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Abstract

Quantum memory devices and scalable quantum computers are important objectives

of current research efforts. Quantum computers promise to solve certain problems

which are intractable on classical computers and may provide insight into unanswered

questions in computational theory. Quantum memory would provide coherent stor-

age of a ‘qubit’ and could be used in conjunction with a quantum computer or in a

quantum communication system. Both systems require a way of preparing qubits in a

known state, a mechanism for measuring their states and addressing capability. Nu-

clear spins within a solid-state system have been proposed as one means for realizing

a quantum computer. The preparation of nuclear spins in a known state and qubit

readout remain a formidable challenge. Quantum dots provide a means of polarizing

and measuring nuclear spins. We have observed the energy level shifts due to the

nuclear spins in InAs quantum dots and we have measured the timescale for nuclear

polarization to develop.

Quantum dots are nano-scale regions of a small band-gap semiconductor embed-

ded in a larger band-gap semiconductor which can trap a single electron-hole pair or

exciton. The energy levels for the exciton are quantized and are affected by many pa-

rameters including hyperfine interactions with the nuclei from the lattice. There are

between 104 and 105 nuclei within the dot and it is possible through optical pumping

to align the nuclear spins in one direction. We can also use the interaction of the

nuclear spins with the exciton to determine the average nuclear spin direction. Future

work in this area may ultimately lead to useful applications for nuclear spins in the

area of quantum information processing devices.

In this thesis I will present results demonstrating nuclear polarization in InAs
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quantum dots. In addition, I will present background material and experimental

details with the basic goal that a reader of this thesis could reproduce the results we

have obtained. There is also a theoretical discussion in which I present a model for the

nuclear polarization process and compare the predicted timescales to the measured

results. I will also discuss some work I carried out using sculpted ferromagnets with

the goal of creating large magnetic field gradients. Such devices could be used in

conjunction with quantum dots in order to do atomic plane imaging as discussed in

Chapter 9. Chapter 4 provides a background to the discussion regarding magnetic

field gradient calculations.
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Preface

Quantum Computer

A Beautiful Creation

Spins flip or we flop
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Chapter 1

Introduction

Semiconductor quantum dots have proven useful for studying fundamental science-

related questions of quantum mechanics and were recently shown to be useful for the

generation of non-classical light [3, 4, 5]. Some types of quantum dots have been

used in bio-labeling [6, 7] and are the basis for products offered by companies. Their

continued usefulness to fundamental science and their future applications will likely

grow. In this thesis we focus on two aspects of InAs (indium arsenide) self-assembled

quantum dots: 1) their use as a magnetic field sensor and 2) the optical pumping

of nuclear spins within a quantum dot and their interaction with a trapped electron

spin.

The use of quantum dots as a means of exploring nuclear spin dynamics is of great

interest for possible applications in quantum information processing. For quantum

computing proposals using coupled electron spins in quantum dots the objective is

to polarize all the nuclei within a dot and suppress their decoherence effects on the

electron spin. For proposals using nuclear spins for quantum memory storage or

for quantum computing, the interaction between the electron and the nuclear spins

is a necessity. This chapter briefly reviews the interest in quantum memory and

quantum computing, explores the magnetic field gradient requirements for solid-state

nuclear spin quantum computing, and further motivates the interest in studying a

small ensemble of nuclear spins.

1
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1.1 Quantum Information Processing

The successful demonstration of a scalable quantum computer is the current focus of

numerous research groups. Such a quantum computer could have profound impact on

our understanding of computational theory and may lead to practical applications,

such as faster database searching [8]. We have proposed an all-silicon based quantum

computer based on nuclear spins in a solid state system [9] which we modeled after

the a previous proposal for using nuclear spins in a solid [2]. Both of these proposals

require that we have single nuclear-spin detection, optical pumping of nuclear spins,

and large magnetic field gradients. The generation of large magnetic field gradients

is a challenging engineering problem and a problem that I spent considerable effort

in solving. The results of these efforts are presented in this thesis in Chapters 4 and

7.

Detecting a small number of nuclear spins and preparing them in a known initial

state remains a challenge. For our proposal [9, 10] we rely on Magnetic Resonance

Force Microscopy (MRFM) for nuclear spin detection. Another means of doing direct

optical detection was proposed by our research group [11] and involves the use of

impurity-bound excitons. The focus of my work was the use of semiconductor dots to

probe the nuclear spin dynamics of a solid-state nuclear spin system via optical means.

We performed experiments that demonstrate that we could polarize the nuclear spins

and also measure the spin direction of the ensemble. Quantum dots are not as versatile

a means for nuclear spin detection as MRFM but semiconducting systems can provide

an alternative and more sensitive means of measuring nuclear spins. In addition,

there are other uses for ensembles of nuclear spins besides quantum computing such

as quantum memory [12]. Finally, the physics of the coupled exciton-nuclear spin

system are not fully understood and the prospect of studying decoherence of a small

number of nuclei (∼ 105) are additional motivating factors.

1.1.1 Implementation of Quantum Computers

There are many ideas for how to build a quantum computer and a discussion of all

proposals would be overwhelming. A good overview of quantum computing from a
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theoretical and experimental viewpoint is provided in Ref. [13]. Here we mention

briefly the requirements for a quantum computer and some of the notable proposals

that have seen experimental progress.

Qubit definition Before listing what the requirements are for building a quantum

computer, let me first define a qubit. A qubit is a quantum bit of information which

in a simple mathematical form can be written as

|Ψ〉 = a |0〉+ b |1〉 (1.1)

where |a|2+|b|2 = 1. A standard classical computational bit can only occupy a definite

state such as 0 or 1. The ability of a quantum object to simultaneously occupy 0 and

1 is due to the quantum superposition principle. The actual meaning of the states |0〉
and |1〉 could correspond to the spin state of an quantum-mechanical object such as

electron or nuclear spin. The requirements for some physical object to be a qubit or

not merely superposition but also the ability to create entangled states such as the

two-qubit state |00〉+|11〉√
2

which has no classical analog.

Extensive mathematical formalism has been developed [13] to show how qubits

can be used to carry out useful computation. In fact, the tremendous scientific inter-

est in quantum computers arises from the ability to solve apparently computationally

intractable problems. This advantage arises from a qubit’s ability to be in a superpo-

sition state and from entanglement with other qubits. There is also interest in using

a network of qubits for simulation of a quantum system [14, 15].

Basic Requirements David DiVincenzo formulated 5 criterion [16] necessary for

building a quantum computer:

1. A scalable physical system with well characterized qubits.

2. A universal set of quantum gates.

3. The ability to initialize the sate of qubits to a simple initial condition such as

|00 . . . 0〉
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4. The ability to measure the state of qubits after a computation.

5. Long decoherence times so the system remains stable long enough to carry out

a useful quantum computation.

This thesis focuses on items 3 and 4 but there is discussion in Appendix A regarding

a proposal for one type of solid-state crystal. For a detailed discussion of how the

systems we have proposed exhibits long decoherence times please see [17].

Implementations and Solid-State NMR There are several physical systems

that have been considered as candidates for quantum computers. Among them are

the nuclear spins in solution molecules [18, 19] and crystal lattices [2], cold trapped

ions [20, 21], cavity QED [22, 23], photon gates [24, 25], and solid state devices

including Josephson junctions [26, 27] and quantum dots [28, 29].

Nuclear spins appear to have the longest coherence time of all potential quantum

bits (‘qubits’) in physical systems, since they are well isolated from their surroundings.

Despite this longevity, computational power will be limited by the time needed to

carry out logic operations [16]. Nuclei with spin 1/2 in crystals have been shown to

be a viable system [2]. The regularity of the lattice ensures identical nuclear dipole

coupling throughout the crystal and allows addressing of nuclear spins on the atomic

scale if qubits can be distinguished.

Magnetic Field Gradient Generation A spatially varying magnetic field will

ensure that nuclei at different locations have a unique Zeeman frequency of precession,

given by ω = (gIµN/~)~̂I · ~B(~r), where ~I is the nuclear spin, gI is the gyromagnetic

ratio, µN is the nuclear Bohr magneton, and ~B(~r) is the magnetic field at lattice

position ~r. The separation of different qubit’s frequencies must be larger than the

nearest neighbor nuclear-nuclear dipole coupling.

The Hamiltonian describing the magnetic dipole coupling between two neighboring

nuclei of spin ~I1 and ~I2 separated a distance r is given by

Hnd = And(r)[~I1 · ~I2 − 3(~I1 · r̂)(~I2 · r̂)], (1.2)
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where And(r) = −µ0g
2
Iµ

2
N/4πr

3 is the nuclear dipole coupling constant between two

nuclei. For neighboring nuclei separated by a distance a in a crystal, the coupling

constant, And(a), divided by Plank’s constant is on the order of 100 Hz for phos-

phorous nuclei in Cerium Phosphide (CeP), 5.4 kHz for fluorine nuclei in Calcium

Fluoride (CaF2), and is unlikely to be any larger for most crystalline systems [?]. A

requirement for quantum computation is that the adjacent-nucleus frequency separa-

tion be large compared to the nuclear dipole coupling. A dimensionless measure of

this, which will be denoted as η, is given by the frequency separation divided by the

nuclear-nuclear dipole coupling in rad per second, And/~:

η =
4ω
And/~

=
4πa4|~̂I|
µNµ0gI

d| ~B|
dx

. (1.3)

Here, the gradient is assumed to be along x and constant between two neighboring

qubits.

As a lower limit, η should be larger than unity. For cystalline solids, this requires

a minimum field gradient of more than 0.07 T/µm in CeP and more than 2 T/µm

in CaF2. The focus of Chapter 4 is to demonstrate that magnet designs exist which

provide these demanding field gradients while also satisfying other constrains for

successful implementation of quantum computation.

Optical Pumping of Nuclear Spins An important requirement for a quantum

computer is condition 3 of the DiVincenzo criterion. This requirement means that

we must prepare the nuclear spins in a well-known state. This can be challenging

and in liquid-NMR based quantum computing effective pure states are used [30].

For a solid-state implementation initializing the nuclear spins has the advantage that

we can introduce photo-excited spin-polarized electrons that interact via hyperfine

coupling to the nuclear spins and transfer their nuclear polarization.

Nuclear Spin Detection Another requirement is the ability to readout a par-

ticular nuclear spin state. In a proposal we published [9] we make use of magnetic

resonance force microscopy (MRFM) [31] which is a mechanical means of detecting
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nuclear spins. Some discussion of its scaling limits and operation is provided in Ap-

pendix A. MRFM is an active area of research and much progress has recently been

made [32, 33, 34]. An alternative approach for nuclear-spin detection is to use direct

optical detection of impurity-bound excitons in a semiconductor [11] and there has

been experimental progress in single nuclear-spin detection in other systems [35].

1.2 Quantum Memory

The ability to store a qubit for an extended period of time is also an important need for

quantum information processing devices. For instance, long-lived quantum memory

is necessary for some quantum computers. In addition, quantum communication

could use quantum repeaters to extend the reach of quantum cryptographic systems

[36]. Our research effort has focused on the use of nuclei as qubits and our original

intention was to create a quantum computer from a network of coupled nuclear spins

in a solid. However, recent work [12] has motivated the idea of using the collective

excitations of nuclear spins within a dot to create a long-lived memory device for a

quantum state.

1.3 Fundamental Physics

Beyond the possible applications that could arise from devices in which we can exert

control at the quantum level there is motivation for this line of research based on

fundamental science alone. This includes exploring fundamental questions of quan-

tum mechanics as well as the possibility of observing novel phenomenon like phase

transitions. In addition, the behavior of electrons and holes within semiconductor

quantum dots and their interaction with nuclear spins are not fully understood and

in and of itself it is an interesting research area. One very active area of research is

work towards a single quantum dot laser and recently the use of quantum dots for

doing cavity quantum electrodynamics (CQED) [37].
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1.3.1 Decoherence

How a microscopic system which is governed by quantum mechanics behaves as it

interacts with a macroscopic system described by classical systems is of tremendous

interest. Decoherence of a coupled nuclear spin system has been studied at the macro-

scopic level extensively [17, 38]. This typically involves on the order of 1022 nuclear

spins and 1 cm3 samples. Within a semiconductor dot there are typically about 104

to 105 nuclear spins present. Decoherence in an ensemble of nuclear spins at the

boundary between a macroscopic system and microscopic (the mesoscopic regime) is

an interesting area. The vision for these sorts of experiments is to perform pulsed

NMR experiment and use the optical output from the quantum dot to monitor the

nuclear spin dynamics of the system.

1.3.2 Nuclear Magnetic Ordering

One example of particular interest is ferromagnetic order with a coupled nuclear

spin system. This is an example of a phase transition and occurs routinely with

ferromagnets such as iron, where the electrons spins in the outer orbitals become

aligned.

Nuclear magnetic order has been observed but only using difficult experimental

techniques involving ultra-low temperature equipment, ultra-high magnetic fields, and

adiabatic demagnetization [39]. If sufficiently large nuclear polarization were reached

within a semiconductor quantum dot then possibly the dynamics that govern this

type of phase transition could manifest itself.

An important concept for considering nuclear magnetic ordering and for later

discussion in regards to nuclear polarization is the spin temperature of the nuclear

spin system. It is defined as follows

pm

pm−1

= e
γ~H0
kTs (1.4)

where, pi represent the various mI sublevels for the nucler-spin states. For simplicity

consider the case of m = 1/2. If all nuclei are in the ground state or namely p1/2 = 1
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and p−1/2 = 1, then Ts → 0. The concept of nuclear spin temperature has a useful

meaning since spin-1
2

nuclei are decoupled from the phonons that define the actual

temperature of the lattice. If we can introduce a nuclear polarization pm � pm−1

through some means (e.g. optical pumping), then the low spin temperature can in-

duce phase transitions among the nuclear spins. For nuclear spins with I > 1/2,

the interaction between the with phonons increases because the nuclear quadrupo-

lar moment interacts with fluctuating electric field gradients induced by phonons.

Nonetheless nuclear magnetic order and other nuclear cooperative phenomena have

been observed in nuclear spin I > 1/2 as well [39]. At a microscopic level if the dipolar

interaction among the nuclear spins is larger than the comparable energy associated

with the nuclear spin temperature then this dipolar interaction can drive effects like

ferromagnetic ordering. Thus, the spin temperature needs to be compared the dipolar

interaction strength within a given crystal.

1.3.3 Physical Processes within semiconductor quantum dots

The mechanisms that govern hole and electron dynamics and their interactions with

photons, phonons and nuclei is not fully understood. Exploring these phenomenon to

fullest extent possible is not only desirable but may lead to a fuller understanding that

can be extended to areas outside the perceived scope of its relevancy. Semiconductor

quantum dots are a relatively new tool for exploring quantum phenomenon the rich

physics surrounding them are likely to provide interesting research and hopefully

useful devices.



Chapter 2

Physics of Quantum Dots

A quantum dot is the general term ascribed to a small semiconductor region that can

trap a few electrons and holes. The dimensions of quantum dots can vary between just

a few nanometers and a few microns and it can be defined artificially with electrodes

or through a growth technique such as self-assembly. The focus of this thesis is self-

assembled InAs semiconductor quantum dots whose growth is discussed in Section

6.1.1.

The term ‘quantum’ in quantum dot arises from the discrete energy levels that

electrons and holes can occupy. The discretization can arise from the Coulombic

interaction among the small number of electrons and holes within the dot or from the

physical confinement of these particles in a small space. The Coulombic interaction

varies as 1/r and dominates for larger dots while the quantum confinement varies as

a 1/r2 and dominates for smaller dots, such as the ones considered in this thesis.

There are many effects to consider which effect the energy state of bound exciton

within a dot. An overview of the energy perturbations on an quantum dot-bound

exciton is shown in Figure 2.1. Each of these effects is discussed below and the

associated parameters are defined.

9
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Figure 2.1: This figure shows the various effects on the fine structure of the excitons
energy levels. The exciton itself is created by exciting an electron from the valence
band into the condunction band. This energy difference, or the bandgap, is 1.52eV
for GaAs and between 1.3 and 1.44eV for InAs. The first effect diagrammed is the
quantum confinement of a particle in a box. Then, the first correction is electostatic
attraction between the electron and hole which reduces the energy of the lowest
occupied excitonic level by ∼10-20 meV. An exchange interaction, δ0 ∼ 100µev, splits
the excitonic levels into bright and dark excitons. In addition, due to dot asymmetry,
these states split further. Finally, the application of magnetic field further moves the
levels. Interaction between the trapped electron spin and the nuclear spin can be
considered a manifestation of magnetic field, but in the diagram here it is given the
label of hyperfine coupling.
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2.1 Quantum Confinement & Envelope Wavefunc-

tion

To a first approximation we consider the quantum dot to be a an attractive potential

where an exciton (or electron-hole pair) can become localized. We can then solve

either a particle in a box or a parabolic potential from which discrete energy levels

arise. Both approaches have been used to describe the energy levels within a quan-

tum dot. The actual envelope wavefunction can be calculated more precisely if the

exact structure of the quantum dot is known [40, 41, 42, 43]. For a single parti-

cle (electron or hole) in a semiconductor the wavefunction is not just the envelope

wavefunction which gives the distribution of where the electron is localized but also

includes a periodic component u(~r), where ei~k·~ru(~r) is a Bloch wavefunction. The

overall wavefunction of a particle with ~k = 0 is given by

ψ(~r) = Ψ(~r)u(~r) (2.1)

Envelope Wavefunction For simplicity we will follow the convention of previous

work [44, 3] where we assume the dots are bound by a parabolic potential in two

dimensions (x and y) and an infinite square-well potential in the third dimension (z).

In this case the potential is

V (~r) =

1
2
m∗ω0(x

2 + y2) |z| < L/2,

∞ |z| > L/2,
(2.2)

where the height of the dot is L and ω0 is the energy-level spacing between the

different spatial states. Thus, following elementary quantum mechanics calculations

for parabolic and square-well potentials we can write the energy states as

E = (nx + ny + 1)~ω0 +

(
π2~2

2m∗L2

)
n2

z (2.3)

Since L is very small (∼ 5nm) it is often taken that only the state nz = 1 is bound.

Thus ω0 is the spacing between levels and is found to be about 30-80 meV for our
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InAs self-assembled dots. The envelope wavefunction is then

Ψ(r) = Hnx(x)Hny(y)e
− 1

2
m∗ω0

~ (x2+y2) cos
πz

L
(2.4)

where Hn are Hermite polynomials.

Valence bands The atomic orbital function, u(~r), of the electrons in the conduction

band have s-like symmetry and so we only have to consider this single conduction

band. However, the valence band, which contains the holes, includes atomic orbitals

that can be s-like and p-like. The bands are called the heavy, light, and split-off bands

which in principle can mix. Valence band theory is discussed in detail in [45]. For

quantum dots, and in particular InAs quantum dots, strain is present which separates

the light-hole band from the heavy-hole band by at least several tens of meV. Thus,

it is often neglected in the analysis. The split-off band, which arises from spin-orbit

coupling is separated from the other bands even in bulk unstrained semiconductors

and can be neglected in the analysis of the quantum dot energy levels.

