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Abstract

We show how to search N items arranged on a v/ N x /N grid in time O(\/Nlog N), using
a discrete time quantum walk. This result for the first time exhibits a significant difference
between discrete time and continuous time walks without coin degrees of freedom, since it has
been shown recently that such a continuous time walk needs time (V) to perform the same task.
Our result furthermore improves on a previous bound for quantum local search by Aaronson
and Ambainis. We generalize our result to 3 and more dimensions where the walk yields the
optimal performance of O(\/N ) and give several extensions of quantum walk search algorithms
for general graphs. The coin-flip operation needs to be chosen judiciously: we show that another
“natural” choice of coin gives a walk that takes (V) steps. We also show that in 2 dimensions
it is sufficient to have a two-dimensional coin-space to achieve the time O(v/N log V).

1 Introduction

Quantum walks are quantum counterparts of classical random walks. Classical random walks have
many applications in randomized algorithms [MR95] and we hope that quantum walks would have
similar applications in quantum algorithms. Both discrete-time [Mey96], [AAKV01L IABNT01] and
continous time [FGI8, [CFG02] quantum walks have been introduced!. The definitions of the two
are quite different. In continous time, one can directly define the walk on the vertices of the graph.
In discrete time, it is necessary to introduce an extra “coin” register storing the direction in which
the walk is moving.

Because of this difference in the definitions, it has been open what the relation between discrete
and continous walk is. In the classical world, the continous walk is the limit of the discrete walk

'For an introduction to quantum walks see [Kem(3al.



when the length of the time step approaches 0. In the quantum case, this is no longer true. Even
if we make the time-steps of the discrete walk smaller and smaller, the “coin” register remains.
Therefore, the limit cannot be the continous walk without the “coin” register. This means that one
variant of quantum walks could be more powerful than the other in some context, but so far all
known examples have given similar behavior of the two walks (see e.g. [CEG02] [Kem03b, CCDT03]).

In this paper, we present the first example where the discrete walk (with “coin”) outperforms
the continous walk (with no “coin”). Our example is the spatial search [Ben02, [AA03] variant of
Grover’s search problem. In the usual Grover’s search problem [Gro96], we have N items, one of
which is marked. Then, we can find the marked item in O(v/N) quantum steps, with one quantum
step querying a superposition of items. In contrast, classically Q(N) queries are required. In the
“spatial search” variant, we have the extra constraint that the N items are stored in N different
memory locations and we need time to move betwen locations. This may increase the running time
of a quantum algorithm.

The first “spatial” version of Grover’s algorithms with optimal performance was given by
[SKW03] who showed how to search N items arranged on the n-dimensional hypercube, using
a discrete quantum walk.

In this paper, we consider the 2-dimensional arrangement where N memory locations are ar-
ranged in an /N x /N grid. This was first studied by Benioff [Ben(02] who observed that the usual
Grover’s search algorithm takes Q(IV) steps. It uses ©(v/N) query steps but, between each two
queries, it might move a distance of ©(v/N). Thus, the total time becomes ©(N) and the quantum
speedup disappears. Aaronson and Ambainis [AAQ3] fixed this problem by giving an algorithm for
searching the 2-dimensional grid in O(\/N log? N ) total steps? (counting both queries and moving
steps) and the 3-dimensional grid in O(\/N ) steps, using Grover’s algorithm together with multi-
level recursion. Quantum walks were first applied to this problem by Childs and Goldstone [CGO3]
who studied the search on the grid by a continous quantum walk. They discovered that the conti-
nous walk provides an alternative search algorithm with optimal performance of O(v/N) in 5 and
more dimensions, but not in 2 or 3 dimensions, where the continuous walk takes Q(N) and Q(N?/6),
respectively. In 4 dimensions the continuous time walk algorithm performs as O(v/N log N).

In this paper, we use discrete-time quantum walks to design an algorithm that searches the
grid in O(v/N log N) time in 2 dimensions and O(v/N) time in 3 and more dimensions. Thus, our
algorithm is faster than both the non-walk quantum algorithm of [AA03] and the algorithm based
on the continous time quantum walk [CG0O3]. In addition to having a very simple structure our
algorithm also uses only 1 or 2 qubits of extra memory (or log2d qubits for the d-dimensional grid),
besides the current location. (The previous algorithm of [AA(03] uses O(log®n) qubits of extra
memory. )

Besides improving the running time, we present several interesting features of quantum walks.
The first feature is that the discrete-time walk succeeds while the continous walk does not. Secondly,
the behavior of the discrete quantum walk on the grid crucially depends on the choice of the “coin”

2The running times for the 2-dimensional grid are for the case when the grid contains one marked item. The
general case (an arbitrary number of marked items) can be reduced to the one item case with a log N increase of
the running time [AAQ3]. That would result in a running time of O(v/N log® N) for the algorithm of [AA(3] and
O(v/N log? N) for our algorithm which we present in this paper. For 3 and higher dimensions, the general case can
be reduced to the one item case with just a constant factor increase [AAN3]. Thus, the asymptotic running times
stay the same.



transformation. One natural choice, discovered numerically by Neil Shenvi [She(3], leads to our
algorithm while some other natural choices fail to produce a good algorithm. Thus, the “coin”
transformation could be a resource which affects the algorithm profoundly. We give both upper
and lower bounds for the performance of some natural choices of the “coin”. Surprisingly we show
that in the case of the 2-dimensional grid only 2 (and not the standard 4) coin-degrees of freedom
are sufficient to achieve the quantum speed-up. The insights gained from our study might aid in
the design of future discrete quantum walk based algorithms. Several such algorithms have recently
been discovered [CCD™03, [Amb03, IMSS03, [CE03, Sze(4].

Our presentation allows a fairly general approach to quantum walk search algorithms on graphs.
In particular it simplifies the proof of [SKWO03|, where the relevant eigenvectors had to be “guessed”.
We also give a discrete walk search algorithm on the complete graph and show its equivalence to
Grover’s algorithm and outline several generalizations of our results.

2 Preliminaries and Notation

2.1 Model

Our model is similar to the one in [AA(3]. We have an undirected graph G = (V, E). Each vertex v
stores a variable a, € {0,1}. Our goal is to find a vertex v for which a, = 1 (assuming such vertex
exists). We will often call such vertices marked and vertices for which a, = 0 unmarked.

In one step, an algorithm can examine the current vertex or move to a neighboring vertex in
the graph G. The goal is to find a marked vertex in as few steps as possible.

More formally, a quantum algorithm is a sequence of unitary transformations on a Hilbert space
H; @ Hy. Hy is a Hilbert space spanned by states |v) corresponding to vertices of G. H; represents
the algorithm’s internal state and can be of arbitrary fixed dimension. A t-step quantum algorithm
is a sequence Uy, Us, ..., U where each U; is either a query or a local transformation. A query Uj;
consists of two transformations (U?, U}). UP ® I is applied to all H; ® |v) for which a, = 0 and
Ul ® I is applied to all H; ® |v) for which a, = 1.

A local transformation can be defined in several ways [AAQ3]. In this paper, we require them
to be Z-local. A transformation U; is Z-local if, for any v € V and [¢) € H;, the state U;(|) @ |v))
is contained in the subspace H; ® Hr(,) where Hr(,) C Hy is spanned by the state |v) and the
states |[v) for all v' adjacent to v. Our results also apply if the local transformations are C-local
(another locality definition introduced in [AA03]).

The algorithm starts in a fixed starting state |¢siqr¢) and applies Uy, ..., U;. This results in a
final state ¢ fina) = UtUi—1 ... Ui|[tstare). Then, we measure |¢)gqr¢). The algorithm succeeds if
measuring the Hy part of the final state gives |g) such that a, = 1.

For more details on this model, see [AAQ3].

