ! (mh(3)(go¢— 1)) Tr/8) (88)

(See also Ambainis-et al, [3].) The asymptotic behaviour is therefore qualita-
tively different in the three cases |a| < 1/v2 —¢, a = 1/v/2, and |a| >
1/ V2 +e.

We now apply the analysis for coalescing saddle-points as described in R.
Wong’s book [T6], to get a uniform asymptotic expansion for a range of @ extend-
ing a positive distance on each side of @ = 1/ V2. The asymptotic behaviour
is described in terms of the Airy function, Ai(z). These functions cannot be
written out explicitly, but (like Bessel functions) they can be written in terms
of integral representations that are well understood. It suffices for us to know

Jﬁ,za/(pa)m)(o) - 9(
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that as x — —oo the behaviour of these functions is oscillatory,

Ai(—z) ~ % cos(%xg/z —/4) /x4, (89)
2174
A¥ (=)~ S sin(§x3/2 — /1) (90)

but that when z — oo they behave like

1 2
AZ((E) ~ ﬁﬂ'(ﬂlﬂl exp <—§$3/2) 5 (91)
" L in 2 30
Ai'(z) ~ —mx exp ( —3@ (92)

which decreases faster than any power of x.
Recall that we have the two saddle-points (7, (T = (e Fv2a2 —1)/(1 + ).
Following Wong we define the variables ( and n by

¢ = S(h(¢H) ~ hC)) (99)
or 2012 =(¢t— (¢ =2ivV1-2a2/(1+ ), (94)
1= 5(h(¢) +H(CH) (95)

We must choose ¢, ¢t as we have because we want the range of o > 1/v/2
to give positive ¢ so that there is exponential decay as ¢ — co. Note also (as
Saff and Varga point out) that if o = 1/+/2 then

’ 1"

h(a)=h(a)=0 (96)
B (@) = _m;gifaﬁ' (97)
Thus l+a , \
h(1/V2+6) = —ma +0(6%) (98)
" mh(a) =o(1) if §=o(m™/3). (99)

Also h(¢t) ~ h(¢™) son ~ h(¢™) for this range of a.
Suppose for now that equation 4.31 in chapter VII of Wong [16] holds, which
in our notation becomes

Ai(m?2/3 Ai (m2/3
Jﬁgvm/“—“”m(m—2m'e‘"”’< Z%/B Dy + anjg Dby ) (- 0(m12)

(100)
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where ap and by are independent of m. (In Wong’s book, our m is his A and our
¢ is his t. Our Jacobi polynomial is his I()\; «), but his « is something else.) To
obtain an expression for 1, we need to set v = 0 and

1+«
= 101
f=1o (101)
as in Theorem Pl Likewise, for g, we will need to set v =1 and
2c
= ) 102
b= (102)

The previous argument shows that the term mn = o(1) if § = o(m~'/3) and so
the €™ term is asymptotic to 1. Note furthermore that if & = 1/4/2 4 § then
the definition of ¢ implies that

‘= 1—2a2 42

T (1+ﬁ)25+0(52). (103)

Thus
m2/3¢ = —£m2/3(5+0(62). (104)
(1+v2)?
When we use this estimate in the asymptotic behaviour of Ai(m2/ 3¢) and
Ai (m?/3¢) we see that the Airy functions give terms superpolynomially small if
§>m 23 Ifd=m™", n< 2/3 however we see that the ¥-functions are only
polynomially small. A similar argument shows that if |a| < 271/2 — m=2/3+¢
then the behaviour of the v is oscillatory.

We can therefore write that the transition from oscillatory behaviour bounded
below by a power of m or ¢ to bounded above by a superpolynomially small func-
tion occurs when a varies by O(t=2/3) from 1/+/2.

We may use equation 4.31 in chapter VII of Wong [16] if the transformation

h(¢) =u®/3 —Cu+n (105)

is single-valued on the contour of integration. We may use the Gawronkski-
Shawyer contour of integration (which Saff and Varga also use). The transfor-
mation will be one-to-one if on the path of integration,

dc du
™ # 0 and d_C #0. (106)
Now i 2 ¢

and the bottom derivative is only zero at the saddle-points. The only saddle-
points are at ¢~ and (™. Wong shows that the choice of (, (™ we used implies
that % # 0. The only place the numerator is zero is at (~, (™ and the denomi-
nator is analytic and therefore bounded on the contour of integration. We find
from Wong’s book that
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Theorem 5. There is a positive € so that uniformly for some ag and by (defined

below)
J2em A=) t6)(0) = 2mie~™" ( g0+ —a—=obo | (1+0(m™H?)).
(108)
When n =t mod 2 and J&™" (z) denotes a Jacobi polynomial,
2am 4 4o
Y (nat) = 2721 ISR () when 0 < < (109)

where we can use the Remark following lemmald to obtain the wavefunction for
negative n. Also,