2.2 Coulombic Interaction

Up until now we considered the exciton a single particle trapped in a 3-dimensional

square potential or 3-dimensional harmonic potential which are solvable. Of course

the exact solution for any particular dot depends on the distribution of atoms and

shape of the quantum dot. Once this is solved the first correction to make is the

Coulombic interaction between the constituent parts: namely the Coulombic attrac-

tion between the electron and hole. This leads to reduction in the energy levels since

the Coulombic interaction, VC , is negative due to the opposite sign of the charges on

the electron and hole. In general the Coulomb potential between two charge Z1e and

Z2e separated a distance r is given by:

V (r) = −Z1Z2e
2

εr
(2.5)
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where ε is the dielectric constant. With Z1 = 1 and Z1 = 1 we can write the direct

term of the Coulombic interaction between a hole and electron as

Hdir =

∫
d3~r

∫
d3~s|ψe(~r)|2

−e2

ε|~r − ~s|
|ψh(~2)|2 (2.6)

2.2.1 Exchange Splitting

An exchange splitting can arise between the energy levels of the excitonic state due to

the antisymmetrization requirement for fermionic particles. This exchange splitting

arises from the exchange part of the Coulomb interaction. Consider the case of an

electron and hole with wavefunctions given by ψe(x) and ψh(x). The exchange portion

of the interaction is given by

Hex =

∫
d3~r

∫
d3~sψ∗e(~r)ψh(~r)

e2

ε|~r − ~s|
|ψe(~r)ψ

∗
h(~r) (2.7)

2.3 Charge States

Thus far we have only considered a trapped exciton in the dot. In principle we could

have multiple particles present including excess charge states (so-called trion states),

and multi-exciton complexes such as bi-exciton states. This includes quantum dots

which can absorb include an excess electron (X−) and those that include an excess

hole X+. The neutral dot is denoted X0 and the bi-exciton is labeled XX. There can

also exist The negative trion state X− is of great interest since they are candidates

for quantum information devices [46, 47]. The schematic shown in Fig. 8.25 shows

the possible charge states that can be present in quantum dot systems.

To add a charge to the neutral dot we can estimate the extra “charging energy”

from first order perturbation theory. The electrostatic repulsion leads to about 10-20

meV per charge.

Using a Schottky diode it is possible to introduce a definite charge state into the

dot and the effect of the charge state on the electronic and nuclear spin polarizations

has been observed [48] and it has been reported that the charge state for GaAs

quantum dots is separated by about 4-6 meV. Santori has provided evidence for these
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Figure 2.2: This diagram shows the different particle-complexes that can exist in the
quantum dot. Included are the single exciton, X0 which traps a single electron and
hole. The X− and the X+ correspond to single charge states which include an excess
electron and hole respectively. In addition, the neutral biexciton state, XX0 can
occur under large pump powers.
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Figure 2.3: This schematic shows the band structure of the quantum dot, wetting
layer and the surrounding GaAs semiconductor and pure InAs [1]. The energies shown
are the numbers associated with low temperature operation near 4 K. Typically, the
emitted light from radiative exciton recombination correspons to between 1.3 and
1.44 eV.

charge states simultaneously existing in nominally un-doped semiconductor without

at external electric field present by doing correlation measurement studies with a

Streak camera [3].

2.4 Zeeman Hamiltonian

When a magnetic moment is placed in an external magnetic field B0 the magnetic

moment of the spin can interact with magnetic field via the Zeeman hamiltonian

H = −~µ · ~B. In the case of excitons in a quantum both the electron and hole
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can interact with the external magnetic field. For the case of a free electron the

hamiltonian is given by H = −g0µBŜ · ~B, where g0 = −2 is the free electron g-

factor.1 For the remainder of this thesis we will follow the convention of Bayer et

al ?? where the free electron g-factor is taken to be positive. Or alternatively, the

Hamiltonian is defined as H = +~µ · ~B. Fig. 2.4 graphically depicts the convention we

use for defining the g-factor.

The g-factor depends on the band structure of the semiconductor and and for the

hole is related to the Luttinger-Kohn parameters κ and q. The Zeeman Hamiltonian

is given as follows:

HZeeman( ~B) = −µB

∑
i

(
ge,iŜe,i − 2κiĴh,i − 2qiĴ

3
h,i

)
Bi (2.8)

where Ŝe is the spin operator and Ĵ is the hole spin operator. The following table

defines the exciton states that will be used throughout this thesis:

Exciton State Electron spin ⊗ Hole spin

|+1〉 |−1
2
〉
e
⊗ |+3

2
〉
h

|−1〉 |+1
2
〉
e
⊗ |−3

2
〉
h

|+2〉 |+1
2
〉
e
⊗ |+3

2
〉
h

|−2〉 |−1
2
〉
e
⊗ |−3

2
〉
h

2.4.1 Faraday Geometry

In the case of the Faraday geometry we assume that Bx = By = 0 and that Bz 6= 0.

Since J2
h,z = 9

4
, we can simplify the Hamiltonian in the z-direction as:

HFaraday
Zeeman (Bz) = −µB

(
ge,zSe,z − (2κz +

9

2
qz)Jh,z

)
Bz (2.9)

= −µB

(
ge,zSe,z −

gh,z

3
Jh,z

)
Bz (2.10)

1This is excluding quantum electrodynamic corrections.
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Figure 2.4: This diagram depicts the convention for the g-factor and shows which
direction the energy levels shift for ge < 0 and gh < 0. Also, here the exciton states
|+1〉 and |−1〉 are shown. For example, the state |+1〉 corresponds to a transition
between a conduction state with angular momentum (all from spins) of −1/2 and a
valence state with total angular of −3/2. In order to conserve angular momentum a
photon (σ+) with angular momentum of +1 is emitted. The exciton state can also be
described by the state of the electron and the hole, where the hole has opposite the
angular momentum to what the electron has when it relaxes to the valence band.
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where gh,z = 6κz + 27
2
qz. We can write the Hamiltonian in matrix form where the

rows correspond to {|+1〉, |−1〉,|+2〉,|−2〉}. We arrive at:

HZeeman =
µBBz

2


+(ge,z + gh,z) 0 0 0

0 −(ge,z + gh,z) 0 0

0 0 −(ge,z − gh,z) 0

0 0 0 +(ge,z − gh,z)


(2.11)

This diagonal matrix immediately gives us the associated eigenenergies. Typically,

the g-factor is negative in this convention, so the |−1〉 is the lowest energy bright

state. The eigenvectors and associated energies are listed below:

Eigenenergy Eigenstate

1
2
δ0 + 1

2

√
δ2
1 + β2

1 N1

[
|+1〉+

(
β1

δ1
+

√
1 +

β2
1

δ2
1

)
|−1〉

]
1
2
δ0 − 1

2

√
δ2
1 + β2

1 N2

[
|+1〉+

(
β1

δ1
+

√
1 +

β2
1

δ2
1

)
|−1〉

]
−1

2
δ0 + 1

2

√
δ2
1 + β2

2 N3

[
|+2〉+

(
β1

δ1
+

√
1 +

β2
2

δ2
1

)
|−2〉

]
−1

2
δ0 − 1

2

√
δ2
1 + β2

2 N4

[
|+2〉+

(
β1

δ1
+

√
1 +

β2
2

δ2
1

)
|−2〉

]

where β1 = µB(ge,z + gh,z)Bz and −β2 = µB(ge,z − gh,z)Bz

2.4.2 Voigt Geometry

In the case of the Voigt geometry we have a Bz = 0 and Bx 6= 0 and/or By 6= 0.

Furthermore, if we assume that κx >> qx then we can simplify as follows (assume

By = 0):

HFaraday
Zeeman (Bx) = −µB (ge,xSe,x − 2κxJh,x)Bx (2.12)

= −µB

(
ge,x

Se,x+ + Se,x−

2
− 2κh,x

Jh,x+ + Jh,x−

2

)
Bx (2.13)
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Figure 2.5: This plot shows the Zeeman levels in the Faraday configuration, including
the bright and dark states for ge,z = −1.5 and gh,z = −0.5.
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The Hamiltonian has off-diagonal terms which lead to mixing of the bright and dark

states.

HZeeman =
µBBz

2


0 0 ge,x gh,x

0 0 gh,x ge,x

ge,x gh,x 0 0

gh,x ge,x 0 0

 (2.14)

Eigenenergy Eigenstate

1
4

[
+ (δ1 + δ2) +

√
(2δ0 + δ1 − δ2)

2 + 4(ge,x − gh,x)2µ2
BB

2
x

]
N1

[
(|+1〉 − |−1〉) + α1 (|+2〉 − |−2〉)

1
4

[
− (δ1 + δ2) +

√
(2δ0 − δ1 + δ2)

2 + 4(ge,x + gh,x)2µ2
BB

2
x

]
N2

[
(|+1〉+ |−1〉) + α2 (|+2〉+ |−2〉)

−1
4

[
− (δ1 + δ2) +

√
(2δ0 + δ1 − δ2)

2 + 4(ge,x − gh,x)2µ2
BB

2
x

]
N3

[
(|+2〉 − |−2〉) + α3 (|+1〉 − |−1〉)

−1
4

[
+ (δ1 + δ2) +

√
(2δ0 − δ1 + δ2)

2 + 4(ge,x + gh,x)2µ2
BB

2
x

]
N4

[
(|+2〉+ |−2〉) + α4 (|+1〉+ |−1〉)

where β1 = µB(ge,z + gh,z)Bz and −β2 = µB(ge,z − gh,z)Bz

2.5 Hyperfine Structure

2.5.1 Diamagnetic Shift

The average position of the Zeeman-split peak pair varies quadratically with increas-

ing external magnetic field. In addition, it tends to shorter wavelength or higher

energy and this effect can be explained by the quantum theory of diagmagnetism. As

will be shown in Sec. 7.3 we have observed this quadratic dependence. For now, I

would like to present the theory so that later when this phenomenon is presented the

reader is familiar with the concept. In the results section, I will discuss our results,

the diamagnetic coefficient and the interpretation of this result. In general when a

magnetic field is present it is not the magnetic field which enters into the Hamiltonian

but the vector potential. The general Hamiltonian is given by:

H ′ =
ie~
2mc

(~∇ · ~A+ ~A · ~∇) +
e2

2mc2
A2
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With ~B = Bẑ the vector potential can be written as

~A = −1

2
yBx̂+

1

2
xBŷ + 0ẑ

This leads to the following Hamiltonian:

H ′ =
ie~B
2mc

(x
∂

∂y
− y

∂

∂x
) +

e2B2

8mc2
(x2 + y2)

The associated energy is given by:

E ′ =
e2B2

12mc2
〈r2〉

This is equivalent to writing the magnetic moment as

µ = −∂E
′

∂B
= −e

2〈r2〉
6mc2

B

2.5.2 Bloch Wavefunction

As the reader may recall from section 2.1 the solution to the energy eigenstates is

composed of both an envelope wavefunction and a periodic Bloch wavefunction. In

addition, the electron and hole have different Bloch wavefunctions since the electrons

are considered ‘s-like’ while the holes are considered ‘p-like.’ Essentially, this means

that the electrons have a finite probability of being at the site of the nucleus while

the holes have exactly no probability of being at the nucleus. The relative probability

to find an electron at a particular nuclear site depends on the overall envelope wave-

function as well what species of nuclear spins it is. This is because the ionicity affects

the Bloch wavefunction. This quantity can be estimated and is done so in Section

2.5.4.

2.5.3 Overhauser Effect

The interaction of the nuclei located inside a quantum dot with a trapped exciton

arises from the Fermi contact hyperfine interaction between the nuclear spins and the
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trapped electron spin. The coupling between the nuclei and the hole is negligible since

the holes are p-like states and the wavefunction overlap between the holes and the

nuclei is 0. There are a number references which discuss the Overhauser effect and

there is no consistent language so here I chose to follow the conventions in References

[49, 50].

The Fermi contact Hamiltonian is given by

V̂HF =
8π

3

µ0

4π
g0µBγn~Î · Ŝδ(~r) (2.15)

where γn is the gyromagnetic ration and g0 is the free-electron g-factor. (Comment

on why it is the free electron g-factor)

If we used this Hamiltonian and tried to calculate the effect of the nuclear spins on

the energy of an electron we would do so by first calculating the spatial component

〈ψ(~r)| V̂HF |ψ(~r)〉. Note that
∫

R3 δ(~r) = 1 since δ(r, θ, φ) = δ(r)
4πr2 and in spherical

coordinates
∫

R3 =
∫ π

−π

∫ 2π

0

∫ ∞
−∞ r2 sin(φ)dθdφdr. This yields the following hyperfine

interaction which depends only the spin interaction between the electron (Ŝ) and

nucleus (Î):

V̂
′

HF =
2

3
µ0g0µBγn~Î · Ŝ|ψ(0)|2 (2.16)

The total electron wavefunction is given by the product of an envelope wavefunc-

tion and a periodic Bloch wavefunction so that ψ(~r) = Ψ(~r)u
′
(~r) and for the wavefunc-

tion to be normalized we have
∫

QDOT
|ψ(~r)|2 = 1. As in Paget, we have use this renor-

malized wavefunction u
′
(~r). The normalization condition is

∫
QDOT

|Ψ(~r)|2d3~r = Ω,

where Ω is the volume of the unit cell. Also,
∫

QDOT
|u′(~r)|2d3~r = 1/Ω. Thus, the

relationship between the standard Bloch wavefunction, µ0(~r) and µ
′
(~r) is given as

follows:

µ
′
(~r) = µ0(~r)

√
V

Ω

The standard Bloch wavefunction, µ0(~r), is normalized such that
∫

QDOT
|µ0(~r)|2d3~r =

1/V .

If we want to calculate what is the effect of all the nuclear spins on the electron

we have to sum the single nucleus-electron hyperfine interaction, V̂
′
HF, over all the
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nuclei within the dot.

ĤHF =
∑

i

V̂
′

HF (2.17)

=
∑

i

2

3
µ0g0µBγ

i
n~|Ψ(~ri)|2|u

′
(~ri)|2Îi · Ŝ (2.18)

All of the re-normalized Bloch wavefunction evaluations at ~ri are identical for similar

nuclei. We can define dj = |u′(~rj)|2 and introduce ai to be

ai =
2

3
µ0g0µBγ

i
n~di (2.19)

If we introduce in Eq. 2.17 a sum over all different nuclear species (including isotopes)

α, and sum over all nuclei of that species we can write:

ĤHF =
∑

i

ai|Ψ(~ri)|2Îi · Ŝ (2.20)

=
∑

i

ciÎi · Ŝ (2.21)

=
∑

α

nα∑
j=1

aj Îj · Ŝ|Ψ(~rj)|2 (2.22)

(2.23)

To proceed we note that the envelope wavefunction, Ψ(~r), does not vary much over

any single unit cell, Ω. We can write 2,∫
Ωj

|Ψ(r̂)|2d3~r ≈ |Ψ(~rj)|2Ω (2.24)

2A more rigorous argument can be made using a Fourier transform of delta functions
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If we sum both sides over all nuclei i we arrive at

∑
i

∫
Ωi

|Ψ(~r)|2d3~r︸ ︷︷ ︸ ≈
∑

i

|Ψ(~ri)|2Ω (2.25)

∫
QDOT

|Ψ(~r)|2d3~r (2.26)

This last step is simply that we sum up integrals over each unit cell which is equivalent

to integrating over the entire quantum dot. So we finally arrive at

∑
i

|Ψ(~ri)|2 =
1

Ω

∫
QDOT

|Ψ(~r)|2d3~r (2.27)

= 1 (2.28)

The next step we is to use the mean-field approximation where we sum over all

the nuclei and insert Eqn. [?]. This yields an operator which only acts on the electron

spin in the dot.

〈ĤHF〉 =
∑

α

Aα〈Iz,α〉Ŝz (2.29)

= [(A113Inξ113In + A115Inξ115In)〈Iz,In〉+ A75As〈Iz,As〉] Ŝ (2.30)

Here we have made the substitution

Aα =
nα∑
j=1

aj|Ψ(~r)i|2

=
nα∑
j=1

ajci

Also, ξ is the relative abundance of a particular isotope. The actual values are shown

in Table 2.1. Instead of writing the Hamiltonian of the system we can also describe

the interaction between the nuclei and the electron spin as an external magnetic field
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Table 2.1: Values for gyromagnetic ratio and isotope abundance
Element Isotope Spin Natural

Abun-
dance
[%]

Gyro-
magnetic
Ratio (γn)
[107rad

T s
]

Quadrupole
mo-
ment (Q)
[mBarn]

Gallium
69Ga 3/2 60.108 6.4389 171
71Ga 3/2 39.892 8.1812 107

Arsenic 75As 3/2 100 4.5961 314

Indium
113In 9/2 4.3 5.8845 799
115In 9/2 95.7 5.8971 810

given by

~BN =
2µ0

3

g0

ge

~
∑

i

γiIi|ψ(ri)|2 (2.31)

where the sum over i goes over all the nuclei in the dot and the g-factor ge is the

effective g-factor of the electron in the dot (typically ≈ −2). We can relate our

expression in Eq. 2.29 for the Hamiltonian as:

〈ĤHF〉 =
∑

α

Aα〈Iz,α〉Ŝ (2.32)

= µBge,zŜzBN,z (2.33)

To simplify, suppose we write 〈ĤHF 〉 = βŜz. In addition to the external magnetic

field the exciton (and specifically the electron) see an internal magnetic field created by

the nuclei. The nuclei will become aligned or anti-aligned with the external magnetic

field depending on the direction of the electron spin introduced which is controlled

by the laser pump polarization (see Section 5.4.5). Suppose the observed Zeeman

energy splitting under σ+illumination is give by ∆σ+ and under σ−pump polarization

the energy splitting is given by ∆σ− , then we can write

∆ = |∆σ+ −∆σ−| (2.34)

With perfect polarization the observed value for ∆ would be 2β∗, where β∗ =
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AIn9/2 + AAs3/2 but in the regime far from perfect polarization more care must be

taken to determine the polarization. We can think of the nuclear polarization process

as one where nuclei are polarized at some rate while depolarized (either through

relaxation or diffusion) at another rate. These two competing processes lead to a

steady-state equilibrium. The arsenic nuclei can only undergo at most 3 flips towards

a polarized state since they have spin 3/2 while the indium nuclei can flip as many

as 9 times since they are spin 9/2. This assumes we start from the anti-aligned state

and move towards the aligned state.

In this sense the polarization rate is reduced as the arsenic nuclei become more

polarized because the electron wavefunction still is distributed among the arsenic

and indium nuclei. Once the arsenic nuclei have reached 100% polarization we have

to wait longer for nuclear spin flips to occur as there is a reduced probability of a

nuclear spin flip per unit time since only the indium will contribute to the polarization

increase, and the electron wavefunction still is spread over all the nuclei.

If we are indeed in a regime where the nuclear polarization is far from saturating

the arsenic polarization we can assume that the average spin of the nuclei is the same

for both indium and arsenic. Then we have Aeff = AIn + AAs which is 102µeV. The

average nuclear spin is given by 〈I〉 = ∆/2β. Thus, the polarizations for the different

nuclear species will be different. The polarization can be calculated as

P =
∆

2IAeff

(2.35)

where I = 9/2 for Indium or I = 3/2 for arsenic. A summary of the various energies,

equivalent magnetic fields for GaAs and and InAs is shown in Table 2.2. The measured

polarization values will be reported in Section 8.1.3.

Another important point is that the non-equilibrium nuclear polarization induced

by optical pumping (see Chapter 3) should be compared to the thermal polarization
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and statistical polarization. For a system of spin 1/2-particles the thermal polariza-

tion at a temperature T and magnetic field B is given by

Pth =
N↑ −N↓

N↑ +N↓
(2.36)

= tanh
~γN

B
kBT ) (2.37)

For typical nuclei with γB 5 × 107 radT s, the thermal polarization at 2 K and

1 T is ∼ 10−4. This estimate allows us to conclude that the thermal polarization

can be neglected for the temperatures and magnetic fields we operate at. One point

is that both arsenic and indium are not spin 1/2 nuclei so the calculation is more

complicated but for the purposes of this estimation the result we have is sufficient.

If the field is raised up to 10 T and we used a dilution fridge system then this effect

cannot be entirely neglected.

The statistical polarization corresponds to fact that we have a small number of

nuclear spins present and a subset of them may randomly point in one direction which

could give rise to a measurable Overhauser effect. The quantum dot contains between

104 and 105 nuclei and statistically ∼
√
N of the nuclei can point in one direction.