2.2 Search by quantum walk

In what follows we will assume that G is undirected and d-regular, i.e. has constant degree d. To
each vertex we can associate a labeling {1,...,d} of the d edges (directions) adjacent to it and an
auxiliary “coin”-Hilbert space Hy = {|1),...,|d)}. Let Hy be the Hilbert space spanned by the
vertices of the graph, then the walk takes place in the joint space of coin and graph H = Hy® H .



Definition 1 [Discrete Quantum Walk on G:] The discrete quantum walk is an alternation of coin
flip and moving step: U = S - C, where S is a shift controlled by the coin register

S: ) ®lz) — (i) @ [2) (1)

“” on x’s side and ™ is a

i=1,...,d and x,Z € V, z and T are connected by the edge labelled
permutation of the d basis states of the coin space Hy, and the coin C = Cy ® Iy where In acts as

identity on Hy and Cy is a “coin-flip” acting on Hg

d
Co = 2/s)(s| — I, where |s)— % 31, )
i=1

For a given i S permutes the vertices of the graph, hence S is a unitary operation. The permutation
7 allows us to specify shift operations that act differently on the coin space Hy. Note that the
coin is symmetric in that it treats all d directions equally, and among all such coins Cj is the one
farthest away from identity.

Remark: The uniform superposition |®g) = ﬁ 4 SN i) @|z) is an eigenvector of U with
eigenvalue 1 (U|®) = |®y)); if we start the walk in |®g) it will never change this state.

To introduce a marked item in the graph we need to have an inhomogeneity in the quantum

walk by using the coin to “mark” a vertex v, which gives rise to the following:

Definition 2 [Perturbed Quantum Walk:] The perturbed walk with marked vertez v and “marking
comm” C1=—1isU' =8-C', where

C'=Co® (I —|v){v]) + C1 @ Jv){v] = C = (Co — C1) ® |v)(v]. 3)

We will think of U’ as the random walk with one (or several) marked coins. This means that instead
of one coin for all nodes, Cy ® I, we have a different coin C; on the marked state. Numerical data
shows that other marked coins exhibit similar properties as C; = —1I, but we will use this coin which
simplifies the analysis. Then Cy— Cy = 2|s)(s|, and U' = U —2S|s,v)(s,v| = U - (Ign —2|s,v){s,v|)
using Cpls) = |s).

The quantum walk U gives rise to a search algorithm on a graph G in the following way:

Quantum Walk Search Algorithm
1. Initialise the quantum system in the uni-
form superposition |®).

2. Do T times: Apply the marked walk U’.
3. Measure the position register.

4. Check if the measured vertex is the

marked item.

An item on a vertex of the graph could be marked by setting an auxiliary qubit to |1), whereas the
unmarked items could have this qubit set to |0). Then this auxiliary qubit can control the coin to
be C for the unmarked items and C’ for the marked item.

We will analyse this algorithm to obtain upper bounds on the query complexity of search by
random walks.



Complete Graph - Grover’s Algorithm: As a first example let us illustrate how we can view
Grover’s algorithm [Gro96] as a random walk search algorithm on the complete graph. Each vertex
has N edges (we will include a self-loop for each vertex). Both vertices and edges are labelled with
1,...,N; the coin space and the vertex Hilbert space are both N-dimensional and we will write
states as |i) ® |j), where the first register is the coin-register. The shift operation S is defined as

S i) @15) — 15) @ |i).

The marked coin in this case is chosen to be C; = —Cjy, which gives C; — Cy = —2Cy and
C' = Cy® (I — 2v)(v]), where |v) is the marked state. Note that Cy = 2|s)(s| — 1y is the
reflection around the mean operator of Grover’s (“standard”) algorithms and I — 2|v)(v]) =: R,
the phase flip of the oracle. Recall that Grover’s algorithm is of the form (R, - Co)”|s). The
initial state for the random walk based algorithm is the uniform superposition |®g) = |s) ® |s).
Now U'|®g) = S - C'|®g) = Ry|s) ® Cyls), C"- U'|®g) = (Co - Ry)|s) @ (R, - Cp)|s) and U?|®g) =
(Ry - Cp)|s) @ (Cp - Ry)|s). So we see that a random walk in this scenario gives exactly Grovers
algorithm on both the coin space and the vertex space, at the expense of a factor of 2 in the number
of applications.

3 Results in 2 dimensions

We give several upper and lower bounds for the discrete quantum walk on the grid. The N
memory locations are arranged in a VN x /N grid G, labeled by their z and y coordinate as
|z, y) for z,y € {0,...,V/N —1}. will assume periodic boundary conditions and operate mod v/N.
The natural coin space is 4-dimensional. We will label the edges emanating from each vertex with
—,«, T, ], indicating the positive and negative = and y directions.

As it turns out, the choice of the coin transformation (or, equivalently, of the permutation 7 in
Eq. () is crucial for the performance of the random walk. We will show that using a “flip-flop”
shift, gives a search algorithm that succeeds in O(v/N log N) time. The “fip-flop” shift S tf changes
direction after every move, i.e. 7 flips T with | and — with <. Our analysis of the “flip-flop”
based walk follows the numerical discovery of its performance by Neil Shenvi [She03]. Another
natural shift is the “moving” shift S, which does not change direction (i.e. in Eq. () 7 = id and

|m(@)) = 17))-

® |z, y) — | =)@z +1,y)

Sgr: ) )
)@ |z, y) — | ) @ |z —1,y)
) )
) )

T4

4
@ lz,y) — | 1) @ |z,y +1) @

) ) !
)@ |z, y) — | =) @z —1,9) !
) )

> > ®|$7y —)|l>®|$7y_1>

— ) @lz,y+1) \
— 1) ®z,y—1) |

— —

Surprisingly we will show that the “moving” shift gives a walk search algorithm that takes time
Q(N). So even though it seems this walk “moves faster” than the “flip-flop” walk, the resulting
algorithms performs much worse, no better than classical exhaustive search. It is this surprising
behavior of S,, which has halted the progress in finding a good discrete quantum walk search
algorithm on the grid.



Theorem 1 For the quantum walk search algorithm associated to the quantum walk U = Sg; - C,
with S¢y as in Eq. {@), there is a T = O(v/NlogN), such that after T steps the probability to
determine the marked state is pr = O(1/log N) .

Corollary 1 We can get a local search algorithm based on the quantum walk that finds the marked
state with constant probability in time O(v/N log N).

Proof of Corollary [ The initial state |®) can be generated with /N local transformations.
Since we only have an estimate for T" up to a constant factor, we need to repeat the random walk
an appropriate (constant) number of times. For the algorithm we will use amplitude amplification
[BHMT02] to achieve a time O(v/N log N'). We will give more details in the proof of Theorem [
|

Theorem 2 The quantum walk search algorithm associated with Sy, as in Eq. (f) takes at least
Q(N) steps to determine the marked state with constant probability.

We also consider a two dimensional coin inspired by Dirac’s equation in 241 dimensions. Let
| 1) = 10) and | ||) = [1) be the standard basis for one qubit and | <) = %|0> + %H) and
| =) = %\@ - %]D be the Hadamard basis. If there is no marked coins, one step of the quantum
walk U with the two-dimensional coin consists of:

1. Move up/down:
[ @lz) @ ly) = [ 1) @)y - 1),

) @) @ly) = [ 1) @ |z)ly + 1).
2. Move left /right:

| =) @lr) @ly) = | =) @z —1)y),

| =) @lz) @ly) = | =) @[z + Dy).

If there is a marked coin |v), we define the quantum walk as U’ = U(I — 2|s,v)(s,v|) where U is
the walk with no marked coin and |s) is the state %| 1) + %| ).

Theorem 3 The associated quantum walk search algorithm takes O(\/N log N) steps and the prob-
ability to measure the marked state is Q(1/log N). This yields a local search algorithm running in
time O(v/N log N).

4 Results in 3 and more dimensions

In more than 2 dimensions the “flip-flop” based quantum walk search algorithms achieves its optimal
performance of O(v/N). Here G is a grid of N vertices, arranged as v/N x ... x /N, with periodic
boundary conditions, as before, and states are labelled as |z1,...,x4).

