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We show that quantum walks interpolate between a coherent ‘wave walk’ and a random walk
depending on how strongly the walker’s coin state is measured; i.e., the quantum walk exhibits the
quintessentially quantum property of complementarity, which is manifested as a trade-off between
knowledge of which path the walker takes vs the sharpness of the interference pattern. A physical
implementation of a quantum walk (the quantum quincunx) should thus have an identifiable walker
and the capacity to demonstrate the interpolation between wave walk and random walk depending
on the strength of measurement.

PACS numbers: 03.67.-a, 03.65.Ud, 03.67.Lx

I. INTRODUCTION

Random walks are essential to physics as stochastic
phenomena, to mathematics as Wiener processes, and
to computer science for algorithms. The quantum walk,
both in its continuous [1] and in its discrete [2, 3, 4] in-
carnations, is receiving significant attention because it
is a natural generalization of random walks to quantum
systems, because quantum walks may be physically im-
plemented by quincunxes [5, 6, 7], and because quan-
tum walks could provide a basis for future quantum al-
gorithms [8, 9, 10]. However, an identifiable benefit of
the quantum walk, namely the enhancement of spread-
ing over its classical counterpart, is a wave phenomenon
which has been realized interferometrically in an optical
quincunx [11], and proposed in other settings [12, 13, 14].
The realization of aspects of the quantum walk in a classi-
cal optics setting has raised the question of what exactly
is ‘quantum’ about the quantum walk. We resolve this is-
sue of comparing and contrasting the deterministic wave
walk vs a genuine quantum walk by properly accounting
for the role of complementarity [15, 16, 17].

Although complementarity has been at the heart of
quantum mechanics since the dawn of the subject [16, 17],
studies of complementarity often focus on simple, illus-
trative cases such as two-slit interference [18] and two-
channel interferometry [19, 20]; we significantly expand
the field by providing an analysis of complementarity
for general graphs. To incorporate complementarity into
quantum walks, we extend from the typical view of a
quantum walk defined as unitary local transition rules
over the Hilbert space for the vertices of the graph and
the states of the walker’s coin by allowing a measure-
ment process, either on the transitions, or on the coin
outcomes, or both. The measurement is performed by
entangling the walker or coin to ancillary degrees of free-
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dom, with the strength of coupling to the ancilla deter-
mining whether the quantum walk is coherent (no cou-
pling to ancilla yielding the unitary quantum walk) or
random (strong coupling that yields full information on
the walker’s path).

We then define a quantum quincunx as a physical im-
plementation of a quantum walk, which must have an
identifiable walker and interpolate between a random
walk and a unitary quantum walk as the measurement
strength is varied. More precisely, we require a quan-
tum quincunx to have (i) a single walker, (ii) a measure-
ment process that can be employed to acquire varying
degrees of knowledge about the path of the walker, and
(iii) an identifiable interference phenomenon whose dete-
rioration can be linked to the acquisition of knowledge
about the walker’s path. This view on complementarity
(one walker and a trade-off between which-path vs inter-
ference) follows the information-theoretic perspective of
complementarity introduced by Wootters and Zurek [18].

We proceed as follows: first we provide background
on complementarity in Sec. II and then introduce our
notation for general graphs, recalling the definition of a
classical random walk on such graphs, in Sec. III. This
is followed in Sec. IV by the definition in our notation of
a unitary quantum walk on a general graph. In Sec. V
we extend the definition to include partial measurements
of the quantum walker. An example of the walk on a
N -cycle is given in Sec. VI. In Sec. VII we describe in
detail how to perform a measurement of the path taken
by the walker by measuring the state of the walker’s coin,
followed by a general treatment of quantum walks with
nonunitary evolutions in Sec. VIII. In Sec. IX we dis-
cuss how the wave walk relates to quantum walks, and
in Sec. X we summarize our results.

http://arxiv.org/abs/quant-ph/0404043v4
mailto:V.Kendon@leeds.ac.uk
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II. COMPLEMENTARITY FOR QUANTUM

