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Controlling discrete quantum walks: coins and intitial states
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In discrete time, coined quantum walks, the coin degrees of freedom offer the potential for a wider
range of controls over the evolution of the walk than are available in the continuous time quantum
walk. This paper explores some of the possibilities on regular graphs, and also reports periodic
behaviour on small cyclic graphs.

I. INTRODUCTION

Quantum walks are analogs of classical random walks,
designed primarily with the aim of finding quantum al-
gorithms that are faster than classical algorithms for the
same problem. There are two distinct types of quan-
tum walks, corresponding to classical random walks with
discrete or continuous time (but both taking place in a
discrete space). Continuous time quantum walks were
first introduced in 1997 by Farhi and Gutmann [1]. Dis-
crete time quantum walks with a quantum coin appeared
in the early 1990s in work by Y Aharonov et al. [2], then
were developed as quantum cellular automata by Meyer
[3, 4, 5] in 1996. The first explicitly algorithmic con-
text for coined quantum walks came from D Aharonov et

al. [6] and Ambainis et al. [7] in 2000.

Two algorithms for quantum walks have recently been
presented. Childs et al. [8] prove that a continuous time
quantum walk can find its way across a special type of
graph exponentially faster than any classical algorithm,
and Shenvi et al. [9] prove that a discrete time, coined
quantum walk can equal Grover’s search algorithm, by
finding a marked item in an unsorted database with a
quadratic speed up over the best known classical algo-
rithm. These results are extremely promising, but still
a long way from the diversity of problems that classical
random walks provide the best known solutions for, such
as approximating the permanent of a matrix [10], find-
ing satisfying assignments to Boolean expressions (kSAT
with k > 2) [11], estimating the volume of a convex
body [12], and graph connectivity [13]. Classical ran-
dom walks underpin many standard methods in com-
putational physics, such as Monte Carlo simulations, so
a more efficient quantum alternative would presumably
widen the potential application of quantum computers to
problems in physics.

In much the same way as we now know almost ev-
erything about the properties and possible states of two
qubits, though quantum computers will clearly need far
more than two qubits to be useful, the simple quantum
walk on a line has now been well studied, see for example
Refs. [7, 14, 15, 16, 17, 18, 19], though there is no sugges-
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tion that it will lead to useful quantum walk algorithms
by itself. The quantum walk on a cycle is a step closer
to algorithms. The N -cycle is the Cayley graph of the
cyclic group of size N , and in addition to proving that
the coined quantum walk on a cycle has a time-averaged
mixing time almost quadratically faster than a classical
random walk, D Aharonov et al. [6] also provided a lower
bound on the time-averaged mixing times for quantum
walks on general graphs of bounded degree, suggesting
a quadratic improvement over classical random walks is
the best that can be achieved. Moore and Russell [20]
solved both discrete and continuous time quantum walks
on the hypercube of size N , showing that both have an
instantaneous mixing time linear in N , logarithmically
faster than classical random walks. However, they also
showed that time-averaged mixing times on the hyper-
cube are slower than classical, the continuous time walk
never mixes in the sense of the time-averaged definition.
Kempe [21] proved that a quantum walk can travel from
one corner of a hypercube to the opposite corner expo-
nentially faster than a classical random walk, however,
there are other classical algorithms that can do this task
efficiently so this does not provide a quantum advantage
over classical. For a recent survey of quantum walks and
a more complete list of references, see Kempe [22].

So far, though the published literature on discrete and
continuous time quantum walks tends to treat different
problems, the evidence suggests that both can accom-
plish the same tasks. They are clearly not exactly equiv-
alent, and the computational equivalence observed de-
pends on choosing an appropriate form for the coin oper-
ator for the discrete time walks. This raises the possibil-
ity that different choices of coin operator could perform
other useful tasks that aren’t easily accessible within the
continuous time quantum walk model. In this paper, we
present a study of the properties of different coin opera-
tors using both analytical and numerical methods. Our
results are of interest both in themselves as examples
of quantum dynamics, and as potential ingredients for
quantum algorithms. The paper is organized as follows.
After setting up our notation, we discuss the possibili-
ties for graphs of degree two, three, and four in Secs. II,
III, and IV respectively. In Sec. V we briefely mention
graphs of higher degree and in Sec. VI we describe peri-
odic quantum walks on cyclic graphs.
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A. Notation for a general quantum walk

A general coined quantum walk on a d-regular graph
needs a coin Hilbert space, Hd with d the degree of each
vertex in the graph on which the walk takes place, and a
position Hilbert space HN with N the number of vertices
in the graph (which can be infinite). The dynamics of the
walk are controlled by a coin flip operator C that acts on
the coin Hilbert space, and a conditional shift operator
S that shifts the particle position according to the state
of the coin. Together, U ≡ S(C ⊗ IN ) is the unitary
operator for one step of the walk. If the particle and coin
start in state |ψ0〉, the state of the system after t steps
of the walk is |ψt〉 = U

t|ψ0〉.
A powerful technique for the solution of classical ran-

dom walks that generalises well to the quantum case is
that of Fourier transformation. When the walk occurs
on the Cayley graph of some group, the quantum walk
simplifies greatly on consideration of the Fourier space of
the particle [6, 7]. Quantum walks on the infinite line, N -
cycle and the hypercube admit this type of solution. An
alternative method using path counting (path integrals)
was also presented in [7] and further refined in [15].