Theorem 4 Let G be the d-dimensional grid with N wvertices. Then the associated quantum walk
with one marked coin takes O(v/ N) steps and the probability to measure the marked state is constant.

Theorem 5 The results of Theorems[, [@, [A and [ hold also for two marked items.



5 Abstract search algorithm

Before giving the technical details let us give some intuition of the proof. Recall that Grover’s
algorithm in its standard form is a succession of reflections R,, around the marked state |v) followed
by a reflection around the mean Rjgy = 2|®)(®| — Iy, where |®) is the uniform superposition over
all items. It can be viewed as a rotation in a two dimensional space, spanned by the marked state
|v) and the initial state. In the basis where |0) = |®) and |v) = —=|0) + \/%H}, Grover’s

N
algorithms corresponds to the transformation (with sin ¢ = 2¥ ]X,_l)

UZ(cosqb —sinqb). (5)

sing cos¢

The two eigenvectors of U are | £ w) = %(|0> + i[1)) with eigenvalues eT?®. The initial state is a

uniform superposition of the two eigenvectors |®) = %(’W + | —w)). After T applications of U,
with T' chosen such that T'¢ = 7, we have

UT18) = U7 (fo) + ] =) = —=(ilo) +il =) = |1
which has an overlap of /2= with the marked state |v).

In the random walk algorithm the transformation (I —2|s, v)(s,v|) is a counterpart of R, and the
transformation U is an “imperfect” counterpart of R|gy. We will first show, that with an appropriate
choice of coin (as in Thms. [ Bl and H) the resulting transformation is still approzimately in a
2-dimensional subspace; In this space U’ will correspond to a rotation as in Eq. (H). Chosing T
appropriately will (approximately) give a state with a “large” overlap with the marked state or its
neighbors.

In the case of the “bad” coin, as in Theorem Pl we will show that there is a large eigenspace
of eigenvalue 1 of the perturbed walk, and that the initial state has a large overlap with this
eigenspace. Hence the state of the system nearly doesn’t change by the walk.

More formally, an abstract search algorithm consists of two unitary transformations U; and Us
and two states [tsiare) and [1g00q). We require the following properties:

L. Ui = I — 2|Yg00d) (¥go0d| (in other words, Ultgood) = —|¥gooa) and, if [1)) is orthogonal to
W}good>7 then W> = W}>)7

2. Usltstart) = |Wstart) for some state |1gqrt) with real amplitudes and there is no other eigen-
vector with eigenvalue 1;

3. Us is described by a real unitary matrix.

The abstract search algorithm applies the unitary transformation (UsUp)? to the starting state
|¥start). We claim that, under certain constraints, its final state (UsUp)7 [thgtare) has a sufficiently
large inner product with |9g0d)-

The next lemmas, which we will prove in Sec. [ describe the main properties of an abstract
search algorithm that we use. Let U’ = UsU;. Since Us is a real unitary matrix, its non-41-
eigenvalues come in pairs of complex conjugate numbers. Denote them by e, . . et  Tet
Omin, = min(fy,...,0,).



Lemma 1 Define the arc A as the set of € for all real 0 satisfying —Omin < 0 < Omin. Then U’
has at most two eigenvalues® in A.

The two eigenvectors with these eigenvalues will be very important to us. We will show that
the starting state is close to a linear combination of them. Therefore, we will be able to determine
the evolution of the starting state by studying these two eigenvectors.

We start by bounding the two eigenvalues. Let |<I>+> and |®) be the eigenvectors with eigen-
values €% and e~ respectively. We express [9g00d) as a superposition of the eigenvectors of Us:

[$goo) = aoltstars) + > (aF107) + a5 107 )) (6)

j=1
Lemma 2 [t is possible to select |<I>j> and |®7) so that aj =a; and a;r is a real number.

In the next lemmas, we assume that this is the case and denote aj' = a; simply as a;.

Lemma 3 The eigenvalues of U’ in A are e™'® where

a=0 = . (7)

2
3. 4G 1
7 a% 1—cos 6;

Let |w,) and |w_,) be the two eigenvectors with eigenvalues €* and e~*®, respectively. Define
[Whart) = %\wo) — %]w_o), |Wstart) = m]wgtwt>. We claim that |wsia) is close to the

starting state |[1sqr¢). This is quantified by the following lemma.

Lemma 4 Assume that o < %Hmm. Then,

2
as 1
" 4 i -
<wstart‘wsta7’t> = o Zj: a(2) (1 — COS 0]')2

The last lemma shows that, after repeating UsU; a certain number of times, the state has
significant overlap with [¥y004). Say we apply (U2Uy)™/491 to the state %|wa> - %|w_a>. Then,
we get the state which is equal to

1 7,7r/4 —i7r/4i w — 3 i w i w = |w
\/E \/§| —a> (\/§| a>+\/§| —a>) | good>

plus a state of norm O(«) (because 7/4 and [7/4a]a differ by an amount which is less than «).

lwa) — e

Lemma 5 Assume that o < %Hmm. Let |wgood) = %]wo) + %]w_a) Then,

1

|<¢good|wgood>| = O | min

3The next lemma, implies that there are exactly two eigenvalues in A.

1




Corollary 2 Assume that o < %Hmm.

1

20012 %
\/ 2 a; cot”

These three lemmas are the basis of our proofs. In each of our positive results, we first find

| (thgood| (U2U1) ™4 |1 0q) = © | min 1] +0(a).

a subspace H such that the search algorithm restricted to this subspace is a special case of an
abstract search algorithm. Then, we apply Lemma Hl to show that the starting state is close to
|wstart) and Lemma Bl and corollary Bl to show it evolves to a state having significant overlap with

‘wgood> .

6 Proofs of the main results
6.1 Theorem 1
Let us determine the eigenspectrum of U = Sy - (Co ® In) first.

Claim 6 [Spectrum of U:] U has eigenvalues \g; with corresponding eigenvectors of the form
log) @ | X&) ® |xi) for all k,1 =0,...,vV/N — 1, where |x;) = %\/ﬁ Eg_l wkI|§) with w = 62”i/\/ﬁ,
and A and |vg) satisfy the equation

0 w* 0 0
wE0 0 0

Crilvw) = 0 0 0 ot - Colvrr) = Mei|vrr).- (8)
0 0 w 0

. i 1 2k 2nl
The four eigenvalues Ay of Ciy are 1, —1 and e*%t where cos Oy, = 5 (cos \/NN + cos \/ﬂﬁ) Let ]v,il%
') and |vE) be the vectors |ug) for the eigenvalues 1, -1 and €9, respectively. Then, |v},) is
ki ki kl

orthogonal to |s) for (k,1) # (0,0) and |v,') is orthogonal to |s) for all (k,1), including (0,0).

Proof: Apply U to a vector of the form |vy) @ [xk) ® |x;) and note that S¢s| T) @ |xx) @ |x1) =
w1 @ [xk) @ xa), and Spp| 1) @ [xa) @ [xi) = «F| 1) @ [xa) @ [x1), and similarly for the y-
coordinate, which gives Eq. (). Solving the equation |Cy; — AI| = 0 for A gives the eigenvalues.
For (k,1) # (0,0) the 1-eigenvector |v,) is proportional to (w*(w! —1),1—w!, w!(1—w*),wk —1) and
hence orthogonal to |s) = $(1,1,1,1). The —1-eigenvector lv;,') is proportional to (w! + 1,w" (w! +
1), —(w* + 1), —w!(w* + 1)) and hence orthogonal to |s) = (1,1,1,1). For (k,l) = (0,0), |s) is a
1-eigenvector of Cyj. [ |

For (k,1) = (0,0), the eigenvalue 1 occurs 3 times. Thus, there is a 3-dimensional 1-eigenspace.
Since |s) is orthogonal to |vgg ), |s) belongs to this eigenspace. We choose |vd,) = |s) and [v)
orthogonal to |s).