Suppose there are 4 × 104 nuclei, then 2 × 102 would correspond to the number of

nuclei that may be statistically polarized. That is 200 more nuclei may randomly

point up than down or vice-versa. This difference leads to a polarization given by

Pst =
N↑ −N↓

N↑ +N↓
(2.38)

=
2× 102

4× 102
= 5× 10−3 (2.39)

It is interesting to note that the statistical polarization and the thermal polariza-

tion we might expect are comparable and in fact the statistical polarization appears

slightly larger. It turns out that we have observed nuclear polarizations that are be-

tween 2 to 3 order of magnitude larger than these values. However, future research

could include studies of these effects.
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Table 2.2: Values for A, Aeff and β∗ and the equivalent magnetic fields

.

Semiconductor Hyperfine constant Value [µeV] ge,zBN,z [T]

GaAs

AGa 42 0.73
AAs 46 0.80

Aeff = (AGa + AAs) 88 1.53
B∗ = 3

2
(AGa + AAs) 132 2.29

InAs

AIn 56 0.97
AAs 46 0.80

Aeff = AIn + AAs 102 1.77
B∗ = 9

2
AIn + 3

2
AAs 323 5.58

Table 2.3: Ionicities for III-V semiconductors
GaAs 0.31
InAs 0.357
InSb 0.321

2.5.4 Ionicity and Nuclei-Electron Wavefunction Overlap

If we assume that the sharing of electrons in GaAs is the same for InAs given their

similar ionicities then we can estimate the values for ηIn and ηAs. See Ref. [51] for

calculation of the ionicity. In Paget et al [52] a similar argument is made to compare

GaAs to InSb in which an actual measurement has been made for the hyperfine

interaction. The atomic hyperfine interactions are known for In, As, and Ga [53].

Paget et al use a dimension d to describe the hyperfine interaction in a crystal and it

can be related to ηα by:

ηα =
da3

nα

where a is the lattice constant (see Table 2.4 and nα is the number of nuclei of that

type α within the unit cell, Ω.
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Table 2.4: Lattice constants for GaAs and InAs.
GaAs 5.65325 Å

InAs 6.0583 Å

InSb 6.4279 Å

Table 2.5: Wavefunction overlap for various III-V semiconductors
Semiconductor Element η d [cm−3]

GaAs
Ga 2.7× 103 5.8× 1025

As 4.5× 103 9.8× 1025

InSb
In 6.3× 103 9.5× 1025

Sb 10.9× 103 16.4× 1025

InAs
In 5.2× 103 9.35× 1025

As 5.4× 103 9.8× 1025

Using the ratio formula we can write:

dIn in InAs

dGa in GaAs

=
|ψ(0)|2In atom

|ψ(0)|2Ga atom

dAs in InAs

dAs in GaAs

=
|ψ(0)|2As atom

|ψ(0)|2As atom

So this gives us dAs in InAs = dAs in GaAs = 9.8 × 1025cm−3 and dIn in InAs = 10
6.2

5.8 ×
1025cm−3.

2.5.5 g-factor

The g-factor plays an important role in both how the emission peaks shift due to

the Overhauser effect and also in regard to the use of quantum dots as magnetic

field sensors. First, I want to clarify the sign convention that I use for the g-factor

and introduce to the reader why there exists different sign conventions. Secondly, I

want to mention the expected value for the g-factor and the mechanisms that effect

its magnitude. This is of particular importance for understanding the spectra and

the expected Overhauser shifts as well as the use of quantum dots as magnetic field
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sensors.

References [54] and [45] present how the bandgap for In1−xGaxAs depends on

the stochiometry. Namely for a given value of x the bandgap energy is given by as

follows

Eg(Γ) = 0.422 + 0.7x+ 0.4x2 eV (2.40)

It is also worth noting the effective mass depends on the stoichiometry in the following

way:
1

m∗
e(x)

=
x

m∗
e,GaAs

+
1− x

m∗
e,InAs

(2.41)

For a quantum dot the electron and hole wavefunction depends on the size of

the dot and the stoichiometry of the material. The dot growth (discussed in 6.1.1)

occurs at 600 oC which can lead to annealing and a mixing of the In and Ga atoms.

In addition for one study [55] on In0.10Ga0.90As, very large dots had g-factors that

tended toward the bulk GaAs value of -0.4 while the smaller dots had larger negative

g-factors (-4 to -12) which are more like pure InAs. For an infinite square well the

energy of the states is proportional to 1
m∗a2 where a is the size of the well and m∗ is

the effective mass. Thus, with tighter confinement or smaller a the energy is further

increased but also the electron and hole wavefunctions are more tightly bound within

the InAs. It may also be that the smaller dots had a higher indium concentration

and the stoichiometry only reports the MBE growth conditions and not the actual

stoichiometry of any particular quantum dot.
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Figure 2.6: This figure shows the bandgap for In1−xGaxAs and the corresponding
wavelength.



Chapter 3

Nuclear Spin Dynamics

In this chapter we will derive the nuclear polarization timescale and present a model

that explains how the nuclei within InAs quantum dots become polarized. Returning

to Sec. 2.5.3 and rewriting Eq. 2.21 to introduce flip-flop terms we can write:

ĤHF =
∑

i

ciÎi · Ŝ (3.1)

=
∑

i

ci

[
Îi,zŜz +

Îi,+Ŝ− + Ii,−Ŝ+

2

]
(3.2)

The last two terms corresponds to terms of the Hamiltonian where the electron spin

and a single nuclear spin simultaneously flip their spin directions. This process con-

serves angular momentum but does not conserve energy and therefore requires some

assisting process in order to occur.

The basic model for nuclear polarization is based on a fast hole-relaxation time

after which the exciton is trapped in a dark exciton state. Hole-relaxation within

dots has been found in GaAs to be faster than 5ps [56, 57]. Holes have l = 1 angular

momentum and therefore couple well to phonons which at 1.5K are abundant. If the

exciton is pumped into a bright state (i.e. |+1〉 or |−1〉), it quickly relaxes to a dark

state (i.e. |−2〉 or |+2〉) as shown in Figure 8.4. Once in the dark state the exciton

will either return to the bright state from which it came via phonon coupling with

the hole, or it will undergo a spin-flip assisted radiative process whereby a nuclear

32
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spin and electron simultaneously flip and thereby causing the exciton to go into a

new bright state. This process is a second order process and requires a hyperfine

interaction between the electron and a nucleus in the dot.

3.1 Fermi’s Golden Rule

Fermi’s golden rule is an important result from Time-Dependent Perturbation Theory

which provides a means of calculating a transition rate between two states. The

transition rate is a transition probability per unit time and when taken to 2nd order

is [58]:

wi→[f ] =
2π

~
|Vfi +

∑
p

VfpVpi

Ei − Ep
|2ρ(Ef )|Ef'Ei

To summarize we assume that we start in some initial state |i〉 and transition into

one of many possible states |f〉, which we denote by [f ] where Ei ' Ef . Note that a

direct transition between |i〉 and |f〉 may be 0 in which case only the 2nd order terms

are relevant 1. In our case a virtual process is responsible for the nuclear polarization.

The second term can be interpreted as one where the system makes a transition

between the initial state and an intermediate state but not necessarily conserving

energy. Then, the final state transfer occurs and in order to conserve energy the

missing or excess energy is made up through some other means, such as a decrease

or increase in the energy of the emitted photon. For the case of nuclear polarization

we believe it is spin-flip assisted radiative recombination. The dark exciton is quickly

populated and via hyperfine interaction the quantum dot emits a photon.

1In our case the direct process, Vfi, does not conserve energy and so is therefore 0.
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3.2 Nuclear Polarization Rate

We begin by writing out Fermi’s Golden Rule for our case:

1

Te

=
2π

~
∑

i

Pi

∑
p

∣∣〈f | V̂dip |p〉 〈p| V̂HF |i〉
Ei − Ep

∣∣2ρ(Ef )|Ef'Ei
(3.3)

Notice that here we rewrote the rate as 1/Te and we inserted a sum
∑

i over initial

states weighted with probabilities Pi. The perturbations Vfp and Vpi are replaced with

the relevant Hamiltonians; the first takes the state from one of the possible initial

states |i〉 via a hyperfine interaction, V̂HF , to an intermediate where an electron spin in

the exciton and a single nuclear spin flip within the dot; the second term is responsible

for the radiative recombination of the bright exciton and is a electric dipole transition

from a bright exciton to the empty dot state. The energy required for the hyperfine

interaction is compensated for by a change in the emitted photon energy. The initial

states are either

|i〉 = |+2〉 ⊗ |m1,m2, . . . ,mp, . . . ,mN〉

|i〉 = |−2〉 ⊗ |m1,m2, . . . ,mp, . . . ,mN〉

depending on which type of the polarized light we shine on the quantum dots.

The only relevant intermediate states are those by which a hyperfine interaction

gives a non-zero result:

〈p| V̂HF |i〉 = 〈+1| ⊗ 〈m1,m2, . . . ,mp+1, . . . ,mN | cS−I+
p |+2〉 ⊗ |m1,m2, . . . ,mp, . . . ,mN〉

〈p| V̂HF |i〉 = 〈−1| ⊗ 〈m1,m2, . . . ,mp−1, . . . ,mN | cS+I−p |−2〉 ⊗ |m1,m2, . . . ,mp, . . . ,mN〉

The transition that takes us from the intermediate state to the empty dot state

of the quantum dot is a electric dipole transition and we can define M+ and M− as
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M+ = 〈f | V̂dip |p〉

= 〈GS| 〈m1,m2, . . . ,mp+1, . . . ,mN | V̂dip |m1,m2, . . . ,mp+1, . . . ,mN〉 |+1〉

and

M− = 〈f | V̂dip |p〉

= 〈GS| 〈m1,m2, . . . ,mp−1, . . . ,mN | V̂dip |m1,m2, . . . ,mp−1, . . . ,mN〉 |−1〉

An important result from basic quantum mechanics regarding angular momentum

raising or lower operators [59]is

L± |l,m〉 = ~
√
l(l + 1)−m(m± 1) |l,m± 1〉

Then we sum over all possible initial states including the different nuclear spin

species and different possible nuclear spin states of all the nuclei in the dot. Suppose

there are NIn Indium nuclei and NAs Arsenic nuclei and NGa Gallium nuclei.

An important substitution we can make in order to simplify the expression is to

replace the component of the calculation which relates the density of photon states

and the dipolar matrix element connecting one of the bright exciton states to the

ground state. This is achieved by writing:

1

τ+
b

=
2π

~
|M+|2ρ(Eabc)

1

τ−b
=

2π

~
|M−|2ρ(Eabc)

The rate 1/τb is the bright exciton lifetime which from the literature is known to

be ∼ 0.5s (see [3]) and τ+
b = τ−b . Another important point is that the denominator

in Eqn. 3.3 containing the difference in energies between the initial and intermediate
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state, Ei − Ep, can be replaced by δ−0 or δ+
0 .

Next we consider the interaction of the electron spin with In and As separately,

and ascribe a different hyperfine constant Ap for each nuclei. Notice that this site

dependent factor and includes the wavefuntion overlap with a particular nuclear site.

To simplify we also calculate separately the transition rates for pumping into |+1〉
and |−1〉, and here we continue only with an analysis for σ+pumping. P (mp) is the

probability that the nuclei p is in a particular nuclear sublevel.

1

T+
e

=
1

τ+
b δ

2
0

N∑
p=1

P (p)

I1∑
mI=−I1

P (m1)

I2∑
mI=−I2

P (m2)

. . .

IN∑
mI=−IN

P (mN)|ap|2||Ψ(~rp)|4
[
Ip(Ip + 1)−mp(mp + 1)

]
Now we can rewrite our sum to include AIn

p and AAs
p and change the sums to

only sum over the number of nuclei of each type. Also if we assume the infinite

temperature limit then all nuclear sublevels are equally populated and we can replace

P (mIn) = 1/10 and P (mAs) = 1/4 since Indium is a spin 9/2’s and Arsenic is a spin

3/2.

1

T+
e

=
1

τ+
b δ

2
0

(

nIn∑
j=1

|aIn
j |2|Ψ(~rj)|4

35

2
+

+

nAs∑
k=1

|aAs
j |2|Ψ(~rj)|4

5

2
)

The next step in the process to get use a numerical result is to assume a particular

envelope wavefunction for the exciton.

The envelope wavefunction, Ψ(~r) can be written as a Gaussian with width σ as

Ψ(r) =
√

Ω
1

(πσ2)3/4
e−

r2

2σ2 (3.4)

In a similar manner to Section 2.5.3 we can assume that Ψ(~ri) is a smoothly
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varying function and is constant over a single unit cell such that

∑
i

|Ψ(~ri)|4 =
1

Ω

∫
QDOT

|Ψ(~ri)|4d3~r (3.5)

=
Ω2

Ω

1

(πσ2)3
(2πσ2)3/2 (3.6)

=
Ω

σ3
(
2

π
)3/2 (3.7)

Using this envelope wavefunction we arrive at an expression for the nuclear polariza-

tion timescale
1

T+
e

=
1

2

1

τ+
b δ

2
0

Ω

σ3
(
2

π
)3/2

(35

2
|AIn|2 +

5

2
|AAs|2

)
(3.8)

The factor of 1/2 comes from the fact that when we sum over all the nuclei in the dot

we only sum over the Indium for the first term and for Arsenic for the second which

contain exactly 1/2 the number of nuclei each.

Let us explore a different potential to calculate the envelope wavefunction of elec-

tron. Suppose instead we assume a particle in a box. Regardless of the numerical

factors due to the envelope wavefunction we see a clear dependence on δ0. We can in

turn relate this to magnetic field.

3.3 Nuclear Depolarization

Nuclei in a solid-state crystal have long relaxation times at low temperature. However,

in the presence of a laser field the nuclei within the dot see a fluctuating magnetic

field due to the electron spin excited by the laser. The depolarization arises from a

heating effect induced by temporal fluctuations of the hyperfine field of the optically

excited electron. The formalism to calculate the relaxation time is derived in Ladd

thesis.
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3.4 Rate equations

A full analysis of the time evolution of the population of the various states requires

the use of a rate equation model. This model assumes that the rate of change of

the population of a given state is directly proportional to the population of states

that couple to it including possibly itself. This is a linear model and serves as a

reasonable first approximation. To simplify the model we also assume two extremes

for the nuclear polarization; spin-up and spin-down. Thus, the model I used included

10 states:

label state description

n1 nGS,↓ nuclear spin down, electron in ground state

n2 nGS,↑ nuclear spin down, electron in ground state

n3 n|+1〉,↓ nuclear spin down, electron in |+1〉
n4 n|+1〉,↑ nuclear spin down, electron in |+1〉
n5 n|−1〉,↓ nuclear spin down, electron in |−1〉
n6 n|−1〉,↑ nuclear spin down, electron in |−1〉
n7 n|+2〉,↓ nuclear spin down, electron in |+2〉
n8 n|+2〉,↑ nuclear spin down, electron in |+2〉
n9 n|−2〉,↓ nuclear spin down, electron in |−2〉
n10 n|−2〉,↑ nuclear spin down, electron in |−2〉

These states evolve according to the matrix below. P+ and P− correspond to

the laser pump rate from the ground state for the two different pump polarizations.

wr is the radiative recombination rate and wph corresponds to phonon interaction.

Finally, w+ and w− are nuclear spin-flip radiative recombination rates for the different

pathways as calculated previously in this chapter. The results shown in Chapter 7 for

optical pumping timescales is derived from this theory and the code used to calculate

these rates is shown in Appendix B
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3.5 Charged States

Thus far the model developed explains nuclear polarization in a neutral dot and the

expected spectra. Charged dots, as will be shown in Section 8.4, also exhibit evidence

for Overhauser shifts and interesting spectral properties. It has been reported that

the X− trion state exhibits negative polarization behavior in the optical emission [48].

Additionally, previous work has observed negative polarization2 in charged quantum

dots [60].

3.6 Nuclear Magnetic Resonance

Coupling directly to nuclear spins with a magnetic moment can be achieved with

radio frequency (rf) photons. The resonance condition for standard nuclear magnetic

resonance is given by:

ω0 = γIB0 (3.9)

where γI is the gyromagnetic ratio of the nucleus and B0 is the magnetic field expe-

rienced by the nuclear spin. Table 2.1 shows values for γI for the relevant nuclei in

our system. Radio frequency photons can cause the nuclear spins to make transitions

between different mI levels.

It is possible to use a continuous wave (cw) or a pulse rf source to for transmitting

rf. The main requirement is that the sample be near to the rf transmitter so that

effective power of the rf is sufficient to drive enough nuclear spin transitions. This is

achieved by designing a suitable coil and rf circuit (see Section 5.3.2). The details

of NMR experiments are in and of themselves the content of many thesis (see [?])

so the main point to take away is through rf we can interact with nuclei and through

the effect of the nuclear spin direction on emitted light from a quantum dot. If we

can control the nuclear spins through other means this too would manifest itself in

the emitted photon energy and indeed by adjusting the excitation laser polarization

2The spin memory is related to the polarization by the formula P =
Iσ+−Iσ−
Iσ++Iσ−

where Ipol is the
intensity of the two Zeeman-split emission under a given polarization. Thus negative polarization
implies that under σ+pumping the emitted light is predominantly σ−.
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we control the nuclear polarization within the quantum dot.

3.6.1 Nano-NMR in quantum dots

Previous work [61] has demonstrated coupling between nuclei and the emission from

single GaAs quantum dots by using continuous wave rf. This has been an active area

of research for our group as well. However, we have not successfully demonstrated and

our experimental techniques and results are discussed in Section 8.3. The principal

reason is likely due to quadrupolar effects which is now explained.

3.6.2 Quadrupole Effects

For nuclei with spin I > 1/2 the positive electric charge these nuclei carry is not

distributed with perfect spherical symmetry and thus gives rise to a quadrupolar

moment. When placed in an electric field gradient (efg) the quadrupole moment

interaction with the efg leads to a splitting in the energy levels of the different mI-

sublevels. Thus, one can perform nuclear quadrupole resonance (NQR) even in the

absence of an external magnetic field provided the nuclei are in an environment in

which they see an efg. In fact many nuclei within solids experience efg’s and this is

also the case with quantum dots.

3.6.3 Strain in Quantum Dots

Some materials naturally have large electric field gradients and so nuclear quadrupole

splitting occurs (e.g. covalently bonded Cl2 molecules). Self-assembled InAs quantum

dots form in order to minimize the strain at the interface between the InAs layers

and the GaAs. However, very large strains still exist in and around the dot [62]. The

electric field gradient can be related to the strain in the system [63, 64]. Roughly

the amount of quadropole splitting in MHz is found for GaAs to be 3 MHz/%strain.

Thus, for strains of order 5% the quadrupole splitting can be as large as 15 MHz. In

addition, according to Grundmann et al [62], the strain is not uniform and thus the

broadening can be tens of MHz. Gammon et al report that the nuclear spin resonace
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was not uniform and in fact some dots had linewidths of ∼200 kHz. Yet other dots

did not exhibit any resonance suggesting that the strain in those dots was sufficiently

large to create inhomogeneously broadened quadrupolar splittings.



Chapter 4

Magnetic Field Gradient

Generation

4.1 Introduction

A quantum computer using nuclear spins in a crystal lattice requires a method for

addressing individual quantum bits. This identification can be achieved with a spa-

tially varying magnetic field. Spins at different lattice sites can have distinguishable

Zeeman frequencies allowing initialization, logic operations, and measurements to be

performed through radio frequency (rf) pulse techniques. In this Chapter we present

magnet designs that have gradients between 1 and 20 T/µm, which are necessary to

realize quantum computation with particular crystals. As a reminder, we desire to

maximize η in Eq. 1.3, which translates into field gradients typically larger than 1

T/µm.