II. GRAPHS OF DEGREE TWO

We will consider the simplest examples first, coined
quantum walks on the line and the cycle. The walk on
the line has already been analysed in detail and the equiv-
alence of all unbiased coin operators noted by several au-
thors [7, 14, 16]. We first review these calculations, since
the notation and results will be used in our analysis of
the walk on the N -cycle.

A. Quantum walk on an infinite line

The most general two dimensional unitary coin opera-

tor C
(gen)
2 can be written as a 2 × 2 matrix

C
(gen)
2 =

( √
ρ

√
1 − ρeiθ

√
1 − ρeiφ −√

ρei(θ+φ)

)

, (1)

where 0 ≤ θ, φ ≤ π are arbitrary angles, 0 ≤ ρ ≤ 1, and
we have removed an irrelevant global phase so as to leave
the leading diagonal element real. The Hadamard coin
operator is obtained with ρ = 1/2 and θ = φ = 0. The
parameter ρ thus controls the bias of the coin, ρ = 1/2
being a fair coin that chooses each of the two possible
directions |R〉 (right) and |L〉 (left) with equal proba-
bility. Trivial cases ρ = 0,1 give oscillatory motion and
uniform motion respectively. The Fourier transformation
is performed only over the particle Hilbert space,

|ψ̃(k, t)〉 =
∑

x

|ψ(x, t)〉eikx. (2)

Here the state vectors |ψ(x, t)〉 and |ψ̃(k, t)〉 are two com-
ponent vectors, with the first component being the ampli-
tude of the right moving part and the second component
being that of the left moving part, with k ∈ [0, 2π). Us-
ing the general form of the coin transition matrix for a
one dimensional walk, Eq. (1), a single step of the walk
becomes

|ψ̃(k, t+ 1)〉 = C
(gen)
k |ψ̃(k, t)〉, (3)

where C
(gen)
k is a 2× 2 matrix acting on the coin Hilbert

space,

C
(gen)
k =

( √
ρeik

√
1 − ρei(k+θ)

√
1 − ρei(−k+φ) −√

ρei(−k+θ+φ)

)

. (4)

This matrix may be diagonalised, yielding eigenvalues

λ±k = ±eiδe±iωk , (5)

where δ = (θ + φ)/2 and

sin(ωk) =
√
ρ sin(k − δ). (6)

The associated eigenvectors are

|ξ̃±k 〉 =
1

n±
k

(

eik

e−iθ(λ±k −√
ρeik)/

√
1 − ρ

)

, (7)

with the normalisation factor n±
k given by

(n±
k )2 = 2 {1 ∓√

ρ cos(k − δ ∓ ωk)} /(1 − ρ) (8)

For a general unbiased initial coin state, |ψ(x, 0)〉 =√
η(|R〉 + eiα

√
1 − η|L〉) ⊗ |0〉, the Fourier components

at t = 0 can be found from Eq. (2),

|ψ̃(k, 0)〉 =

( √
η

eiα
√

1 − η

)

⊗ |k〉 ∀k. (9)

Collecting all these pieces together, it is possible to write
down the Fourier components at all later times t,

|ψ̃(k, t)〉 = (C
(gen)
k )t|ψ̃(k, 0〉. (10)

Expressing C
(gen)
k in terms of its eigenvalues and eigen-

vectors, (C
(gen)
k )t = (λ+

k )t|ξ̃+k 〉〈ξ̃+k |+(λ−k )t|ξ̃−k 〉〈ξ̃−k |, gives

|ψ̃(k, t)〉 = (λ+
k )t|ξ̃+k 〉〈ξ̃+k |ψ̃(k, 0)〉

+ (λ−k )t|ξ̃−k 〉〈ξ̃−k |ψ̃(k, 0)〉 (11)

The coefficients of |ξ̃±k 〉 are given by

(λ±k )t 〈ξ̃±k |ψ̃(k, 0)〉 =
(λ±k )t

n±
k

e−ik

{√
η

−
√

1 − η

1 − ρ
ei(θ+α)(

√
ρ∓ ei(k−δ)e∓iωk)

}

. (12)

All the subsequent statistics for the probability distribu-
tion may be found by inverting the Fourier transform and
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FIG. 1: Asymmetric distributions obtained with various ini-
tial states and Hadamard coin for the walk on a line after 100
steps: coin bias η ≃ 0.85 (crosses), coin state |R〉 (circles),
with symmetric (dashed) and classical (dotted) for compar-
ison. Only even-numbered positions are plotted, since the
distribution is zero on odd-numbered positions.