WALKS

In its original formulation [16, 17], complementarity is
the principle that one classical description of a system,
which explains certain phenomena for a quantum system,
is incompatible with the simultaneous use of another clas-
sical description used to explain other phenomena. In
simpler terms, a quantum system can exhibit different,
incompatible properties that are each manifested under
different circumstances. The most well-known example of
complementarity is wave-particle duality: objects such as
single electrons or single photons can be described as be-
ing corpuscular (particle-like) under some circumstances
(when the phenomenon being studied, such as particle
detection, can be explained by describing these objects
as localized, indivisible particles) and undular (wave-like)
under other circumstances (when the phenomenon being
studied, such as interferometry, can be explained by re-
garding the objects as extended, interfering waves). The
attributes of waves and particles make these two descrip-
tions mutually incompatible, yet electrons or photons can
be made to exhibit the features of both these two incom-
patible descriptions depending on how they are observed.

Complementarity is at the heart of quantum mechan-
ics. Electrons and photons are described by quantum
theory in order that these mutually incompatible descrip-
tions can be reconciled. Quantum mechanics provides a
unified framework for describing quantum systems that
can be corpuscular or wave like under different circum-
stances. Systems are in fact regarded as quantum when
complementarity is manifest.

Although the early descriptions of complementarity
concerned mutually incompatible measurements, Woot-
ters and Zurek presented an information-theoretic de-
scription of complementarity, which elucidates that com-
plementarity can be quantified as a trade-off between
knowledge of which way each particle goes vs the sharp-
ness of the interference pattern obtained via repeated
preparations and measurements [18]. This trade-off be-
tween corpuscular and undular behavior has been exam-
ined in detail for photons both in a theoretical context
using a photon number quantum nondemolition measure-
ment [19] and experimentally using non-deterministic lin-
ear optical gates [21].

While complementarity has been well studied in quan-
tum physics, its role in identifying the ‘quantumness’ of
quantum information tasks has not been explored. Re-
cent controversy over what is ‘quantum’ about quantum
walks motivates us to examine the role of complementar-
ity in this context. The controversy over the quantum
walk is exemplified by the statement by Knight et al in
the abstract of their paper on “Quantum walk on the
line as an interference phenomenon” that, “the coined
quantum walk on a line can be understood as an inter-
ference phenomenon, can be classically implemented, and
indeed already has been” [12]. In their conclusions, they
state that they have “shown that the [quantum walk]
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FIG. 1: An example of a general graph, with N = 6 ver-
tices labeled v0, v1 . . . v5, and eight edges labeled e01 . . . e45.
A labeling of the possible choices of paths from each vertex is
given by the letters {a,b,c,d}, the degree of this graph being
four.

along a line can be simulated in a purely classical imple-
mentation, involving nothing more than wave interfer-
ence of electromagnetic fields.” Their work shows that
the quantumness of the coin, which is a spin- 1

2 particle
for the quantum walk on the line, and its possible en-
tanglement with the walker’s path, do not by themselves
make the quantum walk ‘quantum’. The question then
arises whether this reasoning is sufficient to claim as they
do, that the quantum walk is purely a wave phenomenon
that “can be simulated . . . [by] wave interference of elec-
tromagnetic fields”.

Our position is that the quantum walk may indeed be
implemented by an optical system, but not by one that
is strictly described by classical electromagnetic theory.
The optical quincunx of Bouwmeester et al [11] certainly
displays the interference features of the quantum walk on
the line, but the quantumness of the quantum walk must
connect two seemingly incompatible descriptions: there
is a single walker at a time who can opt for different paths
that interfere with each other, and the acquisition of in-
formation about the path destroys the interference and
restores the classical walk. An experiment that observes
one phenomenon of the quantum walk, the interference,
is really only observing a ‘wave walk’; we will show that
a quantum optical quincunx can identify that there has
been one walker, learn about the path, and show that
interference diminishes as path information is obtained.

III. GENERAL GRAPHS

We cast our discussion of quantum walks in a very
general setting where the walk takes place on a general
graph G(V, E) with

V = {vj ; j ∈ ZN} (1)

the set of vertices, and E = {ejj′} the set of edges, where
ejj′ connects vertices vj and vj′ , as shown in Fig. 1. The
number of edges adjoining vertex vj is dj and the degree
of the graph is d = maxjdj . The complexity of the graph
is associated with |V | = N , and the degree d is constant
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as N varies. For simplicity, we assume undirected edges
(ejj′ ≡ ej′j), and at most one edge between any pair of
vertices (ejj′ is unique).

