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Optical implementations, oracle equivalence, and the Bernstein-Vazirani algorithm

Arvin

Department of Physics, Indian Institute of Technology Madras, Chennai 600034

Gurpreet Kaur
Department of Physics, IIT Madras, Chennai 600036

Geetu Narang
Department of Physics, Guru Nanak Dev University, Amritsar, 143 005

We describe a new implementation of the Bernstein-Vazirani algorithm which relies on the fact
that the polarization states of classical light beams can be cloned. We explore the possibility of
computing with waves and discuss a classical optical model capable of implementing any algorithm
(on n qubits) that does not involve entanglement. The Bernstein-Vazirani algorithm (with a suitably
modified oracle), wherein a hidden n bit vector is discovered by one oracle query as against n oracle
queries required classically, belongs to this category. In our scheme, the modified oracle is also
capable of computing f(x) for a given z, which is not possible with earlier versions used in recent

NMR and optics implementations of the algorithm.

PACS numbers: 03.67.1.x,42.25.Ja,42.25.Hz

I. INTRODUCTION

Quantum mechanical systems have a large in-built in-
formation processing ability and can hence be used to
perform computations |1, 12, 3]. The basic unit of quan-
tum information is the quantum bit (qubit), which can
be visualized as a quantum two-level system. The imple-
mentation of quantum logic gates is based on reversible
logic and the fact that the two states of a qubit can
be mapped onto logical 0 and 1 [4, |5, [6]. The quan-
tum mechanical realization of logical operations can be
used to achieve a computing power far beyond that of
any classical computer [7, 18,19, [10]. A few quantum al-
gorithms have been designed and experimentally imple-
mented, that perform certain computational tasks expo-
nentially faster than their classical counterparts. While
the Deutsch-Jozsa (DJ) algorithm [11] and Shor’s quan-
tum factoring algorithm [12, [13] lead to an exponential
speedup, Grover’s rapid search algorithm [14] and the
Bernstein-Vazirani [15] algorithm are examples where a
substantial (though non-exponential) computational ad-
vantage is achieved.

The exponential gain in computational speed achieved
by quantum algorithms is intimately related to entangle-
ment [16], and it turns out that when there is no entan-
glement (or the amount of entanglement is limited) in a
pure state, the dynamics of a quantum algorithm can be
simulated efficiently via classically deterministic or clas-
sical random means [17, [18, [19]. However in algorithms
that do not lead to an exponential gain in speed or in
those that use mixed states, the possibilities of achieving
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speedup without entanglement still exist [20].

Classical waves share certain properties of quantum
systems. For example, the polarization states of a beam
of light can act as qubits. It is to be noted that the
superposition of classical waves does not lead to entan-
glement. For n beams of light, with their polarization
states providing us with n qubits, we can only imple-
ment U(2) @ U(2)--- ® U(2) transformations via opti-
cal elements |21] and cannot in general implement U (2")
transformations. Therefore, although superposition and
interference are present and can be utilized, their scope
is limited compared to what could be achieved with n
qubits which are actually quantum in character. How-
ever, it is interesting to explore the question if any use-
ful computation could be performed with classical waves,
that exploits their superposition and interference. It
turns out that, if an algorithm based on qubits does
not involve entanglement at any stage of its implemen-
tation, it can be realized using this classical model. The
Deutsch-Jozsa algorithm for one and two qubits and the
Bernstein-Vazirani algorithm for any number of qubits,
can be re-cast in this form with a suitable modification
of the oracle [15, 22, [23]. This modification of the al-
gorithm has been central to the implementation of the
Deutsch-Jozsa algorithm up to two qubits |24, (25, [26]
and the Bernstein-Vazirani algorithm on any number of
qubits using NMR [27] as well as optics [28] and super-
conducting nanocircuits [29].

In this paper, we propose a model based on classi-
cal light beams in which the n-qubit eigen states are
mapped on to polarization states of these beams, and
un-entangling unitary operators are implemented using
passive optics. An added feature in this model is that
cloning of states is possible as we are working entirely
within the domain of classical optics. It turns out that
this possibility of cloning along with interference leads to
interesting results for certain algorithms.
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We discuss an entirely new scheme for implementing
the Bernstein-Vazirani algorithm. Instead of Hadamard
transformations, we use cloning and re-interference to
discover a hidden n-bit binary vector a, using only a sin-
gle oracle call. The non-entangling nature of the modi-
fied oracle for the Bernstein-Vazirani algorithm is central
to this implementation as it is for the earlier implemen-
tations |27, 28). However this scheme differs from the
earlier schemes in two ways: (a) instead of Hadamard
transformation we use the cloning of classical beams via
beam splitters, and (b) we are able to operate the modi-
fied oracle in the ‘classical’ mode as well, wherein we are
able to obtain f(z) for a given x.

