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Abstract

We show how to search N items arranged on a
√
N ×

√
N grid in time O(

√
N logN), using

a discrete time quantum walk. This result for the first time exhibits a significant difference

between discrete time and continuous time walks without coin degrees of freedom, since it has

been shown recently that such a continuous time walk needs time Ω(N) to perform the same task.

Our result furthermore improves on a previous bound for quantum local search by Aaronson

and Ambainis. We generalize our result to 3 and more dimensions where the walk yields the

optimal performance of O(
√
N) and give several extensions of quantum walk search algorithms

for general graphs. The coin-flip operation needs to be chosen judiciously: we show that another

“natural” choice of coin gives a walk that takes Ω(N) steps. We also show that in 2 dimensions

it is sufficient to have a two-dimensional coin-space to achieve the time O(
√
N logN).

1 Introduction

Quantum walks are quantum counterparts of classical random walks. Classical random walks have

many applications in randomized algorithms [MR95] and we hope that quantum walks would have

similar applications in quantum algorithms. Both discrete-time [Mey96, AAKV01, ABN+01] and

continous time [FG98, CFG02] quantum walks have been introduced1. The definitions of the two

are quite different. In continous time, one can directly define the walk on the vertices of the graph.

In discrete time, it is necessary to introduce an extra “coin” register storing the direction in which

the walk is moving.

Because of this difference in the definitions, it has been open what the relation between discrete

and continous walk is. In the classical world, the continous walk is the limit of the discrete walk
1For an introduction to quantum walks see [Kem03a].
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when the length of the time step approaches 0. In the quantum case, this is no longer true. Even

if we make the time-steps of the discrete walk smaller and smaller, the “coin” register remains.

Therefore, the limit cannot be the continous walk without the “coin” register. This means that one

variant of quantum walks could be more powerful than the other in some context, but so far all

known examples have given similar behavior of the two walks (see e.g. [CFG02, Kem03b, CCD+03]).

In this paper, we present the first example where the discrete walk (with “coin”) outperforms

the continous walk (with no “coin”). Our example is the spatial search [Ben02, AA03] variant of

Grover’s search problem. In the usual Grover’s search problem [Gro96], we have N items, one of

which is marked. Then, we can find the marked item in O(
√
N) quantum steps, with one quantum

step querying a superposition of items. In contrast, classically Ω(N) queries are required. In the

“spatial search” variant, we have the extra constraint that the N items are stored in N different

memory locations and we need time to move betwen locations. This may increase the running time

of a quantum algorithm.

The first “spatial” version of Grover’s algorithms with optimal performance was given by

[SKW03] who showed how to search N items arranged on the n-dimensional hypercube, using

a discrete quantum walk.

In this paper, we consider the 2-dimensional arrangement where N memory locations are ar-

ranged in an
√
N×
√
N grid. This was first studied by Benioff [Ben02] who observed that the usual

Grover’s search algorithm takes Ω(N) steps. It uses Θ(
√
N) query steps but, between each two

queries, it might move a distance of Θ(
√
N). Thus, the total time becomes Θ(N) and the quantum

speedup disappears. Aaronson and Ambainis [AA03] fixed this problem by giving an algorithm for

searching the 2-dimensional grid in O(
√
N log2N) total steps2 (counting both queries and moving

steps) and the 3-dimensional grid in O(
√
N) steps, using Grover’s algorithm together with multi-

level recursion. Quantum walks were first applied to this problem by Childs and Goldstone [CG03]

who studied the search on the grid by a continous quantum walk. They discovered that the conti-

nous walk provides an alternative search algorithm with optimal performance of O(
√
N) in 5 and

more dimensions, but not in 2 or 3 dimensions, where the continuous walk takes Ω(N) and Ω(N5/6),

respectively. In 4 dimensions the continuous time walk algorithm performs as O(
√
N logN).

In this paper, we use discrete-time quantum walks to design an algorithm that searches the

grid in O(
√
N logN) time in 2 dimensions and O(

√
N) time in 3 and more dimensions. Thus, our

algorithm is faster than both the non-walk quantum algorithm of [AA03] and the algorithm based

on the continous time quantum walk [CG03]. In addition to having a very simple structure our

algorithm also uses only 1 or 2 qubits of extra memory (or log2d qubits for the d-dimensional grid),

besides the current location. (The previous algorithm of [AA03] uses O(logc n) qubits of extra

memory.)

Besides improving the running time, we present several interesting features of quantum walks.

The first feature is that the discrete-time walk succeeds while the continous walk does not. Secondly,

the behavior of the discrete quantum walk on the grid crucially depends on the choice of the “coin”

2The running times for the 2-dimensional grid are for the case when the grid contains one marked item. The

general case (an arbitrary number of marked items) can be reduced to the one item case with a log N increase of

the running time [AA03]. That would result in a running time of O(
√

N log3
N) for the algorithm of [AA03] and

O(
√

N log2
N) for our algorithm which we present in this paper. For 3 and higher dimensions, the general case can

be reduced to the one item case with just a constant factor increase [AA03]. Thus, the asymptotic running times

stay the same.
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transformation. One natural choice, discovered numerically by Neil Shenvi [She03], leads to our

algorithm while some other natural choices fail to produce a good algorithm. Thus, the “coin”

transformation could be a resource which affects the algorithm profoundly. We give both upper

and lower bounds for the performance of some natural choices of the “coin”. Surprisingly we show

that in the case of the 2-dimensional grid only 2 (and not the standard 4) coin-degrees of freedom

are sufficient to achieve the quantum speed-up. The insights gained from our study might aid in

the design of future discrete quantum walk based algorithms. Several such algorithms have recently

been discovered [CCD+03, Amb03, MSS03, CE03, Sze04].

Our presentation allows a fairly general approach to quantum walk search algorithms on graphs.

In particular it simplifies the proof of [SKW03], where the relevant eigenvectors had to be “guessed”.

We also give a discrete walk search algorithm on the complete graph and show its equivalence to

Grover’s algorithm and outline several generalizations of our results.

2 Preliminaries and Notation

2.1 Model

Our model is similar to the one in [AA03]. We have an undirected graph G = (V,E). Each vertex v

stores a variable av ∈ {0, 1}. Our goal is to find a vertex v for which av = 1 (assuming such vertex

exists). We will often call such vertices marked and vertices for which av = 0 unmarked.

In one step, an algorithm can examine the current vertex or move to a neighboring vertex in

the graph G. The goal is to find a marked vertex in as few steps as possible.

More formally, a quantum algorithm is a sequence of unitary transformations on a Hilbert space

Hi⊗HV . HV is a Hilbert space spanned by states |v〉 corresponding to vertices of G. Hi represents

the algorithm’s internal state and can be of arbitrary fixed dimension. A t-step quantum algorithm

is a sequence U1, U2, . . ., Ut where each Ui is either a query or a local transformation. A query Ui
consists of two transformations (U0

i , U
1
i ). U

0
i ⊗ I is applied to all Hi ⊗ |v〉 for which av = 0 and

U1
i ⊗ I is applied to all Hi ⊗ |v〉 for which av = 1.

A local transformation can be defined in several ways [AA03]. In this paper, we require them

to be Z-local. A transformation Ui is Z-local if, for any v ∈ V and |ψ〉 ∈ Hi, the state Ui(|ψ〉⊗ |v〉)
is contained in the subspace Hi ⊗ HΓ(v) where HΓ(v) ⊂ HV is spanned by the state |v〉 and the

states |v′〉 for all v′ adjacent to v. Our results also apply if the local transformations are C-local

(another locality definition introduced in [AA03]).

The algorithm starts in a fixed starting state |ψstart〉 and applies U1, . . ., Ut. This results in a

final state |ψfinal〉 = UtUt−1 . . . U1|ψstart〉. Then, we measure |ψstart〉. The algorithm succeeds if

measuring the HV part of the final state gives |g〉 such that ag = 1.

For more details on this model, see [AA03].

2.2 Search by quantum walk

In what follows we will assume that G is undirected and d-regular, i.e. has constant degree d. To

each vertex we can associate a labeling {1, . . . , d} of the d edges (directions) adjacent to it and an

auxiliary “coin”-Hilbert space Hd = {|1〉, . . . , |d〉}. Let HN be the Hilbert space spanned by the

vertices of the graph, then the walk takes place in the joint space of coin and graph H = Hd⊗HN .
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Definition 1 [Discrete Quantum Walk on G:] The discrete quantum walk is an alternation of coin

flip and moving step: U = S · C, where S is a shift controlled by the coin register

S : |i〉 ⊗ |x〉 −→ |π(i)〉 ⊗ |x̃〉 (1)

i = 1, . . . , d and x, x̃ ∈ V , x and x̃ are connected by the edge labelled “i” on x’s side and π is a

permutation of the d basis states of the coin space Hd, and the coin C = C0 ⊗ IN where IN acts as

identity on HN and C0 is a “coin-flip” acting on Hd

C0 = 2|s〉〈s| − Id where |s〉 = 1√
d

d
∑

i=1

|i〉. (2)

For a given i S permutes the vertices of the graph, hence S is a unitary operation. The permutation

π allows us to specify shift operations that act differently on the coin space Hd. Note that the

coin is symmetric in that it treats all d directions equally, and among all such coins C0 is the one

farthest away from identity.

Remark: The uniform superposition |Φ0〉 = 1√
dN

∑d
i=1

∑N
x=1 |i〉⊗|x〉 is an eigenvector of U with

eigenvalue 1 (U |Φ0〉 = |Φ0〉); if we start the walk in |Φ0〉 it will never change this state.