Let Hj, be the space spanned by the eigenvectors |vf:l> ® |xk) @ |x1), (k,1) # (0,0) and |®g) =
[vgo) @ |xk) @ |xi). Notice that all other eigenvectors of U are orthogonal to |s,v), by Claim Bl
Therefore, |s,v) is in H{,. Moreover, applying U’ keeps the state in Hj,, as shown by

Claim 7 We have U'(H{)) = H,. Furthermore, U' has no eigenvector of eigenvalue 1 in Hj,.



Proof: For the first part, notice that U' = U(I — 2|s,v)(s,v|). Therefore, it suffices to show
U(Hj) = Hy and (I — 2|s,v)(s,v|)(H{) = H{. The first equality is true because Hj, has a basis
consisting of eigenvectors of U. Each of those eigenvectors gets mapped to a multiple of itself which
is in H{. Therefore, U(H{) = Hj. The second equality follows because (I — 2|s,v)(s,v|)[¢)) =
|) — (s,v|)|s,v). This is a linear combination of 1)) and |s,v) and, if 1)) € H{, it is in H.

For the second part assume |wp) is an eigenvector of eigenvalue 1 of U’ in H{. Then

0 # (Polwo) = (PolU’|wo) = (Po|U(I — 2|s,v)(s,v])lwo) = (Polwo) — 2(Pols,v)(s, v|wo).

This implies (®ols,v)(s, vjwp) = 0 and, since (Pg|s,v) = \/_1N # 0, that (s,v|wp) = 0 and |wg) =
U'|wo) = Ulwp) which in turn implies that |wg) is an eigenvector of eigenvalue 1 of U. Since |wp) has
zero overlap with |s,v) and precisely the 1-eigenvectors of U orthogonal to |®¢) have zero overlap
with |s,v), it follows that (®g|wp) = 0 which contradicts that |wg) € Hj. [ ]

The above shows that the random walk algorithm starting in |®¢) is restricted to a subspace H;,
of the Hilbert space. Since |®) is the only l-eigenvector of U in Hj,, we have an instance of the
abstract search algorithm on the space Hg, with Uy = I —2|s,v)(s,v|, Us = U, [¥go0a) = |5,v) and
‘wstm’t> = ‘(I)O>

As described in Section B, we study the 2-dimensional subspace spanned by |w,) and |w_g).
First, we bound a using Lemma Bl We need to expand [¢g004) = |5,v) in the basis of eigenvectors
of U. Define |®}}) = |v)) ® |xx) ® |xi). Let |®;;) be the vector obtained by replacing every
amplitude in |®};) by its conjugate. Then, |®,,) = V=g 1) @ [X=k) @ [x—1). (This follows from
two observations. First, replacing every amplitude by its conjugate in |xx) gives |x_x). Therefore,
|®,,) = [v)®|x—k)®|X—1). Second, since U|®@};) = ek|®"), we have U|®;,;) = e~ |®,), implying
that [v) = v, ;).) From Lemma P we have

|s,v) = ao|Po) + Z ap(|Pg;) + | P5;)
(k,1)#(0,0)

where |®;;) and |®;,) appear with the same real coefficient ag = (s,v|®};) = (s,v|®},).

Claim 8 1

arl = .
kl /—2N

Proof: We have |(v|xx) ® |xi)| = \/_1N (since each of the N locations has an equal emplitude

in |xg) ® [xi)). It remains to show that [(s|v})| = % For that, we first notice that |s) is a
superposition of [v3) (since |v},) and |v;,') are orthogonal to |s)). By direct calculation (s|C|s) =
%(cos % + cos \2/—7%) We have

(s|Cwils) = e (suf) (vfy]s) + e (s]ugg) (v |s).

This is possible only if |(s|v;})| = [(s|v;)]| = % m
Therefore,
1 1
|5,0) = —=[®0) + — > (1) +[®p). 9)
VN V2N (i 20.0)
By LemmaBl a = ©(——L1——). The following claim implies that o = ©(—+—).
Y g (\/Zkl ﬁ) & P (\/m)

10



Claim 9 3=, y2(00) ﬁsekl = O(NlogN).

Proof of Claim [ Recall from Claim B that the eigenvalues corresponding to [vi)) @ [xx) ® |x1)

are eTxl = cos @), + isin ), where cos Oy = 1(cos f/“ﬁ + cos \2/71) For z € [0, 27], we have
z? 222
1—7<cosx<1—?. (10)
Therefore,
1 1
1~ (k2412 < <1— = (K242
4N(k: +1%) < cosby < 7T2N(k; +1%),
1
N(k:2 +12) <1 —cosfyy < m(/ﬁ2 +1%) (11)
This means that it suffices to show
Z k2 O(NlogN), (12)
where the summation is over all k,1 € {0,...,v/N — 1} such that at least one of k,[ is non-zero.
This follows because ), ; =z = ©(log N). A simple way to see this is to sum points that lie

on m-rectangles with the four corners (+m,+m). The term Eﬁg for (k,l) on an m-rectangle is
bounded as iy < iy < #, and there are 8m such points on each m-rectangle. Hence

2m? = R
VN-1 1 1 VN-1 1
Mo S 2L S 2 M 13)
m=1 k,l m=1
The claim now follows from 1;71_1 L = 2log N(1+0(1)). ]

Next, we use Lemma Hl to bound the overlap between |®¢) and |wsiart) = %]wo) — %\w_o).

Proof of Claim : Using the proof of Claim @

TN 1 R\
(k2 +12)2 = (1 —cosO)? — (k2 +12)%

Therefore, it suffices to bound N? Z(M#(O’O) (kgimz. Again, we sum points (k,[) over rectangles
with corners (£m,+m). Each rectangle has 8m points, each of which contributes a term of order
# to the sum. Since )" 8m# => % is bounded by a constant, the lemma follows. ]

This means that the overlap between the starting state and |wgare) is 1 — O(a*N?) = 1 —
Equivalently, |®¢) = |wstart) + |Prem), With ||| ®rem) || = (IOgN) After [ -] repetitions,
with || ®,.|| = @(ng) +O(a) = @(logN) Finally, we bound
(Wgood|s, v), using Lemma Bl Since all ay; are equal to W and cotz < L =, we have

@(bg N)

the state becomes [Wgood) + |Phepn),

1

\/Zk,l aiz cot % \/2N Zkl 02,

11

(14)



1 const

From the proof of Claim @ we know that is bounded from below and above by

G_zl 1—cos Oy °
Therefore, Claim @ implies )", , 9% = O(Nlog N). Thus, the expression of Eq. (Id) is of order
’ kl
1
U Togw)-

To conclude the proof of the theorem, the overlap of the state of the algorithm after [ -] steps
and |s,v) is

|<wgood|s7v> + <<I>;"em|s7v>| > |<wgood|s7v>| - |<<I>;"em|87’u>|'
The first term is of order Q(ﬁ) and the second term is of lower order (Q(@)) Therefore,
the result is of order Q(——=—).

Vlog N
Hence a measurement gives the marked location |v) with probability p > @. This completes

the proof of Theorem [

Proof of Corollary 1: First, note that it is possible to generate the initial state |®o) with 2/ N
local transformations. We start with the state concentrated in one point (say |0,0,0)) and first
“spread” the amplitude along the x-axis in v/ N steps. In the first step we rotate the coin register to

%/LN|0> + %1 |1), followed by a |1)-controlled shift in the z-direction, followed by a rotation of
the coin register back to |0) in the vertex (0,0). Similarly we repeat this procedure to move %

of amplitude from (1, 0) to (2,0) and so on. After V/N steps we have a uniform superposition over all
vertices with y-coordinate 0. We repeat this process for the y-direction, which gives us the uniform
superposition after another v/N steps. Note that this procedure also allows us to implement the
reflection around the mean, Rjg,) = I — 2[®g)(Po| in 4v/N steps: we simply run the procedure in
reverse (which maps |®¢) to |0,0,0)), then invert the state |0,0,0) (which can be done locally in
the vertex (0,0)), and run the procedure forward again.