The material in this paper is arranged as follows: the
optical model based on polarization states is described in
Section [Tl Section [Tl begins with the description of the
original Bernstein-Vazirani algorithm and later discusses
the modified oracle and its implications. The new optical
scheme is described in Section[[V] and Section[V]has some
concluding remarks.

II. OPTICAL IMPLEMENTATION BASED ON
POLARIZATION

Consider a classical system consisting of a monochro-
matic light beam propagating in a given direction with
a pure polarization. The polarization states of such a
beam are in one-to-one correspondence with the states of
a two-level quantum system and the beam can therefore
be visualized as a qubit. The unitary transformations
that transform one polarization state to another can be
easily performed. Consider a birefringent plate with its
thickness adjusted to introduce a phase difference of 1 be-
tween the x and y components of the electric field, with
its slow axis making an angle ¢ with the x axis. The
unitary operator corresponding to this plate is given by
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For n = =, it becomes a half-wave plate (denoted by
Hy), while for n = m/2 it becomes a quarter-wave plate
(denoted by Q). It has been shown that all U(2) trans-
formations can be realized on the polarization states by
taking two quarter-wave plates and one half-wave plate
with suitable choices of angles of their slow axes with the
x axis. We will henceforth refer to this device, capable
of implementing SU(2) transformations, as “Q-H-Q” (a
detailed discussion is found in [21]). Combining this with
an overall trivial phase transformation, we can implement
the complete set of U(2) transformations.

Further, let us map the x polarization state to log-
ical 1 and the y polarization state to logical 0. With
this mapping, we proceed to work with this system as
a qubit. Since this system comprises essentially of clas-
sical elements, we call it a “classical qubit”. We will
use a notation where we specify the polarization state as
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FIG. 1: The action of the Q-H-Q device on the polarization
state ‘|z)’ of a single beam, taking it to a state ‘|z)’, where U
could be an arbitrary SU(2) transformation

‘|2)’ (i.e a ket vector within quotation marks) through-
out this paper, where x can take values 0 or 1. Multi-
ple beams of this type can be considered and on each
one of them arbitrary U(2) transformations can be per-
formed. All the computational basis states are mapped
to appropriate polarization states using the above map-
ping. It is to be noted that we cannot obtain any entan-
gled states here because the transformations available are
U2)eU2)---@U(2).
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FIG. 2: The action of a beam splitter with transmission co-
efficient ¢ and reflection coefficient r on a classical light beam
with polarization state given by ‘|z)’. The same polariza-
tion is being sent into both ports of the beam splitter and no
polarization change occurs during the whole process. For in-
stance, if the beam in one of the ports is missing and we use a
50-50 beam splitter, the beam splitter generates two identical
beams which are clones of the original input beam and with
their intensity reduced to half.

A beam splitter can be used to ‘split’ a beam and also
to interfere beams with the same polarization. The trans-
formation matrix of this operation on the amplitudes is
given by

Where t and r are transmission and reflection coefficients
respectively. This matrix acts on the amplitudes of the
two beams entering the two ports of the beam splitter
and not on the polarization states. Polarization states



do not undergo any transformation under the action of
the beam splitter.

IIT. THE BERNSTEIN-VAZIRANI ALGORITHM
AND A MODIFIED ORACLE

Consider the binary function f(z) defined from an n-
bit domain space to a 1-bit range.

f:{0, 13" — {0, 1} 3)

The function is considered to be of the form f(z) =a-z,
where a is an n bit string of zeros and ones and a.r
denotes bitwise XOR/( or scalar product modulo 2):

f(z) = a121 ® azza @ ........ ApTy (4)

The aim of the algorithm is to find the n-bit string
a, given that we have access to an oracle which gives us
the values of the function f(x) when we supply it with
an input z. Classically at least n queries to the oracle
are required in order to find the binary string a. The
Bernstein-Vazirani algorithm solves this problem with a
single query to a quantum oracle of the form
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where z € {0, ......... 2"~11 is a data register and |y) acts
as a target register. The algorithm works as follows: be-
gin with an initial state with the first n-qubits in |0) state
and the last qubit in the state |1). Apply a Hadamard
transformation on all the n + 1 qubits and then make a
call to the oracle giving the following results:

2" -1
gent+1 1
0)°"11) "= s D 1a) —=(0) 1)
21/ z=0 \/_
2" -1
2n/2 Z

2" —12"—

ZZ

—1)@2 )1
=0 2z=0

- |a>|1> (6)

where we have used the fact that
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A measurement in the computational basis immedi-
ately reveals the binary vector a. This algorithm there-
fore achieves the discovery of the vector a in a single
oracle call as opposed to n oracle calls required classi-
cally. The oracle (Bl has been queried on a superposition
of states for this algorithm. However, if we query the or-
acle on a state |z) with the function register set to |0) we
will recover the value f(z) in the function register. This
demonstrates that we can run the oracle in the classical
mode when desired.

A. Oracle modification and implementation
without entanglement

This unitary oracle ([{) requires n+1 qubits and can be
operated in two different ways. If we use eigen states in
the input and set y = 0, the algorithm outputs f(x) for a
given input x in a reversible manner (which the original
classical algorithm would do irreversibly). However, the
algorithm can be performed on arbitrary quantum states
(typically a uniform superposition of input states in the
Deutsch-Jozsa and Bernstein-Vazirani algorithms).

A careful perusal of Equation (@] reveals two important
facts about the Bernstein-Vazirani algorithm.

(a) The register qubit does not play any role in the
algorithm. It is used only in the function evaluation
step because the oracle (@) demands that we supply
this extra qubit. However, if we modify the oracle
to
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we can implement everything on n qubits. Since
the state of the last qubit does not change, it can
be considered redundant and we can remove the
one-qubit target register altogether.

Although this oracle suffices to execute the
Bernstein-Vazirani algorithm, it cannot give us the
value of f(z) for a given z. Therefore, one can ar-
gue that the connection with the original classical
problem is lost and one is solving an altogether dif-
ferent problem. In this paper, we demonstrate that
in the classical model based on polarization of light
beams, this problem can be circumvented and we
can obtain the value of f(z) from x via a suitable
modification of the circuit. We will come back to
these subtle points again in the next section.

(b) Tt turns out that this version of the oracle is imple-
mentable without requiring any entanglement for
the case of the Bernstein-Vazirani algorithm. The
modified oracle (@) can be implemented without
introducing any entanglement because the unitary
transformation U, can be decomposed as a direct
product of single qubit operations.

U, = Uél) ® U(52) ® - Ué”)

(02)™ @ (02) - (o) (8)
where of is the Pauli operator acting on the
j th qubit. On an n-qubit eigen state |x) =

|z1)|z2) - - - |zp) labeled by the binary string x the
action reduces to

Uy = (—1)%%1 (=1)™42 ...

(1)

This simplified version of the Bernstein-Vazirani algo-
rithm where only n qubits are used and we have separa-
ble states at all stages of the implementation has been
depicted in figure ([B]). All the implementations till date
have been along the lines of this circuit |27, [28].
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FIG. 3: Pictorial representation of the Bernstein-Vazirani FIG. 4: Optical circuit to (a) implement the Bernstein-

algorithm using a modified oracle on n un-entangled qubits.
Initially the qubits are set to be all in the |0) state. Each box
containing H represents a Hadamard transformation and the
box U, represents the oracle. By a single call to the oracle
sandwiched between the hadamard gates we arrive at the final
state |a) which on measurement reveals the binary vector a.

IV. NEW OPTICAL IMPLEMENTATION OF
THE BERNSTEIN-VAZIRANI ALGORITHM

It was shown in Section (II) that n classical beams of
light can be visualized as an n qubit system and the ac-

Vazirani algorithm in a new way and (b) to compute f(z)
from z. BS’s represent 50/50 beam splitters, the corner ele-
ments are mirrors and D’s are light detectors. The XOR gate
is implemented on pairs of bits till we are left with only a one
bit result.