To introduce a marked item in the graph we need to have an inhomogeneity in the quantum

walk by using the coin to “mark” a vertex v, which gives rise to the following:

Definition 2 [Perturbed Quantum Walk:] The perturbed walk with marked vertex v and “marking

coin” C1 = −Id is U ′ = S · C ′, where

C ′ = C0 ⊗ (I − |v〉〈v|) + C1 ⊗ |v〉〈v| = C − (C0 − C1)⊗ |v〉〈v|. (3)

We will think of U ′ as the random walk with one (or several) marked coins. This means that instead

of one coin for all nodes, C0 ⊗ I, we have a different coin C1 on the marked state. Numerical data

shows that other marked coins exhibit similar properties as C1 = −I, but we will use this coin which

simplifies the analysis. Then C0−C1 = 2|s〉〈s|, and U ′ = U−2S|s, v〉〈s, v| = U · (IdN −2|s, v〉〈s, v|)
using C0|s〉 = |s〉.

The quantum walk U gives rise to a search algorithm on a graph G in the following way:

Quantum Walk Search Algorithm

1. Initialise the quantum system in the uni-

form superposition |Φ0〉.

2. Do T times: Apply the marked walk U ′.

3. Measure the position register.

4. Check if the measured vertex is the

marked item.

An item on a vertex of the graph could be marked by setting an auxiliary qubit to |1〉, whereas the

unmarked items could have this qubit set to |0〉. Then this auxiliary qubit can control the coin to

be C for the unmarked items and C ′ for the marked item.

We will analyse this algorithm to obtain upper bounds on the query complexity of search by

random walks.
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Complete Graph - Grover’s Algorithm: As a first example let us illustrate how we can view

Grover’s algorithm [Gro96] as a random walk search algorithm on the complete graph. Each vertex

has N edges (we will include a self-loop for each vertex). Both vertices and edges are labelled with

1, . . . , N ; the coin space and the vertex Hilbert space are both N -dimensional and we will write

states as |i〉 ⊗ |j〉, where the first register is the coin-register. The shift operation S is defined as

S : |i〉 ⊗ |j〉 −→ |j〉 ⊗ |i〉.

The marked coin in this case is chosen to be C1 = −C0, which gives C1 − C0 = −2C0 and

C ′ = C0 ⊗ (I − 2|v〉〈v|), where |v〉 is the marked state. Note that C0 = 2|s〉〈s| − 1N is the

reflection around the mean operator of Grover’s (“standard”) algorithms and I − 2|v〉〈v|) =: Rv
the phase flip of the oracle. Recall that Grover’s algorithm is of the form (Rv · C0)

T |s〉. The

initial state for the random walk based algorithm is the uniform superposition |Φ0〉 = |s〉 ⊗ |s〉.
Now U ′|Φ0〉 = S · C ′|Φ0〉 = Rv|s〉 ⊗ C0|s〉, C ′ · U ′|Φ0〉 = (C0 · Rv)|s〉 ⊗ (Rv · C0)|s〉 and U ′2|Φ0〉 =

(Rv · C0)|s〉 ⊗ (C0 · Rv)|s〉. So we see that a random walk in this scenario gives exactly Grovers

algorithm on both the coin space and the vertex space, at the expense of a factor of 2 in the number

of applications.

3 Results in 2 dimensions

We give several upper and lower bounds for the discrete quantum walk on the grid. The N

memory locations are arranged in a
√
N ×

√
N grid G, labeled by their x and y coordinate as

|x, y〉 for x, y ∈ {0, . . . ,
√
N − 1}. will assume periodic boundary conditions and operate mod

√
N .

The natural coin space is 4-dimensional. We will label the edges emanating from each vertex with

→,←, ↑, ↓, indicating the positive and negative x and y directions.

As it turns out, the choice of the coin transformation (or, equivalently, of the permutation π in

Eq. (1)) is crucial for the performance of the random walk. We will show that using a “flip-flop”

shift, gives a search algorithm that succeeds in O(
√
N logN) time. The “flip-flop” shift Sff changes

direction after every move, i.e. π flips ↑ with ↓ and → with ←. Our analysis of the “flip-flop”

based walk follows the numerical discovery of its performance by Neil Shenvi [She03]. Another

natural shift is the “moving” shift Sm which does not change direction (i.e. in Eq. (1) π = id and

|π(i)〉 = |i〉).

Sff : | →〉 ⊗ |x, y〉 −→ | ←〉 ⊗ |x+ 1, y〉 Sm : | →〉 ⊗ |x, y〉 −→ | →〉 ⊗ |x+ 1, y〉
| ←〉 ⊗ |x, y〉 −→ | →〉 ⊗ |x− 1, y〉 | ←〉 ⊗ |x, y〉 −→ | ←〉 ⊗ |x− 1, y〉
| ↑〉 ⊗ |x, y〉 −→ | ↓〉 ⊗ |x, y + 1〉 | ↑〉 ⊗ |x, y〉 −→ | ↑〉 ⊗ |x, y + 1〉
| ↓〉 ⊗ |x, y〉 −→ | ↑〉 ⊗ |x, y − 1〉 | ↓〉 ⊗ |x, y〉 −→ | ↓〉 ⊗ |x, y − 1〉

(4)

Surprisingly we will show that the “moving” shift gives a walk search algorithm that takes time

Ω(N). So even though it seems this walk “moves faster” than the “flip-flop” walk, the resulting

algorithms performs much worse, no better than classical exhaustive search. It is this surprising

behavior of Sm which has halted the progress in finding a good discrete quantum walk search

algorithm on the grid.
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Theorem 1 For the quantum walk search algorithm associated to the quantum walk U = Sff · C,

with Sff as in Eq. (4), there is a T = O(
√
N logN), such that after T steps the probability to

determine the marked state is pT = O(1/ logN) .

Corollary 1 We can get a local search algorithm based on the quantum walk that finds the marked

state with constant probability in time O(
√
N logN).

Proof of Corollary 1: The initial state |Φ〉 can be generated with
√
N local transformations.

Since we only have an estimate for T up to a constant factor, we need to repeat the random walk

an appropriate (constant) number of times. For the algorithm we will use amplitude amplification

[BHMT02] to achieve a time O(
√
N logN). We will give more details in the proof of Theorem 1.

Theorem 2 The quantum walk search algorithm associated with Sm as in Eq. (4) takes at least

Ω(N) steps to determine the marked state with constant probability.

We also consider a two dimensional coin inspired by Dirac’s equation in 2+1 dimensions. Let

| ⇑〉 = |0〉 and | ⇓〉 = |1〉 be the standard basis for one qubit and | ⇐〉 = 1√
2
|0〉 + 1√

2
|1〉 and

| ⇒〉 = 1√
2
|0〉− 1√

2
|1〉 be the Hadamard basis. If there is no marked coins, one step of the quantum

walk U with the two-dimensional coin consists of:

1. Move up/down:

| ⇑〉 ⊗ |x〉 ⊗ |y〉 → | ⇑〉 ⊗ |x〉|y − 1〉,
| ⇓〉 ⊗ |x〉 ⊗ |y〉 → | ⇓〉 ⊗ |x〉|y + 1〉.

2. Move left/right:

| ⇐〉 ⊗ |x〉 ⊗ |y〉 → | ⇐〉 ⊗ |x− 1〉|y〉,
| ⇒〉 ⊗ |x〉 ⊗ |y〉 → | ⇒〉 ⊗ |x+ 1〉|y〉.

If there is a marked coin |v〉, we define the quantum walk as U ′ = U(I − 2|s, v〉〈s, v|) where U is

the walk with no marked coin and |s〉 is the state 1√
2
| ⇑〉+ 1√

2
| ⇓〉.

Theorem 3 The associated quantum walk search algorithm takes O(
√
N logN) steps and the prob-

ability to measure the marked state is Ω(1/ logN). This yields a local search algorithm running in

time O(
√
N logN).

4 Results in 3 and more dimensions

In more than 2 dimensions the “flip-flop” based quantum walk search algorithms achieves its optimal

performance of O(
√
N). Here G is a grid of N vertices, arranged as d

√
N × . . .× d

√
N , with periodic

boundary conditions, as before, and states are labelled as |x1, . . . , xd〉.

Theorem 4 Let G be the d-dimensional grid with N vertices. Then the associated quantum walk

with one marked coin takes O(
√
N) steps and the probability to measure the marked state is constant.

Theorem 5 The results of Theorems 1, 2, 3 and 4 hold also for two marked items.
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5 Abstract search algorithm

Before giving the technical details let us give some intuition of the proof. Recall that Grover’s

algorithm in its standard form is a succession of reflections Rv around the marked state |v〉 followed

by a reflection around the mean R|Φ〉 = 2|Φ〉〈Φ| − IN , where |Φ〉 is the uniform superposition over

all items. It can be viewed as a rotation in a two dimensional space, spanned by the marked state

|v〉 and the initial state. In the basis where |0〉 = |Φ〉 and |v〉 = 1√
N
|0〉 +

√

N−1
N |1〉, Grover’s

algorithms corresponds to the transformation (with sinφ = 2
√
N−1
N )

U =

(

cosφ − sinφ

sinφ cosφ

)

. (5)

The two eigenvectors of U are | ± ω〉 = 1√
2
(|0〉 ± i|1〉) with eigenvalues e∓iφ. The initial state is a

uniform superposition of the two eigenvectors |Φ〉 = 1√
2
(|ω〉 + | − ω〉). After T applications of U ,

with T chosen such that Tφ = π
2 , we have

UT |Φ〉 = UT
1√
2
(|ω〉+ | − ω〉) =

1√
2
(−i|ω〉+ i| − ω〉) = |1〉

which has an overlap of
√

N−1
N with the marked state |v〉.