20¢7n+ 2a )
11—«

l+a )2—n/2—1J7($» jom

Yr(n,t) = (1—a (0), when 0<n<t, (110)

and use the symmetry properties to obtain the other half as before.

So this integral representation is valid for all values of —1+e < a<1—¢.
In this theorem,
dg¢

Bolu) = 9(0) 5 (111)
and
a0 = 5[60(C72) + 0(~¢ /), (12)
bo = 3166(¢7%) = 0(~¢). (113)

Remark: Theorem [l gives the asymptotic behaviour in a rather convoluted
way. It is really only useful for |a| very near to 1/4/2, where the behaviour
undergoes a qualitative change from oscillatory to exponential decay. For other
values of a;, Theorems P and B give much simpler expressions for the wavefunc-
tion.

Figure Bl shows the steepest descent curve when the two saddle-points coa-
lesce.

4.4 FError bounds for the method of steepest descents.

We now discuss very briefly the error-terms in our results so far. We restrict
our attention to ¥y, (n,t) and Theorem Pl above, but similar comments apply to
the other results in this paper and g (n,t). In order to apply Theorem 7.1 of
Olver we expand h(¢) and g(¢) in powers of ( — (*:

() mh(CHHE 2 br(C—C )T (114)

9(Q) =g(¢M) +> e(¢—=¢h) (115)
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Figure 4: Steepest descent and ascent curves when the saddle-points coalesce.
The tear-drop shape and the line from ¢* comprise the steepest descent curve,
and the two lines out to +00, together with the line to the origin are the steepest
ascent curve.

and write

(S bG=CH” <g<<+> 3 e - w) ~Salc-¢t (16
r=1 s=0

The steepest descent contour that Gawronkski and Shawyer use naturally
separates into two pieces, a piece I';y above the real axis and a piece I'y below
the real axis. Notice that I'; is the mirror image of I'y in the real axis. With
this notation, Theorem 7.1 in Olver’s book [I3] says

—mh(¢) ~ 7mh(§+) azs
/Fl e 9(¢) ~ 2e § Or(s+ 12— (117)
Here
g
ag = (2h//)1/2 (118)

2h/// 5 (h///)z h//// 1
az = {291/ T + (6(h”)2 YV 9 (2n'")1/2 (119)

when ¢, h and their derivatives are evaluated at ¢ = (™. The asymptotic expan-

sion of the integral over I's is the complex conjugate of the integral over I'y. Tt
is therefore possible to derive complete asymptotic expansions for ¢r,(n,t) and
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r(n,t) and certainly Gawronkski and Shawyer were aware of this. The s =0
term is the asymptotic formula of Theorem Blabove. Since we do not need more
precision than in Theorem B for this application, we do not pursue this further.

Olver then explains how to derive numerical estimates for the error term.
This is somewhat complicated so we refer the reader to section 10 of chapter 4
of Olver’s book. One needs to compute the maximum of certain quantities on
the contour of integration. Since we do not have applications of such bounds
we will not pursue that here. Olver also shows how to derive explicit numerical
error bounds when the asymptotic expansion immediately above is truncated
at any value of s.

5 The Schrodinger Approach

Nayak and Vishwanath [I2] start from the recursion relations in (@l) and use the
Fourier transform ~ _
U(k,t) =) U(n,t)e" (120)

where 1 (n, t) is defined by ([Il) and obtain
U(k,t 4 1) = MU (k,t) (121)
when
_e—ik ik
V2My = ( b ik > (122)
The eigenvalues of M, are
)\1 — eiwk7 )\2 — ei(ﬂ'—wk) (123)

where wy, € [~7/2,7/2] and satisfies sin wy = sin k/v/2.
It follows that 3 }
Uy (t) = MiW(k,0). (124)

They deduce from this that

~ 1 k . 1 t k )
U (k,t) == (1 + L) eiwont 4 (—1) (1 . cos ) it

2 V14 cos?k 2 V14 cos?k
(125)
Ug(k,t) = R (e™% — (=1)femxt). (126)
2v/1 + cos? k

Formally inverting the original Fourier transform (using Cauchy’s integral for-
mula) and some ingenious manipulations produce

W (n, ) — / [ (127)
L = o Tt otk

™ dk cosk )
7 t) = D1 ) e ilwst—kn) 128
=[5 (1 i) (128)
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sin k

where wy, = arcsin (W) € [-n/2,7/2].