applying standard methods from complex analysis [7, 15].
However, the question of the effect of the extra degrees
of freedom α and η pertaining to the quantum coin, and
φ, θ and ρ in the coin operator, may be answered di-
rectly from Eq. (12). The parameters η and ρ appear in
a non-trivial way and thus affect the subsequent evolu-
tion of the walk, but the phase factor α occurs solely with
the phase θ in the coin flip operator as the combination
(θ + α). The other influences on the evolution from the
phases in the coin flip matrix come from the factor eiδt

in the eigenvalues, which is a global phase and therefore
doesn’t affect observable quantities, and from phases of
ei(k−δ) (explicitly and in ωk), which disappear when k is
integrated over its full range during the inverse Fourier
transform. Thus, for any given θ in the coin operator,
one may choose an α so as to give the full range of pos-
sible evolutions. This has been noted by several authors,
[7, 14, 16]. For the walk on a line, without loss of gener-
ality, one may thus restrict the coin operator to one with
real coefficients, and obtain the full range of behaviour by
choosing different initial coin states. Further restricting
to unbiased coins (ρ = 1/2), the Hadamard coin

C
(H)
2 =

(

1 1
1 −1

)

, (13)

is thus the only possible type of coin for the quantum
walk on a line.

The asymmetry of the distribution obtained for an ini-
tial coin state of |R〉 or |L〉 is now well-known, and is
also obtained for unbiased initial states with α = 0 or
π. However, it is possible to create an even more biased
distribution using the Hadamard (unbiased) coin oper-
ator, by choosing a biased initial state with η ≃ 0.85,
i.e., |ψ0〉 = (

√
0.85|R〉 +

√
0.15|L〉) ⊗ |0〉. This is shown

in Fig. 1, along with the distributions for |R〉, and sym-
metric quantum and classical distributions for compar-

ison. The asymmetry of the distribution can be quan-
tified by examining the third moment, which we take
about the origin, i.e., with reference to the initial loca-
tion of the particle, normalised by the second moment,
〈x3〉/〈x2〉3/2. This quantity is just greater than one for
the initial state with η ≃ 0.85, and around 0.7 for an
initial state of |R〉 (obtained numerically, for analytic
formulae see Konno [23, 24], the value of η comes from
cos(π/8) ≃ 0.85). By simply changing the phase by π to√

0.85|R〉 −
√

0.15|L〉, the distribution becomes symmet-
ric. Comparing this with the unbiased coin initial state
(|R〉 + i|L〉)/

√
2 that also gives a symmetric evolution,

and noting that the Hadamard operator is real, so any
component with phase i remains orthogonal to any real
component, we can see that there are two distinct ways of
arriving at a symmetric quantum walk on a line. Initial
states

√
0.85|R〉−

√
0.15|L〉 (biased) and (|R〉+ i|L〉)/

√
2

(symmetric) give almost identical probability distribu-
tions, but the former is obtained by interference and the
latter by combining probabilities from two mirror image
orthogonal components.

This gives us our first insights into how to use the
coin to control the walk. The quadratic speed up in the
spreading of the quantum walk over classical is unaffected
by the choice of initial state or coin operator: the speed
up comes solely from the coherent wave motion along the
line. This is made clearest by noting that a maximally
mixed initial coin state also produces a symmetric distri-
bution like the previous two examples. We can then con-
trol whether (and to what degree) the waves will interfer
constructively, destructively, or not at all, by choosing
the phase and bias of the coin initial state.

B. Quantum Walk on a N-Cycle

The walk on a N -cycle is the same as the walk on the
line but with the particle position taken as x (mod N).
It is also amenable to solution in the Fourier basis. The
finite state space of the particle gives rises to a discrete,
finite momentum space defined by

|ψ̃N (k, t)〉 =
1√
N

N
∑

x=0

|ψN (x, t)〉e2πikx/N , (14)

for k ∈ {0, 1, ...N−1}. From here it is possible to proceed
in a similar manner to that shown in Sec. II A for a walk
on an infinite line. Equation (3) may be used again, with

the discrete version of C
(gen)
k given by

C
(N)
k =

( √
ρe2πik/N

√
1 − ρei(2πk/N+θ)

√
1 − ρei(−2πk/N+φ) −√

ρei(−2πk/N+θ+φ)

)

.