In the random walk algorithm the transformation (I−2|s, v〉〈s, v|) is a counterpart of Rv and the

transformation U is an “imperfect” counterpart of R|Φ〉. We will first show, that with an appropriate

choice of coin (as in Thms. 1, 3, and 4) the resulting transformation is still approximately in a

2-dimensional subspace; In this space U ′ will correspond to a rotation as in Eq. (5). Chosing T

appropriately will (approximately) give a state with a “large” overlap with the marked state or its

neighbors.

In the case of the “bad” coin, as in Theorem 2, we will show that there is a large eigenspace

of eigenvalue 1 of the perturbed walk, and that the initial state has a large overlap with this

eigenspace. Hence the state of the system nearly doesn’t change by the walk.

More formally, an abstract search algorithm consists of two unitary transformations U1 and U2

and two states |ψstart〉 and |ψgood〉. We require the following properties:

1. U1 = I − 2|ψgood〉〈ψgood| (in other words, U |ψgood〉 = −|ψgood〉 and, if |ψ〉 is orthogonal to

|ψgood〉, then |ψ〉 = |ψ〉);

2. U2|ψstart〉 = |ψstart〉 for some state |ψstart〉 with real amplitudes and there is no other eigen-

vector with eigenvalue 1;

3. U2 is described by a real unitary matrix.

The abstract search algorithm applies the unitary transformation (U2U1)
T to the starting state

|ψstart〉. We claim that, under certain constraints, its final state (U2U1)
T |ψstart〉 has a sufficiently

large inner product with |ψgood〉.
The next lemmas, which we will prove in Sec. 7, describe the main properties of an abstract

search algorithm that we use. Let U ′ = U2U1. Since U2 is a real unitary matrix, its non-±1-

eigenvalues come in pairs of complex conjugate numbers. Denote them by e±iθ1 , . . ., e±iθm . Let

θmin = min(θ1, . . . , θm).
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Lemma 1 Define the arc A as the set of eiθ for all real θ satisfying −θmin < θ < θmin. Then U ′

has at most two eigenvalues3 in A.

The two eigenvectors with these eigenvalues will be very important to us. We will show that

the starting state is close to a linear combination of them. Therefore, we will be able to determine

the evolution of the starting state by studying these two eigenvectors.

We start by bounding the two eigenvalues. Let |Φ+
j 〉 and |Φ−

j 〉 be the eigenvectors with eigen-

values eiθj and e−iθj , respectively. We express |ψgood〉 as a superposition of the eigenvectors of U2:

|ψgood〉 = a0|ψstart〉+
m
∑

j=1

(

a+
j |Φ+

j 〉+ a−j |Φ−
j 〉
)

. (6)

Lemma 2 It is possible to select |Φ+
j 〉 and |Φ−

j 〉 so that a+
j = a−j and a+

j is a real number.

In the next lemmas, we assume that this is the case and denote a+
j = a−j simply as aj .

Lemma 3 The eigenvalues of U ′ in A are e±iα where

α = Θ









1
√

∑

j

a2j
a2
0

1
1−cos θj









. (7)

Let |wα〉 and |w−α〉 be the two eigenvectors with eigenvalues eiα and e−iα, respectively. Define

|w′
start〉 = 1√

2
|wα〉 − 1√

2
|w−α〉, |wstart〉 = 1

‖w′
start‖

|w′
start〉. We claim that |wstart〉 is close to the

starting state |ψstart〉. This is quantified by the following lemma.

Lemma 4 Assume that α < 1
2θmin. Then,

〈ψstart|wstart〉 ≥ 1−Θ



α4
∑

j

a2
j

a2
0

1

(1− cos θj)2



 .

The last lemma shows that, after repeating U2U1 a certain number of times, the state has

significant overlap with |ψgood〉. Say we apply (U2U1)
⌈π/4α⌉ to the state 1√

2
|wα〉 − 1√

2
|w−α〉. Then,

we get the state which is equal to

1√
2
eiπ/4|wα〉 − e−iπ/4

1√
2
|w−α〉 = i(

1√
2
|wα〉+

1√
2
|w−α〉) =: |wgood〉

plus a state of norm O(α) (because π/4 and ⌈π/4α⌉α differ by an amount which is less than α).

Lemma 5 Assume that α < 1
2θmin. Let |wgood〉 = 1√

2
|wα〉+ 1√

2
|w−α〉. Then,

|〈ψgood|wgood〉| = Θ



min





1
√

∑

j a
2
j cot2

θj

4



 , 1



 .

3The next lemma implies that there are exactly two eigenvalues in A.
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Corollary 2 Assume that α < 1
2θmin.

|〈ψgood|(U2U1)
⌈π/4α⌉|wgood〉 = Θ



min





1
√

∑

j a
2
j cot2 θj

4



 , 1



 +O(α).

These three lemmas are the basis of our proofs. In each of our positive results, we first find

a subspace H such that the search algorithm restricted to this subspace is a special case of an

abstract search algorithm. Then, we apply Lemma 4 to show that the starting state is close to

|wstart〉 and Lemma 3 and corollary 2 to show it evolves to a state having significant overlap with

|ψgood〉.

6 Proofs of the main results

6.1 Theorem 1

Let us determine the eigenspectrum of U = Sff · (C0 ⊗ IN ) first.

Claim 6 [Spectrum of U :] U has eigenvalues λkl with corresponding eigenvectors of the form

|vkl〉 ⊗ |χk〉 ⊗ |χl〉 for all k, l = 0, . . . ,
√
N − 1, where |χk〉 = 1

4
√
N

∑

√
N−1

j=0 ωkj|j〉 with ω = e2πi/
√
N ,

and λkl and |vkl〉 satisfy the equation

Ckl|vkl〉 =











0 ω−k 0 0

ωk 0 0 0

0 0 0 ω−l

0 0 ωl 0











· C0|vkl〉 = λkl|vkl〉. (8)

The four eigenvalues λkl of Ckl are 1,−1 and e±iθkl where cos θkl = 1
2(cos 2πk√

N
+ cos 2πl√

N
). Let |v1

kl〉,
|v−1
kl 〉 and |v±kl〉 be the vectors |vkl〉 for the eigenvalues 1, -1 and ei±θ, respectively. Then, |v1

kl〉 is

orthogonal to |s〉 for (k, l) 6= (0, 0) and |v−1
kl 〉 is orthogonal to |s〉 for all (k, l), including (0, 0).

Proof: Apply U to a vector of the form |vkl〉 ⊗ |χk〉 ⊗ |χl〉 and note that Sff | ↑〉 ⊗ |χk〉 ⊗ |χl〉 =

ω−k| ↓〉 ⊗ |χk〉 ⊗ |χl〉, and Sff | ↓〉 ⊗ |χk〉 ⊗ |χl〉 = ωk| ↑〉 ⊗ |χk〉 ⊗ |χl〉, and similarly for the y-

coordinate, which gives Eq. (8). Solving the equation |Ckl − λI| = 0 for λ gives the eigenvalues.

For (k, l) 6= (0, 0) the 1-eigenvector |v1
kl〉 is proportional to (ωk(ωl−1), 1−ωl, ωl(1−ωk), ωk−1) and

hence orthogonal to |s〉 = 1
2(1, 1, 1, 1). The −1-eigenvector |v−1

kl 〉 is proportional to (ωl + 1, ωk(ωl +

1),−(ωk + 1),−ωl(ωk + 1)) and hence orthogonal to |s〉 = 1
2(1, 1, 1, 1). For (k, l) = (0, 0), |s〉 is a

1-eigenvector of C00.

For (k, l) = (0, 0), the eigenvalue 1 occurs 3 times. Thus, there is a 3-dimensional 1-eigenspace.

Since |s〉 is orthogonal to |v−1
00 〉, |s〉 belongs to this eigenspace. We choose |v1

00〉 = |s〉 and |v±00〉
orthogonal to |s〉.

Let H′
0 be the space spanned by the eigenvectors |v±kl〉 ⊗ |χk〉 ⊗ |χl〉, (k, l) 6= (0, 0) and |Φ0〉 =

|v1
00〉 ⊗ |χk〉 ⊗ |χl〉. Notice that all other eigenvectors of U are orthogonal to |s, v〉, by Claim 6.

Therefore, |s, v〉 is in H′
0. Moreover, applying U ′ keeps the state in H′

0, as shown by

Claim 7 We have U ′(H′
0) = H′

0. Furthermore, U ′ has no eigenvector of eigenvalue 1 in H′
0.

9



Proof: For the first part, notice that U ′ = U(I − 2|s, v〉〈s, v|). Therefore, it suffices to show

U(H′
0) = H′

0 and (I − 2|s, v〉〈s, v|)(H′
0) = H′

0. The first equality is true because H′
0 has a basis

consisting of eigenvectors of U . Each of those eigenvectors gets mapped to a multiple of itself which

is in H′
0. Therefore, U(H′

0) = H′
0. The second equality follows because (I − 2|s, v〉〈s, v|)|ψ〉 =

|ψ〉 − 〈s, v|ψ〉|s, v〉. This is a linear combination of |ψ〉 and |s, v〉 and, if |ψ〉 ∈ H′
0, it is in H0.