They then apply the method of stationary phase to obtain a weaker version of
TheoremPlabove, and integration by parts to show that the wavefunction decays
superpolynomially fast for |« > 1/ v/2, which gives them a much weaker version
of Theoremll] (Ambainis et al. show that this decay is exponential, but they were
unable to obtain uniform asymptotics). Of course both approaches consider the
same functions ¥y,(n,t) and Ug(n,t), the differences are just the representation
of the generating functions and the choice of contour of integration, as we will
discuss below.

If |of < % each eigenvalue is minus the complex conjugate of the other, so
the i-functions have an oscillating factor. When we find the stationary points
of the phase, we obtain an equation for k at the critical points, k. This is

—
Vi—a?’

When |a| < 1/4/2 this has solutions which are real and distinct. The two
solutions merge at « = 1/ V2, and then become complex. When « is outside the
range |a| < 1/4/2 the phase has no stationary point on the real axis. We have
been unable to find a method for approximating these integrals. It is worth
noting that (I27)) are themselves integral representations of Jacobi polynomials
as a function of its parameters.

The exponentially decaying solutions are counter-intuitive in other ways.
As we mentioned above, for this case k, is complex, so instead of seeing the
oscillatory behaviour we might be expecting, instead the wavefunction decays
within an exponential envelope. This is rather like the phenomenon of evanes-
cent waves. These can also occur classically: consider an electromagnetic wave
incident on the surface of a conductor. These waves cannot propagate in con-
ductors, as the latter will not sustain charge gradients. However, the wave does
impinge a finite distance into the conductor (the “skin depth”) over which its
amplitude decays exponentially. Mathematically, this is equivalent to a com-
plex wave-number. Evanescence can also occur in quantum mechanics, typically
in regions that are classically forbidden to the particle. Strangely, both these
scenarios involve the presence of some kind of barrier, but no such barrier is
present for the quantum walk. These regions are not classically forbidden to
the particle, it’s just very unlikely to be there.

cosky = (129)

5.1 The relationship between the two approaches

In the paper by McClure and Wong [T0] the authors show that the methods of
stationary phase can be reduced to the method of steepest descent under quite
general conditions, as the same results can be obtained from either method,
with exactly the same convergence properties. We can see this intuitively as
follows. Using steepest descents, we have the integral

1

1 o~ h(0)
3 /.99 . (130)
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If the contour I' goes through the saddlepoint ¢ we can deform I to the curve

|| = |¢t| =7 or ¢ = re®, for some dummy variable 6. This produces an integral
1 (7 e . :
— e—mf(re e)g(rew)rew do. (131)
2 J_,

If we separate f into its real and imaginary parts, then we obtain
1 T

= e—m(?R(f(reie))+i§(f(rei9)))g(reié),reie d6. (132)
™ -

For a quantum system undergoing unitary evolution, R(f) = 0 and since r
is a constant, this integral is of the form required for the stationary phase
approximation. So we will write 1(0) = 3(f(re'?)).

The stationary points are those 6 for which p(6)" = 0 but since

du(@) ., . d¢

we see that the stationary points are identical to the saddle-points. With the
method of steepest descents the integrand has a very small absolute value away
from the saddle-point. By contrast, in the method of stationary phase the
oscillations of the kernel p become arbitrarily rapid away from the stationary
point, and so self-cancel so long as g(re) is sufficiently smooth. (Readers
requiring further details are referred to the lucid exposition in [I0].)

(133)

6 Conclusion

We have developed a new way of analysing the discrete quantum walk on the
infinite line in terms of Airy functions, which has the advantage of being able
to handle the dramatic changes in the asymptotic behaviour of this system in a
uniform manner. We have also probed the mathematical relationship between
the path-integral and Schrodinger approaches to solving this problem. Previous
authors have found the methods of integration by parts and stationary phase
to be problematic over some parts of the range of a. By contrast, the method
of steepest descents yields a unified treatment of the system.
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