Note that we have determined the run-time 7" only up to a constant (using Eqs. (1) and (I3,
@4), @8) we can bound Ty = 7”\7120@\7 <T< Lg\}%g]v = Tinaz). To get e-close to the state
U'T|®q) we use a standard trick and run the walk for times Tiin, (1 4 €)Timin, (1 + €)2Trnin, - - -
until we reach T),.,. One of these times is within a factor of (1 £ ¢) of 7" and hence our state
and final measurement probability will be e-close to the state at time 7. We can chose ¢ to
be some small constant. The total time including all repetitions (bounded by 1—£8T min) 18 still
O(T) = O(+/Nlog N).

Finally, to amplify the success probability we will use amplitude amplification [BHMT02], which
is a succession of steps consisting of reflection around the mean |®() and a run of the algorithm.
The intermediate reflection around the mean can be implemented in 4v/N steps, the random walk
takes O(v/Nlog N) steps, and we need O(y/log N) rounds of amplification to obtain a constant

probability of success, which gives a total running time of O(v/N log N). [

6.2 Theorem 2

Proof: The key difference between this walk using S, and the walk from Theorem [ using Sy
is that the initial state |®) now has very large overlap with the eigenspace of eigenvalue 1 of U
and U’. This means that the walk (nearly) does not move at all and the state at any time T has
overlap with |®¢) close to 1. The difference becames apparent in the eigenspectrum of U:

12



Claim 6’ [Spectrum of U:] U has eigenvalues \g; with corresponding eigenvectors of the form |vg) ®
Ixk) ®|x1) for all k,1 =0,...,v/N —1, where |x;) = %\/ﬁ Z]\-/:NO_I wkI|§) with w = e2mi/VN and A
and |vgy) satisfy the equation

WwkE 0 0 0
0 w* 0 0
C = - C = A 15
kil vR1) P 0lvrr) = Ari|vr) (15)
0 0 0 w
The four eigenvalues Ay of Cy are 1,—1 and e where cos O = —%(COS ?/”—k + cos \2/7%) For

the eigenvector \Uéﬁ corresponding to eigenvalue 1, we have

2nk 2ml 2m(k+1)
|<v,ﬁl|s>| N 1+ cos i +cos4\/— + cos N

Proof: The first part is by straightforward calculation as before (Claim (). For the second part,

the eigenvector corresponding to eigenvalue 1 is \Ukl> |||u’f’>” with
kl

lub)) = (wF(1 4+ wh), 1+ w', w' (1 + w), 1+ w*)

We have [lu},|| < 4 because each of the 4 components of |u},) is at most 2 in absolute value. It
remains to bound (uj,|s). We have

1 1
(g ls) S ) + 14w ol (1 of) 1) = 21+ ob) (14 uf).

The real part of this expression is Z(l + cos \/— + cos \2/71 + cos %Z) ). This implies the claim. m

Let ‘H; be the 1-eigenspace of U, spanned by the |®1,) = [v}) ®|xx) @ |xi) for k, 1 =0,. .., VN —1,
with [®},) = |®o). Write
|5, 0) =) ow|®hy) + |5")
k.l

where |s’) has no overlap with the 1-eigenspace H;. We claim

Claim 11 U’ has a 1-eigenvector |®1) such that |(®o|@)2 =1 — ZMO*O\FP
i,7=1 Qij
Proof: Let Gy = \/ ——2 . Tet |®) = >, , Bu|®PL,) be the projection of |s,v) on H;. Since
Z@ =1 |alj‘ ’

(Po|P) = Boo, we can write
|®o) = Boo|®) + /1 — |Bool2| @)

where |®1) is a vector perpendicular to |®). Since |®g) and |®) are both in the subspace Hj,
|®+) is also in H;. We claim that |®1) is a 1-eigenvector of U’. The state |®) is orthogonal to
|s,v) because |®+) belongs to H; and is orthogonal to |®) which is the projection of |s,v) to that
subspace. Therefore, |®1) is a 1-eigenvector of I — |s,v)(s,v|. |®1) is also a l-eigenvector of U
because it belongs to H;. This means that it is a 1-eigenvector of U’ = U(I — |s,v)(s,v|) as well. m

13



To complete the proof, we need to bound ||, |ao1], - -, ]a\/ﬁ_l \/N—l" We have agy = \/—% We

will show that there are Q(N) other ay, of order Q(1/v/N). This would imply that the overlap of
|®o) with a 1-eigenvector of U’ is
& =1- Q(%),
Zz J=1 |aij|2
Claim [ gives the desired a bound on the «ayy;:
2 (k+1)

1+ cos 2ZE 4 cos 2ZL 4 cog 27UEEY)
1 1 (s |Ulil> | VN VN VN
s, v|vg) & & = |{v & X |{s|v = >

\( ‘ kl> \Xk> ’Xl>‘ ’< \Xk Xl>’ ’< ‘ kl>’ N VN

The range for ?_Nk and \2/—’% is [-5,5]. Therefore, for half of all k (resp. half of all I) we have

|k:| 2L < T (resp. |l | 2L < 7). For the & 1 Dpairs (k,[) that satisfy both of those conditions we have

1++2.

1—|—COS—+COS -+ cos )214—

2m(l +
TR VN

Thus, for at least § pairs (k, 1)

1
+—= >
V2

Sl

|t = [{s, v|vgy) @ [xa) @ xi)| > 14# \;_

6.3 Theorem 3

Proof: The proof for this random walk algorithm with a 2-dimensional coin proceeds in close
analogy to the proof of Theorem [l and we will emphasize and prove the points that differ.

Claim 6” [Spectrum of U:] U has eigenvalues /\,fl with corresponding eigenvectors of the form |U]:€tl>®
Ixk) ®|x1) for all k,1 =0,...,v/N —1, where |x;) = % Z]\-/:NO_I wkI|§) with w = e2mi/VN and /\,fl
and |v5) satisfy the equation

wheosk iwlsink
iwlsink  wlcosk

Ckl’”kl> = < ) ‘Ukl> = )\kl‘vkl>- (16)

The two eigenvalues /\,fl of Ciy are ekt where cos O = %(cos 2”\(/1%1) + cos 2”\(/]%—”).

As a corollary, we have that there are exactly two eigenvectors with eigenvalue 1, both of them
of the form |vi) ® [x0) ® |x0). Since the coin space is 2-dimensional, the two vectors |vgg) span it
and, therefore, [v) ® |x0) ® |x0) is an eigenvector for any |v). In particular, we can take |vg,) = |s)
and |vpy) = |s1) where |s1) L |s). Similarly to Theorem 1, let H}, be the space |vgy) ® |x0) ® |x0)
and |vf:l> ® |xk) @ |xz). Similarly to Claim [, Hj, is mapped to itself by U’.

Let |®})) = |vi7) @ [xk) ® [x1) and |®p;) = V=) ® [x—k) ® [X—1). We can express the state
|s,v) as

5,0) =aol®o) + 3 ana(|BF) + |B5). (17)
(k,1)#(0,0)
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where the equality of the coefficients of |®},) and |®;,;) follows from the proof of Lemma B (and

|®,) and |®,,) being complex conjugates).
2
We now have to bound the sum of Eq. ([d). We claim that replacing all ‘ﬁl Z”z by % does not
change the value of the sum. To see that, we first notice that 6, = 6_ _;. Therefore, replacing

2 2
Hla_p
| by M does not change the sum. Futhermore, |ag|? + |a—x —i|* = +-.

lajy| and [a2,, N
(We have |ag| = ()]s, v), |a—g,—i| = (<I>4_'k7_l|8,v> = (27, _yls,v). The vectors |®,}) and 127, )

L

are the same as |vffl> ® |xk) ® |xi). Therefore, |ag|® + |a_p, equals the squared projection of

|s,v) to |v5) @ |xk) ® |xi) which is equal to |[(v]xx) ® [xi)|* = &.) Also, we still have ag = \/—% and
lag|* = %. Therefore, Eq. (@) simplifies to

1
© 1
VE w0200 e

just as in the proof of Theorem [l We get a« = O(y/Nlog N) as in Lemma [l The other two parts
of Theorem [ also follow in a similar way. [

o =

)

Similarly to Corollary 1 we can get a random walk based search algorith that determines the marked
state with constant probability in time O(v/N log N).