For the second part assume |ω0〉 is an eigenvector of eigenvalue 1 of U ′ in H′
0. Then

0 6= 〈Φ0|ω0〉 = 〈Φ0|U ′|ω0〉 = 〈Φ0|U(I − 2|s, v〉〈s, v|)|ω0〉 = 〈Φ0|ω0〉 − 2〈Φ0|s, v〉〈s, v|ω0〉.

This implies 〈Φ0|s, v〉〈s, v|ω0〉 = 0 and, since 〈Φ0|s, v〉 = 1√
N
6= 0, that 〈s, v|ω0〉 = 0 and |ω0〉 =

U ′|ω0〉 = U |ω0〉 which in turn implies that |ω0〉 is an eigenvector of eigenvalue 1 of U . Since |ω0〉 has

zero overlap with |s, v〉 and precisely the 1-eigenvectors of U orthogonal to |Φ0〉 have zero overlap

with |s, v〉, it follows that 〈Φ0|ω0〉 = 0 which contradicts that |ω0〉 ∈ H′
0.

The above shows that the random walk algorithm starting in |Φ0〉 is restricted to a subspace H′
0

of the Hilbert space. Since |Φ0〉 is the only 1-eigenvector of U in H′
0, we have an instance of the

abstract search algorithm on the space H′
0, with U1 = I − 2|s, v〉〈s, v|, U2 = U , |ψgood〉 = |s, v〉 and

|ψstart〉 = |Φ0〉.
As described in Section 5, we study the 2-dimensional subspace spanned by |wα〉 and |w−α〉.

First, we bound α using Lemma 3. We need to expand |ψgood〉 = |s, v〉 in the basis of eigenvectors

of U. Define |Φ+
kl〉 = |v+

kl〉 ⊗ |χk〉 ⊗ |χl〉. Let |Φ−
kl〉 be the vector obtained by replacing every

amplitude in |Φ+
kl〉 by its conjugate. Then, |Φ−

kl〉 = |v−−k,−l〉 ⊗ |χ−k〉 ⊗ |χ−l〉. (This follows from

two observations. First, replacing every amplitude by its conjugate in |χk〉 gives |χ−k〉. Therefore,

|Φ−
kl〉 = |v〉⊗|χ−k〉⊗|χ−l〉. Second, since U |Φ+

kl〉 = eiθkl |Φ+
kl〉, we have U |Φ−

kl〉 = e−iθkl |Φ−
kl〉, implying

that |v〉 = |v−−k,−l〉.) From Lemma 2, we have

|s, v〉 = a0|Φ0〉+
∑

(k,l)6=(0,0)

akl(|Φ+
kl〉+ |Φ−

kl〉)

where |Φ+
kl〉 and |Φ−

kl〉 appear with the same real coefficient akl = 〈s, v|Φ+
kl〉 = 〈s, v|Φ−

kl〉.

Claim 8

akl =
1√
2N

.

Proof: We have |〈v|χk〉 ⊗ |χl〉| = 1√
N

(since each of the N locations has an equal emplitude

in |χk〉 ⊗ |χl〉). It remains to show that |〈s|v+
kl〉| = 1√

2
. For that, we first notice that |s〉 is a

superposition of |v±kl〉 (since |v1
kl〉 and |v−1

kl 〉 are orthogonal to |s〉). By direct calculation 〈s|Ckl|s〉 =
1
2(cos 2πk√

N
+ cos 2πl√

N
). We have

〈s|Ckl|s〉 = eiθkl〈s|v+
kl〉〈v+

kl|s〉+ e−iθkl〈s|v−kl〉〈v−kl|s〉.

This is possible only if |〈s|v+
kl〉| = |〈s|v−kl〉| = 1√

2
.

Therefore,

|s, v〉 =
1√
N
|Φ0〉+

1√
2N

∑

(k,l)6=(0,0)

(|Φ+
kl〉+ |Φ−

kl〉). (9)

By Lemma 3, α = Θ( 1
√

∑

kl
1

1−cos θkl

). The following claim implies that α = Θ( 1√
cN logN

).
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Claim 9
∑

(k,l)6=(0,0)
1

1−cos θkl
= Θ(N logN).

Proof of Claim 9: Recall from Claim 6 that the eigenvalues corresponding to |v±kl〉 ⊗ |χk〉 ⊗ |χl〉
are e±iθkl = cos θkl ± i sin θkl where cos θkl = 1

2 (cos 2πk√
N

+ cos 2πl√
N

). For x ∈ [0, 2π], we have

1− x2

2
≤ cos x ≤ 1− 2x2

π2
. (10)

Therefore,

1− 1

4N
(k2 + l2) ≤ cos θkl ≤ 1− 1

π2N
(k2 + l2),

1

π2N
(k2 + l2) ≤ 1− cos θkl ≤

1

4N
(k2 + l2) (11)

This means that it suffices to show

N
∑

k,l

1

k2 + l2
= Θ(N logN), (12)

where the summation is over all k, l ∈ {0, . . . ,
√
N − 1} such that at least one of k, l is non-zero.

This follows because
∑

k,l
1

k2+l2
= Θ(logN). A simple way to see this is to sum points that lie

on m-rectangles with the four corners (±m,±m). The term 1
k2+l2 for (k, l) on an m-rectangle is

bounded as 1
2m2 ≤ 1

k2+l2
≤ 1

m2 , and there are 8m such points on each m-rectangle. Hence

√
N−1
∑

m=1

8m
1

2m2
≤
∑

k,l

1

k2 + l2
≤

√
N−1
∑

m=1

8m
1

m2
. (13)

The claim now follows from
∑

√
N−1

m=1
1
m = 1

2 logN(1 + o(1)).

Next, we use Lemma 4 to bound the overlap between |Φ0〉 and |wstart〉 = 1√
2
|wα〉 − 1√

2
|w−α〉.

Claim 10
∑

(k,l)6=(0,0)
1

(1−cos θkl)2
= Θ(N2).

Proof of Claim 10 : Using the proof of Claim 9,

π4N2

(k2 + l2)2
≤ 1

(1− cos θkl)2
≤ 4N2

(k2 + l2)2
.

Therefore, it suffices to bound N2
∑

(k,l)6=(0,0)
1

(k2+l2)2
. Again, we sum points (k, l) over rectangles

with corners (±m,±m). Each rectangle has 8m points, each of which contributes a term of order
1
m4 to the sum. Since

∑

m 8m 1
m4 =

∑

m
8
m3 is bounded by a constant, the lemma follows.

This means that the overlap between the starting state and |wstart〉 is 1 − Θ(α4N2) = 1 −
Θ( 1

log2N
). Equivalently, |Φ0〉 = |wstart〉+ |Φrem〉, with ‖|Φrem〉‖ = Θ( 1

logN ). After ⌈ π4α⌉ repetitions,

the state becomes |wgood〉+ |Φ′
rem〉, with ‖Φ′

rem‖ = Θ( 1
logN ) +O(α) = Θ( 1

logN ). Finally, we bound

〈wgood|s, v〉, using Lemma 5. Since all akl are equal to 1√
2N

and cotx ≤ 1
x , we have

1
√

∑

k,l a
2
kl cot

2 θkl
2

≥ 1
√

1
2N

∑

k,l
4
θ2kl

. (14)

11



From the proof of Claim 9, we know that 1
θ2kl

is bounded from below and above by const
1−cos θkl

.

Therefore, Claim 9 implies
∑

k,l
1
θ2kl

= Θ(N logN). Thus, the expression of Eq. (14) is of order

Ω( 1√
logN

).

To conclude the proof of the theorem, the overlap of the state of the algorithm after ⌈ π4α⌉ steps

and |s, v〉 is

|〈wgood|s, v〉+ 〈Φ′
rem|s, v〉| ≥ |〈wgood|s, v〉| − |〈Φ′

rem|s, v〉|.

The first term is of order Ω( 1√
logN

) and the second term is of lower order (Ω( 1
logN )). Therefore,

the result is of order Ω( 1√
logN

).

Hence a measurement gives the marked location |v〉 with probability p ≥ c
logN . This completes

the proof of Theorem 1.

Proof of Corollary 1: First, note that it is possible to generate the initial state |Φ0〉 with 2
√
N

local transformations. We start with the state concentrated in one point (say |0, 0, 0〉) and first

“spread” the amplitude along the x-axis in
√
N steps. In the first step we rotate the coin register to

1
4
√
N
|0〉+

√√
N−1√
N
|1〉, followed by a |1〉-controlled shift in the x-direction, followed by a rotation of

the coin register back to |0〉 in the vertex (0, 0). Similarly we repeat this procedure to move
√√

N−2√
N

of amplitude from (1, 0) to (2, 0) and so on. After
√
N steps we have a uniform superposition over all

vertices with y-coordinate 0. We repeat this process for the y-direction, which gives us the uniform

superposition after another
√
N steps. Note that this procedure also allows us to implement the

reflection around the mean, R|Φ0〉 = I − 2|Φ0〉〈Φ0| in 4
√
N steps: we simply run the procedure in

reverse (which maps |Φ0〉 to |0, 0, 0〉), then invert the state |0, 0, 0〉 (which can be done locally in

the vertex (0, 0)), and run the procedure forward again.

