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Abstract

We propose an optical cavity implementation of the two—dimensional
coined quantum walk on the line. The implementation makes use of only
classical resources, and is tunable in the sense that a large number of
different unitary transformations can be implemented by tuning some pa-
rameters of the device.

1 Introduction

The quantum walk (QW) is an interesting quantum process that is attracting
much attention from the algorithmic point of view [I], but also because of its
intrinsic interest [2] through its connection with quantum cellular automata [3],
and with the physics of the systems in which it can be implemented. Two differ-
ent types of QWs have been introduced, the so—called discrete and continuous
QWs. The discrete QW can be thought of as a quantum version of the classical
quantum walk [B, ], whilst the continuous QW is a quantum generalization of
the Markov chain [B]. In this article we shall deal only with the discrete QW.
As stated, the discrete QW can be shortly defined as a quantum counterpart
of the random walk. In the random walk on the line, the ”walker” moves to the
right or to the left depending on the output of some random process, e.g., the
toss of a coin. In the QW, the classical coin is substituted by a quantum one, a
qubit, and the coin toss is replaced by some unitary operation acting on the qubit
state, e.g, a Hadamard transformation. After the unitary operation, the qubit
state is in a superposition state and thus there is a finite probability amplitude
for the walker to move, in the same step, to the left and to the right. This leads
to the appearance of interference phenomena in the probability distribution of
the walker localization that makes it very different from its classical counterpart.
The coined QW in one dimension has been studied extensively along the

recent years [6l [7, &, Ol [T0, [T, T2, 3, 4], and some generalizations of the ba-
sic process have been recently proposed [15, [I6], 7, IR, M9, 20, 21]. Regarding
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physical implementations, there are a number of proposals that consider quan-
tum systems, i.e., systems whose dynamics can be described only within the
framework of quantum mechanics [22, 23, 24, 25, 26]. Interestingly enough,
the one-dimensional QW has been shown to be implementable by only classical
means, i.e., in setups whose description does not require quantum mechanics
27, 28, 29, B0]; and, in fact, it has been nearly implemented in an optical
cavity [31], as it is shown in [28] 29]. Moreover, it has been claimed that the
one—dimensional QW is an interference phenomenon in which entanglement,
a distinctive quantum feature, does not play any role [28] (see also [32] for a
different view).

Of course, as it is the case for the random walk, the QW can be defined in
a space of arbitrary dimensionality [33]. In the multidimensional case, in which
the particle "walks” in a d—dimensional space, a qubit is necessary for each
spatial dimension or, in other words, a d-dimensional QW requires a qudit. This
makes that the unitary transformations, the analogous to the coin toss, be more
complex that in the unidimensional case. Multidimensional QWs have been
studied in some detail in [34] B5] but, to the best of our knowledge, no proposal
for its implementation is available to this day. In this article, we propose a way
for implementing the two—dimensional quantum walk in an optical cavity.

2 Two—dimensional quantum walk

Let us briefly introduce the two-dimensional QW, whose implementation is our
main goal. Consider a single particle (the walker) and a qudit with four states
that plays the role of the coin. Notice that the qudit can correspond to internal
states of the particle, although not necessarily. Let Hp be the Hilbert space of
the particle positions on the plane and

{|Iay> = |I> |y>,x,y€Z}, (1)

a basis of Hp; and let He be the four—-dimensional Hilbert space describing
coin—qudit, and {|u),|d),|r),|l)} a basis of Hc. The state of the total system
belongs to the space H = H¢ ® Hp, and at a given instant of time, say at
iteration n, can be expresed as

[0, = D2 [ ) + 10 2, ,0) + 0l fo, g, ) + A oy, )|, (2)

z,y

where the notation is self-explicative.
The dynamics of the system is governed by two physical operations: (i), the
conditional displacement, represented by the operator D acting on Hp

Dlv,y,r) = |z+Lyr), Dloyl)=z—1yl), (3)
Dlz,y,u) = |z,y+1,u), Dlz,y,d)=|z,y—1,d), (4)

i.e., the walker is displaced up, down, rigth or left when the coin is in the state
|7y, 1), |u), or |d), respectively; and (ii), the unitary transformation acting on



the internal states of the coin, represented by a unitary operator Cy, which acts
on Hce and that can be written as a 4 x 4 matrix. Two special cases that have
been considered in the literature [33, B4, B5] are the Grover coin
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and the DFT (discrete Fourier transform) coin
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The state of the system after n steps of the walk can be written as

[6), = (C4D)" 19, (™)

with [¢), the initial state of the system. Finally, the probability distribution
for the particle be at position (x,y) after n iterations is given by

P(zyin)= > laycle),l’= > Pzyn), (8)
ce{r,l,u,d} ce{r,l,u,d}

2
with P¢(z,y;n) = ‘cg(v"z’ the probability distributions for the particle be at

position (z,y) and the coin in state |c), ¢ € {r,l,u,d}.