In a random walk, the walker’s choice of which edge
to follow from a given vertex is random (for which we
include a d-dimensional coin), but this choice of edges
can be weighted (some edges are preferred over others) or
biased (the coin outcomes are not uniformly distributed
over all choices). In general the nature of the coin is
correlated with the vertex from which the coin is tossed,
e.g. the coin is dj -sided at vertex vj or the bias of the
coin may be j-dependent.

IV. UNITARY QUANTUM WALK

In contrast to the classical random walk, the quantum
walk permits the walker to follow all edges in a super-
position state, essentially as Feynman paths through the
graph. We first describe the unitary quantum walk, and
then generalize to include measurement of the walker’s
progress. The unitary quantum walk is deterministic, the
walker’s wavefunction is in the Hilbert space Hvc which
contains the N -dimensional Hilbert space

Hv = span{|j〉v : j ∈ ZN ,v〈j|j′〉v = δjj′} ⊂ Hvc (2)

of vertex states. For a coin we have a d-dimensional
Hilbert space

Hc = span{|k〉c : k ∈ Zd} and c〈k|k′〉c = δkk′} (3)

where d is the degree of the graph. The basis states of
Hvc are given by

Bvc = {|j, k〉 ≡ |j〉v|k〉c; j ∈ ZN , k ∈ Zd} (4)

with cardinality Nd. For a basis state |j, k〉, the index j
identifies the vertex number and k the kth state of the
coin. For an edge ejj′ we associate the coin state k with
the edge at vj , and the coin state k′ with the other end
of the edge at vj′ . The values of k and k′ are arbitrary
but fixed throughout the quantum walk, to ensure the
quantum walker traverses the the graph in a consistent
manner. We define the mapping

ζ : ZN × Zd → ZN × Zd : (j, k) 7→ ζ(j, k) = (j′, k′), (5)

where (j, k) and (j′, k′) label each end of ejj′ .
The quantum walk undergoes a unitary evolution by

repetition of two steps: a coin toss and a conditional
swap. The coin operator

C : Hvc → Hvc : |j, k〉 7→
∑

k̃∈Zd

Cj

kk̃
|j, k̃〉c (6)

is a block diagonal matrix with each block labeled by
j. The j-dependence of the coin matrix allows sufficient
freedom in the quantum walk dynamics for the quantum
coherence properties of the coin to vary between vertices,

for vertices to act as origins and endpoints, and for ver-
tices to have different degrees from each other. If vj has

degree dj < d, we require Cj

kk̃
= 0 for all k̃ values not

used to label an edge at vj . This restricts the coin oper-
ator so it only produces states that have a valid mapping
under ζ.

If

Cj

kk̃
= Cj′

kk̃
∀j, j′, (7)

we have the special case of a fixed degree graph where the
coin operator is identical for all vertices. As examples,
a two-sided coin has been employed in analyses of the
quantum walk on the line [3] and quantum walk on the
cycle [4], and a multi-sided coin for quantum walks on
regular lattices in higher dimensions [22, 23].

The unitary conditional swap operator is given by

S : Hvc → Hvc : |j, k〉 7→ |j′, k′〉 , (8)

which updates the position of the walker and the coin
state according to the mapping ζ in Eq. (5), i. e., moves
the walker and coin to the vertex vj′ along edge ejj′ . We
note that, by our stipulation that k and k′ label opposite
ends of ejj′ , it follows that S = S−1, and is thus unitary
as required for quantum evolution. The sequence of a
coin flip and a conditional swap is a transition over the
unit time step, which we denote by unitary T = SC.