(15)
This may again be diagonalised, yielding eigenvalues

λ±k = ±eiδe±iω
(N)
k , (16)

where now

sin(ω
(N)
k ) =

√
ρ sin(2πk/N − δ), (17)
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compare Eq. (6). The possible solutions for ω
(N)
k are

bounded by sin−1(
√
ρ), e.g., for ρ = 1/2, there are two

solutions for ω
(N)
k one in each of the regions [π/4, 3π/4]

and [−π/4,−3π/4]. The first solution corresponds to λ+
k

and the second to λ−k .
Classically, a random walk on a cycle tends to a uni-

form distribution over all points on the cycle at long
times. Since the quantum walk is unitary and reversible,
it never reaches a uniform distribution, the initial state
influences the particle’s dynamics at all later times. How-
ever, we can define a time-averaged distribution [6] which
does tend to a limiting value for large T ,

P (x, T ) =
1

T

T−1
∑

t=0

P (x, t), (18)

where P (x, t) = |U t|ψN (x, 0)〉|2. It is proven in [6] that

lim
T→∞

P (x, T ) =
∑

v,u∈λv=λu

〈ψN (x, 0)|φ±v 〉〈φ±u |ψN (x, 0)〉

×
∑

a

〈x, a|φ±v 〉〈φ±u |x, a〉, (19)

where the sum is taken only over degenerate eigenvec-
tors of the position space evolution matrix U, which
are denoted by |φ±v 〉, |φ±u 〉, with eigenvalues λ±v = λ±u .
The general initial state is once again |ψN (x, 0)〉 =√
η(|R〉+eiα

√
1 − η|L〉)⊗|0〉. For the walk on a N -cycle,

the eigenvectors of U in the position basis are given by
|φ±v 〉 = |ξ±k 〉 ⊗ |χk〉, where the |ξ±k 〉 are the eigenvectors

of the matrix C
(N)
k and |χk〉 = 1√

N

∑

x e
2πikx/N |x〉, i.e.,

a discrete Fourier transform of the usual particle posi-
tion basis states. (We omit labels of N from |ξ±k 〉 and
|χk〉 to keep the notation less cluttered.) The associated
eigenvalues of U are (by construction) equal to those of

the matrices C
(N)
k , namely λ±k . Hence we can rewrite

Eq. (19) in terms of the eigenvectors of C
(N)
k ,

lim
T→∞

P (x, T ) =
∑

a,k,j,b,c

〈ψN (x, 0)|χk, ξ
b
k〉〈χj , ξ

c
j |ψN (x, 0)〉

× 〈x, a|χk, ξ
b
k〉〈χj , ξ

c
j |x, a〉. (20)

The sum is taken over k, j, b and c such that λb
k = λc

j .
It was shown in [6] that since the |χk〉 induce a uniform
distribution over the nodes, the limiting distribution will
also be uniform if all eigenvalues are distinct. The eigen-
values are degenerate in the general case if there exist
non-trivial solutions for

sin(2πk/N − δ) = sin(2πj/N − δ). (21)

This equation has solutions k = j and k + j(mod N) =
N/π(δ + π/2). The first is trivial, but whether the sec-
ond solution has roots depends on the coin flip opera-
tor and on N . For example, when a Hadamard coin
is used, θ = φ = δ = 0 so the condition becomes

k + j(mod N) = N/2 which has roots only for even N .
Thus for a Hadamard walk, cycles with an odd number
of nodes converge to the uniform distribution and those
with an even number converge to a non-uniform distri-
bution derived below. However, for a given N , the coin
flip operator with (δ + π/2) = π/N gives roots when
k + j(mod N) = 1 which always has a solution, leading
to a non-uniform limiting distribution. Conversely, if δ
is not a rational multiple of π, there can be no solutions,
and so the walk will always mix to the uniform distri-
bution. Thus, by appropriate choice of coin operator, a
walk on any size cycle can be made to converge either to
a uniform or to a non-uniform probability distribution.
This is in direct contrast to the classical case, in which
the properties of the limiting distribution depend solely
on the form of the graph.

We note that the limit as the cycle size N → ∞ leads
to the condition δ = −π/2 for a non-uniform limiting dis-
tribution. This gives θ + φ = −π, the simplest unbaised
coin operator corresponding to this is

C
(nu)
2 =

1√
2

(

1 −i
−i 1

)

. (22)

However, the practical limit of infinite cycle size is the
walk on a line, where the the opposite edges of the walk
never meet, and conditions for non-uniform distributions
are not meaningful.

It is possible to derive the limiting distribution when
there exist degenerate eigenvalues of the evolution opera-
tor U. In these cases, the summation in Eq. (20) contains
two distinct types of terms, those for which k = j and
those for which j = N/π(δ + π/2) − k ≡ Φ − k,

lim
T→∞

P (x, T ) =
∑

a,k,b

[

|〈ψN (x, 0)|χk, ξ
b
k〉|2|〈x, a|χk, ξ

b
k〉|2

+ 〈ψN (x, 0)|χk, ξ
b
k〉〈χΦ−k, ξ

−b
Φ−k|ψN (x, 0)〉

×〈x, a|χk, ξ
b
k〉〈χΦ−k, ξ

−b
Φ−k|x, a〉

]

. (23)