4.2 Design Considerations

Designs should be chosen so that the field gradient is sufficient and the fabrication is

realistic. Here we consider the question of how to construct such field gradients within

the crystal and what implications these designs have for quantum computation.
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Field gradients can be in one, two, or three dimensions. A basic form of a one-

dimensional quantum computer has a field gradient in one dimension with the or-

thogonal dimensions having minimal field variation. Maxwell’s equations for a static

system not enclosing any currents state that ∇· ~B = 0 and ∇× ~B = 0. Thus, a gradi-

ent or spatial variation of one component of the magnetic field implies a change of a

different component in an orthogonal dimension. However, application of a large ex-

ternal field introduces an asymmetry so that nuclei along the direction in which there

is no intended field gradient have negligible Zeeman energy shifts. Thus, the orthog-

onal plane of nuclei have nearly identical energies and are labeled ‘equivalent qubits’

(Fig. 4.1a). The equivalent qubits are meant to be identical but non-interacting.

Quantum computation still occurs within a row of distinct qubits, but the output

signal is enhanced by the multiple copies of spin states.

A spatial variation in the magnetic field can also be introduced in two dimen-

sions. This can be used to create a two-dimensional quantum computer with equiv-

alent qubits existing along rows. A 2-dimensional quantum computer requires an

anisotropic field gradient with no spectral overlap along both gradient directions.

The anisotropy must be sufficient so that nuclei along the dimension with the larger

field gradient are separated in frequency by more than the maximal frequency sep-

aration of qubits in the direction with the smaller field gradient. In the case of a

two-dimensional computer, the density of interacting nuclei is more than doubled

when compared to a one-dimensional quantum computer. For instance, if pulse tech-

niques permit two-bit operations between nearest neighbors, then a 1-dimensional

quantum computer allows for up to two neighboring nuclei to be involved in logic op-

erations, while a 2-dimensional computer permits at least 4 (Fig. 4.1b). With certain

crystal structures, next-nearest neighbors may also be allowed to interact in this de-

sign. This geometry will allow more neighboring nuclei to carry out logic operations,

thus reducing bit-swapping.

Alternatively, not all qubits in the crystal lattice need be used. By modifying

the pulse sequence we can get the 2-dimensional design described above to behave as

a 1-dimensional quantum computer. This mode of operation is physically identical

but instead of permitting the computer to have distinct qubits along two dimensions,
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Figure 4.1: Shown are three different forms of quantum computers using nuclei in
crystal lattices. The circles represent the nuclei and the shading identifies the Zeeman
energy. a) Type 1: The quantum computer lies in one dimension with a plane of
equivalent qubits which have identical shading. Interactions are meant to occur only
along the dashed lines shown. b) Type II: This design has a 2-dimensional field
gradient and therefore distinct qubits along 2 dimensions. The interactions among
distinct qubits as meant to be limited to the dashed lines. The requirement that
their be no overlap in the Zeeman energies in the distinct qubits is shown by the
anisotropic shading of the two gradient directions. In this design a single nuclei can
interact with 4 neighboring or more if next-nearest neighbors are also considered. c)
Type III: This design is identical to Type II but by use of the proper pulse sequence
only the interactions along one dimension are permitted, as shown by the dashed
lines.
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it acts effectively like a one-dimensional quantum computer with only one dimen-

sion of equivalent qubits (Fig. 4.1c). The advantage over the one-dimensional design

described above is that elimination of interactions between equivalent qubits (i.e. de-

coupling) is made easier by eliminating one of the dimensions, and as will be shown

in Sec. 4, this configuration also allows for a larger field gradient than the design

with a field gradient only in one dimension. Figure 4.2gives a frequency picture of

how this type of computer would operate.

In summary, the computers described above can be divided into three types: I)

a 1-dimensional quantum computer with equivalent qubits in two dimensions; II) 2-

dimensional quantum computers with equivalent qubits in the third dimension; III)

a 1-dimensional quantum computer with equivalent qubits in the second dimension,

while the third dimension, which has a magnetic field variation, is not used. The

choice of design is largely determined by the NMR pulse sequences, the algorithms to

be implemented, ease of fabrication and alignment of the magnet to the crystal, and

the minimum field gradient required.

4.3 Magnetic Field Calculation

Current-carrying wires allow one to construct an electro-magnet with arbitrary geome-

tries, and the induced magnetic field can be directly controlled through changes in the

applied current. Unfortunately, the field gradients with such systems are limited by

the current carrying capacity of the wires. Even an optimal metal (e.g. Au) arranged

in a Helmholtz configuration operating at a current density of 1012 A/m2 yields a

maximal field gradient on the order of 0.01 to 0.1 T/µm which extends for less than

1 µm. Theoretical proposals and reported results with current carrying wires for

micromagnetic atom traps on the order of 0.001 T/µm are presented in [65, 66, 67]

and up to 0.1 T/µm field gradients are described in [68]. It should be noted that

nano-sized current-carrying wires could yield field gradients as large as 10 T/µm as

discussed in Section 9.7.

Larger gradients have been realized with ferromagnetic materials [69, 70, 71] such

as Tb, Fe, and Dy. Dysprosium (Dy) has the largest value for saturated magnetic
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Figure 4.2: A single crystal situated near a 2-dimensional anisotropic field gradient
creates a distribution of frequencies as shown in the first line. The larger field gradient
separates the qubits into groups whose centers could be separated by 100 kHz, for
example. Within each group the smaller field gradient will separate quantum bits
by an order of magnitude less or smaller (e.g. 10 kHz). With the proper pulse
sequence the quantum computer labeled β could be the operational computer while
the remaining qubits are decoupled entirely. The last line shows how the qubits
experience frequency shifts due to dipole couplings with nearest neighbors; These
shifts serve as the basis for logic operations in crystalline systems [2].
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polarization (3.5 to 3.7 T) [71, 72]. Polarization is achieved by the application of

an external field of a few tesla. Dy will exhibit ferromagnetism below 180 K and

paramagnetism above this temperature except for some low field (less than 1 T) in [73,

74]. To carry out the calculation of the magnetic behavior of a material (ferromagnetic

or paramagnetic), we model the material as having uniform magnetization without

edge effects due to domain formation.

The calculations begin with the equation describing the field due to a single mag-

netic dipole:

~Bdip(r, θ) =
µ0

4π

m

r3
(2 cos θ~̂r + sin θ~̂θ), (4.1)

where m is the magnetic moment of the electron, and r and θ are the spherical

coordinates shown in Fig. 4.3. Then, to calculate the magnetic field due to a slab

of magnetic material one integrates this expression over its dimensions and replaces

the prefactor with the saturated magnetic polarization, Js, assuming full saturation

is reached. The total magnetic field is then given by

~Btotal(x, y, z) = Js

∫ L
2

−L
2

∫ D
2

−D
2

∫ W
2

−W
2

3(x− x′)(z − z′)~̂x

+3(y − y′)(z − z′)~̂y + (2(z − z′)2 − (x− x′)2 − (y − y′)2)~̂z

dx′dy′dz′

[(x− x′)2 + (y − y′)2 + (z − z′)2]5/2

where W , D, and L correspond to the dimensions of the magnet along x, y, and z

respectively, and the origin of the coordinate system is located at the center of the

magnet (Fig. 3). This expression is only valid for x > W/2, y > D/2, and z > L/2;

i.e. outside of the bar magnet.

This three-dimensional integral yields a closed form solution which does not con-

sider edge fluctuations due to geometrical effects or misaligned domains. The result

can be expressed as

Bl = JsFl(x, y, z, x
′, y′, z′) (4.2)
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Figure 4.3: A single dipole is shown to be aligned along the z-axis. The standard
spherical coordinates r and θ are used. To calculate the field due to a rectangular
slab of material one integrates this expression along the 3 dimensions, as shown.
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with,

Fl(x, y, z, x
′, y′, z′) =

1∑
i,j,k=0

(−1)i+j+k

Gl[x, y, z, (−1)iW

2
, (−1)jD

2
, (−1)kL

2
]

Gx = − sinh−1

[
(y − y′)√

(x− x′)2 + (z − z′)2

]
(4.3)

Gy = − sinh−1

[
(x− x′)√

(y − y′)2 + (z − z′)2

]
(4.4)

Gz =
1

2
tan−1

[
2(z − z′)(y − y′)(x− x′)r

(z − z′)2r2 − (x− x′)2(y − y′)2

]
(4.5)

where r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2.

Typically, D is made to be millimeters long. W and L typically will have an

aspect ratio of 10 and in the case of the Type I design, L is the longer dimension

while in the other designs W would be chosen as the longer one. The following section

gives a detailed picture of the expected field gradient and magnetic behavior for the

configurations considered in Sec. 2.

4.4 Magnet Designs

4.4.1 1-dimensional quantum computer with a field gradient

in one dimension: Type I

In this design the objective is to achieve a large one-dimensional field gradient while

suppressing inhomogeneity in the transverse directions. In this way, a plane of nuclei

will have nearly identical Zeeman energies. Figure 4.4 presents a possible design using

the magnetized material discussed in Sec. 3. At a properly chosen distance d from the

magnet in the x-direction as shown in Fig. 4.4 and near the line z = 0, the total field

is independent of z. However, ∂Bz/∂x can be large and is used as the field gradient
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Figure 4.4: A long, thin slab of material is placed in an external field as shown. The
sample is placed at z ∼ 0 and the gradient is along the x-axis. In this realization of
the Type I configuration the yz-plane houses equivalent qubits.
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to separate the Zeeman energies of the spins. The magnet extends considerably in y,

so there are a large number of equivalent qubits in this direction.

As the value of z moves away from z = 0 the field varies and the number of

equivalent qubits permitted in this dimension is limited by the allowed inhomogeneity.

The inhomogeneity is brought about by unwanted magnetic field components in the

x direction. When the crystal is placed in a large external field of strength B0 aligned

along the z direction, the shift in the magnetic field is

4B(x0, z) =
√
B2

x(x0, z) + (B0 +Bz(x0, z))2

−(B0 +Bz(x0, z = 0))

where x0 is the location of a plane of equivalent qubits.

Note that the y-component of the magnetic field is ignored, since the magnet

is very long in the y-direction. By symmetry, there should be no field on the line

y = 0 and, as one moves away from the center, the contribution to the total magnetic

field is still negligible until one approaches the edge. Figure 4.5 shows the magnetic

field and gradient ∂Bz/∂x with respect to x for L = 3 µm and W = 0.3 µm. With

these parameters the maximum field gradient achieved is larger than 1 T/µm. By

decreasing the value of L or increasing W , larger field gradients can be achieved,

but inhomogeneity will grow and reduce the number of available equivalent qubits.

The gradient in this configuration persists for the range of 1 µm along the x-axis,

so the number of the equivalent qubits can be as large as several thousand. The

inhomogeneity permitted will determine the number of equivalent qubits. Fig. 4.6

shows the inhomogeneity, defined by 4B(x0, z)/[B0 +Bz(x0, z = 0)], as a function of

z for fixed values of x. Assuming the permitted homogeneity should be better than

10 ppm (as is typical in commercial high-homogeneity superconducting magnets) and

the external field is 10 T we can allow for ∼ 103 equivalent qubits in z. Since y could

be made to be 1 to 2 cm, the number of equivalent qubits could be on the order of

107. Thus, with about 102 multiple copies of the magnet and crystal configurations

the total number of equivalent qubits can be as large as 1012.

Larger field gradients can be achieved by increasing W or decreasing L but both
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Figure 4.5: For a design with L = 3µm, and W = 0.3µm, one can achieve a field
gradient of ∼ 1 T/µm for over a 1 micron distance.

will diminish the number of equivalent qubits. A parameter search revealed that

for L > 0.5 µm and W < 1 µm (which are reasonable for standard lithographic and

metal evaporation techniques), about 10 T/µm appeared to be an upper bound. This

field gradient persists over a short distance (0.01 to 0.1 µm) so the number of qubits

available for this large a field gradient is limited to hundreds as opposed to thousands.

4.4.2 2-dimensional and 1-dimensional quantum computers

with field gradients in 2 dimensions: Types II & III

As mentioned in Sec. 2 the configurations of Type II and III are identical, but differ

in their pulse sequences. There are a number of potential designs to consider for this
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Figure 4.6: This plot shows the inhomogeneity for the 1-dimensional configuration
described in Fig. 4.5 at different x positions and as functions of the z-coordinate. The
plots show that 10 ppm homogeneity can be achieved over a 0.02 µm range.
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class of magnetic fields. Two possible configurations are shown in Figs. 4.7 and 4.8.

The design in Fig. 4.7 uses the field profile created around the edge of a single bar

magnet. The fields created by such edges have been used for magnetic barriers in 2-

dimensional electron gas systems [69, 70, 71]. The crystal is placed below and slightly

away from the edge. Depending on the location (x0, z0) as defined in Fig. 4.7, the

gradient can be anistropic with x or z housing the larger field gradient. Alternatively,

by using two closely separated magnets one can achieve larger anistropy in x (Fig. 4.8).

This is possible by placing the crystal in the middle of the space between the two

magnets and near the point z = 0.

A caveat should be mentioned about the Type III computer. There is one potential

advantage to having the quantization axis parallel to the axis containing the spins

of an individual quantum computer By a single quantum computer we mean the set

of spins who line up along the smaller gradient direction and are decoupled from the

other non-equivalent qubits through a pulse sequence. Without having to apply any

pulse sequences, one can automatically get decoupling between next-nearest neighbors

if the angle between them satisfies θ = cos−1
√

1
3
, which is known as the magic

angle [75]. A line of equivalent qubits can be decoupled completely if we orient the

magnet and the crystal so that next-nearest neighbors are made to be equivalent. The

implication would be that the gradient along the x-direction should be the smaller

one. The design in Fig. 4.8 tends to increase the homogeneity in z and although

coordinates exist which have the desired anistropy the design shown in Fig. 4.7 is the

more natural choice if magic angle decoupling is to be used.

For the single magnet design shown in Fig. 4.7, numerical results for the field and

gradients are shown in Figs. 4.9 and 4.10. This design was calculated with W = 10

µm and L = 0.1 µm. The results show that for zo = 0.3 µm and x0 = 5.03 µm a

value of ∼ 10 T/µm can be achieved along x and ∼ 1 T/µm in z.

In the design with two closely spaced magnets larger anistropy is possible. This

design tends to enhance the homogeneity in z near the point z = 0. As shown in

Figs. 4.11 and 4.12the gradients in x and z are comparable to the previous design

but the gradient in x can be enhanced if one moves away from the midpoint between

the two magnets.
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Figure 4.7: W , and L are the dimensions which characterize the cross-section of
magnet and (xo, zo) locate the center of the quantum computer (Note, drawing is
not to scale). The change in shape and shading is meant to show the change in the
Zeeman energy.

Both these configurations have only 1 dimension of equivalent qubits so they lose

about 103 spins compared with the design shown in Fig. 4.4. Thus, 108 to 109 is a

reasonable estimate of the number of available equivalent qubits. As for the actual

size of the computer, the increased dimensionality compensates for the decreased

extent over which these larger field gradient extend for, so thousands of qubits are

still available in the Type II quantum computer.
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Figure 4.8: Two identical magnets are aligned as shown and the crystal is placed
between the magnets. S is the spacing between the magnets and is typically much
less than W . Again the shapes and shading are meant to show an anistropy in the
field gradients.
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Figure 4.9: For the design drawn in Fig. 4.7 the field and gradient are plotted versus
x with W = 10 µm and L = 0.1 µm. Here z0 is chosen to be 0.3 µm.



4.4. MAGNET DESIGNS 59

Figure 4.10: This plot shows the field and gradient along the z axis for the parameters
desribed in Fig. 4.9. x0, shown in Fig. 7, is chosen to be 5.03 µm.
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Figure 4.11: Using two magnets side-by-side as shown in Fig. 8 one can get enhanced
field gradients. With W = 10 µm, L = 0.1 µm, x0 = 5.35 µm and S, the spacing, set
to 0.5 µm a field gradient along z can be made to be small if the crystalline nuclei
are situated near z = 0.
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Figure 4.12: This plot shows the field gradient along x for the design described in
Fig. 4.8 and with parameters listed in Fig. 4.11. z0 is set to 0, and thus one can get
gradients on the order of 20 T/µm.
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4.5 Edge Fluctuations

For Type I, the location of the quantum computer can be such that the crystal

is far from the magnet compared to the magnet thickness (d >> W ). This has the

advantage that it is insensitive to physical edge, has an increased number of equivalent

qubits, and has an upper bound (∼1000’s) for the number of qubits. If a larger field

gradient is desired or one with a field gradient in two dimensions Types II and III

should be chosen instead. The quantum computer, as shown in Figs. 4.7 and 4.8,

must be placed near the edge of the magnet. In such cases, there are concerns about

having increased inhomogeneity due to the edge not having uniform structure along

the y-direction. A simulation was carried out which modeled the edge of the magnet

as having a sinusoidal oscillation along the y-direction as depicted in Fig. 4.13. Note

that here we are considering only the effects of the variation in the physical size of

the magnets and not multiple domains forming near the edge.

Using the parameters described in Fig. 4.9 for the design shown in Fig. 4.7 a

determination of the edge effect was made. Inhomogeneity versus frequency is plotted

versus the z position for fluctuation amplitudes (A0) of 1 nm and 10 nm and with

λ = 1 µm. The inhomogeneity is defined by subtracting a magnetic field produced

by a magnet of identical dimensions but without any edge structure from the same

design with the edge behavior. This is done for a distribution of positions along y

and the resulting histogram gives a distribution of magnetic shifts from the idealized

model. The width of this distribution divided by the absolute value of the magnetic

field at that coordinate is defined as the inhomogeneity and is shown in Fig. 4.14 in

parts per billion (ppb). Even for values of A0 of 10 nm the inhomogoneity is less

than 10−2 ppb. This suggests that the macroscopic size of the magnet as opposed to

local fluctuations in the edge is the dominant factor. The studies carried out showed

little sensitivity to the wavelength of the edge disturbances. Current lithographic

techniques using electron beams have the ability to define sidewalls down to less than

10 nm [76], so these results suggest that these magnets can be used to create large

magnetic field gradients while also allowing for equivalent qubits along the y-axis.
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Figure 4.13: The geometry considered for calculating the effect of imperfections in the
physical edge. The edge is modelled with some sinusoidal oscillation of wavelength
λ, and amplitude Ao. Spectral linewidths are determined by creating a histogram in
the distribution of Zeeman energies for equivalent spins situated at coordinates (xo,
zo) as shown in Fig. 4.7. The circles along the y-axis represent the equivalent qubits
whose Zeeman energies are calculated.
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Figure 4.14: Shown is the inhomogeneity in ppb as a function of z for a 1 nm and
10 nm and amplitude fluctuation. The chosen design has λ = 1 µm, W = 10 µm,
L = 0.1 µm, D = 200 µm and x0 = 5.03µm.
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4.6 Conclusion

Magnetic materials can be used to create micromagnets which have gradients larger

that those achievable in current carrying magnets. Such designs can be used to

address individual nuclei in a crystal lattice quantum computer. Field gradients

of 20 T/µm are achievable with an anisotropic magnetic field variation along two

dimensions (Types II & III). Field gradients of up to 10 T/µm are realistic in the

Type I design. The use of magnets described in this paper is also applicable to electron

spin systems in a crystal lattice or similar systems. The frequency separation for the

same field gradient is increased by a factor of 103. These magnets hold promise for

allowing the observation of atomic layers through nuclear magnetic resonance or a

corresponding electron resonance measurement.