This formulation of a (pure state) coined quantum
walk on a general graph first appeared in a different form
due to Watrous [2], and is also described by Ambainis
[10]. The interferometric scheme of Hillery et al [24] is
also equivalent. The astute reader will have noted that
there is thus far nothing random in the dynamics of a
unitary quantum walk, it being a perfectly determinis-
tic, reversible unitary evolution. Randomness does arise
if one measures the position of the walker after a number
of time steps, when the walker will be found on one of the
vertices with a probability given by the squared modulus
of the walker’s wavefunction over the graph.

V. NONUNITARY QUANTUM WALK

We now generalize to include measurements as part of
each step of the quantum walk dynamics (rather than
only after the final step). Quantum walks with mea-
surements were first considered by Aharonov et al [25]
though with different motivations from ours. The in-
clusion of measurements requires nonunitary evolution,
therefore we introduce density matrices to describe the
walker’s state. The (time-dependent) density operator

ρ =
∑

j,k

∑

j′,k′

ρj′k′

jk |j, k〉〈j′, k′|, (9)

is a positive (ρ = ρ† with positive real spectrum), unit-
trace, bounded linear operator on Hvc, in the basis Bvc,
Eq. (4). The state is pure iff ρ2 = ρ. A typical initial
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FIG. 2: An example of a cycle graph, with N = 7 vertices
labeled v0, v1 . . . v6, and seven edges. Arrows indicate the
direction of travel for coin state |0〉 (anticlockwise) and |1〉
(clockwise). The cyclic labeling of the vertices does away
with the need to label the edges.

condition is ρ(t = 0) = |0, 0〉〈0, 0| corresponding to the
walker starting at vertex v0 carrying a coin in the 0 state.

In general the density operator is mapped to a new
density operator via a completely positive, or CP, map

T : ρ 7→ T ρ (10)

The CP map T performs one coin flip and the conditional
swap over one time step. As a CP map,

T ρ =
∑

i∈Θ

T †
i ρTi,

∑

i∈Θ

T †
i Ti = 11, (11)

with i an index of nonunitary evolutionary ‘instances’
and Ti the corresponding Kraus operator. These in-
stances may be discerned by a measurement record, with
i the record index. The cardinality of Θ can be finite,
countably infinite, or even uncountable. In the case of
unitary evolution, Θ has a cardinality of one, so there is
a unique, unitary T for which ρ 7→ T ρ = TρT †. Unitary
quantum walk evolution can thus be expressed as

ρ(t) = T tρ(0), T ≡ SC, SCρ ≡ SCρC†S† , (12)

where, for the discrete time walk, we assume t ∈ Z. Thus,
for the unitary walk, the transition is given by T = SC,
and the nonunitary walk can be understood as a collec-
tion, or sum, of instances of nonunitary coin flips, with
randomness, followed by a conditional swap.

VI. WALK ON THE CYCLE

At this stage application to a well known example is
helpful, and we consider the quantum walk on a cycle,
see Fig. 2. The quantum walk on the cycle has the ad-
vantages that Hv is finite-dimensional (as opposed to the
walk on the line, for example, which has infinitely many
vertices, hence an infinite-dimensional Hilbert space),

d = 2 for all vertices, which is the smallest nontrivial
degree, and the quantum walk on the cycle may be ex-
perimentally achievable [5, 6]. The Hilbert space for a
two-sided coin is given by Hc = H2 for

H2 = span{|0〉, |1〉} . (13)

The Hilbert space for the graph+coin is given by

Hvc = Hv ⊗Hc. (14)

We can choose all blocks of the coin matrix to be iden-
tical 2 × 2 matrices, in this case the unbiased two-sided
coin operator is given by a generalized Hadamard trans-
formation [23]

Hϕ ≡ 1√
2

(

1 −ieiϕ

ie-iϕ −1

)

, (15)

with a free phase degree of freedom ϕ (typically ϕ =
π/2). Assuming that the vertices are labeled in sequence
around the cycle, we can employ the simplicity of assign-
ing |0〉 to moving from vj to vj+1 and |1〉 to moving from
vj to vj−1 (rather than labeling each end of the edges).
The conditional swap operation becomes

S =
∑

ε∈{0,1}

∑

j∈ZN

|j − (−1)ε mod N〉〈j| ⊗ |ε〉〈ε| (16)

yielding the transformation S|j, ε〉 = |j − (−1)ε, ε〉.
The quantum walk on the cycle has been well-studied:

it mixes faster than a classical random walk, both for
unitary quantum walks [4], and when a small amount of
decoherence is applied in the form of non-unitary random
measurements of the coin and/or the walker’s position
[26].