6.4 Theorem 4

Proof: Let us call the 2d directions on the d-dimensional grid i4, where ¢ indicates the dimension
and + the direction of the walk. Then the “flip-flop” shift operation takes the form

Serlie) @ |z . 2. xg) =ig) @ |z, x; £, xg)

Let us recapitulate what the key elements in the proof of Theorem [0 are and how they generalize
to the d-dimensional case.

Claim 6" [Spectrum of U:] U has eigenvalues \g, ,.. k, with corresponding eigenvectors of the form
d
|Uk1k2---kd> ® |Xk1> ® |Xk2> ®...® |Xkd> (kl =0,..., \d/ﬁ - 1)} where |XZ> = % Zk\/:ﬁo_l wk|k> with

w = e2m/ W, and N ky. ky 0nd |V k. k,) Satisfy the equation
0 whk 0 0
wh 0 0 0
Cklkz---kd Uk1k2---kd> = 0 0 0 wke2 'CO|Uk1k2---kd> = )\klkZ---kd Uk1k2---kd>' (18)

The 2d eigenvalues Ny ky.. ky Of Chikg.. ky are 1 and —1 with multiplicity d — 1 each, and eF0k1ka. kg
27‘(‘]{1'
T
to |s) for (kika...kq) # (0,0,...,0). All ]vk_llk%kd> corresponding to eigenvalue —1 are orthogonal
to |s) for all (k1ky ... kq).

where cos Ok, b, = é Z?:l cos

All |vl,£1 ,kad> corresponding to eigenvalue 1 are orthogonal

15



Proof: Eq. (I§) is obtained in the same way as in the proof of Claim B Ci,x,. k, consists
of 2 parts, the 2-block-diagonal matrix (call it Dy, g, x,) and Cp. Each block in Dy, x, has

eigenvalues +1 and eigenvectors (w_%,iw%), so the matrix Dy 1, , itself has eigenspaces of
1 and —1 of dimension d each. In each of these two eigenspaces we can find d — 1 orthogonal
vectors orthogonal to |s). For those vectors Cp = 2|s)(s| — I just flips their sign, so the —1
eigenvectors of Dy r, 1, become +1 eigenvectors of Cp,k,. 1, and vice versa. Call the remaining
two eigenvectors of eigenvalue £1 |e+) and expand |s) = aq|eq) + a—|e—). Then (s|Ck k. k,|5) =
(8| Dk ko key|85) = ézle cos 27k; / VN = cos Ok, ky.. 1, implies |ay|? — |a—|? = cos O, k. k, Let |w)
be an eigenvector of Cj,,. 1, not orthogonal to |s) and expand |w) = f4|e4) + B—|e—). Then we
obtain (using |e;) = o’ |s) + a_|s*) and |e_) = o |s) — ay|s) where |s') is orthogonal to |s) in
the space spanned by |e4.)) for the eigenvalue (w|Ci, ..k, |w) = (log > —|a—|?)+4iImB: f_ayar =
COS Oy kg ey £ 1SN Op 1y 1y - u

For (kiks...kq) = (0,0,...,0) there are d + 1 1-eigenvectors, we set |vg_ o) = |s). Then, the
other 1-eigenvectors are orthogonal to |s).

Similarly to Theorem [I we restrict to the subspace H{, spanned by ]v,fllkznkg ® | Xk1) ® [Xho) ®
. ®|xk,) and |voo...0) @ [X0) ® |X0) ® ... ® |x0). As in Theorem [ we have U’'(H;) = H{,. Further

1 1 _
|s,v) = \/—N\‘I’@ + Wori > (124 k) + Pk )

(k1,k2,...,kq)#(0,0,...,0)

1 - —1
Where ’@:1k2...kd> = ’/U]—:lkz...kd> ® ’Xk1> ® ‘Xk2> ® T ® ‘Xkd> and ’@klkg...kd> = ’/Uklkg...kd> ® ‘X_k1> ®
IX—ks) ® ... ® |X—k,). We use a modified Claim B

. s 1 _
Claim 9”3 i, k,,..k)#(00,.-.0) ooty — O V-

Proof: The proof follows along the lines of the proof of Claim @l By Claim B”,
1 d

1—cosOkky by Z;—lzl(l — Cos 12\;%)

-1
ki+k3+..4k3"

NEd N ! (19)

2 2 3
k1,k2,...kq kl + kg + ...+ kd

Similarly to Lemma [, this is bounded from above and below by a constant times N2/¢

Thus, we have to estimate

where the summation is over all k; € {0,..., VN — 1} such that at least one of the k; is non-
zero. We divide tuples the (ki,...,kq) into N 1/d »glices”, with the m'™ ”slice” containing those
tuples where max(ky,ko,...,kq) = m. The mt slice contains O(md_l) tuples. Therefore, the
sum oy Wiﬂfﬁ over the m'™ slice is of order md_lﬁ = m® 3. Since there are N/4
slices and, for each of them, the sum is m4—3 < N(@=3)/d the sum Zkl,---,kd m over all
(ki,...,kq) # (0,...,0) is of order at most N/dN(d=3)/d — N(d=2)/d  Thig implies that Eq. (I9)

is of order at most N. It is also of order at least N since each individual term N2/ d___1 g
ki+ky+...+kg

at least a constant. [ ]
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Therefore, applying Lemma B gives a sharper bound a = @(\/Lﬁ) Notice that we still fulfill the

requirement o < %Hmm needed for Lemmas Bl and Bl The reason for that is that all 6; are at least

Oh)
Similarly to Claim [, we can show
1
5 “ow
_ 2
(k1,k2,...ka)7#(0,0,...,0) (1= c0s Otz )
and

1
Y L _emw
2
(k1 o, k) £00,...0) ©° Ohika.
By combining these two equalities with Lemmas Bl and Bl we get that the overlap between the
starting state |®¢) and |wstare) = %\wo)— %]w_o) is 1—@(\/—%) and the overlap between |wgood) =
%ma} + %|w_a> and |s,v) is ©Q(1). This implies that the search algorithm’s final state has a
constant overlap with |s, v). [ ]

6.5 Theorem 5

We first discuss generalizing the positive results (Theorems [ Bl and E) to the case with two
marked items. The main issue is to state them as instances of the abstract search. Assume
there are k marked locations vy,...,vg. Then, one step of the search algorithm is U = (I —
2 Zle |s, v;)(s,v;])U. Currently, we are not able to analyze cases of the abstract search where Uy
flips the sign on more than a 1-dimensional subspace.

For the k = 2 case, we can avoid this problem, via a reduction to k = 1. Define |s') =
%|S, vy) + %|S, v2). We claim that applying (U’)? to the starting state |®() gives the same final
state as applying (U")T where U” = (I — 2|s'){s|)U.

To show that, let T' be a symmetry of the grid such that T'(v1) = ve and T'(vy) = v1. (For the
2-dimensional grid, if v; = (z1,y1) and vy = (22, y2), then T'(z,y) = (v1+x2 —z,y1 + y2 —y).) We
identify T with the unitary mapping |c,v) to |¢,T'(v)).

Claim 12 For any t > 0, T(U")!|®q) = (U")!|®y).