Using |〈x|χk〉|2 = 1/N ,
∑

a |〈a|ξb
k〉|2 = 1 and

∑

k,b |〈ψN (x, 0)|χk, ξ
b
k〉|2 = 1, the first term is easily seen

to be the uniform distribution (1/N). In the second term,
the factor that determines the form of the limiting dis-
tribution is

〈x|χk〉〈χΦ−k|x〉 = e4πix/N(k−Nδ/2π−N/4), (24)

which controls the sign of the terms in the sums. When
x = 0, all the terms in the summation are positive,
leading to a spike in the distribution about the ori-
gin. Similarly, if x = N/2, the phase of each term is
2π(k − Nδ/2π − N/4) so the terms add coherently (re-
member (Nδ/π−N/2) is an integer). Specifically, for the
Hadamard coin, δ = 0 and the contribution to the sum is
positive ifN/2 is even, i.e., N is divisible by four, or nega-
tive if N/2 is odd, leading to a minimum. The Hadamard
case has been independently calculated in more detail by
Bednarska et al. [25], who also explore some possibilities
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1 2 3 4 5 6 7 8 90
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FIG. 2: “Glued trees” graph used in the algorithm of Ref. [8].
Example shown is for N = 4, with 2N +1 = 9 columns labeled
at the bottom of the figure, and 2(2(N+1) − 1) = 62 nodes.
The task is to travel from entrance to exit without getting
lost in the randomly joined middle section of the graph. The
gap between columns 4 and 5 is for clarity in the figure and
is not significant in the algorithm.

for highly non-uniform limiting distributions generated
by initial states superposing several particle positions.

The effects of different coin flip operators have received
little attention in the literature to date, perhaps due to
the minimal effect they have for a walk on a line. How-
ever, for quantum walks containing closed cycles, the
choice of coin flip operator determines which phase the
wavefronts have when they meet up with each other, se-
lecting between whether constructive or destructive in-
terference occurs. Note that in [17] it was shown that
decoherence in a walk on a cycle causes all initial states
and coin operators to mix to the uniform distribution
even while there is still a clear quantum speed up over the
classical mixing times. The coherence required for non-
uniform limiting distributions is thus much more strin-
gent than that required for a quantum speed up of the
mixing time over classical. This suggests that in order to
use the effects non-uniform limiting distributions it will
be more useful if they have properties that can be mea-
sured after relatively few steps of the walk, rather than
waiting for long times.

III. GRAPHS OF DEGREE THREE

Regular lattices of degree three have been studied
briefly numerically [26], where the spreading rate was
shown to be faster than classical. The “glued trees”
graph used for the algorithm presented in Ref. [8] is
also of degree three apart from the special start and end
points that form the roots of the two binary trees, see
Fig. 2. This structure is highly symmetric, despite the
random connections in the middle, and provided a sym-
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FIG. 3: Distribution over columns of the “glued trees” graph
of Ref. [8] with a discrete time walk using a Grover coin. This
is for a graph of size N = 7 (with 2N + 1 = 15 columns). The
vertical dashed line indicates the position of the random join
between the two trees. The quantum walk reaches the far
end in just 17 steps, with probability around 0.6 (same as the
continuous time version).

metric initial state is used at the entrance node, the whole
quantum walk process can be mapped to a walk on a line
(the column positions shown in Fig. 2) with different bi-
ases in the probabilities for moving right or left at each
step. Childs et al. [8] use a continuous time walk for
their algorithm, but if a three dimensional coin based on
Grover’s diffusion operator with elements 2/d− δij ,

C
(G)
3 =

1

3





−1 2 2
2 −1 2
2 2 −1



 , (25)

is used with a discrete walk, the amplitude also interfers
constructively in the right way to reach the opposite root
of the trees quickly with high probability [17, 27], see
Fig. 3.

The Grover coin is biased but symmetric. The DFT
(discrete Fourier transform) coin is unbiased, but asym-
metric in that you cannot interchange the labels on the
directions without changing the coin operator. For d = 3,
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FIG. 4: As Fig. 3 but with DFT coin, after 12 (circles), 60
(squares), 120 (triangles) steps of the walk. A classical ran-
dom walk after 120 steps is shown dashed.

it looks like

C
(D)
3 =

1√
3





1 1 1
1 eiω e−iω

1 e−iω eiω



 , (26)

where eiω and e−iω are the complex cube roots of unity,
For d = 2, the DFT coin reduces to the Hadamard coin,
Eq. (13). If a DFT coin is used instead of a Grover coin
on the “glued trees” graph, this keeps the amplitude near
the starting point and the walk does not spread out even
as far as a classical random walk, see Fig. 4. While this is
not useful in the context of the “glued trees” problem, it
is still highly non-classical behaviour, and with the right
problem and initial coin state, the DFT coin operator
may find its place in a useful quantum walk algorithm.