VII. MEASUREMENTS OF THE COIN

Now that we have the machinery in place to describe
nonunitary quantum walks on general graphs, we can re-
turn to the question of complementarity and consider
how to track the path of the walker. We will explain
this in detail for a two-sided coin such as the one used
for the walk on a cycle described in the previous sec-
tion. Suppose that measurements of the coin state are
performed after each coin flip, in the coin state basis
{|0〉, |1〉}. This measurement can be performed by adding
an ancilla that serves as the coin meter, and the meter
state becomes correlated by interacting with the coin.
The Hilbert space for the ancilla is of the same dimension
as the Hilbert space for the coin, so the meter’s Hilbert
space is Hm = H2, given by Eq. (13). Letting

σ+ ≡ |1〉c〈0| = σ†
−, τ+ ≡ |1〉m〈0| = τ†

−, (17)

2σx = σ+ + σ−, 2iσy = σ− − σ+ , (18)

2σz = [σ+, σ−], 2τz = [τ+, τ−], (19)
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the meter couples to the coin via the interaction [27]

W (β) =
(

ei π
4

σy ⊗ e−i π
4

τx
)

e−iβ π
4

σx⊗τx
(

e−i π
4

σy ⊗ e−i π
4

τz
)

×
(

11 ⊗ e−iπ(1−β)τy/4
)(

11 ⊗ e−iπτz/4
)

. (20)

The uncoupled case corresponds to W (0), and W (1) cor-
responds to the strong coupling limit (a controlled-NOT
operation) with resultant sharp measurements. The in-
terpolation between the limits is achieved by allowing β
to vary continuously over the domain [0, 1].

To perform a measurement, we first prepare the meter
in the |0〉m state, then allow it to interact with the coin,
which is in an arbitrary qubit state γ|0〉c + η|1〉c,

W (β)(γ|0〉c + η|1〉c)|0〉m = γ|00〉cm
+ η|1〉c(cos βπ/2|0〉m + sin βπ/2|1〉m). (21)

Tracing over the meter state yields the 2×2 coin density
matrix transformation

Trm{W (β)

[(

|γ|2 γη∗

γ∗η |η|2
)

⊗
(

1 0
0 0

)]

W †(β)}

=

(

|γ|2 γη∗ cosβπ/2
γ∗η cosβπ/2 |η|2

)

. (22)

The coin values correspond to the pointer basis [28, 29],
with the degree of decoherence depending on β.

These measurements of the coin provide information
on path choices that the walker makes. If the walker’s
initial state is localized at one known vertex, then perfect
coin state measurements suffice to inform the observer
as to the exact trajectory of the walker. The parame-
ter β allows the observer to acquire as much or as little
information as desired, thereby allowing the degree of
knowledge of which trajectory the walker followed and
the complementary degree of coherence reduction to be
controlled. To see the effect of varying β, first note that
β = 0 corresponds to no measurement of the coin. In this
case the last matrix in Eq. (22) corresponds to perfect co-
herence because the cosβπ/2 term becomes unity. As β
increases from 0 to 1, cosβπ/2 → 0 and perfect decoher-
ence emerges: the random walk arises because the end
states of the quantum walk are just probability-weighted
sums of each path.

VIII. QUANTUM WALKS IN OPEN SYSTEMS

Nonunitary evolution of the quantum walk of course
can also arise from other processes besides measuring
the coin; in the case of the quantum walk on the cy-
cle in a cavity quantum electrodynamics realization, cav-
ity damping is naturally associated with measuring the
phase of the intracavity field [6], which corresponds to di-
rect measurements of the vertex states for the quantum
walk on the cycle. In this case the decoherence mecha-
nism is due to measurements of vertex occupation, not

the coin state, but the classical random walk emerges all
the same.