Chapter 5

Instrumentation And Experimental

Setup

The design and setup of a new experiment requires development, expertise, and money

to purchase the necessary equipment. In this section I will present the various equip-

ment and setups I used in a chronological order. My hope is that a future student

comes to appreciate the necessary components of doing spectroscopy in a magnetic

field and can quickly gain some useful tips. Expertise is most easily achieved from

working in the lab with a mentor. This chapter first presents the equipment we used

for doing magnetic field studies of dysprosium. After we determined that dysprosium

was a suitable material for generating large magnetic field gradients we developed an

apparatus for detecting magnetic fields on a nano-meter scale using quantum dots. In

order to reach magnetization saturation we required an external magnetic field and

initially we used our fixed 7 Tesla (T) NMR magnet. Subsequently we purchased a

variable field magnet designed for doing magneto-optical studies. Much of the work

related to the nuclear spin-dynamics involved the use of polarized light and timing

control over the incident polarized laser light and photoluminescence collection.

66



5.1. SQUID MEASUREMENT 67

5.1 SQUID measurement

Prior to performing spectroscopic studies of quantum dots I first studied the magnetic

properties of microfabricated dysprosium. To test the performance of the dysprosium

magnet by itself we used a magnetic property measurement system (MPMS) manufac-

tured by Quantum Design. This system is capable of measuring magnetic properties

of samples by using a superconducting quantum interference device (SQuID). A sam-

ple is mounted and placed in the instrument where the magnetic field near the sample

is measured using the SQuID. The system can sweep both temperature and magnetic

field and is programmable. With this system we performed studies to characterize

the magnetic properties of dysprosium as a function of temperature and magnetic

field.

Here I present results from a sample with micron-sized magnets of dysprosium.

In order to measure the magnetic field due to the dysprosium we required multiple

micron-sized magnets. In this way we could measure the magnetization at different

temperatures and for different magnetic fields. The device structure is similar to the

one shown in Figure 5.1 except no aluminum was deposited. From this we could de-

termine if the dysprosium behaved as predicted. Indeed, the saturated magnetization

was near the known value of 29.89 x105 Am [77]. The horizontal line at 350 emu/g

corresponds to the saturated magnetization of Dy. The Curie temperature of dyspro-

sium is 85 K and so at sufficiently low temperatures and field strength between 1 and

2 Tesla saturation is reached. The behavior of dysprosium in a higher temperature

regime and at varying fields is explored extensively in [78].

5.2 NMR Magnet Setup

Preliminary magneto-photoluminescence experiments were performed in a 7T magnet

designed for doing high-resolution NMR. This was not originally intended but initially

we planned to only do standard NMR in the magnet. We later decided to pursue

quantum dot spectroscopy in a magnetic field and the only available magnet was the

7 T magnet.
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Figure 5.1: This photograph shows a fabricated micromagnet of dysprosium. Above
the dysprosium we covered the sample with polyamide and an layer of patterned
aluminum. The purpose of the aluminum was to use NMR to measure the effect of
the dysprosium magnet and in this way determine if a field gradient was present.
This experiment revealed that the aluminum nuclei were too broadly distributed to
provide a NMR signal.
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Figure 5.2: Dysprosium magnetization vs temperature and magnetic field. The dys-
prosium magnetization reaches near saturation (∼350 emu/g) for microfabricated
dysprosium.
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Figure 5.3: 7 T NMR magnet made by Oxford Instruments. We installed an optical
breadboard below the magnet to mount the necessary optics. Aluminum supports
screwed into holes on the bottom of the magnet. The laser and monochrometer are
located on a standard optical table and all the light to and from those equipment are
fiber coupled.
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The 7T NMR magnet is a standard one that many companies offer and requires

little maintenance. In fact our magnet was manufactured and installed by Oxford

Instruments and the only maintenance we performed over a 5 year period was main-

taining the cryogen levels. The Oxford engineers did the installation, ramped up the

current and set the magnet in persistent-current mode. The magnet remained “on”

and required liquid helium transfers every 6 months assuming the liquid nitrogen

vessel was filled at least once every 2 weeks.

The magnetic field is created in the center of the magnet by a solenoid coil. Our

magnet produces a field of ∼7 T and is homogenous to <10ppm over a 1cm wide x

2cm tall cylinder in the center of the magnet. The bore of the magnet is open to

air and ran through the entire length of the magnet. The 89mm bore is rather wide

by NMR standards but nonetheless the central homogenous region is located roughly

1m from either end of the magnet.

Although this apparatus appeared relatively easy to work with it was not ideal

for doing magneto-photoluminescence studies on isolated mesas containing quantum

dots. This experiment requires a means of exciting the mesa containing the dot of

interest and simultaneously an efficient means of collecting the emitted light. This

translates experimentally to building a microscope to operate inside the magnet bore

and a means to cool the dot to liquid helium temperatures. In addition, many of

the studies we were interested in required a variable magnetic field which is not

possible with a 7T NMR magnet. However, we realized that we did not require the

homogeneity offered to NMR experiments so by lifting the cryostat up or lowering it

we could access different magnetic fields. In order to measure the magnetic field we

installed a hall probe located about 1.5cm vertically above the sample. Unfortunately,

this setup was not ideal since when we moved the crysotat we had to realign our optics.

5.2.1 Variable Temperature Insert (VTI)

In order to control the temperature of the sample we purchased a cryostat designed

for the NMR magnet with optical access at the bottom. Figure 5.5 shows an inserted

photograph with the sample and window at the bottom of the cryostat. The cryostat is
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a standard continuous flow cryostat and the details of its operation can be found in the

manual or going to the website of Janis. Similar cryostats for room temperature bore

NMR magnets are made by Oxford Instruments and other companies. Essentially,

gaseous helium (or liquid) can is pumped through the sample space and cools the

sample to 4 K. This cryostat is inserted in the bore of the magnet. With the heater

and needle valve controlling the helium flow along with a temperature controller the

system can be stabilized to any temperature below 77 K. For operation 77 K liquid

nitrogen can be used instead but we only operated at 4 K temperatures.

5.2.2 Sample Holder

The sample holder for this experiment was attached to an insert for the continuous

flow cryostat. A support structure with radiation baffles was constructed from stain-

less steel and brass. Attached to the bottom plate was a support which held the

sample and essentially it was a copper plate with screw holes. Typically we mounted

the sample using grease to solid piece of copper which we then screwed into this

plate. The only required feed-through we used were electrical ones needed for a Hall

probe. This became important once we began raising and lowering the cryostat to do

measurements in different magnetic fields.

Voigt Geometry

The sample holder was modified at one point when we wanted to study a sample with

the magnetic field oriented perpendicular to the growth direction of the sample. This

geometry, the so-called Voigt configuration, required that we install a mirror at a 45

degree angle and place the sample such that the growth direction was perpendicular

to the applied magnetic field. The modified sample holder is shown in Figure 5.4.

This modification was the simplest in order for us to perform these measurements.

5.2.3 Optical Setup

The primary challenge of the microscope was finding a lens that provided good imag-

ing quality and was non-magnetic. This proved quite a challenge. If one used a



5.2. NMR MAGNET SETUP 73

Figure 5.4: This photograph shows the modified sample holder that allowed us to
probe the sample in the Voigt configuration. The 45o portion had a mirror mounted
on it and the sample can be seen mounted on the vertical slab. Also note the wires
lead to the hall probe which was mounted on the back of the bottom circular plate.
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standard single achromatic lens soon after the outer window of the cryostat the im-

age quality was very poor. If instead we used a SLR camera lens we obtained very

nice images but the camera lenses generally contained small screws and retaining rings

that had were made from magnetic material. These small steel masses were sufficient

to be unusable in the magnet. The forces became so large that the springs in the

stage on which the lens was connected to via a lens tube (see Figure 5.5) provided

insufficient restoring forces to keep the lens from being pulled towards the center of

the magnet. The solution we found by chance was the standard 1X objective of a

Nikon SMZ800 stereo microscope. This compound lens system provided a decent

image quality. We went to the local camera store to find an adapter ring in order

to adapt the threads of the camera lens to the threads on the 2 inch lens tube from

Thorlabs we used.

5.2.4 Variable Field Access

Once we realized that we needed to do measurements at different magnetic fields we

lifted the cryostat to access different magnetic fields. This required use of a Hall probe

to calibrate the magnetic field value. The homogeneity for NMR is poor except at the

point where the field is 7T but for the purposes of our experiment the homogeneity

is sufficient. The difficulty became that the since the Nikon lens was not infinity

corrected its position relative to the sample changed as we lifted the cryostat. This

led to changes in the delivered laser power and the numerical aperture. At fields near

2 T the cyrostat had to be lifted ∼2 ft and the image quality became degraded. One

other difficulty is that every time we moved the cryostat we lifted the cryostat with

a hoist and added sections to the lens tube. This made doing multiple field values

rather time consuming and tedious. It was a welcome relief once we purchased a

variable field cryostat designed specifically for doing optics. Nonetheless, with this

system we obtained data for quantum dots in the presence of magnetic material.
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Figure 5.5: Working distance for this system totaled 65mm. The inserted photograph
shows the bottom of cryostat with the windows and the sample located in the center
region. The lens we used was attached to a lens-tube which then was mounted on a
sturdy XYZ stage.
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Figure 5.6: This photograph shows the optical breadboard attached to the bottom of
the 7T NMR magnet
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Figure 5.7: This is the Spectromag magnet. Ours is a maximum of 11.5 T magnet.
The coils are located in the bottom portion and the upper portion houses a the liquid
nitrogen bath and the vacuum space.

5.3 Spectromag Magnet System

As our group realized that more and more experiments would arise that demanded

variable magnetic field spectroscopy we purchased a magnet with this capability that

was installed in December 2005. This magnet was optimized for working with smaller

samples and we requested that it be designed in such a way that we could bring a

window to within 40mm of the sample. The Spectromag magneto-optical super-

conducting magnet (see Fig. 5.7) system is described in detail in the manuals and

at (http://www.oxford-instruments.com/SCNPSC156.htm). In summary the system

consists of a vacuum space with a liquid nitrogen jacket and a helium reservoir. The

magnet coils are immersed in the helium reservoir and connected to an external power

supply provided with the system. By changing the current in the superconducting

coils we can change the magnetic field. The system came with a variable temperature

insert similar in function to the one described in 5.2.1. The helium source for this

VTI is the helium reservoir that keeps the magnet coils cold.
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5.3.1 Sample Holder

The system came with a sample rod and mounting plate including ∼24 electrical

feedthroughs. However, we did not use any of the feedthroughs. We did install a

vacuum sealed BNC feedthrough for connecting an external RF source to a rigid

transmission line that delivered rf to the sample. Unfortunately, these experiments

were not successful as will be discuss later in Chapter 8.3.2.

5.3.2 NMR coil

The coil used for generating rf waves was a hand-wound copper coil made from a

single 2mm gauge piece of wire. This is connected to a rigid transmission line and

then connected to the NMR spectrometer. Since the focus of this thesis is not the

attempts we made at coupling to the nuclear spins through rf I will not discuss the

NMR instrumentation. The details of the rf generators can be found in [17] as well

as more discussion about rf circuit design. The coil has 2 sets of between 4-5 turns

and we designed it to be split in order to allow for unobstructed optical access.

5.4 Optical Instrumentation

The setup for performing photoluminescence experiments on quantum dots involves

a means for exciting the quantum dots with laser light, a means of collecting the

emitted light from the quantum dots and filtering the pump light, and finally a means

of dispersing the collected photoluminescence. These portions are discussed briefly in

this section.

5.4.1 Photoluminescence Setup

The photoluminescence setup consists of the mirrors and lenses needed to deliver

the laser light to the sample, form an image of the sample, and collect the emitted

photoluminescence (PL). A diagram of the setup is shown in Figure 5.8. The basic

idea was to use a glass wedge. This wedge reflects about 3% of incident light so for
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the emitted PL most of the light would be transmitted from the sample side to the

PL collection side. The laser was polarized as desired and the reflected off the wedge

and so most of the light was transmitted through the wedge and not directly along

the same path the PL followed. The laser light passed through the 35mm lens and

then through a Mitotoyo 10X telecentric lens (working distance is 44mm) in the re-

entrant bore tube. Some of the laser reflects directly off the sample and will go along

the same path as the PL but by filtering laser light we could remove the laser light

from the PL. This is done with cut-on filters or with narrow-band filters. Using this

method of filtering the laser light makes it difficult to do PL spectroscopy where the

PL is within 10nm from the pump light. For many of our experiments the pump light

is tuned to the wetting layer at 850nm and the PL is at 875nm or longer wavelength

so this method of filtering was sufficient. However, for resonant excitation or n=2

excited state pumping the experiment became challenging. The PL can then either

be sent to a CCD camera where an image of the sample forms so we can see what we

are looking at or it is send to the monochrometer where the light is dispersed.

5.4.2 Titanium-Sapphire Laser

The laser source we used was a 3900S Spectra Physics laser pumped by a Millenia

diode laser array. The laser is manually tunable from 700nm up to 1100nm and is cw

with a almost 3W of available power. Typically we couple the light into a single-mode

fiber which creates a clean gaussian mode. In addition as the laser is tuned the beam

moves slightly in the laser cavity which can lead to large movement 20ft away at our

setup. Thus, coupling into a fiber near the output of the laser allows us to avoid this

stability issue as we tune the laser wavelength. One modification we made was to

install stepper motors to tune the bi-refringent crystal and the thin etalon so we could

automate the laser tuning. This system worked but since we had so many difficulties

with doing near-resonant excitation we often worked in the wetting layer. However,

for future photoluminescence excitation spectroscopy studies such a system is useful.
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Figure 5.8: Schematic showing optical setup. The laser light is reflected off a wedge
and focused via the two lenses onto the sample. The PL is filtered from any scattered
and reflected laser light and sent to a CCD camera from which we form an image or
toward a monochrometer where it is dispersed.
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5.4.3 Monochrometer and Detection

Our monochrometer, a Spectra Pro 750, was manufactured by Acton Research and

included 3 gratings. These gratings, with groove densities of 600 mm−1, 1714 mm−1,

and 1800 mm−1, provided spectral coverage of about 20nm, 12nm, and 10nm respec-

tively. The highest resolution we achieved with the 1800 mm−1-groove grating is

about 0.01nm. The grating could either output the light to a slit or disperse the light

onto a liquid-nitrogen-cooled CCD camera (Princeton Instruments LN/CCD) which

had pixels of size 13µm x 13µm which helped improve the resolution. Of course there

is a fundamental limit to the dispersion offered by the grating for a given input slit

width but this increase in pixel density over the standard 26µm pixel size cameras

helped with the resolution.

A high precision motor controlled via software allows the grating to be rotated

in a reliable and repeatable way. A mechanical shutter is used to control exposure

times. Because the camera is nitrogen-cooled long exposure times were possible and

the main source of noise is readout. We coupled to this monochrometer by sending

light either via free space from the photoluminescence setup or collecting the light

into a fiber and sending it to the monochrometer.

5.4.4 Polarization Optics

We can chose the electron spin (and hole spin) direction we excite into the semiconduc-

tor by shinning circularly polarized light. A single photon carries angular momentum.

In the case of circularly polarized light the classical description is easily to reconcile

with the individual photon picture. Photons have intrinsic spin angular momentum

of either −~ or +~ which means they can impart this angular momentum onto an

exciton. However, for plane polarized light at the photon level there is an equal

probability of the photon to impart either −~ or +~ and at the single photon level

we write the angular momentum state as a superposition state of 1√
2
(| |σ+〉 + |σ−〉).

We can use standard polarization optics to introduce the desired polarization. To

create circularly polarized light, we use a polarizer followed by a quarter-wave plate

(QWP) which is oriented at 45o relative to the fast or slow axis. We can describe
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the polarization state of classical light using a Jones vector, which is a column vector

comprising of the x and y components of the electric field. In general we can write

the Jones vector as

E =

[
Ex(t)

Ey(t)

]
(5.1)

. Since we are using a laser, a coherent form of light, the time-dependence of the

electric field can be ignored so long as we keep track of the phase information. Namely

at a given point in space and time along the path of a coherent wave we may write

E =

[
E0xe

iφx

E0ye
iφy

]
(5.2)

. Then, to determine the polarization at a different point in time or space we can

calculate it easily assuming plane wave propagation along z by using the formula

E(z, t) = E0e
kz−ωt. A horizontally polarized state is given by

Eh =

[
E0xe

iφx

0

]
(5.3)

5.4.5 Polarization Optics

We can choose the electron spin (and hole spin) direction we excite into the semi-

conductor by shinning circularly polarized light. A single photon carries angular

momentum. In the case of circularly polarized light the classical description is easily

to reconcile with the individual photon picture. Photons have intrinsic spin angular

momentum of either −~ or +~ which means they can impart this angular momen-

tum onto an exciton. However, for plane polarized light at the photon level there

is an equal probability of the photon to impart either −~ or +~ and at the sin-

gle photon level we write the angular momentum state as a superposition state of
1√
2
(| |σ+〉 + |σ−〉). We can use standard polarization optics to introduce the desired

polarization. To create circularly polarized light, we use a polarizer followed by a

quarter-wave plate (QWP) which is oriented at 45o relative to the fast or slow axis.

We can describe the polarization state of classical light using a Jones vector, which is
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a column vector comprising of the x and y components of the electric field. In general

we can write the Jones vector as

E =

[
Ex(t)

Ey(t)

]
(5.4)

. Since we are using a laser, a coherent form of light, the time-dependence of the

electric field can be ignored so long as we keep track of the phase information. Namely

at a given point in space and time along the path of a coherent wave we may write

E =

[
E0xe

iφx

E0ye
iφy

]
(5.5)

. Then, to determine the polarization at a different point in time or space we can

calculate it easily assuming plane wave propagation along z by using the formula

E(z, t) = E0e
kz−ωt. A horizontally polarized state is given by

Eh =

[
E0xe

iφx

0

]
(5.6)

5.4.6 Timescale Measurements

In addition to doing standard photoluminescence we developed a way to dynamically

change the polarization of the pump laser and collect photoluminescence at specified

times after changing the pump polarization. The reason for implementing this will

become clear in Section 8.2.1 but suffice it to say that under different pump polariza-

tion the spectra appeared different. This prompted us to investigate how quickly the

spectra would change after changing the pump polarization. This was implemented

by using a polarizing beam splitter (PBS) to split the pump laser into horizontally

and vertically polarized light as shown in Figure 5.9. Then on each path we placed a

mechanical shutter which can be controlled by TTL pulses. The light is recombined

on a non-polarizing beam splitter and then after passing through a quarter-wave plate

the laser light becomes σ+and σ−. The emitted PL from the quantum dots also passes
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Figure 5.9: By sending the laser through a polarizing beam splitter (PBS) the laser
is split into horizontally (H) and vertically (V) polarized light. Each path of the split
laser light has a shutter installed which is controlled with TTL pulses. The light is
recombined on a non-polarizing beam splitter (NPBS). The light then passes through
a quarter-wave plate which converts the H and V light to σ+and σ−light. The light
entering the monochrometer also passes through an identical mechanical shutter also
controlled by TTL pulses.

through a shutter since the mechanical shutter included in the monochrometer does

not have a fast enough response time or high repitition rate to be useful. The shutters

we used were LST200SLP made by NM Laser products which have 300µs switching

speeds and can operate as high as 150 Hz.



Chapter 6

Fabrication

All of this work would not be possible without the discovery of self-assembled quan-

tum dots. The growth of such materials is itself a active areas of scientific inquiry

and I briefly mentioned how the samples are grown. This chapter also explores the

fabrication techniques we used and in particular highlights some of the processes I

developed for integrating a magnetic structure with quantum dots.

6.1 Quantum Dot Creation

The quantum dots studied in this work are created via self-assembly. They naturally

form at the interface between GaAs and a few monolayers of InAs which is further

capped by more GaAs. The growth technique and means of isolation are discussed

here.