IV. GRAPHS OF DEGREE FOUR

Quantum walks on regular two dimensional lattices
have been investigated numerically by Mackay at al. [26].
They found that the choice of coin operator gave differ-
ent prefactors to the linear spreading rate of the quan-
tum walk (compared to quadratic classically) and showed
some different symmetries for different coin operators.

Here we present a more systematic (but by no means
comprehensive) investigation of the effects of different
unbiased coin operators combined with different initial
states. We consider mainly an unbounded, regular,
square lattice, but also consider the cases where the edges
are joined in either normal periodic boundary conditions
to give a torus, or twisted to give a Klein bottle.

A. Quantum Walk on a Two Dimensional Lattice

One obvious generalisation of a Hadamard coin to two
spatial dimensions is to take two Hadamard coins, one

FIG. 5: Distribution obtained after 40 steps of a quantum
walk on a square lattice using a Hadamard coin operator and
the symmetric initial state Eq. (29).

for left or right (|L〉, |R〉), and one for up or down (|U〉,
|D〉). As shown in [26], this simply produces the same
pattern as the Hadamard coined walk on a line in both di-
rections, because the coin operator does not mix the two
directions in any way, see Fig. 5. The standard deviation
is the same for all choices of initial state that produce
a symmetric distribution, even maximally mixed, and is√

2 larger than the standard deviation for the walk on
the line, as noted by Mackay et al. [26].

More interesting are the degree-4 DFT coin,

C
(D)
4 =

1

2







1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i






, (27)

and degree-4 Grover coin,

C
(G)
4 =

1

2







−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1






, (28)

(the only case where the Grover coin is unbiased), both
used in Ref. [26]. Typical results for these coins and a
symmetric initial coin state

|ψ(sym)
0 〉 =

1

2
(|LD〉 + i|LU〉+ i|RD〉 − |RU〉) ⊗ |0〉

=
1

2
(|L〉 + i|R〉) ⊗ (|D〉 + i|U〉) ⊗ |0〉, (29)
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FIG. 6: Distribution obtained after 40 steps of a quantum
walk on a square lattice using a DFT coin operator and the
symmetric initial state Eq. (29).

with the particle starting at the origin are shown in Figs.
6 and 7.

As noted in Sec. II, there is essentially only one type
of coin operator for the quantum walk on a line, the
Hadamard operator, with the full range of outcomes ac-
cessible by adjusting the coin initial state. For the walk
on a two dimensional lattice, the situation is obviously
more complicated: the three coins illustrated so far give
distinctly different results whatever initial coin state is
chosen. The full range of possibilities is determined by
the SU(4) group structure of the unitary coin operator,
but in order to sample the possibilities numerically, we
chose to look at unbiased coins (all elements have mod-
ulus one half) and to further restrict those elements to
be ±1/2 or ±i/2. Choosing the leading diagonal entry
to be +1/2 leads to a set of 640 such unitary coin opera-
tors, however, there is a high degree of redundancy if one
groups all results that are the same apart from rotation
or reflection. This can be done by using a simple initial
state of (say) |RU〉, and recording the second moment of
the distribution. The 640 coin operators then fall into
just 10 types, with either 32, 64 or 128 coin operators of
the original 640 in each type (more symmetric distribu-
tions have fewer variations). The Hadamard, Grover and
DFT coin operators are all of different types.

We then varied the initial state of the coin, and looked
for the maximum and minimum second moments. These
always occured for symmetric distributions (zero first
moment), the second moment is thus equal to the vari-
ance in these cases. Our results contradict those of

FIG. 7: Distribution obtained after 40 steps of a quantum
walk on a square lattice using a Grover coin operator and the
symmetric initial state Eq. (29).

Mackay et al., whose choices of initial states did not fully
exploit the properties of the Grover coin. Out of the ten
types, the Grover type coin can produce both the max-
imum and minimum possible second moments, meaning
that depending on the initial state, it can either spread
fastest or slowest from the starting point. The distribu-
tions make clear why, see Fig. 7. They have an imperfect
circular symmetry on the square lattice, with a central
spike, and a ring with something like the profile of the
distribution of the walk on a line superimposed on it.
The different initial states control how much of the dis-
tribution is in the central spike and how much is in the
ring, leading to the minimum and maximum values of
the standard deviation. In fact, most of the distribution
ends up in the central spike, except for exactly the right
choice of initial state,

|ψ(G)
0 〉 =

1

2
(|LD〉 − |LU〉 − |RD〉 + |RU〉) . (30)

Figure 8 shows the distribution produced from this initial
state, the contrast with Fig. 7 due to the absense of the
central spike is striking (though note the vertical axes
have different scales). Shenvi et al. exploit this property
of the Grover operator in a different way in their quantum
walk search algorithm [9]. Here they perturb the coin
operator by applying a different operation just at one
marked vertex. This causes an initially uniform particle
distribution over the whole lattice to converge on the
marked vertex, the reverse of a quantum walk starting at
the origin and spreading out.
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FIG. 8: Distribution obtained after 40 steps of a quantum
walk on a square lattice using a Grover coin operator and the
symmetric initial state Eq. (30).