For more general quantum walks, weak or strong mea-
surements of the state of the coin generalize the unitary
evolution of Eq. (12) to the nonunitary case

T : ρ 7→
∑

i∈Θ

SCiρC†
i S† (23)

with Ci the Kraus operators for different instances of
coin-state randomization.

According to Naimark’s theorem [30], the positive
operator-valued measure of coin state that yields the CP
map of Eq. (23) can be realized by coupling the coin
state in Hc to an ancilla in an extended Hilbert space
Ha and performing projective (von Neumann) measure-
ments of the ancilla state. The positive operator-valued
measure of the coin state is then obtained by tracing
over ancilla states. The coin can be considered as a qu-
dit of dimension d, and a d-dimensional ancillary qudit
suffices. The qudit-qudit coupling that interpolates from
no measurement of the coin state to weak measurements
to sharp measurements with full information is a compli-
cated generalization [31] of the qubit-qubit coupling in
Eq. (20). A projective measurement of the ancilla gives
none, some, or all of the information about the coin qudit,
depending on the qudit-qudit coupling strength, which,
with full measurements, then yields the classical walk on
the graph. Measurements of coin states are sufficient to
reduce a quantum walk on the graph to a classical walk
on the same graph provided the walker starts in a basis
state [32].

IX. OPTICAL QUANTUM QUINCUNX

Having incorporated measurement into quantum walks
and shown that measurement introduces complementar-
ity, which interpolates between the random walk and the
unitary quantum walk, we now consider the quantum
quincunx: a physical system which implements a quan-
tum walk. Our requirements for a quantum quincunx
are that the system (i) has an identifiable walker, (ii) ex-
hibits both the unitary quantum walk and the random
walk as complementary features of the quantum walk,
and (iii) interpolates between these two complementary
extremes according to a controllable degree of measure-
ment that provides information about the walker’s path.

The quantum quincunx can be realized in various phys-
ical systems [5, 6, 7], but here the optical quincunx pro-
vides a convenient system for understanding quincunxes
and the requirements for a quantum quincunx. Further-
more, the optical quincunx has been realized experimen-
tally as an interferometer [11]. The typical source for
interferometry is a coherent laser source, which is often
described as producing a coherent state [14], a certain
coherent superposition of different numbers of photons,
where the photon number states are given by |n〉, and
the indeterminacy of the photon number is necessary in
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order for the phase variance to be small. Although inter-
ferometric experiments can be fully described by classical
fields, the coherent state provides a bridge to connect the
quantum and classical field descriptions, with the pho-
tons playing the role of the ‘walkers’ in the system.

Second quantization seems to present a dilemma with
respect to the requirement of an identifiable walker: a
coherent state of walkers is given by

|α〉w = e−|α|2/2
∞
∑

n=0

αn

√
n!
|n〉w , (24)

where |n〉w is a number state of walkers along the graph.
The parameter α is complex, whose square modulus |α|2
is the mean energy, the discrete energy distribution is
Poissonian, and arg(α) is the phase. Let us deal with two
challenges: (a) the quantum walk with multiple walkers
and (b) the indefiniteness of the number of walkers. With
respect to challenge (a), generalizing the quantum walk
from one to n walkers is straightforward: as the n-walker
system involves non-interacting walkers, so the Hilbert
space for the walkers is given by H⊗n

vc , and the completely
positive map generalizes to T ⊗n. The n-walker system is
a simple extension of the one-walker system as a tensor
product of n one-walker systems with one time step given
by T ⊗nρ⊗n. Each walker carries its own coin, and these
n coins are coupled to n meter qudits, so measurement
and complementarity arise via this coupling. Essentially
this n-walker system is equivalent to repeating the one-
walker quantum walk n times.

With respect to challenge (b), the wave walk appears
to emerge through second quantization of walker num-
ber, and the indeterminacy of walker number in Eq. (24)
enables the phase, which is complementary to number,
to be reasonably sharp in order to provide strong co-
herence. However, it has become abundantly clear re-
cently [33, 34, 35] that the coherent state and num-
ber state offer complementary yet convenient alterna-
tive representations. The quantum optics implementa-
tion [11, 12, 13, 14] can be described within the photon
number superselection framework [35], so each run of the
optical quincunx experiment can be interpreted as having
a fixed number of photons, and this number of photons
can be post selected by an ideal photon counting mea-
surement on all the output fields.