6.1.1 Molecular Beam Epitaxy (MBE)

Fabrication of InAs quantum dots begins with a high-quality GaAs semiconductor

wafer which can easily be purchased. These clean wafers are treated to remove water

and other contaminants from the surface and immediately loaded into the ultra-high

vacuum (∼ 10−11 to ∼ 10−12 range) chamber of a molecular-beam epitaxial (MBE)

[?] machine. Further heat treatments within the chamber help ensure that residual

85
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water vapor and other atoms desorb from the surface.

MBE is a technique developed in the 1970’s for producing high-quality semicon-

ductor films. It works by heating a solid source which produces a small flux of atoms

or molecules. The atoms strike the wafer, which is also heated, and this allows the

atoms to diffuse along the surface easily and typically come to rest at a step edge

where a new layer of atoms is forming. Additionally, the atom flux is small and

typically stabilized to better than 1%. These conditions allow for single atomic layer

growth. Much expertise is required to maintain an operational system and grow

different materials with varying properties.

The formation of quantum dots of InAs comes about from the strain that arises

from the lattice mismatch between the GaAs substrate and the InAs layers that are

deposited. The first monolayer (MLs) of InAs actually match the GaAs substrate

but are under strained. At some point during the addition of more InAs the system

becomes strained to the point that small islands of InAs form instead of the standard

smooth single atomic layers. There is some residual InAs material that remains and

forms a roughened quantum well called the wetting layer. This occurs at varying

numbers of monolayers and the size of the islands can also varying depending on the

atomic flux and the growth temperature. The islands can range in size from 4-7nm

and can be about 20-40nm in diameter. The shape appears like a squashed cylinder

but atomic force microscopy (AFM) images often show the localized InAs content

to be pyramid-like. This growth technique for making self-assembled quantum dots

is known as the Stranksi-Krastanov growth process [79]. The growth concludes

by protecting the dots with a capping layer of GaAs. Otherwise the quantum dots

can become optically inactive as the surface can accommodate trapped charge states

which can quench their nice optical properties.

The density of dots that form and the optical emission properties varies according

to the growth conditions. It should also be noted that in practice even a single wafer

may have variation it the dot properties and density, and it can be hard to reproduce

the same wafer since the exact growth conditions are not always known precisely.

It is also worth mentioning that allow these dots are primarily InAs there is some

annealing that occurs and this causes the island to contain In, As, and possibly small
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amounts of Ga. Also, the wavefunction describing the trapped exciton may extend

beyond the island and be affected by the lattice outside of the island of InAs. The

bandgap for the tertiary semiconductor In1−xGaxAs has been studied at 2 K [54, 45]

but the size of the dot also affects the energy level structure. Also, the g-factor of

the exciton1 is determined by the Luttinger-Kohn Hamiltonian which is affected by

various lattice parameters.

Figure 6.1 shows the experimental results of the variation of InAs QD density with

the change of the InAs QD growth temperature at 1.89ML InAs coverage. Under the

high growth temperature, we obtain the lowest InAs island density (∼20 per µm2),

while the height and base diameter of InAs QDs increase with the temperature,

which shows a trend of low density-large size. During SK growth with kinetic model,

adatoms adsorbing to the wetting layer from deposition process are assumed the only

mobile surface species. Diffusion adatoms meet bond together and form small 2D

islands. Mobile adatoms hop randomly on the InAs wetting layer around nearest-

neighbor sites dependent on the surface diffusion constant [80, 81], which is mainly

decided by the growth temperature. The increase of the growth temperature enhances

the mobility of In adatoms on the InAs wetting layer surface, which decreases the

accumulation of atoms on the top of 2D islands. Hence, the speed of conversion of

2D islands to 3D islands would decrease.

6.1.2 Isolation

Typically, the dot density varies between 10 µm−2 and 500 µm−2 and due to inhomo-

geneous broadening, spectral isolation of a single dot would be impossible. In order

to isolate a single quantum dot we physically remove most of the dots by selectively

etching through the layer of material containing the quantum dots and leaving small

mesas which contain only a few quantum dots as show in Figure 6.3. The subsequent

sections detail the recipes for fabricating including the electron-beam lithography and

reactive ion etching. Another option is to use a mask with a small aperture. The

mesa size ranges from 100 nm to 2 µm. With the 1µm2 mesas it is still possible with

1The term g-factor when applied to the exciton is not necessarily just the sum of the hole and
the electron g-factors. This is discussed in Section 2.5.5.
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Figure 6.1: AFM images of InAs QDs grown on (100) GaAs substrate with 1.89ML
InAs coverage by MBE at growth temperatures of (a) 475, (b) 482, (c) 505, and (d)
525. The growth rate of InAs QDs is 0.07ML/s, and ratio of As to In is about 50.
The measured area is 1x1 µm2.
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Figure 6.2: This procedure diagrams the method we use to etch mesas for isolating
a small number of quantum dots. 1) We coat the positive e-beam resist which we
expose using electron beam lithography. After developing in the e-beam developer
a region of the resist is removed. 2) We can deposit a thin layer of metal such as
nickel which covers the entire wafer. After using acetone to perform lift-off the nickel
that adhered directly to the wafer remains while the nickel that was deposited on
the resist is removed. 3) We can now etch into the wafer and etch past the layer
containing quantum dots except where the metal protects the substrate. We can
subsequently remove the nickel with a nickel etch and we are left with isolated mesas
with dimensions as small as 100nm X 100nm containing just a few quantum dots.

a high resolution monochrometer to spectrally isolate a single quantum dot. For the

samples we worked with the dot density is relative low at tens of dots per square

micron.

The sample from which most of the data is taken comes from wafer 903 grown

in 1999 and also the subject of the thesis of other students from our group. Many

wafers have been grown since then that have similar optical properties. This sample

had relatively sparse quantum dots with a density at around 11 µm2 and they were

capped with 75nm of GaAs.

Many other samples were grown with different capping layer thicknesses and some

with multiple layers of quantum dots. These were made for experiments intended

to place quantum dots at specific locations from the top surface and remain useful

for future research towards field gradient studies and Overhauser effect studies with

integrated magnets.
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6.2 Magnet Fabrication

In order to integrate magnets near the quantum dot different approaches were taken.

One approach is to deposit tiny magnets horizontally displaced from a mesa. This

requires an aligned electron-beam write between the first layer which contains the

mesas and a new layer which is to contain the magnet. In fact this is precisely what

we did and the e-beam pattern was designed to vary the position of the magnet with

respect the mesa location. In this way, assuming uniform magnets, we could image

the magnetic field and draw conclusions about the field gradient produced by such a

structure. It turned out that this approach yielded poor results primarily due to poor

adhesion of the magnet and a dynamical shawdow-masking effect which caused the

sidewall to have the shape shown in Figure 7.4. Serendipitously, one set of magnets

actually landed directly on the mesas. Not only did these magnets get placed where

they weren’t intended but small openings in the magnets formed allowing optical

access to the mesas now located within a magnet. This fortunate outcome produced

some interesting results which are discussed in Chapter 7.

6.2.1 Electron Beam Evaporation

Electron beam deposition of metals works by focusing a beam of electrons on a metal

source. A filament supplies a steady source of electrons which are accelerated towards

a target metal. The metal heats up over time and causes clusters of metal atoms to

sublime. Effectively the metal locally becomes very hot from the focused electron

beam. The beam can be slightly defocused or have some intended jitter to distribute

the electrons over a region containing metal. Typically the metal is loaded into a

crucible made of graphite or platinum which has a high-melting temperature.

The metal then uniformly covers the surfaces of the chamber of an evaporation

station including a region containing the sample. Typically, the sample can be pro-

tected by a shutter so that once a stable deposition rate is established the amount of

time the sample is within the flux of atoms can be timed and therefore the amount of

deposited material can be accurately estimated. A quartz crystal is used to measure

the deposition rate. By measuring the resonance frequency of the crystal the mass of
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Figure 6.3: This diagram shows the major steps necessary to make an integrated
device to introduce a magnetic field gradient across the quantum dot. 1) After ob-
taining a sample with suitable mesas we can deposit a buffer layer of SiO2 using the
STS chemical vapor deposition chamber. This layer can be of variable thickness and
helps ensure that the quantum dots are located near the center of the void within
the magnet. Also, it can help with providing a smooth surface on which deposit
dysprosium (Dy). 2)Here we deposit sufficient magnetic material by evaporating Dy
on to the wafer. An alternative is to sputter a material such as FeCo which would
ensure better sidewall coverage. Sputtering heats the sample more and this could
damage the sample. 3) Finally, we use wax to attach the wafer to a handle wafer
such as quartz. Then we do a wet chemical etch as outlined below. The material
that remains is very thin and the quartz is necessary to handle the sample without
damaging the quantum dots.
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the crystal plus deposited material can be monitored. Some deposition stations also

have the ability to rotate the sample so that the flux is averaged out and dynamical

shadow-masking effects are minimized.

One disadvantage of evaporation is that clumping tends to occur and the deposited

metal has graininess. Typically, atoms travel 50 cm and hit the sample and immedi-

ately stick as the sample is kept at room temperature. Sputtering is an alternative

technique that be used. However, lift-off is not possible as sputtering is done at higher

temperatures and destroys the e-beam or photo-resist layer. The distance between

substrate and sample is typically 10cm and the atom flux coats sidewalls quite easily

so this also makes lift-off difficult. However, the sample coverage is better and the

grain size is much smaller.

6.2.2 Lift-off Process

For samples that have a layer of metal deposited on patterned e-beam or photo-resist

it is necessary to remove the unwanted metal. This can be done by immersing the

sample in acetone. Acetone is able to dissolve the resist and can access the resist

through the sidewalls and the wafer edge. Thus, for samples with complete sidewall

coverage lift-off is difficult often has undesirable effects. Gentle sonic agitation can

help the process of lift-off.

6.3 Clean Room Processing

Here I present a novel process I developed for building a device for embedding the

quantum dot in a dysprosium micro-magnet. The details for the mesa fabrication

are standard. This process will be particularly important for future devices where

quantum dots with an integrated magnet are desired. For the work I present in

Chapter 8, the focus of this thesis, the devices essentially inlcuded only steps 1 through

3. In addition I removed the thin layer of nickel using a nickel etch in the Ginzton

clean room. This improves the photon flux from the quantum dots.

1. First layer write
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PMMA coat of 2% 950 K spun at 5krpm for 30 sec; [Headway]

Unaligned ebeam write with dosage of 120 µC [Raith]

Develop using MIBK for 45 seconds [E-beam solvent bench]

2. Nickel deposition and lift-off 30nm nickel layer [McCullough Annex or Tom

Carver]

Acetone soak and gentle ultrasonic agitation.

(Alternative metals such as chromium also works)

3. GaAs Dry etch 200 watts for 2 minutes (etch rate is 180nm/min) [PlasmaQuest]

Depth = 360nm

4. Deposit SiO2 Deposition rate is 1nm/sec. [STS] Deposit 500nm of Dysprosium

5-10nm titanium wetting layer helps adhesion. [McCullough Annex]

5. Attach to handle wafer Use Apiezon black wax and attach to 1cmx1cm quartz

piece. [Crystal Shop]

6. Substrate Removal (Please see below for more details) 1:8:1 H2SO4:H202:H20

wet etch at 10µm/minute until within 50-100 µm of the AlGaAs layer. 97%

H202 and 3% NH4OH will stop at AlGaAs layer 1:1 HCl: H20 will remove

AlGaAs layer which otherwise will oxidize easily.

Substrate Removal

Here I present more details regarding the substrate removal process I used. Other

variations exist but I found this process a reliable way. Please be aware that the

remaining sample is very brittle and contains a thin layer of GaAs and quantum dots.

Also note that large wafer pieces are advantageous in that better contact between the

wax and the substrate wafer can be achieved.

1. Use a 1:8:1 water:peroxide:sufuric mix. It is easiest to use 30ml:260ml:30ml

mixture. Mix the water and sulfuric first, as it will heat up. Wait for it to cool

back to less than 25o C. Then add the peroxide.



94 CHAPTER 6. FABRICATION

2. Use the spin bar and a spider like 4 inch wafer spring holder thing on top of the

spin bar to stir the solution. Etch rate will be about 10µm per minute.

3. When you have 50-100µm left, stop etching. Pour the mixture into a hazardous

waste container and dispose of properly.

4. Mix 97% peroxide, 3% Ammonium Hydroxide

5. Again use the stir bar. Stirring is very important. If you do not stir very hard,

you will develop an oxide on the surface of your sample which does not etch

very fast at all. This etch will then take forever. You may develop some places

which don’t etch well anyway. Just wait it out. Your etch-stop ( 300nm of 90%

or more AlAs) should be able to stand up to this etch for at least maybe 2

hours. It will stand up less if you take it out of the etch and rinse it many times

so avoid doing that when you can. The etch rate will be 1.5-2 µm per minute.

6. After all the GaAs has cleared, you can etch off the AlAs layer in either BOE

6:1 (quick dip, maybe 30 seconds, just watch it till you see it clear), or with 1:1

HCl and water.



Chapter 7

Magnetophotoluminescence of

Quantum Dots

In this chapter I will present typical spectra from InAs quantum dots in a mag-

netic field. We can compare these data to the model developed in Sec. 2.4. We can

study how the g-factor varies and also how much diamagnetic shift is present. Fi-

nally, and most importantly, we will use the magnetic field dependence to explore

the use of quantum dots as magnetic field sensors. Using the quantum dots as a

nm-sized magnetic field sensor we can verify that the fields created by sub-micron

magnet geometries are as calculated. In this sense we can experimentally make some

conclusions regarding whether field gradients greater than 1 T/µm are realistic.

7.1 Sample Spectra for Faraday Geometry

A typical set of spectra from a mesa containing a single quantum dot is shown in

Fig. 7.1. These data were taken in steps of 0.5T from 0 to 7 T using the 11.5T

variable field Oxford Spectramag. The quantum dot was excited using above-band

excitation with a red diode laser.

From this data we can determine the center position of the emission and from

these fitted parameters determine the Zeeman splitting at each magnetic field value.

If we know the magnetic field applied and have measured a splitting value we can

95
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Figure 7.1: This data shows typical spectra from a single quantum do as a function
of magnetic field. The data are taken from 0 to 7T every 0.5T. The spectra clearly
curve towards shorter wavelengths which is due to the diamagnetic shift.
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Figure 7.2: This plot shows the splitting from the data in Fig. [?]. The data lie on
a staight line and have a geff -factor of 152 µeV/T. This corresponds to a g-factor of
-2.62

determine the total g-factor for the dot. In fact the magnetic field for an observed

Zeeman energy splitting ∆ZE is related to the applied field by

∆ZE = |E|+1〉 − E|−1〉| (7.1)

=
√
δ2
1 + β2

1 (7.2)

≈ µB(ge,z + gh,z)Bz (7.3)

If we desire to use the dot as a local probe of the magnetic field we must know

the g-factor prior to calculating the magnetic field. Thus if we want to measure

the field created by a local ferromagnet we can vary the external field and assume

that the field due to the ferromagnet is unchanged. This is a reasonable assumption
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for fields where the ferromagnet has reach saturation and for Dy this was true for

B>1T as shown in Sec. 5.4.6. Simply put, we have two unknowns–the g-factor and

the magnetic field due to the nearby ferromagnet– and we can use an experimental

parameter and a measured variable from which we can determine both unknowns.

This can be summarized by the following equation:

∆ZE = µB(ge,z + gh,z) [B0 +BM ] (7.4)

where B0 is the external magnetic field and BM is the magnetic field due to a localized

magnetic material. Thus, if we measure splitting values while BM is saturated and

fit the data to a line we can determine how much contribution to the splitting is due

to BM . This can be done by extrapolating the line to when ∆ZE = 0 at which point

BM = −B0. This is the basis for the measurements we made to try to determine the

effect of the Dy ferromagnets located near the quantum dots as described below.

7.2 g-factor variation

Before we discuss the details of the measurements of the quantum dots near nano

or micro-magnets let me point out the variation in g-factors which we could do after

accumulating many spectra. The data are composed from two sets: 1) From spectra

where we actually swept the magnetic field and then found the slope of the fitted

line and 2) data from which we divided the observed splitting by the applied external

magnetic field. From these data we created a histogram of the distribution of g-factors

as shown in Figure 7.3.

7.3 Diamagnetic Shift

Diamagnetic shifts from single quantum dots have been reported [82, 83, 84]. Typical

coefficients are less than 20 µeV/T2. This means that the central position of the two

peaks blue-shifts quadratically for increasing magnetic fields. As can be seen from

the spectra plot in Fig. 7.1 the peaks indeed curve towards higher energy. INSERT
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Figure 7.3: A histogram of the distribution of g-factors for the dots we have measured.
This data can only tell us the effective g-factor, or ge,z + gh,z. If the dark states could
be measured then it would be possible to determine the contribution from the electron
and hole separately. The best way to do this is to apply the magnetic field slightly
off a normal axis and this introduces a mixing of the bright and dark states.

FIGURE.

7.4 Voigt Geometry

We also explored Voigt geometry photoluminescence studies for two reasons: 1) For

determining the effect of the Dy magnets in a different orientation and 2) For creating

entangled photons from a quantum dot [5] by tuning the magnetic field to a point

where two of the energy levels in the Voigt geometry are nearly degenerate 2.4.2.

7.5 Quantum dots with magnets

This section shows devices I fabricated that include mesas containing quantum dots

and nearby magnetic material. The clean room processing for this work ultimately
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Figure 7.4: This SEM shows a full view of a magnetic that capped a mesa containing
quantum dots. The dysprosium metal deposited was 1µm thick and tremendous
strain developed in this film causing it to curl. Also noticeable is what we believe is
a dynamical shadow-masking effect. This is evident in the region of metal deposited
around the edge. We believe that the magnet curled up while deposition was underway
and after curling it acted as a mask for further material that was deposited directly
onto the substrate.

helped us determine a structure that was easier to fabricate and also, in principle,

could achieve larger magnetic field gradients.

7.5.1 Faraday orientation

We first tested devices that included mesas embedded inside the magnetic mater-

ial. This was done by orienting the magnetic field parallel to the growth direction.

We simulated the results as show below and also mesaured devices that had this

configuration.

Magnet Simulation
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Figure 7.5: The original intent of the experiment was to place micromagnetic material
near to mesas containing quantum dots. This SEM shows a triangular magnetic
structure we fabricated near the mesa. The mesa is the oval- shaped region and the
triangular magnet is pointing toward the mesa.
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Figure 7.6: The original intent of the experiment was to place micromagnetic material
near to mesas containing quantum dots. This SEM shows a rectangular magnetic
structure we fabricated near the mesa, which is the small mesa that appears whitish
in the SEM micrograph.
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Figure 7.7: The SEM shows a magnet with a region protruding out due to the mesa
below. The mesa was roughly 0.5µm tall and with the magnet deposited on the mesa
and surrounding region

Experimental Result

7.5.2 Voigt orientation

To confirm that the dysprosium magnet was indeed the source of the offset we decided

to rotate the such that the magnetic field was perpendicular to the growth direction.

In this orientation we expected a

Magnet Simulation

Experimental Result
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Figure 7.8: This SEM shows the metal directly above the mesa was removed. This
effect is due to a dynamical shadowmasking effect which cause the region above the
mesa to form a mushroom-like cap. When we performed lift-off this small region of
material was removed. This was not universal and roughly 50% of the structures had
caps removed. With the cap removed it was possible to perform photoluminescence
studies.
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Figure 7.9: This simulation is for the Faraday geometry. Notice that the magnetic
field is decreased inside the void region. The blue region is missing magnetic material
while the surrounding yellow region contains dysprosium.
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Figure 7.10:
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Figure 7.11: Simulation showing Voigt Simulation
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Figure 7.12: Simulation showing Voigt geometry. Notice that hear the void has an
increase in the magnetic field strength instead. This simulated result was confirmed
by our experiments.
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Figure 7.13: Here we observed that indeed the magnetic field produced by the void in
the Voigt gemoetry was additive. This can be seen by finding the x-intercept of the
lines drawn. At this point the observed ∆ would be 0 and thus Bµm = B0 and so we
can extrapolate what Bµm assuming that it does not change with external magnetic
field, B0.
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7.6 Blinking and Spectral Stability

The emission spectra from quantum dots sometimes changed significantly from second

to second or between different days. Generally, we tried to avoid working with dots

which exhibited poor stability in their emission spectra. However, we found that

sometimes things just changed for unexplained reasons. For one dot we studied the

emission spectra remained stable for a few weeks and then after removing the sample

to room temperature, remounting the sample and then reloading it into the VTI, the

emission changed. In fact for mesa 1175, the emission spectra we show in Sec. 8.4

disappeared. This change may be due to strain from the way the sample is mounted.