A DFT coin is not so symmetric (at most rotation-
ally symmetric through π, whereas both Hadamard and
Grover coin operators can produce distributions rotation-
ally symmetric through π/2), but with the right choice of
initial condition, it too can produce a ring shape with no
central spikes, see Fig. 9. The initial state that produces
this distribution is

|ψ(D)
0 〉 =

1

2

(

|LD〉 +
1 − i√

2
|LU〉 + |RD〉 − 1 − i√

2
|RU〉

)

.

(31)
The results presented by Mackay et al. [26] did not test

a sufficiently wide range of initial states to draw represen-
tative conclusions about the effects of entangled coins on
the distributions obtained for the quantum walks. They
attributed faster spreading to lack of entanglement be-
tween the coin directions. However, the differences we
have found between Hadamard coins and Grover or DFT
coins are not in the degree of spread per se, but in the ex-
tent to which this can be varied simply through varying
the initial coin state. Both the Grover and DFT coins
produce faster spreading than the Hadamard coins with
the initial states noted above.

B. Cycles in two dimensions

By joining a square or rectangular section of a two
dimensional lattice at opposite edges, the walk space be-
comes periodic in both directions. In one dimension there

FIG. 9: Distribution obtained after 40 steps of a quantum
walk on a square lattice using a DFT coin operator and the
symmetric initial state Eq. (31).

is only the N -cycle, but in two dimensions the edges can
be joined directly, or twisted like a Möbius strip. This
gives three structures that are two dimensional analogues
of the N -cycle, a torus, a closed Möbius strip, and a Klein
bottle, depending on whether none, one, or both pairs of
the edges are joined twisted. Periodic boundary condi-
tions of these types are easy to implement numerically.
We tested a range of such structures using the same coins
as for the walk on a lattice, and found similar results to
those for a walk on a N -cycle with respect to mixing
times and limiting distributions. Further results for two
dimensional cycles are presented at the end of Sec. VI.

V. GRAPHS OF HIGHER DEGREE

For completeness, we mention that the hypercube, first
studied by Moore and Russell [20], and later found by
Kempe [21] to illustrate the possibility of an exponen-
tial speed up with quantum walks, uses a higher dimen-
sional coin. A hypercube with 2N vertices has exactly N
connections to each vertex and thus requires a N dimen-
sional coin Hilbert space. Shenvi et al. [9] also based their
quantum walk search algorithm on a hypercube, though
as they note, other lattices, such as a square lattice, will
do equally well. The symmetry of the hypercube with a
Grover coin is such that with a symmetric initial state,
the whole problem may be mapped to a walk on a line
with a variable coin operator, in the same way as for the
“glued trees” graph (see Sec. III). Consquently, there is
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FIG. 10: Probability of finding the particle at its initial po-
sition (x=0) for cycles of size N = 8 (upper) and N = 16
(lower) plotted against the time step of the quantum walk us-
ing a Hadamard coin. Only even time steps are plotted, since
for odd time steps the probability of finding the particle at
an even numbered node is zero.

a wide range of possibilities with less symmetric higher
dimensional coins yet to be explored.

VI. PERIODICITY IN QUANTUM WALKS

Systematic study of a quantum walk on a N -cycle, (de-
scribed in Sec. II B), shows that among the smaller values
of N , a number of completely periodic walks arise. This
is the opposite property to mixing: here the walk returns
exactly to its initial state after a finite number of steps Ω,
whereupon it repeats the same set of steps and returns
exactly again after 2Ω steps, and so on. There is no clas-
sical analogue of this property for random walks, since in
the classical case the dynamics are not deterministic. A
classical random walk on a cycle will return to its start-
ing state at irregular, unpredictable times. Note too, that
this periodicity is not connected with whether the limit-
ing distribution is uniform or not, since here we are con-
cerned with exact return to the initial state, rather than
the time-averaged quantity in Eq. (18). Related ideas in
continuous time walks have been studied by Ahmadi et

al. [28], where they are concerned with exact instanta-
neous uniform mixing, rather than exact instantaneous
return to the initial state.

Using a Hadamard coin, the “cycle” of size N = 2
is trivially periodic, returning to its original state after
two steps. A cycle of size N = 4 has a period of eight
steps. This was first noted by Travaglione and Milburn
[29]. The cycle with N = 8 has a period of 24 steps,
but N = 16 is chaotic and does not return to its initial
state exactly even after many thousands of steps. This is
illustrated in Fig. 10, where the probability of the particle
being at its initial position is plotted as a function of the

TABLE I: Known periods in a walk on a cycle. Coin phase
δ = 0 unless specified.