Proof: By induction. For the base case, we have to show T'|®g) = |®g). This follows since |®q) is
a uniform superposition of the states |s,v) and T just permutes locations v.
For the inductive case, notice that 7' commutes with both I — 2|s,v1)(s,v1| — 2|s,v2)(s, va| and
U. Therefore, TU' = U'T. If the inductive assumption T'(U’)!|®q) = (U’)!|®) is true, then we
also have
T(U")*®o) = U'T(U")!|@g) = (U @),

completing the induction step. [ |
Let |s") = %Ls,vl) - %|8,’U2>. Then, (U')!|®g) is orthogonal to |s”) because T'|s") = —|s").

We have |s,v1) (s, v1| + |8, v2) (s, v2| = |s')(s'| + |s")(s"|. Together with (U’)!|®q) L |s"), this means

(I = 2[s,v1)(s, v1] — 2|5, v2) (s, v2])(U")|®o) = (I = 2|s")(s')(U")"| D).
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Thus, U’ can be replaced by U” at every step.

The rest of the proofs is now similar to the case of 1 marked location, except that |s,v) is
replaced by |s') everywhere. Theorem B also follows similarly to the 1 marked item case, with |s")
instead of |s,v).

7 Proofs of the technical lemmas

In this section, we prove Lemmas[ Bl B Bland Bl We will repeatedly use the following result which
can be found in many linear algebra textbooks.

Fact 1 The eigenvectors of a real unitary matrixz either have eigenvalue £1 or else they appear in
conjugated pairs with eigenvalues e and eigenvector | £ w) = %(!R> +4|I)), where |R) and |I)
are real normalised vectors and (R|I) = 0.

Proof of Lemma [k Let g = 1 — Re(e?min). Then, for any ¢ € A, Re(e?) > 1 — g and, for
every eigenvector |w) with an eigenvalue in A, Re(w|U’'|w) > 1 —g.

If there were more than two eigenvectors of U’ in H{, with eigenvalues on the arc A, we
could construct a linear combination |a) of them such that |a) L |®g),|s,v). Since |a) is a lin-
ear combination of vectors |w) with Re(w|U'|w) > 1 — g we have Re(a|U’|a) > 1 — g. But then
Re(alU’|a) = Re(a|U(I —2|s,v)(s,v|)|a) = Re(a|Ula). Since |a) is orthogonal to |®¢) and all other
1-eigenvectors of U (|a) € H{), |a) is a linear combination of eigenvectors of U at least g away from
1 and hence Re(a|Ula) <1 — g, which gives a contradiction. ]

Proof of Lemma [k Let |®) be the vector obtained by replacing every amplitude in |<I>j'> by its

complex conjugate. Since Us is a real unitary matrix, U2|<I>;r> = ¢ |<I>;r> implies Us|®) = e~ |®).
+
J
are equal to the inner products <q);_‘wstart> and <(I>j_\wsmrt>. Since |Ystart) is a real vector, these

Therefore, we can assume that ]tIDJ_> is a complex conjugate of ]@;’> The coefficients a; and a;

two inner products are complex conjugates and a;r = (aj_)*. By multiplying ]tID;F> and \(IJJ_> with

appropriate constants, we can achieve a;r = aj_. [ |

Proof of Lemma First, we express W}good> in the basis consisting of eigenvectors of Us:
m
|¥g00a) = ao|®o) + > a;(|0T) +[@)). (20)
j=1

where |®g) = |[tstart). We define for real o

'y 0.
|w!)) = ag cot %\CI)O> + EJ: aj <Cot @ . J ’(p;r> + cot a_;_ J ’(pj—>> ) (21)
Similarly to Claim 2 in [Amb03], we have
Lemma 13 If |w),) is orthogonal to |{geod), then |wa) = [tgooa) + ilwl,) is an eigenvector of U’

with eigenvalue € and |w_q) = [Ygooa) + ilw’ o) is an eigenvector of U’ with eigenvalue e~*.

18



Proof: The proof is similar to [Amb03], but we include it for completeness.
Apply U’ to |ws) and expand in the eigenbasis of U:

U/|Wa> = U(I - 2|va><svv|)(|7pgood> +Z|w:1>) ( |¢good> +Z|w >) ( 1 +iCOt g)|<1>0>+
T CC 5@ ) + et (- 7))

In this equation, every coefficient is equal to the corresponding coefficient in € (|1go0a) + i|w))).
Namely, for the coefficient of |®g), we have

i(5+9)  JG-9)
(—14—1’00‘5%):6.2 ’ :em‘e .2 ’ :ela<1+iCOt%).

For the coeflicient of ]@ﬁ, we have

x % a x ., % a
—0; +a oG wg) gty —g) —0:+a
i0; : J _ 0, _ i _ i : J
J<—1+zcotT>—e g 0Fa — ¢ o oga =€ 1+zcotT
2

sin 5 sin

and, similarly, the conditions for the coefficients of |<I>]_> are satisfied. [ |

By Eqgs. @0) and @I0), (s,v|w.,) = 0 is equivalent to

m
9y L« 9 a+0; a—"0;
ag cot 5t Z aj(cot cot ) =0. (22)
j=1
Let 0,,i, be the smallest of 0y, ..., 8,,. Then, this equation has exactly one solution in [0, ]

and one solution in [—6pn,0]. The reason for that is that the cot function is decreasing (except

for x = km, where it goes to —oo for x < km and +oo for > k). Therefore, the whole right hand

side is decreasing, except if one of § aze e 63 becomes a multiple of . This happens for o =0

and a = £0,,,;,. Since 0,,;, is the Smallest of 0], [—Omin, 0] and [0, €,,;,] contain no values of « for

which one of the cot becomes infinity. On the interval [0, 6,,;,] the left-hand side of [22)) goes to

400 if @ — 0, —oc0 if @ — 1 and is 0 for exactly one value of o between 0 and fp;. This means

that the two eigenvectors of U’ in the arc A are of the form |s,v) + i|w)) with |w.) as in Eq. ZII).
Next, let us determine this a. Since

coOsT  COs €os x sin cosysinx  sin(x sin(x
cota + coty = ST 4 Y _ 1y + cosy _ .( {r@/):2 (z+y) 7
sinx  siny sinxsiny sinxsiny cos(x — y) — cos(z + y)
Eq. (22 is equivalent to a? cot & 5 + E 2aj % = 0 which, in turn, is equivalent to

5 cot 5 9 1
= 25—,
“Sina EJ: % cos a — cos 6,
For a = o(1), sina = (1 — o(1))a and cot & = (1 + o(1))Z. Therefore, we have, with cosa < 1

1 2. P — 2
(L+o(1 Z cosoz—cos@ Z 1—0089 (23)
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This implies
1

\/ zj aO 1— cos@

Assume that o < %Hmm. (Otherwise, the lower bound of the lemma is true.) Then, we have

a <

(24)

Sl

It remains to lower bound a.

—_

0.
cos a — cos 0 > cos EJ —cosf; > 5(1 —cos 0;). (25)

The first inequality follows from o < 9’”72'” < % and cos being decreasing on [0, 7]. The second

inequality is equivalent to cos % > %(1 + cos 6;) which follows from 1+ cos6; = 2 cos? 0; < 2cos0;.
Eq. 23) and (23) together imply

. 26
J1—cosb;’ (26)

ag 1 1
g 2
(1 +O(1))a_ < 52(1'
J
which implies the lower bound on a. [ |

Proof of Lemma H: We will show that the starting state is close to the state |wgtqrt) =

‘wsmrt> %‘wo» - %‘w—a>~ By Eq- (IZ[]), we have

1
T |W
||wgtart|| ‘ Start>’

a, a+0; 0; —a\ . _
[whart) = V2aq cot §Z’¢start> + Z\/iaj <cot 5 2 _ cot -2 5 > i (\CIJ;F> —[®; >) .
J

<w5t(l7"t‘wsta'rt> — \/ECL()COT]%

”wstart” B “w;tar't”

[whgare|* = 2a cot® % + 42 a <cot
J

We have (Vstart|Wstart) = We

. Therefore, we need to bound ||w;,.||-

have

2
a+6; OtHj—a> '
2
Since cotz = (1 + 0(1))2, the first term is 2(1 + o(1))ad % = ©(ad/a?). Similarly to the previous
lemma, we have
0, — sin « (I +o(1))