Sometimes the change seemed to be correlated to pumping with high laser power

over an extended period of time. This is highly speculative and not something we

devoted effort in trying to quantify but a trend that we noticed. For one dot (mesa

1191), the emission spectra disappeared entirely when pumping in the wetting layer

(∼850nm) but after pumping using a red diode laser (∼650nm) the emission returned

to “normal” behavior. This may be indicative of some localized charge instability.

Further evidence of this behavior was observed at the end of one day in a dot who

subsequently never regained the spectrum we had first observed when we began to

work with it. In fact, we took 5 second acquisitions every 5 seconds over the course

of a few minutes and the result is plotted in Fig. 7.14. We interpret the jumping of

the spectra as due to emission from different charge states. The emission could be

due to a change in the local Coulombic environment or from different charge states

of the quantum itself. The main point is that some further study could be pursued

to understand this behavior and it may that this behavior could be utilized in some

controllable way. Maybe a combination of charge states and change in local strain

can allow one to tune the emission spectra of a quantum dot in a arbitrary way. This

could be of practical importance to cavity QED experiments where mode matching

between the cavity and the quantum dot remains a challenge.
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Figure 7.14: These spectra are from a dot who we noticed had an unstable emission
spectra. The spectra shown are 5 second acquisitions taken roughly every 5 seconds.
The emission appears to be hoping around. It appears that the emission is mostly
stable for a few seconds and then jumps but over a 5 second interval it doesn’t jump
much. In that case we would see many more doublets in each acquisition.
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Optical Pumping Measurements

This chapter presents the results of the optical pumping experiments and compares

these results to the theory developed in Sec. 3. These experiments require control

of the pump laser polarization as well as shutters to control the timing of the pump

polarization and the collected photoluminescence. The setup for this timing control is

shown in Sec. 5.4.6 and details for the particular timings for each experiment is shown

below with the experimental result. The data in this chapter present a novel way of

probing the nuclear spin dynamics within a quantum dot. Previous work has used a

depolarizing rf field to study the timescale of nuclear depolarization in the presence of

rf [85], but this work is the first to study the timescale over which Overhauser shifts

develop by observing the photoluminescence evolution.

8.1 Measurements

The primary objective of the experimental efforts presented in this section was to

demonstrate that with a quantum dot it is possible to couple the nuclear spins and

the electron forming the quantum dot exciton. In order to achieve this goal, we first

set about trying to control the incident polarization of the pump light.

112
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8.1.1 Typical Results

A typical spectra while pumping the quantum dots via wetting layer excitation under

different pump polarizations is shown in Fig. 8.1. In these data the laser wavelength

was set to 854.2nm and the pump power was measured at 2.1mW before a glass

wedge which reflects 5% of the light. The data in the figure below is the result of the

photoluminescence under two pump conditions. In one case the pump polarization

was σ+while in the other it was σ−. The photoluminescence under these two pumping

conditions leads to different Zeeman splitting values. For the result plotted in Fig. 8.1

the Zeeman splitting under σ+is 0.0440nm ± 0.0021nm and for σ− it is 0.0773nm ±
0.0015nm. The difference, ∆ = |∆σ+ −∆σ−|, in this case is 0.0333nm± 0.0026nm.

Figure 8.1: A typical PL spectrum under σ+and σ−pump polarization. These data
was taken at 0.8 T.

The basic approach we take is to collect the data and apply a Gaussian curvefit to

the spectra. From this fit we can extract the center positions λ
σ+

0 and λ
σ−
0 , the widths

Γσ+ and Γσ− , and the peak heights I
σ+

0 and I
σ−
0 . We can also extract a confidence

interval for each of these parameters. The confidence interval is the 95% likelihood

bounds of a particular value for the fit. This bound is converted to an error bar. Then,
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we repeat this experiment multiple times in order to improve the uncertainty of the

center position of the curve-fit. One point is that we calculate ∆ for a given Zeeman-

split pair and then do the statistical analysis by comparing ∆ between different runs.

This approach helps us avoid difficulties arising from Coulombic shifts of the center

position of the peaks or from temperature changes which give rise to different peak

positions. However, the splitting is only affected by magnetic fields and is therefore

insensitive to temperature fluctuations or different Coulombic environments. Discuss

g-factor dependence. Discuss charge states.

8.1.2 Expected Shift

This section discusses the expected spectrum for different pump polarization assuming

a model where the dark exciton state is involved in the nuclear polarization process.

As presented in Chapter 3, the dark exciton state is populated due to a fast hole

relaxation time. It is not known if the hole spin relaxes in the wetting layer or within

the dot but either case leads to the same conclusion regarding the effect on the nuclear

polarization.

The argument for what type of spectrum we expect to see is presented in the

captions for Figures 8.2 and 8.3. Essentially, the g-factor is expected to be negative

and we see spectra that typically look like that shown in Figure 8.2. In fact the

spectrum shown in Figure 8.1 has the same asymmetry in the peak intensity and the

direction of the peak movement is similar. This result is encouraging in that the peak

movement is consistent with a shift due to nuclear polarization. However, the fact

that the shift is consistent with a model that invokes a hyperfine interaction does

not preclude the possibility that some other effect is at work. For instance could

unpaired electrons in the wetting layer or bound to impurities be responsible for the

Zeeman effect? This unknown prompted us to try both nuclear magnetic resonance

and also timescale measurements. Nuclear magnetic resonance would manifest itself

in a change of the Zeeman splitting and would prove that nuclei were responsible.

It turned out that this approach would not work and the reasons are discussed in

Section 8.3.2. Instead a timescale longer than µseconds would be a likely indicator
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that nuclei were at play. In addition, we performed some measurement using timescale

measurements that demonstrate a long lifetime for the shift which is indicative of

nuclear polarization.

8.1.3 Power Dependence of observed shift

One of the first measurements we tried after observing the Overhauser shift was to

explore the power dependence of this shift. That is, we can plot ∆ versus laser pump

power. The experimental result for one particular dot is shown in Fig. 8.5.

A model that might explain this data is one that assumes a simple picture of two

states with transition rates between the two. By state I do not mean a quantum-

mechanical state but a description of the status of the magnetic field creator. One

extreme is the state of thermal-equilibrium, P0 while the other extreme is the steady-

state nuclear polarization, Pss, achieved under a given laser power and applied exter-

nal magnetic field, B0. Let us label the transition rate from P0 to Pss to be a, and

let b in the downward transition from Pss to P0 as shown in Fig. 8.6.

We can write the rate equations for this system as,

Ṗss = aP0 − bPss

Ṗ0 = −aP0 + bPss

We can simplify the picture further by noting that since the net polarization is nor-

malized to 1, Pss + P0 = 1. Once we solve for the steady state, Pss, we arrive at

Pss = Pmax
a

a+ b

Here, b is the relaxation rate which is independent of laser pump power, while a is

directly proportional to pump power. These assumptions are reasonable although

the actual physical system could be more complex that this model. Nonetheless, this

behavior is consistent with the observed result as shown in the model. We can extract

some fitted parameters for these numbers and here we find that Pmax = 0.097nm and

b = 1.468.
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Figure 8.2: This flow-chart shows the effect of the nuclear spins on the emitted photon
energy for geff <0. If excitons are created in the wetting layer under σ+illumination
predominantly |+1〉 excitons are created. Thus the grey peaks shown have a large
intensity for the |+1〉 state which is at larger energy or shorter wavelength. Hole
spins can easily flip which leads to dark exciton population build-up in the wetting
layer. Alternatively, the hole-spin can flip even while the dot is populated by a
bright exciton state. In any event once the hole relaxes, there is a possibility for the
nuclear spin and electron spin to exchange spin direction via a hyperfine process as
discussed in Chapter 3. In the case of σ+pumping the nuclei tend to become negatively
polarized after repeated spin flips. Then if a |+1〉 is present in the dot the nuclei that
are spin-down and the electron that is spin down lead to a net positive hyperfine
interaction. This means that the higher energy peak blue-shifts. Alternatively, if a
|−1〉 exciton is trapped in the dot the hyperfine interaction is negative and thus it
red-shifts. In summary the peaks become further separated under σ+illumination.
We can go through a similar analysis for pumping under σ−polarization which leads
to a compression of the peaks. Also note the longer wavelength peak, associated with
the |−1〉 exciton state is dominant in this case.
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Figure 8.3: For the case of g < 0 similar spectra are observed but instead the peaks
compress for σ+pumping. Also note that now longer wavelength peak (smaller energy)
peaks is more prevalent due to the lower probability of electron spin-flipping events.
Thus, the peaks shift and the dominant peak is the higher energy peak to the right.
For the case of σ−pumping the peaks move further apart and the shorter wavelength
peak (higher energy) has a greater intensity. Thus, the spectrum are completely
reversed.
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Figure 8.4: This diagram provides an pictorial model for the nuclear polarization
under σ+pumping. The bright state is populated in the dot and then the hole spin
relaxes which causes the exciton the relax to the |−2〉 state. A flip-flop processe occurs
which causes the electron and nucleus to exchange spin directions and this leads to
a change in the nuclear spin direction to be in the downward direction. The process
of the electron-spin flip and simultaneous nuclear-spin flip does not conserve energy
and so the process is virtual and called a spin-flip assisted radiative recombination.
To conserve energy the emitted photon will have an increase or decrease in its energy
corresponding to the energy mismatch between the |−2〉 and the |−1〉 state. The
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Figure 8.5: Power dependence of ∆. Typically, we would run the experiment at laser
powers of 1-3mW, which is below the saturated region. At higher laser power the
emission from the quantum dot becomes more broadband and biexciton peaks begin
to appear and eventually dwarf the single exciton peak. At large pump powers the
total shift ∆ approaches 0.09nm, which can be converted to a nuclear polarization of
10% for indium and 30% for arsenic.

8.1.4 Resonant Excitation

Most of the work presented in this thesis involved pumping excitons into the wet-

ting layer (850-860nm) and observing the photoluminescence (870-940nm) from single

quantum dots. It should be noted, however, that we can excite resonantly or in an

excited-state of the quantum dot. Spectroscopy where one varies the excitation laser

wavelengths is called photoluminescence excitation spectroscopy. This is interesting

because by scanning the laser pump wavelength we can change from creating exci-

tons within the wetting layer to creating excitons in the n=2 or other higher excited
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Figure 8.6: A two-state model for the system. Pss is the steady-state polarization
and P0 is the thermal equilibrium polarization.

state of the dot itself. This offers less chance for the electron spin to flip. In fact

the typical n=2 excited state for the dot is located 10-20 meV from the ground state

recombination energy. Once an exciton is injected directly into this state there are

fewer opportunities for the electron spin to flip so the emitted PL should have better

spin conservation or more asymmetry in the peak height. Indeed, one mesa (1189)

shows an increase in spin conservation. This experiment was challenging and we only

studied a few dots using PLE. This line of research is more challenging since the res-

onance are often very narrow ( 0.1-0.5nm) and can easily be missed during a scan. In

addition, the resonance can change due to nuclear polarization build-up and changes

in the local charge configuration. Here I show two figures with spectra from the same

dot under different pumping conditions.

8.2 Time-scale measurements

Using shutters to control the timing of the excitation laser and the photoluminescence

collection we can gain access to dynamical behavior of the quantum dot emission.

There are a number of variations of experiments but the basic principle is to observe

the dynamic response of the photoluminescence.
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Figure 8.7: These data were taken under wetting layer excitation (852nm). NOtice
that the longer wavelength (lower energy) peak is dominant under σ−pumping. Under
σ+the higher energy peak is more dominant but the asymmetry in the peak heights
is quite pronounced. Comare this to Figure 8.8

8.2.1 Polarization Timescale Measurement I

After observing the shift and power dependence we tried to determine the timescale

over which the shift develops. The shift arises from observing the photoluminescence

under different pump polarizations so if we excite the quantum dot with σ+ and

σ− alternately and varied the period, f , of the square-wave that controlled the pump

laser polarization we could measure the timescale over which the shift develops. The

schematic shown in Fig. 8.9 shows how the pump alternated between the two polariza-

tions, σ+ and σ−. Then, we collect the photoluminescence under only one polarization

with the timing diagram shown in Fig. 8.10. We collect photons over many cycles in
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Figure 8.8: These data were taken from the same dot shown in Figure 8.7 but instead
the dot was pumped with the laser tuned to 875.6nm. Notice now that the peak
asymmetry is more symmetric. That is, when the laser is set to σ+mostly σ+light is
emitted and vice-versa and this “spin-conservation” exists relatively equally for both
pump polarizations.

order to collect a sufficient number of photons that can be detected by the nitrogen-

cooled CCD attached to our monochrometer as described in Sec. 5.4.3. The observed

Zeeman-split pair has a splitting which I will label, ∆σ+ . We repeat this experiment

under the same conditions but collect photons during the time that the laser polar-

ization is set to σ− as shown in Fig. 8.11. Thus we perform two experiments where

we obtain two Zeeman splittings of ∆σ+ and ∆σ− . Then for each given frequency f ,

we can calculate the difference between these two polarization, ∆ = |∆σ+−∆σ−|. We

performed this experiment 10 times for each polarization and for each value of f . The

results for one particular dot are shown in Fig. 8.12. I have included an exponential
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Figure 8.9: Timing Diagram for laser pump polarization

decay, P0e
−t/τ , fit on the graph and obtain a decay of 77 ms. We have also seen

this behavior in more than one dot. In fact we have seen it in different mesas and

in multiple dots. In Figure 8.13 we show the data taken from a number of dots and

include the associated decay times for each of them.

The first experiment we tried was to change the pump polarization alternately

between σ+ and σ−. We collected the photoluminescence from only one polarization.

At the extreme where the alternation between the two pump polarization prevented

any nuclear spin polarization to develop we would expect no difference between the

photoluminescence under σ+ or σ− pumping.

8.2.2 Polarization Timescale vs. Laser Pump Power

Data showing how the timescale measurement varied with increasing the laser pump

power is shown in Fig. 8.14.

8.2.3 Polarization Timescale vs. External Magnetic Field

Data showing how the timescale measurement varied with increasing the external

magnetic field is shown in Fig.8.15.
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Figure 8.10: Timing diagram to collect σ+ photoluminescence. The shutters control-
ling the laser path that creates σ+ is synchronized with shutter controlling the PL
collected.

8.2.4 Polarization Timescale Measurement II

The next variation on the timescale measurement we devised was a means to try to

extract the timescales for each pump polarization. That is, what is the timescale to

reach P σ+
ss and P σ−

ss ? It turns out that the timescales are not identical and there is a

theoretical basis that supports this.

The idea is to momentarily probe the Zeeman splitting of the quantum dot emis-

sion without disturbing the polarization of the system. This may be possible with

a weak laser field probe or equivalently observing the photoluminescence for a short

window. The schematic, shown in Fig. 8.18, shows the timing diagram for the exper-

iment. We chose a value for f to be sufficiently small that we were in a regime where

∆ was maximized for that particular pump power, or in other words, we could as-

sume that the system reached P σ+
ss or P σ−

ss . At the same time we wanted to collect as

many photons as possible so the larger f we selected the more photons we collected.

According to the results from ”Polarization Timescale Measurement I” Section we

find that f = 1 Hz provides sufficient pumping time (500ms) to reach either P σ+
ss

or P σ−
ss . We probed the Zeeman splitting at a variable time, τ with σ−probe light
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Figure 8.11: Timing diagram to collect σ−photoluminescence. The shutters control-
ling the laser path that creates σ−is synchronized to with shutter controlling the PL
collected.

after having achieved P σ+
ss . We obtained results for the peak positions as shown in

Fig. 8.19. Notice that the relative peak heights switch and as τ increase the peak

shift together in the case of σ+and apart for σ−.

The plots in Figures 8.20 and 8.21 show the change in the Zeeman splitting

versus delay τ .

8.2.5 Relaxation/Diffusion Timescale

Another variation of the timescale measurement we tried was to pump with σ−until

steady-state was reached. Then, we turn off the laser and wait a time, τw during

which the nuclear spins might diffuse or relax to thermal equilibrium. As in the

Polarization Timescale Measurement II, the probe had to be weak and the timing

precise. The timing diagram is shown in Fig 8.23.

The result we observed was that the shift was always present even for the case

where Tw = 20s. In Fig. 8.24 we show the raw data for Tw = (0.1s, 5s, 10s, 20s). This

experiment shows that the shift does not disappear while the laser is off even after

20 seconds. The longevity of the survival of the shift suggests that whatever leads to
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Figure 8.12: Plot of ∆ vs. laser pump frequency f for dot located in mesa#1175

the shift has a long lifetime and the most likely candidate for such a long lifetime are

nuclei.

8.3 Nuclear magnetic Resonance

In order to couple directly to the nuclear spin we can use radio frequency waves which

can induce nuclear spin state transitions. In order to broadcast the rf an antenna, or

coil, was placed near the the sample. We connected this coil to a transmission line

which in turn was connected to our frequency generator and amplifier. Let me give a

brief introduction to operational principle of nuclear magnetic resonance.

8.3.1 Past NMR efforts

Now that we have established a strong case that the mechanism is indeed due to

nuclear spin, the obvious experiment to try is to remove the effect of the nuclear
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Figure 8.13: Plot of ∆ vs. laser pump frequency f for multiple dots.

spins by using nuclear magnetic resonance as discussed in Sec. 3.6. We hoped that

by using pulsed or cw NMR we could interact directly with the nuclei and observe an

effect on the photoluminescence.

We have tried multiple methods including both pulsed and FM continuous wave

rf. This was attempted in the old apparatus as well as the new one in 25D with

different coils and different materials (aluminum and macor) to hold the sample. We

also have introduced a chopper on the laser pump side in order ensure that for some

period of each second there are no excitons present in the dot or in the wetting

layer. We in fact have varied this chopper frequency from around 100 Hz down to

1 Hz. Another variable we have attempted to explore is the rf power. We have

increased the power as high as we can with our existing apparatus. At the largest

powers we have operated we start to introduce so much power that we can detect

that the variable temperature insert (VTI) begins to warm by about 0.5 K using

the VTI temperature sensor and fluctuates in time, which makes the system very

unstable for doing measurements that require integrations greater than 5 seconds–

which are the majority of the useful experiments. In addition the spectrum red-shifts
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Figure 8.14: Plot of the dependence of the polarization timescale for different pump
power condition

and becomes weaker which suggests that the true temperature at the sample is larger

than measured by the VTI temperature sensor.

Recently, we tried an experiment using FM rf of the form ω(t) = Ω sin(ωct) + ω0.