Note that we have determined the run-time T only up to a constant (using Eqs. (11) and (13),

(24), (26) we can bound Tmin =
√
N logN

2 ≤ T ≤ π
√
N logN

2
√

2
= Tmax). To get ε-close to the state

U ′T |Φ0〉 we use a standard trick and run the walk for times Tmin, (1 + ε)Tmin, (1 + ε)2Tmin, . . .

until we reach Tmax. One of these times is within a factor of (1 ± ε) of T and hence our state

and final measurement probability will be ε-close to the state at time T . We can chose ε to

be some small constant. The total time including all repetitions (bounded by 1
1−εTmin) is still

O(T ) = O(
√
N logN).

Finally, to amplify the success probability we will use amplitude amplification [BHMT02], which

is a succession of steps consisting of reflection around the mean |Φ0〉 and a run of the algorithm.

The intermediate reflection around the mean can be implemented in 4
√
N steps, the random walk

takes O(
√
N logN) steps, and we need O(

√
logN) rounds of amplification to obtain a constant

probability of success, which gives a total running time of O(
√
N logN).

6.2 Theorem 2

Proof: The key difference between this walk using Sm and the walk from Theorem 1 using Sff
is that the initial state |Φ0〉 now has very large overlap with the eigenspace of eigenvalue 1 of U

and U ′. This means that the walk (nearly) does not move at all and the state at any time T has

overlap with |Φ0〉 close to 1. The difference becames apparent in the eigenspectrum of U :
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Claim 6’ [Spectrum of U:] U has eigenvalues λkl with corresponding eigenvectors of the form |vkl〉⊗
|χk〉 ⊗ |χl〉 for all k, l = 0, . . . ,

√
N − 1, where |χk〉 = 1

4
√
N

∑

√
N−1

j=0 ωkj|j〉 with ω = e2πi/
√
N , and λkl

and |vkl〉 satisfy the equation

Ckl|vkl〉 =











ωk 0 0 0

0 ω−k 0 0

0 0 ωl 0

0 0 0 ω−l











· C0|vkl〉 = λkl|vkl〉 (15)

The four eigenvalues λkl of Ckl are 1,−1 and e±iθkl, where cos θkl = −1
2(cos 2πk√

N
+ cos 2πl√

N
). For

the eigenvector |v1
kl〉 corresponding to eigenvalue 1, we have

|〈v1
kl|s〉| ≥

1 + cos 2πk√
N

+ cos 2πl√
N

+ cos 2π(k+l)√
N

4
.

Proof: The first part is by straightforward calculation as before (Claim 6). For the second part,

the eigenvector corresponding to eigenvalue 1 is |v1
kl〉 =

|u1

kl〉
‖u1

kl‖
with

|u1
kl〉 = (wk(1 + wl), 1 + wl, wl(1 + wk), 1 + wk)

We have ‖u1
kl‖ ≤ 4 because each of the 4 components of |u1

kl〉 is at most 2 in absolute value. It

remains to bound 〈u1
kl|s〉. We have

〈v1
kl|s〉 ≥

〈u1
kl|s〉
4

=
1

8
(wk(1 + wl) + 1 + wl + wl(1 + wk) + 1 + wk) =

1

4
(1 + wk)(1 + wl).

The real part of this expression is 1
4(1 + cos 2πk√

N
+ cos 2πl√

N
+ cos 2π(k+l)√

N
). This implies the claim.

Let H1 be the 1-eigenspace of U , spanned by the |Φ1
kl〉 = |v1

kl〉⊗ |χk〉⊗ |χl〉 for k, l = 0, . . . ,
√
N −1,

with |Φ1
00〉 = |Φ0〉. Write

|s, v〉 =
∑

k,l

αkl|Φ1
kl〉+ |s′〉

where |s′〉 has no overlap with the 1-eigenspace H1. We claim

Claim 11 U ′ has a 1-eigenvector |Φ⊥〉 such that |〈Φ0|Φ⊥〉|2 = 1− |α00|2
∑

√
N

i,j=1
|αij |2

.

Proof: Let βkl = αkl
√

∑

√
N

i,j=1
|αij |2

. Let |Φ〉 =
∑

k,l βkl|Φ1
kl〉 be the projection of |s, v〉 on H1. Since

〈Φ0|Φ〉 = β00, we can write

|Φ0〉 = β00|Φ〉+
√

1− |β00|2|Φ⊥〉

where |Φ⊥〉 is a vector perpendicular to |Φ〉. Since |Φ0〉 and |Φ〉 are both in the subspace H1,

|Φ⊥〉 is also in H1. We claim that |Φ⊥〉 is a 1-eigenvector of U ′. The state |Φ⊥〉 is orthogonal to

|s, v〉 because |Φ⊥〉 belongs to H1 and is orthogonal to |Φ〉 which is the projection of |s, v〉 to that

subspace. Therefore, |Φ⊥〉 is a 1-eigenvector of I − |s, v〉〈s, v|. |Φ⊥〉 is also a 1-eigenvector of U

because it belongs to H1. This means that it is a 1-eigenvector of U ′ = U(I − |s, v〉〈s, v|) as well.
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To complete the proof, we need to bound |α00|, |α01|, . . ., |α√
N−1,

√
N−1|. We have α00 = 1√

N
. We

will show that there are Ω(N) other αkl of order Ω(1/
√
N). This would imply that the overlap of

|Φ0〉 with a 1-eigenvector of U ′ is

1− α2
00

∑

√
N

i,j=1 |αij|2
= 1− Ω(

1

N
).

Claim 6’ gives the desired a bound on the αkl:

|〈s, v|v1
kl〉 ⊗ |χk〉 ⊗ |χl〉| = |〈v|χk ⊗ χl〉| × |〈s|v1

kl〉| =
|〈s|v1

kl〉|√
N

≥
1 + cos 2πk√

N
+ cos 2πl√

N
+ cos 2π(k+l)√

N

4
√
N

.

The range for 2πk√
N

and 2πl√
N

is [−π
2 ,

π
2 ]. Therefore, for half of all k (resp. half of all l) we have

|k| 2π√
N
≤ π

4 (resp. |l| 2π√
N
≤ π

4 ). For the N
4 pairs (k, l) that satisfy both of those conditions we have

1 + cos
2πk√
N

+ cos
2πl√
N

+ cos
2π(k + l)√

N
≥ 1 +

1√
2

+
1√
2
≥ 1 +

√
2.

Thus, for at least N
4 pairs (k, l)

|αkl| = |〈s, v|v1
kl〉 ⊗ |χk〉 ⊗ |χl〉| ≥

1 +
√

2

4
√
N

>
1

2
√
N
.

6.3 Theorem 3

Proof: The proof for this random walk algorithm with a 2-dimensional coin proceeds in close

analogy to the proof of Theorem 1, and we will emphasize and prove the points that differ.

Claim 6”[Spectrum of U:] U has eigenvalues λ±kl with corresponding eigenvectors of the form |v±kl〉⊗
|χk〉 ⊗ |χl〉 for all k, l = 0, . . . ,

√
N − 1, where |χk〉 = 1

4
√
N

∑

√
N−1

j=0 ωkj|j〉 with ω = e2πi/
√
N , and λ±kl

and |v±kl〉 satisfy the equation

Ckl|vkl〉 =
(

ωl cos k iω−l sin k
iωl sin k ω−l cos k

)

|vkl〉 = λkl|vkl〉. (16)

The two eigenvalues λ±kl of Ckl are e±iθkl where cos θkl = 1
2(cos 2π(k+l)√

N
+ cos 2π(k−l)√

N
).

As a corollary, we have that there are exactly two eigenvectors with eigenvalue 1, both of them

of the form |v±00〉 ⊗ |χ0〉 ⊗ |χ0〉. Since the coin space is 2-dimensional, the two vectors |v00〉 span it

and, therefore, |v〉 ⊗ |χ0〉 ⊗ |χ0〉 is an eigenvector for any |v〉. In particular, we can take |v+
00〉 = |s〉

and |v−00〉 = |s⊥〉 where |s⊥〉 ⊥ |s〉. Similarly to Theorem 1, let H′
0 be the space |v+

00〉 ⊗ |χ0〉 ⊗ |χ0〉
and |v±kl〉 ⊗ |χk〉 ⊗ |χl〉. Similarly to Claim 7, H′

0 is mapped to itself by U ′.
Let |Φ+

kl〉 = |v+
kl〉 ⊗ |χk〉 ⊗ |χl〉 and |Φ−

kl〉 = |v−−k,−l〉 ⊗ |χ−k〉 ⊗ |χ−l〉. We can express the state

|s, v〉 as

|s, v〉 = a0|Φ0〉+
∑

(k,l)6=(0,0)

akl(|Φ+
kl〉+ |Φ−

kl〉). (17)
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where the equality of the coefficients of |Φ+
kl〉 and |Φ−

kl〉 follows from the proof of Lemma 2 (and

|Φ+
kl〉 and |Φ−

kl〉 being complex conjugates).

We now have to bound the sum of Eq. (7). We claim that replacing all |akl|2
|a0|2 by 1

2 does not

change the value of the sum. To see that, we first notice that θkl = θ−k,−l. Therefore, replacing

|a2
kl| and |a2

−k,−l| by
|akl|2+|a−k,−l|2

2 does not change the sum. Futhermore, |akl|2 + |a−k,−l|2 = 1
N .