— cot = = .
2 cosa —cosfl;  cosa — cos b

+6;

cot

Since o < 30pmin, we have cos o — cos0; > (1 — cos6;) (similarly to Eq. (H)). Therefore,

1+0(1))c
>, a5 (0 55(1—502)9

2
()a 2 2
~ j)2) o~ Y «
—1 (>
O(a2/a?) O a Za% (—cosb;

J

112
WP,

ag cot? %
This means that

V2ag cot & 4 a?
<¢start|w> = W @ Z]: a_g 1-— COS@ )

20



Proof of Lemma Bt Let |wgood) = %\wo) — %\w_o). We consider the unnormalized state

. |lw’ )
‘wgood> ‘w/o) - ‘wl—a>' ObVIOuSIY7 ‘wgood> = ||w£’woZ|| . We have
goo

|w;ood> = 2a0|Vstart) +

m
0, 0 —0;
a; 2+z‘cota+ ) 4 jcot ———2 a+ + 2+zcot ] +jicot —2 w
! 2 2
j=1
(¥good|Wyooq)

Also <¢good|wgood> = g”wdizud- Futhermore, <¢good|w;ood> = 2(1% + Zm: 4(12» = 2H|7;Z)good>H2 = 2.
(The imaginary terms cancel out because cot iaT% = —cot -+ jFO‘ b 2.) It remains to bound [lwy,..|-
We have

- = a+6; a+0,\2
2 2 2 2 . - i

ol = 208+ 3" 40 + 3 203 <cot - mcotTJ)

7j=1 7j=1

m 2

0. _ 0.
=2+Z;2a§ <cot%+cot%>
]:

Since a < %Hmm, this sum is at most

“ 6;/2 “ 6,
2+22a§(2cot ]T)z <2406 Za?cot2—]

- A 4
Jj=1 Jj=1

Therefore, |[w'|| = ©(max(y/>_; af cot2 ;1)) and (g004|/w) = © | min \/ .
>, a3 cot2

8 General graphs

The approach and methods we have presented are amenable to analyze quantum walk algorithms
on other graphs G. All we need is the eigenspectrum of the unperturbed walk U, an appropriate
subspace H|, containing no 1-eigenvectors of U (which is equivalent to proving that all but one 1-
eigenvector of U is orthogonal to |s)), and the sums in Lemmas Bl Bl and B involving the eigenvalues
of U (which give the angle « and the overlaps). Then we can apply Lemmas to get the desired
result.

Hypercube: For instance we can derive the performance of the random walk search algorithm
on the hypercube, given in [SKWO03] without having to guess the form of the eigenvalues | + wy).
[ISKWO03| showed that the random walk search algorithm after time 7' = %\/N gives a probability
of ~ % to measure the marked state. For the d-dimensional hypercube (with N = 2% vertices), the
transformation U has d2¢ eigenvectors. An argument similar to Claim [ shows that the quantum
walk stays in the 2¢-dimensional subspace spanned by 2¢ eigenvectors with eigenvalues ¢+ [MR02]
with
2k

—1-=
cos by, = y
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for K =0...d, each with degeneracy (z) Among those, |®g) is the only eigenvector with eigenvalue
1, thus we have an instance of the abstract search. We can now apply Lemmas Bl For Lemma B,
we need to compute the sum of inverse gaps of all eigenvalues of U in Lemma B, which is now of

S (1) g - g;i: ()7 =210+ o0) = N1+ 1),

k=1

the form

This gives a time 7' = O(VN) to rotate the state. Evaluating the quantities in Lemmas Bl and
shows that measuring the final state gives a marked location with constant probability.

Remarks on general graphs We have seen that crucial to “good” performance of these algo-
rithms are essentially two ingredients:

1. Coin property: The relevant Hilbert space H{, of the perturbed walk U’ does not contain 1
eigenvectors (i.e. all 1-eigenvectors of U except the starting state |®g) are orthogonal to the
marked state |s,v)).

2. Graph property: The gap g between the l-eigenvalue and the real part of the next closest
eigenvalue of U is sufficiently large (determines the overlap of the initial state with the two
relevant eigenvectors). Furthermore the sum of inverse gaps of the eigenvalues of U, i.e.
of terms (1 — cos#)~! where @ is an eigenvalue of U, is sufficiently small, such that the
angle between the two eigenvectors of U’ with eigenvalue closest to one is sufficiently large
(determines the speed of the algorithm).

We call the first item a “Coin” property because, as we have seen, it is the choice of coin that
determines this behavior. We call the second property a “Graph” property because the gap and
the closeness of the perturbed eigenvalues to 1 depend on the topology of the graph.

To be more precise let us carry our argument through for Cayley-graphs of Abelian groups.
The eigenvalues of the unperturbed walk U are “split” by the coin to be “around” the eigenvalues
of the normalized adjacency matrix of the graph. More precisely, note that the adjacency matrix
of a Cayley graph can be written as a sum of commuting shift operations over all d directions
A= %Zle S;. The eigenvalues of A are just sums of eigenvalues of shifts (which are the Fourier

2km

coefficients). For instance in the case of the grid the eigenvalues of A are of the form %(COS N

cos \Q/I—%) = 1" +wF+w +w) for k1 = 0...V/N — 1. From Eq. (8) we see that in general
+k,l

the coin “changes” the eigenvalues to be some linear combination of w™"*. This is what happens
in general, and the resulting eigenspectrum will have gaps of the same order of magnitude as the
spectrum of the matrix A (which defines the simple random walk on the graph). Thus, it is likely
that the sum ), ?1059 (0 eigenvalue of U) which determine the speed of the algorithm can be

estimated from graph properties alone (given a successful choice of coin).

Related work: Analyzing quantum walks on general graphs has been recently considered by
Szegedy [Sze04] who has shown a following general result. If ¢ fraction of all vertices of a graph is
marked and all eigenvalues of a graph differ from 1 by at least J, then O(\/%) steps of quantum
walk suffice. This contributes to the same goal as our paper: developing general tools for analyzing
quantum walks and using them in quantum algorithms.
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The power of two methods (ours and [Sze04]) seems to be incomparable. The strength of our
method is that it is able to exploit a finer structure of the graph. For example, consider the 2-
dimensional grid with a unique marked item. Applying the theorem of [Sze(4] gives a running
time of O(N3/*), compared to O(v/N log N) for ours. (One marked item is a 1/N fraction of all
items and the eigenvalue gap d for the grid is 1//N.) The reason for this difference is that most
eigenvalues are far from 1. The approach of [Sze04] uses worst-case (minimum) difference between
1 and eigenvalues of the graph, which is small (\/—lﬁ) Our approach uses a quantity (>, ?1059)
that involves all eigenvalues, capturing the fact that most eigenvalues are not close to 1.

The strength of Szegedy’s [Sze04] analysis is that it allows to handle multiple marked locations
with no extra effort, which we have not been able to achieve with our approach. It might be
interesting to combine the methods so that both advantages can be achieved at the same time.

9 Conclusion

We have shown that the discrete quantum walk can search the 2D grid in time O(v/N log N) and
higher dimensional grids in time O(v/N). This improves over previous search algorithm and shows
an interesting difference between discrete and continous time quantum walks. More generally, we
have opened the route to a general analysis of random walks on graphs by providing the necessary
toolbox.

The main open problems are applying this toolbox to other problems and learning to analyze
quantum walks if there are multiple (more than 2) marked locations. In the case of our problem,
it is possible to reduce the multiple marked location case to the single location case at the cost
of increasing the running time by a factor of log N [AAQ3]. Still, it would be interesting to be
able to analyze the multiple item case directly. A recent paper by Szegedy [Sze04] has shown how
to analyze the multiple solution case for a different quantum walk algorithm, element distinctness
[Amb03]. It is open whether the methods from [Sze04] can be applied to search on grids.
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