3 Implementation

In order to implement the two—dimensional QW one needs a walker that can
walk in two orthogonal directions, a plane, and a four—state qudit. Here we
propose an implementation of this process that makes use of classical resources
only, following the same spirit as in [28, 29]: The four states of the coin will
correspond to four different spatial paths that the light field can follow (what,
in the notation of [29], borrowed from [36], corresponds to a four—state position
cebit), and the walker role will be played by the field frequency, again as in
[28, 29], that can be increased or decreased in the two orthogonal directions
corresponding to two orthogonal polarization states of the light field, say x and
y.

In Fig. 1 a schematic of the first step of the QW is schetched. In Fig. 1(a)
the four parallel light beams, which propagate along the z—axis and are linearly
polarized at m/4 with respect to the x—axis, first cross an array of devices that
perform the conditional displacement, Eqs. (B)—@): The frequency of the x—
polarized (y—polarized) light is increased or decreased in beams marked with r or



I (u or d), respectively. Each of these devices can consist, e.g., of a polarization
beam-—splitter (that separates the two—polarization components of the incident
beam, the frequency of one of which is suitably increased or decreased by means
of an electrooptic modulator), plus two mirrors and a second polarization beam—
splitter for recombining the two polarization components back into a single
beam after the frequency displacement. After the implementation of D, the
four beams cross a second device in which the Cy operation is implemented.
Let us see how this operation can be done.

In Fig. 2, a schematic of the device performing Cy is shown. The four
incoming beams suffer five transformations when crossing the Cy device. First,
some phase is added to each of the fields, let us call this operation 13'1, which is
represented by the operator

e 0 0

(9)

with j = 1. After Fy, beams r and [ (and, separately, beams v and d) are mixed
in a beam splitter, let us call this operation S7, which in matrix form reads

cosfqi1  isinfq; 0 0
5 | isinfi1 cosfiy 0 0
Sl - 0 0 COS 912 isin 912 (10)
0 0 7 sin 912 COS 912

Then, the third step is similar to the first one, i.e., the phase of the four beams
are increased again. This is represented by the matrix Eq. @) with j = 2.
In the fourth step, similar to the second one, beams r and u (and, separately,
beams [ and d) are mixed in a beam splitter, let us call this operation Sy. This
is represented by

cos 091 0 1sin fg; 0
5 7 8in o 0 cos B2 0
52 o 0 COS 922 0 7 sin 922 ’ (11)
0 75in 099 0 cos 92

The final step is a new dephasing of the beams, represented by Eq. (@) with
j = 3. The global effect of these five operations is given by

Ci=Fy- S5 Fy-Si - Fi, (12)

whose matrix elements can be writen as

ia11 ialg ia13 ia14
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with s;; = sinf;; and ¢;; = cos6;;. The phase factors appearing in ([[3) are
related with the phase factors in (@) through

Q43

P11+ Po1 + P31,
P13 + Pog + P31,
P11+ Po1 + P39,
P13+ Pa3 + P39,
P11+ Pgp + P33,
P13 + Py + P33,
P11+ oz + P34,
P13+ oy + P34,

Q12 = P19 + Pg1 + P31, (14)
Q14 = G1q + Pog + P31, (15)
Q22 = Q13+ Po1 + P2, (16)
Q24 = P14 + Pa3 + P32, (17)
Qg2 = P13 + Pop + P33, (18)
ags = Q1g + Poy + P33, (19)
Qa2 = Q13 + Pog + P34, (20)
Qag = Grq + oy + P34, (21)

Then, the operations performed for constructing C provide a class of possible

transformations, and depending on the values of parameters 6;; (4,5 = 1,2) and
¢,;, through Egs. &), different transformations are obtained. For example,

the Grover coin Cig, Eq.(@), is obtained by taking

011 =012 = 091 = Oo0 = /4, (22)
for the beam splitters, and
o1 = 27
12 = 14 =031 = P34 =0,
P13 = —0g = —090 = P3p = P33 = g’
3 = oy =, (23)

for the phase filters. With respect to the DFT coin, Eq. (@), it is a little bit
more complicated: By taking again ([Z2) for the beam splitters and