(We have |akl| = 〈Φ+
kl|s, v〉, |a−k,−l| = 〈Φ+

−k,−l|s, v〉 = 〈Φ−
−k,−l|s, v〉. The vectors |Φ+

kl〉 and |Φ−
−k,−l〉

are the same as |v±kl〉 ⊗ |χk〉 ⊗ |χl〉. Therefore, |akl|2 + |a−k,−l|2 equals the squared projection of

|s, v〉 to |v±kl〉 ⊗ |χk〉 ⊗ |χl〉 which is equal to |〈v|χk〉 ⊗ |χl〉|2 = 1
N .) Also, we still have a0 = 1√

N
and

|a0|2 = 1
N . Therefore, Eq. (7) simplifies to

α = Θ





1
√

∑

(k,l)6=(0,0)
1

2(1−cos θkl)



 ,

just as in the proof of Theorem 1. We get α = Θ(
√
N logN) as in Lemma 9. The other two parts

of Theorem 1 also follow in a similar way.

Similarly to Corollary 1 we can get a random walk based search algorith that determines the marked

state with constant probability in time O(
√
N logN).

6.4 Theorem 4

Proof: Let us call the 2d directions on the d-dimensional grid i±, where i indicates the dimension

and ± the direction of the walk. Then the “flip-flop” shift operation takes the form

Sff |i±〉 ⊗ |x1 . . . xi . . . xd〉 = |i∓〉 ⊗ |x1 . . . xi ± 1 . . . xd〉

Let us recapitulate what the key elements in the proof of Theorem 1 are and how they generalize

to the d-dimensional case.

Claim 6′′′ [Spectrum of U:] U has eigenvalues λk1k2...kd
with corresponding eigenvectors of the form

|vk1k2...kd
〉 ⊗ |χk1〉 ⊗ |χk2〉 ⊗ . . .⊗ |χkd

〉 (ki = 0, . . . , d
√
N − 1), where |χi〉 = 1

2d√N
∑

d√N−1
k=0 ωk|k〉 with

ω = e2πi/
d√N , and λk1k2...kd

and |vk1k2...kd
〉 satisfy the equation

Ck1k2...kd
|vk1k2...kd

〉 =















0 ω−k1 0 0

ωk1 0 0 0

0 0 0 ω−k2 ...

0 0 ωk2 0

...















· C0|vk1k2...kd
〉 = λk1k2...kd

|vk1k2...kd
〉. (18)

The 2d eigenvalues λk1k2...kd
of Ck1k2...kd

are 1 and −1 with multiplicity d− 1 each, and e±iθk1k2...kd

where cos θk1k2...kd
= 1

d

∑d
i=1 cos 2πki

d√N
. All |v1

k1k2...kd
〉 corresponding to eigenvalue 1 are orthogonal

to |s〉 for (k1k2 . . . kd) 6= (0, 0, . . . , 0). All |v−1
k1k2...kd

〉 corresponding to eigenvalue −1 are orthogonal

to |s〉 for all (k1k2 . . . kd).
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Proof: Eq. (18) is obtained in the same way as in the proof of Claim 6. Ck1k2...kd
consists

of 2 parts, the 2-block-diagonal matrix (call it Dk1k2...kd
) and C0. Each block in Dk1k2...kd

has

eigenvalues ±1 and eigenvectors (ω− ki
2 ,±ω

ki
2 ), so the matrix Dk1k2...kd

itself has eigenspaces of

1 and −1 of dimension d each. In each of these two eigenspaces we can find d − 1 orthogonal

vectors orthogonal to |s〉. For those vectors C0 = 2|s〉〈s| − I just flips their sign, so the −1

eigenvectors of Dk1k2...kd
become +1 eigenvectors of Ck1k2...kd

and vice versa. Call the remaining

two eigenvectors of eigenvalue ±1 |e±〉 and expand |s〉 = α+|e+〉+ α−|e−〉. Then 〈s|Ck1k2...kd
|s〉 =

〈s|Dk1k2...kd
|s〉 = 1

d

∑d
i=1 cos 2πki/

d
√
N = cos θk1k2...kd

implies |α+|2 − |α−|2 = cos θk1k2...kd
. Let |ω〉

be an eigenvector of Ck1k2...kd
not orthogonal to |s〉 and expand |ω〉 = β+|e+〉 + β−|e−〉. Then we

obtain (using |e+〉 = α∗
+|s〉+ α−|s⊥〉 and |e−〉 = α∗

−|s〉 − α+|s⊥〉 where |s⊥〉 is orthogonal to |s〉 in

the space spanned by |e±〉) for the eigenvalue 〈ω|Ck1k2...kd
|ω〉 = (|α+|2−|α−|2)+4iImβ∗+β−α+α

∗
− =

cos θk1k2...kd
± i sin θk1k2...kd

.

For (k1k2 . . . kd) = (0, 0, . . . , 0) there are d + 1 1-eigenvectors, we set |v0...0〉 = |s〉. Then, the

other 1-eigenvectors are orthogonal to |s〉.
Similarly to Theorem 1, we restrict to the subspace H′

0 spanned by |v±1
k1k2...kd

〉 ⊗ |χk1〉 ⊗ |χk2〉 ⊗
. . .⊗ |χkd

〉 and |v00...0〉 ⊗ |χ0〉 ⊗ |χ0〉 ⊗ . . .⊗ |χ0〉. As in Theorem 1, we have U ′(H′
0) = H ′

0. Further

|s, v〉 =
1√
N
|Φ0〉+

1√
2N

∑

(k1,k2,...,kd)6=(0,0,...,0)

(|Φ+
k1k2...kd

〉+ |Φ−
k1k2...kd

〉),

where |Φ+
k1k2...kd

〉 = |v+1
k1k2...kd

〉 ⊗ |χk1〉 ⊗ |χk2〉 ⊗ . . . ⊗ |χkd
〉 and |Φ−

k1k2...kd
〉 = |v−1

k1k2...kd
〉 ⊗ |χ−k1〉 ⊗

|χ−k2〉 ⊗ . . .⊗ |χ−kd
〉. We use a modified Claim 9:

Claim 9’
∑

(k1,k2,...kd)6=(0,0,...,0)
1

1−cos θk1k2...kd
= Θ(N).

Proof: The proof follows along the lines of the proof of Claim 9. By Claim 6′′′,

1

1− cos θk1k2...kd

=
d

∑d
j=1(1− cos

2πkj

N1/d )

Similarly to Lemma 9, this is bounded from above and below by a constant times N2/d 1
k2

1
+k2

2
+...+k2

d
.

Thus, we have to estimate

N2/d
∑

k1,k2,...,kd

1

k2
1 + k2

2 + . . .+ k2
d

(19)

where the summation is over all ki ∈ {0, . . . , d
√
N − 1} such that at least one of the ki is non-

zero. We divide tuples the (k1, . . . , kd) into N1/d ”slices”, with the mth ”slice” containing those

tuples where max(k1, k2, . . . , kd) = m. The mth slice contains O(md−1) tuples. Therefore, the

sum
∑

k1,...,kd

1
k2

1
+k2

2
+...+k2

d
over the mth slice is of order md−1 1

m2 = md−3. Since there are N1/d

slices and, for each of them, the sum is md−3 ≤ N (d−3)/d, the sum
∑

k1,...,kd

1
k2

1
+k2

2
+...+k2

d
over all

(k1, . . . , kd) 6= (0, . . . , 0) is of order at most N1/dN (d−3)/d = N (d−2)/d. This implies that Eq. (19)

is of order at most N . It is also of order at least N since each individual term N2/d 1
k2

1
+k2

2
+...+k2

d
is

at least a constant.
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Therefore, applying Lemma 3 gives a sharper bound α = Θ( 1√
N

). Notice that we still fulfill the

requirement α < 1
2θmin needed for Lemmas 4 and 5. The reason for that is that all θi are at least

Ω( 1
N1/d ).

Similarly to Claim 9’, we can show

∑

(k1,k2,...kd)6=(0,0,...,0)

1

(1− cos θk1k2...kd
)2

= Θ(N)

and
∑

(k1,k2,...kd)6=(0,0,...,0)

1

cot θ2
k1k2...kd

= Θ(N).

By combining these two equalities with Lemmas 4 and 5, we get that the overlap between the

starting state |Φ0〉 and |wstart〉 = 1√
2
|wα〉− 1√

2
|w−α〉 is 1−Θ( 1√

N
) and the overlap between |wgood〉 =

1√
2
|wα〉 + 1√

2
|w−α〉 and |s, v〉 is Ω(1). This implies that the search algorithm’s final state has a

constant overlap with |s, v〉.

6.5 Theorem 5

We first discuss generalizing the positive results (Theorems 1, 4 and 5) to the case with two

marked items. The main issue is to state them as instances of the abstract search. Assume

there are k marked locations v1, . . . , vk. Then, one step of the search algorithm is U ′ = (I −
2
∑k

i=1 |s, vi〉〈s, vi|)U . Currently, we are not able to analyze cases of the abstract search where U2

flips the sign on more than a 1-dimensional subspace.

For the k = 2 case, we can avoid this problem, via a reduction to k = 1. Define |s′〉 =
1√
2
|s, v1〉+ 1√

2
|s, v2〉. We claim that applying (U ′)T to the starting state |Φ0〉 gives the same final

state as applying (U ′′)T where U ′′ = (I − 2|s′〉〈s′|)U .

To show that, let T be a symmetry of the grid such that T (v1) = v2 and T (v2) = v1. (For the

2-dimensional grid, if v1 = (x1, y1) and v2 = (x2, y2), then T (x, y) = (x1 +x2−x, y1 + y2− y).) We

identify T with the unitary mapping |c, v〉 to |c, T (v)〉.

Claim 12 For any t ≥ 0, T (U ′)t|Φ0〉 = (U ′)t|Φ0〉.