Complementarity in the quantum walk would be man-
ifested by allowing each photon to be tracked during its
evolution. This requirement is not easily met, but a
practical approach is as follows: the parameter |α|2 in
Eq. (24) corresponds to the laser flux, and attenuating
the laser so that |α|2 ≪ 1 ensures that multiphoton con-
tributions are negligible. Then each run overwhelmingly
corresponds to no photon or one photon. In this single-
photon regime [36, 37], the presence of the photon can
be ascertained by a photodetection at the output: the
presence of the photon is postselected when the photode-
tector at the output clicks, announcing that this run of
the quantum quincunx had a walker. The photon’s path

is ascertained by quantum nondemolition measurements,
either by a nonlinear optical medium for deterministic
detection of the photon without destroying it [19] or by
nondeterministic linear optical detection [21]. Operat-
ing in a low photon flux regime and performing photon
number quantum nondemolition measurements of path
would allow a continuous interpolation between the the
unitary quantum walk and the random walk, thus ex-
tending the optical quincunx to a fully functioning quan-
tum quincunx. We are thus able to elucidate what has
been achieved by the optical quincunx of Bouwmeester
et al [11] towards an optical implementation of the quan-
tum walk and what needs to be added to provide a full
implementation.

The optical quincunx emulates the undular properties,
or interference, of the quantum walk, as stated by Knight
et al [13], but this is performed without an identifiable,
single walker. In fact the transition to the distribution
for a classical random walk should also be achievable if
the interferometer is allowed to decohere. If the relative
phases between interferometer paths are fully decohered,
for example by dispersive media in the paths, the resul-
tant interferometer output will not correspond to a super-
position of paths but rather to an incoherent, probability-
weighted distribution of outputs. This incoherent sum of
paths is precisely the random walk distribution.

Thus, the experiment of Bouwmeester et al could
be modified to demonstrate features of both the ran-
dom walk distribution and the quantum walk interfer-
ence effect, but complementarity dictates three criteria
to achieve quantumness. Just demonstrating a decoher-
ence of wave like interference is insufficient to establish
the corpuscular property of the objects; one must demon-
strate their indivisibility. The walker should be a single
photon, and there are several possible methods to achieve
this [37]. One is to produce photon pairs, for example via
parametric downconversion, and obtain one photon con-
ditioned on detecting its partner; another approach is to
produce single photons on demand by a source such as a
quantum dot in a strong cavity; a third approach, which
is currently the easiest, is to postselect the results on de-
tecting a single photon, thereby eliminating vacuum and
multiphoton contributions and sorting data based on one
and only one photon having been in the system.

In summary, an optical quincunx can implement the
quantum walk when it operates in the single photon
regime. In this case the device is a quantum optical quin-
cunx. The quantumness of the quincunx is essential to
manifest the complementarity properties of the quantum
walk, namely the trade-off between information about
the walker’s path and the interference.

X. CONCLUSIONS

In this paper we have incorporated complementarity
into the theory of quantum walks, thereby addressing
the issue of what is “quantum” about the quantum walk,
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as well as extending the concept of complementarity well
beyond the usual physical systems (e.g. interferometry)
to quantum walks on general graphs. Our analysis of
complementarity in quantum walks builds on the ap-
proach of coined quantum walks and replaces unitary
evolution by the much more general completely posi-
tive map approach, which is relevant to considerations
of experimental realizations of quantum walks. Through
measurement, the quantum walk may exhibit the uni-
tary quantum walk, the random walk, and intermediate
processes depending on the strength of the measurement.
We define a quantum quincunx as a physical implementa-
tion of a quantum walk, including measurement of path,
that can demonstrate the essential properties of com-
plementarity in a quantum walk: interference traded off
with which-path information, and the indivisibility of the
quantum walker. An extension of the optical quincunx
experiment of Bouwmeester et al [11] operated in the sin-
gle photon regime with postselection for the presence of a

photon, and in which the interferometer arms contained
photon nondemolition measurement devices, would turn
this into a fully quantum quincunx.
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