P11 = P13 = Pg = Pz = P9y =0,
b1 = G4 =—09 = P31 = P33 = —g,
P32 = ¢34 =T, (24)
for the phase filters one obtains
1 1 1 1
éz/l,DFT =3 1 _11 _Z-l :1 ; (25)
1 -1 — 4

which is very similar to Eq. @). In fact, the DFT matrix is obtained from Eq.
&) by making

Caprr=A- CAZI,DFT CATY (26)



with
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Notice that operator A interchanges indexes 2 and 3, what physicaly means that
the light beams [ and u must be permuted at the entrance and at the exit of
the scheme in Fig. 1, what can be done by means of a Kepler telescope.

Up to this point we have seen that a single step of the QW in two dimensions
can be performed by the device represented in Fig. 1. In order to perform n
steps, we only need to reinject the output of the device at its entrance. This
is readily achieved by using optical cavities (in Fig. 3 we show a scheme of
the complete setup). In the device, the initial condition is chosen by fixing the
phases and intensities of the four incident beams, and at the cavity output, the
frequency of the emerging field performs the two—dimensional QW. Of course the
output field spectrum must be analyzed, with polarizers and frequency analizers,
in order to extract the two—dimensional QW: After passing a linear polarizer
set to 0° (90°), from the spectrum of the polarized field one obtains P (x,0;n)
(P (0,y;n)), which suitably combined provide P (x,y;n).

Let us note that the use of optical cavities imposses some restrictions (see [29]
for a more detailed discussion on these) as, e.g., the intracavity field frequencies
must resonate with the cavity modes, unless it be a pulse with a duration shorter
than the cavity roundtrip time. Also one must take care that the optical paths
of the different beams be equal and that the polarization of the light field does
not suffer variations along the roundtrip (what prevents the use of optical fiber
cavities). But these technicalities can be readily solved.

Finally it is worth commenting that the device we are proposing here can
also implement the QW on the line with two coins, as recently proposed in
Ref. [16]. For that purpose, we only need to not distinguish between the two
polarization states of the light, i.e., the walk has to be performed on a unique
dimension, namely, the frequency of the field.

4 Conclusion

We have proposed an experimental setup for the implementation of the two—
dimensional QW. Our device consists of classical resources only and has the ad-
vantage that the unitary transformation performed in it is tunable in the sense
that by modifying the parameters of the system, different unitary transforma-
tions can be easily reproduced. The device we are proposing can be generalized
to implement the QW on the circle in either one or the two dimensions by fol-
lowing the same technical solutions already proposed for the one-dimensional
QW 291

The fact that the two—dimensional QW can be implemented by only classical
means suggests, as it was the case for the one-dimensional QW [28, [29], that
it is a classical process in which nonlocal entanglement plays no role. Recently



[32] this conclussion has been discussed and we refer the reader to Ref. [32)
for more details, as we are not going to discuss this here. Nevertheless, let us
emphasize that in higher dimensional QWs, e.g., the three-dimensional one,
quantum entanglement manifests in the amount of classical resources needed
for the implementation, as the implementation of the three necessary qubits
requires 8 light beams (in general, n qubits would require 2™ light beams [36]).
In this sense, the two-dimensional QW is the higher dimensional one that can
be implemented classically without a sensible difference in the resources needed
as compared with a quantum implementation.
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Tecnologia and European Union FEDER, Project BFM2002-04369-C04-01. We
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Figure Captions

Fig.1. Schematic of the device performing a single step of the two—dimensional
QW. In the boxes marked with +w,(,) and —wg(y), the frequency of the x (y)
polarization component of the field in increased or decreased by an amount
Wz(y)- In the box marked with 6'4, a unitary transformation of the incoming
vector (r,1,u,d)” is performed (see Fig. 2 for details).

Fig.2. Schematic of the device performing the unitary transformation Cy.
The boxes marked with ¢,; are dephasing elements that increase the field phase
in ¢;;. The rounded crossings indicate the presence of a beam-splitter.

Fig.3. Schematic of the optical cavity propopsed for implementing the two—
dimensional QW. The four optical paths are marked with a different type of
line for gguiding the eye. The black (grey) rectangles correspond to perfectly
(patially) reflecting mirrors.
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