Proof: By induction. For the base case, we have to show T |Φ0〉 = |Φ0〉. This follows since |Φ0〉 is

a uniform superposition of the states |s, v〉 and T just permutes locations v.

For the inductive case, notice that T commutes with both I − 2|s, v1〉〈s, v1| − 2|s, v2〉〈s, v2| and

U . Therefore, TU ′ = U ′T . If the inductive assumption T (U ′)t|Φ0〉 = (U ′)t|Φ0〉 is true, then we

also have

T (U ′)t+1|Φ0〉 = U ′T (U ′)t|Φ0〉 = (U ′)t+1|Φ0〉,

completing the induction step.

Let |s′′〉 = 1√
2
|s, v1〉 − 1√

2
|s, v2〉. Then, (U ′)t|Φ0〉 is orthogonal to |s′′〉 because T |s′′〉 = −|s′′〉.

We have |s, v1〉〈s, v1|+ |s, v2〉〈s, v2| = |s′〉〈s′|+ |s′′〉〈s′′|. Together with (U ′)t|Φ0〉 ⊥ |s′′〉, this means

(I − 2|s, v1〉〈s, v1| − 2|s, v2〉〈s, v2|)(U ′)t|Φ0〉 = (I − 2|s′〉〈s′|)(U ′)t|Φ0〉.
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Thus, U ′ can be replaced by U ′′ at every step.

The rest of the proofs is now similar to the case of 1 marked location, except that |s, v〉 is

replaced by |s′〉 everywhere. Theorem 2 also follows similarly to the 1 marked item case, with |s′〉
instead of |s, v〉.

7 Proofs of the technical lemmas

In this section, we prove Lemmas 1, 3, 2, 4 and 5. We will repeatedly use the following result which

can be found in many linear algebra textbooks.

Fact 1 The eigenvectors of a real unitary matrix either have eigenvalue ±1 or else they appear in

conjugated pairs with eigenvalues e±iω and eigenvector | ± ω〉 = 1√
2
(|R〉 ± i|I〉), where |R〉 and |I〉

are real normalised vectors and 〈R|I〉 = 0.

Proof of Lemma 1: Let g = 1 − Re(eiθmin). Then, for any eiθ ∈ A, Re(eiθ) > 1 − g and, for

every eigenvector |ω〉 with an eigenvalue in A, Re〈ω|U ′|ω〉 > 1− g.
If there were more than two eigenvectors of U ′ in H′

0 with eigenvalues on the arc A, we

could construct a linear combination |a〉 of them such that |a〉 ⊥ |Φ0〉, |s, v〉. Since |a〉 is a lin-

ear combination of vectors |ω〉 with Re〈ω|U ′|ω〉 > 1 − g we have Re〈a|U ′|a〉 > 1 − g. But then

Re〈a|U ′|a〉 = Re〈a|U(I − 2|s, v〉〈s, v|)|a〉 = Re〈a|U |a〉. Since |a〉 is orthogonal to |Φ0〉 and all other

1-eigenvectors of U (|a〉 ∈ H′
0), |a〉 is a linear combination of eigenvectors of U at least g away from

1 and hence Re〈a|U |a〉 ≤ 1− g, which gives a contradiction.

Proof of Lemma 2: Let |Φ〉 be the vector obtained by replacing every amplitude in |Φ+
j 〉 by its

complex conjugate. Since U2 is a real unitary matrix, U2|Φ+
j 〉 = eiθj |Φ+

j 〉 implies U2|Φ〉 = e−iθj |Φ〉.
Therefore, we can assume that |Φ−

j 〉 is a complex conjugate of |Φ+
j 〉. The coefficients a+

j and a−j
are equal to the inner products 〈Φ+

j |ψstart〉 and 〈Φ−
j |ψstart〉. Since |ψstart〉 is a real vector, these

two inner products are complex conjugates and a+
j = (a−j )∗. By multiplying |Φ+

j 〉 and |Φ−
j 〉 with

appropriate constants, we can achieve a+
j = a−j .

Proof of Lemma 3: First, we express |ψgood〉 in the basis consisting of eigenvectors of U2:

|ψgood〉 = a0|Φ0〉+
m
∑

j=1

aj(|Φ+
j 〉+ |Φ−

j 〉). (20)

where |Φ0〉 = |ψstart〉. We define for real α

|w′
α〉 = a0 cot

α

2
|Φ0〉+

∑

j

aj

(

cot
α− θj

2
|Φ+
j 〉+ cot

α+ θj
2
|Φ−
j 〉
)

. (21)

Similarly to Claim 2 in [Amb03], we have

Lemma 13 If |w′
α〉 is orthogonal to |ψgood〉, then |ωα〉 = |ψgood〉 + i|w′

α〉 is an eigenvector of U ′

with eigenvalue eiα and |ω−α〉 = |ψgood〉+ i|w′
−α〉 is an eigenvector of U ′ with eigenvalue e−iα.
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Proof: The proof is similar to [Amb03], but we include it for completeness.

Apply U ′ to |ωα〉 and expand in the eigenbasis of U :

U ′|ωα〉 = U(I − 2|s, v〉〈s, v|)(|ψgood〉+ i|w′
α〉) = U(−|ψgood〉+ i|w′

α〉) = a0(−1 + i cot α2 )|Φ0〉+
∑

j aj

(

eiθj (−1 + i cot
α−θj

2 )|Φ+
j 〉+ e−iθj (−1 + i cot

α+θj

2 )|Φ−
j 〉
)

.

In this equation, every coefficient is equal to the corresponding coefficient in eiα(|ψgood〉 + i|w′
α〉).

Namely, for the coefficient of |Φ0〉, we have

(

−1 + i cot
α

2

)

=
ei(

π
2
+ α

2
)

sin α
2

= eiα
ei(

π
2
−α

2
)

sin α
2

= eiα
(

1 + i cot
α

2

)

.

For the coefficient of |Φ+
j 〉, we have

eiθj

(

−1 + i cot
−θj + α

2

)

= eiθj
ei(

π
2
− θj

2
+ α

2
)

sin
−θj+α

2

= eiα
ei(

π
2
+

θj
2
−α

2
)

sin
−θj+α

2

= eiα
(

1 + i cot
−θj + α

2

)

and, similarly, the conditions for the coefficients of |Φ−
j 〉 are satisfied.

By Eqs. (20) and (21), 〈s, v|w′
α〉 = 0 is equivalent to

a2
0 cot

α

2
+

m
∑

j=1

a2
j(cot

α+ θj
2

+ cot
α− θj

2
) = 0. (22)

Let θmin be the smallest of θ1, . . ., θm. Then, this equation has exactly one solution in [0, θmin]

and one solution in [−θmin, 0]. The reason for that is that the cot function is decreasing (except

for x = kπ, where it goes to −∞ for x < kπ and +∞ for x > kπ). Therefore, the whole right hand

side is decreasing, except if one of α
2 ,

α+θj

2 ,
α−θj

2 becomes a multiple of π. This happens for α = 0

and α = ±θmin. Since θmin is the smallest of θj, [−θmin, 0] and [0, θmin] contain no values of α for

which one of the cot becomes infinity. On the interval [0, θmin] the left-hand side of (22) goes to

+∞ if α → 0, −∞ if α → θ01 and is 0 for exactly one value of α between 0 and θ01. This means

that the two eigenvectors of U ′ in the arc A are of the form |s, v〉+ i|ω′
α〉 with |ω′

α〉 as in Eq. (21).

Next, let us determine this α. Since

cot x+ cot y =
cos x

sinx
+

cos y

sin y
=

cos x sin y + cos y sinx

sinx sin y
=

sin(x+ y)

sinx sin y
= 2

sin(x+ y)

cos(x− y)− cos(x+ y)
,

Eq. (22) is equivalent to a2
0 cot α2 +

∑

j 2a2
j

sinα
cos θj−cosα = 0 which, in turn, is equivalent to

a2
0

cot α2
sinα

=
∑

j

2a2
j

1

cosα− cos θj
.

For α = o(1), sinα = (1− o(1))α and cotα = (1 + o(1)) 1
α . Therefore, we have, with cosα ≤ 1

(1 + o(1))
a2

0

α2
=
∑

j

a2
j ·

1

cosα− cos θj
≥
∑

j

a2
j ·

1

1− cos θj
. (23)
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This implies

α ≤ 1√
2

1
√

∑

j

a2j
a2
0

1
1−cos θj

. (24)

It remains to lower bound α.

Assume that α < 1
2θmin. (Otherwise, the lower bound of the lemma is true.) Then, we have

cosα− cos θj ≥ cos
θj
2
− cos θj ≥

1

2
(1− cos θj). (25)

The first inequality follows from α < θmin
2 ≤ θj

2 and cos being decreasing on [0, π]. The second

inequality is equivalent to cos
θj

2 ≥ 1
2(1 + cos θj) which follows from 1 + cos θj = 2cos2 θj ≤ 2 cos θj.

Eq. (23) and (25) together imply

(1 + o(1))
a2

0

α2
≤ 1

2

∑

j

a2
j

1

1− cos θj
, (26)

which implies the lower bound on α.

Proof of Lemma 4: We will show that the starting state is close to the state |wstart〉 = 1
‖w′

start‖
|w′
start〉,

|w′
start〉 = 1√

2
|wα〉 − 1√

2
|w−α〉. By Eq. (21), we have

|w′
start〉 =

√
2a0 cot

α

2
i|ψstart〉+

∑

j

√
2aj

(

cot
α+ θj

2
− cot

θj − α
2

)

i
(

|Φ+
j 〉 − |Φ−

j 〉
)

.