The oracle acts on one of the copies and converts it via
the unitary transformation UJ = (—1)%%; the other
copy does not undergo any change. Both these copies
are brought together and mixed at the beam splitter BS;-
and the intensity is measured at the detector D;.

tion of a non-entangling unitary transformation can be %‘|xj>’ Transmitted
implemented via a suitable combination of two quarter APV

;) (10)
wave plates and a half wave plate on each beam. Al- _%cuﬂ.y reflected

though the set of unitaries that can be implemented is
limited, there is an added advantage that we can clone
these beams by using beam splitters. The waves are clas-
sical and therefore there is no problem in dividing the
amplitude of a given polarization to obtain two copies of
the same polarization state. We will now use this prop-
erty of the model to implement the Bernstein-Vazirani
algorithm in a new way and also to make the modified
oracle more powerful in terms of its capacity to compute
f(z) from z. A notation similar to quantum mechan-
ics is used in which single quotations marks will be used
around ket vectors for describing the polarization states
of light beams, where ‘|z;)’ represents x-polarization if
x; = 0 and y-polarization if x; = 1. Each beam splitter
in the circuit splits the beam into two, keeping the polar-
ization state of both the beams identical to the original
polarization. The intensity of the split beams is half that
of the original beam.

We now follow the circuit described in Figure ([Y)) to
arrive at our results. Consider the input state labeled by
the binary vector x with its bits given by 1, z2 - - - x,,. We
represent it by a polarization state ‘|z1)|x2)’ -+ ‘|z,)’
where each beam has an x or y polarization depending
upon the corresponding bit being 0 or 1.

Each beam goes through an identical set of operations.
Consider the jth beam. The initial state of this beam is
‘|z;)" and after the beam splitter we have two copies of
the same state (classical cloning of polarization states).

The transmitted component then undergoes the action
of the oracle unitary (Equations (8) and (@) which for
the jth qubit acts via UJ = 03/ = (—1)%%. The state
of the beam is

) L )Py ()
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As is clear from Equation (), the implementation of
UJ on the jth beam is straightforward and is a polariza-
tion dependent phase shift corresponding to a single half
wave plate with ¢ =0 and n =7 [30].

Finally, this beam meets the other beam (the one that
did not undergo the oracle unitary) at the beam splitter
BS;, where they interfere to give the state of the beam
moving towards detector D;

1 1
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The negative sign in Equation (I2)) implies that the
beam which does not pass through the oracle acquires
an extra phase factor of 7, which can be easily arranged.
After interference, the amplitude and hence the inten-
sity at the detector D; is zero if xj.a; is zero. On the
other hand, if ;.a; is one the intensity at the detector is



% (assuming that we started with a beam of unit inten-
sity). This happens for all the beams and therefore each
detector measures the corresponding x;.a;.

A. To find the n bit string ‘a’

We can find z;.a; separately for all j’s with this
simple interferometric arrangement. The computation
of the binary string a is now straightforward. If we
choose a special input state with z; = 1 for all the
j € {1,2,---n} then the detectors measure the corre-
sponding a; and therefore we are able to compute the
string a. This is quite different from the quantum ver-
sion of the Bernstein-Vazirani algorithm where we use
Hadamard gates to create superpositions. As a matter
of fact, the scheme with Hadamard gates described in
Figure @) can also be implemented in our model with
polarization qubits.

B. Computing f(z) for a given =

In order to compute f(x) for a given x, the appropri-
ate polarization state representing the n-bit input x is
chosen. The outputs from all the detectors are fed into a
pair-wise XOR gate to compute addition modulo 2 (the
XOR is applied to pairs of inputs until we are left with
only one output). This process amounts to computing

f(z) = z1.01 ® x3.02 - - D xp.ap,. We can thus compute

f(x) for any given z.

V. CONCLUDING REMARKS

We have described a classical optical scheme to imple-
ment the Bernstein-Vazirani algorithm. This scheme is
entirely classical as we have used only ’classical qubits’
(based on the polarization states of light beams), and
passive optical elements such as detectors, beam split-
ters, phase shifters and mirrors. The number of compo-
nents needed to implement the algorithm increases lin-
early with the number of input beams. We have explic-
itly cloned the input and interfered it again with the part
which undergoes the oracle unitary, in order to solve the
Bernstein-Vazirani problem. This scheme does not re-
quire the implementation of any Hadamard gates. We
have also shown through our interference arrangement
that we can use the same oracle to compute f(z) for a
given z.

We believe that this analysis is a step in the direction
where information processors based on interference of
waves are analyzed in detail for their computation power.
These systems seem to provide a model that is in-between
the classical computation model based on bits and a fully
quantum computer. The computational power is also
likely to be in-between the two models (these issues will
be discussed elsewhere).
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