N period Ω bias in coin ρ

2 2 1
2

3 12 1
3
, δ = π

3

4 8 1
2

5 60
(

sin(π/6)
sin(π/5)

)2

, δ = 3π
5

6 12 1
3

8 24 1
2

10 60
(

sin(π/6)
sin(π/5)

)2

≃ 0.7236

16 chaotic 1
2

time step. A probability of one is an exact return to the
initial state (modulo the coin state, which is not shown
here, but does also, in fact, return to exactly the initial
state). If the coin is allowed to be biased, then a few more
periodic examples can be found, N = 6 with period 12,
and N = 10 with period 60. With judicious choice of
phases in place of the Hadamard phases of θ = φ = 0,
N = 3 has a period of 12, and N = 5 has a period of
60, clearly related to N = 6 and N = 10 respectively,
but these were the only odd-N cycles we found. These
results are summarised in Table I.

The condition that must be satisfied for exact period-
icity is obtained from Eq. (11), which also holds for the
walk on a cycle if the appropriate forms for the eigenval-
ues and eigenvectors are substituted. The wavefunctions
|ψt〉 at two different times, t and t + Ω are set equal,
giving

(λ±k )Ω = 1 ∀ k ∈ {0, 1 . . .N − 1}. (32)

Using Eq. (16) gives

(δ + ωk)Ω = 2πj+,

(δ − ωk + π)Ω = 2πj−, (33)

where j± are integers. Substituting these into Eq. (17)
gives

cos

(

πj

Ω

)

=
√
ρ cos

(

2πk

N
− πm

Ω

)

∀ k, (34)

where ρ is the bias in the coin operator, m is an inte-
ger specifying the relative phases in the coin operator
through mπ/Ω − π/2 = δ = (θ + φ)/2, k is the integer
Fourier variable, and j is an integer that can be different
for each k, but must be odd or even to match whether m
is odd or even. Clearly, the larger N is, the harder it is
to find solutions for Eq. (34) for all k at the same time
(apart from the trivial solutions for ρ = 0 or 1). We do
not know if we have found all possible solutions that give
periodic quantum walks on a cycle, but we conjecture
that there are only a finite number of such solutions and
that we have found nearly all if not all of them.
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We also studied periodicity on two dimensional cycles,
as described in Sec. IVB. With a Hadamard coin and
a torus made from suitable small dimensions, periodic-
ity is also obtained in the cases predictable from Table
I. For a closed Möbius strip or Klein bottle, the twisted
dimension is only periodic if the size is half that in Table
I, because the twist causes the walk to traverse the cycle
twice before returning to its initial state. The Grover
coin shows the same periodicities as the Hadamard coin.
However, a DFT coin only shows perodicity for a torus
of dimensions 4 × 4, and not at all on the twisted sur-
faces. This is due to the asymmetry of the DFT coin
compared to the Grover and Hadamard coins. During
the double circuit of the twisted surface, the wavefunc-
tion interfers with a mirror image of itself, so periodicity
will only be observed with coins that produce suitably
mirror symmetric distributions.

VII. SUMMARY

We have studied discrete, coined quantum walks on
regular lattices, in one and two spatial dimensions
(graphs with vertices of degree two, three and four). Both
the bias (away from equal probability of choosing each
direction) and the phases in the coin operator, and the
initial state of the coin, can be used to control the evolu-
tion of the quantum walk. In a quantum walk on a line,
we have found a biased initial state of the coin which pro-
duces a higher degree of asymmetry than the simple |L〉
or |R〉 initial states. The same bias produces a symmetric
distribution when combined with the opposite phase be-
tween the coin components. This illustrates two distinct
ways to obtain the same symmetric distribution, by in-
terference, and by combination of two orthogonal biased
distributions each a mirror image of the other. In a quan-
tum walk on a cycle, we have determined the condition

for mixing to a uniform limiting distribution, for a general
coin operator and initial state. Non-uniform limiting dis-
tributions are highly sensitive to decoherence, so to make
use of the properties of such walks, it will be best to mea-
sure effects that occur after a reasonably short number of
steps of the walk. Quantum walks of degree three have a
more interesting choice of coin operators, an example in
which a Grover coin solves a problem (“glued trees”) effi-
ciently, while a DFT coin stays nearer the starting point
than even a classical random walk illustrate the range
of possibilities to be explored. Numerical study of reg-
ular lattices in two dimensions (degree-4 graphs) show
that the Grover and DFT coins have interesting proper-
ties independent of the symmetry of the lattice (circular
spreading on a square lattice). Suitable choice of ini-
tial state makes the Grover coin spread fastest or slowest
out of all the coin operators tested, in contrast to the
conclusions in [26], where only a few initial states were
tested. Finally, a small set of exactly periodic quantum
walks on cycles of sizes 2, 3, 4, 5, 6, 8, and 10 have been
found, and the condition on which this exact periodic-
ity depends derived. Such periodicities are of interest in
their own right, and we also suggest that it may be pos-
sible to exploit them to pick out small scale regularities
in larger structures.
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