We have 〈ψstart|wstart〉 =
〈ψstart|w′

start〉
‖w′

start‖
=

√
2a0 cot α

2

‖w′
start‖

. Therefore, we need to bound ‖w′
start‖. We

have

‖w′
start‖2 = 2a2

0 cot2
α

2
+ 4

∑

j

a2
j

(

cot
α+ θj

2
− cot

θj − α
2

)2

.

Since cot x = (1 + o(1)) 1
x , the first term is 2(1 + o(1))a2

0
4
α2 = Θ(a2

0/α
2). Similarly to the previous

lemma, we have

cot
α+ θj

2
− cot

θj − α
2

=
sinα

cosα− cos θj
=

(1 + o(1))α

cosα− cos θj
.

Since α < 1
2θmin, we have cosα− cos θj ≥ 1

2(1− cos θj) (similarly to Eq. (25)). Therefore,

‖w′‖2
a2

0 cot2 α
2

≤ 1 +

∑

j a
2
j

(

(1+o(1))α
0.5(1−cos θj)2

)2

Θ(a2
0/α

2)
= 1 + Θ



α2
∑

j

a2
j

a2
0

(

α

(− cos θj

)2


 .

This means that

〈ψstart|w〉 =

√
2a0 cot α2
‖w′‖ = 1−Θ



α4
∑

j

a2
j

a2
0

1

(1− cos θj)2



 .
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Proof of Lemma 5: Let |wgood〉 = 1√
2
|wα〉 − 1√

2
|w−α〉. We consider the unnormalized state

|w′
good〉 = |w′

α〉 − |w′
−α〉. Obviously, |wgood〉 =

|w′
good〉

‖w′
good‖

. We have

|w′
good〉 = 2a0|ψstart〉+

m
∑

j=1

aj

(

(2 + i cot
α+ θj

2
+ i cot

−α+ θj
2

)|ψ+
j 〉+ (2 + i cot

α− θj
2

+ i cot
−α− θj

2
)|ψ−

j 〉
)

.

Also 〈ψgood|wgood〉 =
〈ψgood|w′

good〉
‖w′

good‖
. Futhermore, 〈ψgood|w′

good〉 = 2a2
0 +

∑m
j=1 4a2

j = 2‖|ψgood〉‖2 = 2.

(The imaginary terms cancel out because cot
±α+θj

2 = − cot
∓α−θj

2 .) It remains to bound ‖w′
good‖.

We have

‖w′
good‖2 = 2a2

0 +

m
∑

j=1

4a2
j +

m
∑

j=1

2a2
j

(

cot
α+ θj

2
+ i cot

−α+ θj
2

)2

= 2 +

m
∑

j=1

2a2
j

(

cot
α+ θj

2
+ cot

−α+ θj
2

)2

.

Since α < 1
2θmin, this sum is at most

2 +

m
∑

j=1

2a2
j (2 cot

θj/2

2
)2 ≤ 2 + Θ





m
∑

j=1

a2
j cot2

θj
4



 .

Therefore, ‖w′‖ = Θ(max(
√

∑

j a
2
j cot2

θj

4 , 1)) and 〈ψgood|w〉 = Θ



min





1
√

∑

j a
2

j cot2
θj
4

, 1







.

8 General graphs

The approach and methods we have presented are amenable to analyze quantum walk algorithms

on other graphs G. All we need is the eigenspectrum of the unperturbed walk U , an appropriate

subspace H ′
0 containing no 1-eigenvectors of U (which is equivalent to proving that all but one 1-

eigenvector of U is orthogonal to |s〉), and the sums in Lemmas 3, 4 and 5 involving the eigenvalues

of U (which give the angle α and the overlaps). Then we can apply Lemmas 3-5 to get the desired

result.

Hypercube: For instance we can derive the performance of the random walk search algorithm

on the hypercube, given in [SKW03] without having to guess the form of the eigenvalues | ± ω0〉.
[SKW03] showed that the random walk search algorithm after time T = π

2

√
N gives a probability

of ≈ 1
2 to measure the marked state. For the d-dimensional hypercube (with N = 2d vertices), the

transformation U has d2d eigenvectors. An argument similar to Claim 7 shows that the quantum

walk stays in the 2d-dimensional subspace spanned by 2d eigenvectors with eigenvalues eiθk [MR02]

with

cos θk = 1− 2k

d
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for k = 0 . . . d, each with degeneracy
(d
k

)

. Among those, |Φ0〉 is the only eigenvector with eigenvalue

1, thus we have an instance of the abstract search. We can now apply Lemmas 3-5. For Lemma 3,

we need to compute the sum of inverse gaps of all eigenvalues of U in Lemma 9, which is now of

the form
d
∑

k=1

(

d

k

)

1

1− cos θk
=
d

2

d
∑

k=1

(

d

k

)

1

k
= 2d(1 + o(1)) = N(1 + o(1)).

This gives a time T = Θ(
√
N) to rotate the state. Evaluating the quantities in Lemmas 4 and 5

shows that measuring the final state gives a marked location with constant probability.

Remarks on general graphs We have seen that crucial to “good” performance of these algo-

rithms are essentially two ingredients:

1. Coin property: The relevant Hilbert space H′
0 of the perturbed walk U ′ does not contain 1

eigenvectors (i.e. all 1-eigenvectors of U except the starting state |Φ0〉 are orthogonal to the

marked state |s, v〉).

2. Graph property: The gap g between the 1-eigenvalue and the real part of the next closest

eigenvalue of U is sufficiently large (determines the overlap of the initial state with the two

relevant eigenvectors). Furthermore the sum of inverse gaps of the eigenvalues of U , i.e.

of terms (1 − cos θ)−1 where θ is an eigenvalue of U , is sufficiently small, such that the

angle between the two eigenvectors of U ′ with eigenvalue closest to one is sufficiently large

(determines the speed of the algorithm).

We call the first item a “Coin” property because, as we have seen, it is the choice of coin that

determines this behavior. We call the second property a “Graph” property because the gap and

the closeness of the perturbed eigenvalues to 1 depend on the topology of the graph.

To be more precise let us carry our argument through for Cayley-graphs of Abelian groups.

The eigenvalues of the unperturbed walk U are “split” by the coin to be “around” the eigenvalues

of the normalized adjacency matrix of the graph. More precisely, note that the adjacency matrix

of a Cayley graph can be written as a sum of commuting shift operations over all d directions

A = 1
d

∑d
i=1 Si. The eigenvalues of A are just sums of eigenvalues of shifts (which are the Fourier

coefficients). For instance in the case of the grid the eigenvalues of A are of the form 1
2(cos 2kπ√

N
+

cos 2lπ√
N

) = 1
4 (ωk + ω−k + ωl + ω−l) for k, l = 0 . . .

√
N − 1. From Eq. (8) we see that in general

the coin “changes” the eigenvalues to be some linear combination of ω±k,l. This is what happens

in general, and the resulting eigenspectrum will have gaps of the same order of magnitude as the

spectrum of the matrix A (which defines the simple random walk on the graph). Thus, it is likely

that the sum
∑

θ
1

1−cos θ (θ eigenvalue of U) which determine the speed of the algorithm can be

estimated from graph properties alone (given a successful choice of coin).

Related work: Analyzing quantum walks on general graphs has been recently considered by

Szegedy [Sze04] who has shown a following general result. If ε fraction of all vertices of a graph is

marked and all eigenvalues of a graph differ from 1 by at least δ, then O( 1√
εδ

) steps of quantum

walk suffice. This contributes to the same goal as our paper: developing general tools for analyzing

quantum walks and using them in quantum algorithms.
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The power of two methods (ours and [Sze04]) seems to be incomparable. The strength of our

method is that it is able to exploit a finer structure of the graph. For example, consider the 2-

dimensional grid with a unique marked item. Applying the theorem of [Sze04] gives a running

time of O(N3/4), compared to O(
√
N logN) for ours. (One marked item is a 1/N fraction of all

items and the eigenvalue gap δ for the grid is 1/
√
N .) The reason for this difference is that most

eigenvalues are far from 1. The approach of [Sze04] uses worst-case (minimum) difference between

1 and eigenvalues of the graph, which is small ( 1√
N

). Our approach uses a quantity (
∑

θ
1

1−cos θ )

that involves all eigenvalues, capturing the fact that most eigenvalues are not close to 1.

The strength of Szegedy’s [Sze04] analysis is that it allows to handle multiple marked locations

with no extra effort, which we have not been able to achieve with our approach. It might be

interesting to combine the methods so that both advantages can be achieved at the same time.

9 Conclusion

We have shown that the discrete quantum walk can search the 2D grid in time O(
√
N logN) and

higher dimensional grids in time O(
√
N). This improves over previous search algorithm and shows

an interesting difference between discrete and continous time quantum walks. More generally, we

have opened the route to a general analysis of random walks on graphs by providing the necessary

toolbox.

The main open problems are applying this toolbox to other problems and learning to analyze

quantum walks if there are multiple (more than 2) marked locations. In the case of our problem,

it is possible to reduce the multiple marked location case to the single location case at the cost

of increasing the running time by a factor of logN [AA03]. Still, it would be interesting to be

able to analyze the multiple item case directly. A recent paper by Szegedy [Sze04] has shown how

to analyze the multiple solution case for a different quantum walk algorithm, element distinctness

[Amb03]. It is open whether the methods from [Sze04] can be applied to search on grids.
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