Here, Ω is the frequency excursion, ω0 is the carrier frequency, and ωc is the sweep

rate of the frequency modulated rf. We tried to look only during the phase of the

FM waveform so that we only collect photoluminescence when the nuclei are aligned

to the external magnetic field or when they are anti-aligned. However, we could not

observe any effect.
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Figure 8.15: Plot of the dependence of the polarization timescale for different external
magnetic field values. The laser pump power was kept constant for these measure-
ments

8.3.2 Problems with RF

Given that the rf has not been successful and we have tried in one form or other during

one year to get it to work there could be something intrinsic to the InAs quantum

dot which will make NMR challenging. Some of the unknown parameters include:

• NMR linewidth γ: Gammon’s result showed a resonance of 20 kHz for Ga and

20 kHz for As. He also reported that the linewidth of some dots was broadened

by even up to a factor of 10. Typical bulk NMR results also suggest a dipolar

broadening of the order 10’s of kHz. This could lead to a further broaden-

ing beyond the typical solid-state nuclear dipolar broadening. In contrast the

result by Gammon et al was taken with the laser on and maybe the 20 kHz
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Figure 8.16: Plot of the theoretical polarization timescale for different external mag-
netic field values. The laser pump power was kept constant for this model. An
important point to note is that σ+pumping always polarizes the nuclei faster than
σ−and this can be explained from the difference in the energy mismatch between
the dark state and the bright state involved in the second-order recombination. The
insert shows the energy dependence of the exciton states versus magnetic field

broadened line was due primarily to a fluctuating magnetic field created by

the exciton trapped in the dot. This makes choosing an appropriate value for

the frequency excursion Ω or the pulse widths in pulsed NMR difficult.[ADD

SECTION ABOUT STRAIN].

• Exact magnetic field, B0. The exact field at the quantum dot could be off due to

some local paramagnetic impurities in the sample could alter the field. Again,

Gammon reported that the resonance frequency varied from dot to dot. An

impurity could also lead to a broadening of the line. If the resonance frequency
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Figure 8.17: Snapshot of shift as it develops

is not precisely known as well as the linewidth it makes the parameter search

challenging.

• rf power, B1: The power created by the coil and seen by the nuclei in the

quantum dot is unknown. Since this is non-conventional NMR and we have no

direct emf to detect, it is difficult to calibrate pulses and estimate the power

the nuclei are experiencing.

The overall point of this section is to list known possible reasons why the rf is

not working. I would also like to point out that when I met Dan Gammon at the

APS meeting this year he said that the last time he tried using rf to interact with

the nuclear spins within their quantum dots they could not reproduce their earlier

result and they did not have an explanation for their lack of success. This suggests to

me that getting the rf operational is not a routine task as it is in conventional NMR

where there is a well-established technique.
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Figure 8.18: This is the timing diagram for Polarization Timescale Measurement II.
We either collect after the start of the σ+laser pulse or the σ−laser pulse.

8.4 Trion States

. In Section 8.1.2 we explained how the data shown in Section 8.1.1 can be explained.

We found additional dots that had different behavior in terms of the relative peak

heights. An apparent Overhauser shift was still present but instead when we pumped

with σ+

8.4.1 Nuclear Polarization

Santori reported that a given can alternate between being a negative trion, positive

trion, neutral, and a bi-exciton mode among possibly other multi-particle complexes.

Thus, a dot could achieve nuclear polarization through the means discussed in Chapter

3 and when we probe the dot while it is in a charge state we would still see the effect

of the nuclear spins on the emission wavelength of the photoluminescence.

8.4.2 Summary of Timescale Behavior

The shift we have observed is most likely due to nuclear spin because:

1. The timescale is of the order of milliseconds to tens of milliseconds.
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• This timescale is extremely long to be due to electron spins in the wetting

layer reservoir. The exciton lifetime in the wetting layer is on the order

of picoseconds. This result is based on Santori’s result [3] with the streak

camera where he observed that the photoluminescence from the wetting

layer disappears within 25 picoseconds. Thus, the spin direction of the

electrons in the wetting layer follows the optical field polarization with a

lag of < 25ps.

• If the effect is due to some charge trap state then we would expect a sudden

shift in the photoluminesence energy. Instead, we observe a gradual change

in the peak positions as shown in the section titled Polarization Timescale

Measurement II.

• Another possibility is the build-up of electrons trapped on the surface of

the mesa. However, we have been working with 1 micron x 1 micron mesas

and the dipolar field from electrons at this distance is very weak.

2. We have observed a similar timescale in multiple dots. We can conclude, then,

that the mechanism causing this behavior is intrinsic to the material and not a

random unexplained local charge state in one particular dot. For the effect to be

universal would require that the mechanism be do something like the electron

reservoir, but as discussed in the above point, this timescale is much faster than

the observed timescale of milliseconds.

3. The shift remains even after the laser field is removed for 20 seconds. This

suggests that the mechanism leading to the shift is long-lived. Nuclear spin

polarization is known to be long-lived in solid crystals at low temperatures.

These results are interesting because this is the first reported measurement for the

nuclear polarization timescale in single self-assembled InAs quantum dots. Previous

work measured the depolarization rate of nuclei (namely Ga and As) in GaAs quantum

dots under cw rf of 3.5sec but no one has directly observed the nuclear polarization

timescale within a single quantum dot. Additionally, we have reported about the



134 CHAPTER 8. OPTICAL PUMPING MEASUREMENTS

charged quantum dot and nuclear polarization within it. This type of dot holds

tremendous interest for the community for its use in quantum information devices.

One can think about the nuclear polarization with a back-of-the-envelope approach

as well. Assuming that roughly 109 excitons can be captured in the dot per second

then in theory there could be 109 spin exchange between nuclei and electrons per

second. The dot is now quite saturated so the number of excitons injected into the

dot is actually lower and the probability of a spin flip-flop process is much less than

1. Also, there are 104 to 105 nuclei within the dot. Roughly speaking with a 10%

nuclear polarization there are between 103 and 104 nuclear mI sublevels that advance

during the polarization process. Roughly then the probability of the flip-flop process

needs to be about 10−5 to 10−4 in order to polarize the nuclei to 10%. These numbers

are thus reasonable.
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Figure 8.19: A plot showing the peak evolution of the peaks under different pump
polarization
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Figure 8.20: A plot of ∆σ+ vs. delay τ .
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Figure 8.21: A plot of ∆σ− vs. delay τ .
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Figure 8.22: Idea behind nuclear relaxation and spin decay

Figure 8.23: Relaxation timescale measurement timing diagram.
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Figure 8.24: A plot of the raw data from the relaxation experiment with Tw =
(0.1s, 5s, 10s, 20s)
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Figure 8.25: Charge State
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Figure 8.26: Nuclear Relaxation/decay for charge state. This plot shows the peak
splitting under σ−pumping as a function of wait time according to Figure 8.23



Chapter 9

Future Directions

9.1 Interferometer

Considerable effort was made by myself, Masayuki Shirane, Shinichi Koseki, and

Kaoru Sanaka to install an interferometer for performing high spectral resolution

measurements. The intent was to do a lock-in type detection of the photoluminescence

emission with the applied rf. In this way we could observe the effect of the nuclear

spins on the photon emission. This equipment had marginal operational performance

and given the difficulties we discovered with rf in InAs quantum dots its success

will require considerable improvements. Here I will review briefly the operational

principle of a Mach-Zender interferometer and the basic idea of how to use digital

lock-in detection to observe nuclear spin effects. Such a system will be necessary for

any future directions

9.2 Increased Collection Efficiency

In addition to new instrumentation, such as the interferometer or better photon detec-

tors, we can make improvements on the collection efficiency by improving geometrical

aspects of the setup. Although this sounds intuitive and simple it actual leads to some

experimental challenges. Already we have inserted a lens into the re-entrant bore of

the magnet and the lens is very near the window. This lens is a compound microscope

141
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objective and experiences a field near that of the cental region (∼11 T at maximal

field) and so large forces are exerted on the housing and steel screws holding together

this compound system. The bore has a limited diameter of 30mm as well so the lens

must sit inside the bore and be mounted in such a way that there is some travel. The

sample can move vertically by lowering or raising the sample probe. However, lateral

motion is only available currently by moving the first lens and this further limits the

size of the lens. The lens is about 40mm from the sample and has a diameter of

roughly 10mm.

In the current experiment we can only a tiny fraction of all the photons emit-

ted from the quantum dot mesa. The photons are emitted in all directions yet we

only collect about 1 percent of them with our current geometry. This limitation is

due to the distance the lens is placed from the sample and the diameter of this first

lens. The numerical aperture in our system is only 0.18. We can increase this by

moving the first lens closer to the sample and adding reflectors to reflect all photons

towards the collection optics. In fact one major improvement currently being un-

dertaken is to install a small lens directly on the sample holder which will collimate

photoluminescence from quantum dots. This requires, then, careful design in order

to properly illuminate the sample with laser light and collect as much available pho-

toluminescence. The current methodology being pursued is to install a micro-stage

with non-magnetic parts on the end of the sample rod which can be remotely moved

by applying a voltage on a feed-through line. In this way the imaging optics are kept

fixed and the sample is moved in order to study different quantum dots. However,

the range or motion is limited by the small sample space housing the stages. Such a

system is challenging and must work in an extreme environment of 1 K and 11.5T.

9.3 Feedback Stabilization

In addition, to improving the collection efficiency the next most important need is

feedback stabilization. We have observe the sample drift and on some evenings the

drift was ∼1µm/sec which made experiments very tedious and the results unreliable.

Recall that in our setup the lens both focuses the laser on the sample and collects
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the photoluminescence. As the sample drifts the power delivered to a mesa changes

since the focus spot on the sample is drifting. As we observed in Chapter 8 the

Overhauser shift is laser power-dependent and so if our delivered laser power is un-

stable it is difficult to vary other parameters independently. Thus, the mechanical

stability of the sample holder is a requirement. Additionally, in order collect suf-

ficient photons under similar conditions we sometimes needed very long integration

times. For example, in the experiment described in Section 8.2.4 where we tried to

probe the relaxation/diffusion timescale we needed to collect approximately 0.4sec

worth of photons. However, with this experiment we could only open a shutter for

5msec every cycle so that we didn’t perturb what we were trying measure. Thus, for

example, when we let tw be 30 sec, we required a total integration time on the CCD

of approximately, 2480 seconds. This long time is much too long for the system to

maintain stability.

It is possible with image processing and piezo-actuators to maintain stability of

the sample position assuming the long-term drift of the probe is sufficiently small.

The range of motion of the piezo-actuators may not be sufficient to compensate for

hundreds of micron of movement. The basic operational principle is to capture an

image of the field of view using an image capture card. Then this image or a cropped

region is sent to some data processing software (e.g. Matlab or LabView) where

relative motion between frames is detected. The relative motion detected can then

provide a signal to send to the piezo-actuators to compensate for the sample position

drift. Such a system has been implemented in other photoluminescence setups within

our research group an in principle it can be implemented in our setup. However,

the geometry makes the imaging more difficult in that the same path is used for the

pump laser and the collected light. Thus, we rely on optical filters to attenuate the

pump laser while transmitting the photoluminescence. Image processing may work

with an illumination source that is not going to create excitons (> 1µm) or on a

portion of the sample not being studied but with a higher energy light source. In

the former, the difficulty arises in finding with a CCD array that operates well at

such long wavelengths while for the latter the difficulty is creating a suitable optical

setup that such an optical path can be integrated into the optical setup as shown in
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Figure 9.1: 5 Layer device

Figure 5.8.

9.4 5-layer structure

For direct observation of the magnetic field variation within a nano-void of magnetic

material, a multi-layer quantum dot structure can be used. The structure, as depicted

in 9.1 has been grown by Dr. Bingyang Zhang and individual quantum dots from this

structure have been observed 9.4. An integrated device with the magnetic structure

has been fabricated but no detectable effect from the magnetic material was observed.
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9.5 GaP quantum computer

A promising new direction of research that is being pursued is the insertion of a mono-

layer of P within a GaAs quantum dot. This structure is also being grown by Dr.

Zhang using MBE techniques and by collaborator Prof. Charles Tu at UC San Diego.

Many areas need to be addressed including detection of single nuclear spins, 2-d field

gradient design, etching process, and implementation of a logical buffer region.

9.6 Magnetic Resonance Force Microscopy

Although we abandoned our research effort with magnetic resonance force microscopy

(MRFM), this avenue or work still holds promise and may in the long run be a more

versatile means of detecting nuclear spins from an arbitrary crystal. It seems that

our philosophy has shifted to using materials where optical detection is possible since

if a material can be detected optically there is hope that nuclear polarization can

be achieved using optical injection of of excitons or free carriers. However, there

many be other means of polarizing nuclear spins (EXAMPLE and REF) or in certain

geometries the coupling between individual nuclear spins is too weak for detection by

optical means. Given the importance and favorable scaling behavior some discussion

of magnetic resonance force microscopy is warranted.

9.7 Nanowires

The discussion so far has focused exclusively on engineering large magnetic field

gradients using ferromagnetic materials. Large field gradients may also be achievable

using current carrying wires. These wires have the added advantage that the magnetic

field can be tuned and the field gradient can be completely removed by changing

the amount of current that flows through them. An absence of any magnetic field

variation allows for some decoupling pulse sequences which have a more favorable

scaling behavior than decoupling pulse sequences which operate in the presence of

magnetic field gradients.
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Figure 9.2: SEM showing the gold nanowires.

Some preliminary work was done in collaboration with Dr. Mark Topinka who

was pursuing post-doctoral research under Prof. Goldhaber-Gordon. We fabricated

some nanowires (see figure) of dimension 150nm long with a cross-section of 50nm X

50nm made from deposited gold. Graduate student Jon Schuller tested these devices

in a low temperature probe station operating at 4 K.

Devices failed between 100 mA and 500 mA and by failure I mean an open circuit

was observed. The observed resistance values before breakage were R = 10 20 Ohms

and afterward failure it became infinite. The current densities present are extremely

large at 1013 to 1014 Am2 which is 3 to 4 orders of magnitude larger than what is

present in a pentium chip.

This line of research, and similar unpublished work done previously by Prof. David

Goldhaber-Gordon could lead to useful devices. Already with gold nanowires large

current densities have been achieved and it is believed that other metals such as

copper will not suffer from electromigration in the way that soft metals like gold
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Figure 9.3: Field and Field gradient near a nanowire

do. Future ideas may include using multi-walled carbon nanotubes which are even

smaller than metallic nanowires. The multi-walled nanotubes may be able to carry

larger current densities.



Chapter 10

Conclusions

To following are the main results presented in this thesis:

1. We have presented designs for magnets that provide sufficient magnetic field

gradients for addressing single nuclear spins.

2. We have demonstrated that single quantum dots can be used to measure mag-

netic fields with high spatial resolution.

3. We have measured the effect of a small magnet on the photoluminescence from

single quantum dots and have concluded that they are consistent with our cal-

culations and therefore the magnets should provide the necessary field gradients

4. We have observed nuclear spin polarization due to circularly polarized pump

light. We have determined the timescale over which the nuclear spin polariza-

tion develops. Additionally, we have observed that the shifts we have observed

remain for at least 20 seconds which provides strong evidence that the mecha-

nism at play is indeed nuclear spin interaction.

5. We have presented a model which is consistent with the observed timescales of

order ∼ 1ms to tens of milliseconds which is the fastest measured timescale of

any known solid-state system.

6. We have observed nuclear polarization among the indium nuclei reach 10% and

for arsenic it saturates at about 30%.
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7. We have observed negative polarization in single self-assembled InAs quantum

dots. This, we believe, can be attributed a negative trion states. In addition

we have observed nuclear polarization behavior in charge states similar to the

neutral dots.



Appendix A

Fluorapatite based quantum

computer

A proposal for a solid-state implementation of a quantum computer is presented.

Qubits are nuclear spins arranged as one-dimensional chains with resonant frequen-

cies separated by a large field gradient. Initialization is accomplished by optical

pumping, algorithmic cooling, and pseudo-pure state techniques. Quantum logic is

accomplished using nuclear-nuclear dipolar couplings with RF pulse sequences. Mag-

netic resonance force microscopy is used for readout. This proposal takes advantage

of many of the successful aspects of solution NMR quantum computation, including

ensemble measurement and long decoherence times, but it allows for more qubits and

improved initialization. Two systems are proposed: One uses fluorine nuclear spins

in a natural solid crystal of fluorapatite [Ca5F(PO4)3] while the other uses isotope

engineering to construct ideal one-dimensional chains of 29Si nuclear spins in a 28Si

(spin-0) matrix.

A.1 Introduction

An increasing number of theoretical developments have recently motivated the con-

struction of a quantum computer with a large number of qubits. The potential for

efficient simulation of quantum systems [14], the discoveries of algorithms for fast
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factorization [86] and database searching [8], and the development of quantum er-

ror correction [87] have helped to spur a large number of proposals for experimental

implementations of a quantum computer. However, any physical implementation of

a quantum computer must battle the fact that well-isolated quantum systems are

difficult to couple and to measure, whereas the introduction of necessary couplings

and probes leads to the devastating effects of decoherence.

To date, the most successful experimental realization of a multi-qubit quantum

computer (or at least a simulation thereof) has been in room-temperature solution

NMR [19]. Here, the spin-states of molecular nuclei in a solution are well isolated,

as demonstrated by long thermal relaxation times (T1) of many seconds. The nu-

clei of each molecule are weakly coupled by scalar couplings. Measurement without

substantial decoherence is made possible by the large ensemble of ∼1022 uncoupled,

identical molecules in the solution. There is much debate, however, as to whether

solution NMR currently does or ever will exhibit the signatures of truly quantum in-

formation processing [88]. The presence of a large, mixed ensemble renders quantum

entanglement and wave-function collapse of individual spins unmeasurable. Certain

manipulations allow the processing of an “effective pure state” in which the ensemble

behaves nearly identically to a single quantum system [19, 89]. However, it has been

shown that the evolution of effective pure states of existing solution NMR computers

can be described without any entanglement, and either more qubits or much larger

nuclear polarizations will be needed before entanglement is demonstrable [90]. Even if

we neglect the debate of what is “quantum” and what is not, the principal limitation

due to the small polarizations in solution NMR quantum computation is that the

usable signal decreases exponentially with the number of qubits, leaving this method

unlikely to exceed the 10 qubit level without extensive modification [91].

In this letter, we propose an implementation using solid-state NMR. In a solid

crystal there exists the potential for polarization of the nuclear spins by cooling of

the network of spins to extremely low temperatures. This is most readily achieved

by the introduction of polarized electrons which can interact via a hyperfine cou-

pling with the nuclear spins and transfer their polarization to them. Additionally,

the thermal relaxation time T1 can be dramatically lengthened when moving from
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a solution to an insulating, nonmagnetic crystal, and the nuclear-nuclear coupling

can be faster. Hence, a solid crystal has great potential for quantum computation in

terms of timescales [38] and scalability.

These advantages, however, come at a cost: several difficult and related prob-

lems arise in implementing a solid-crystal NMR computer. This letter, although

not the first proposal for quantum computation in a crystal lattice [2], provides new

approaches to these problems. One problem is the complicated network of dipolar

couplings in a solid, which must be suppressed to slow T2 decoherence but selectively

retained for logic. We address this problem with both “selective averaging” radio fre-

quency (RF) pulse sequences and a well-chosen crystal structure. Another problem

arises from the need to distinguish and detect nuclei in the periodic lattice of a crys-

tal; for this we establish a very large, static, one-dimensional magnetic field gradient

with a microfabricated, high-magnetization ferromagnet [92]. Only a small ensemble

of nuclei may fit into the area over which the gradient field is homogeneous, and

therefore a more sensitive means than standard inductive pick-up is needed to mea-

sure the nuclear spin states. We propose using magnetic resonance force microscopy

(MRFM).

A general schematic for the solid-crystal quantum computer we propose appears

in Fig. ??. The quantum computer is an ensemble of N one-dimensional chains of n

spin-1/2 nuclei. Due to the field gradient, the resonant frequencies of the nuclear spins

within a chain are different. Hence the secular component of the dipolar Hamiltonian

which couples the ith spin to the jth spin within the mth chain is written [75]

Ĥijmm =
µ0

4π
γ2~2 1− 3 cos2 φ

[|j − i|a]3
Îz
imÎ

z
jm

≡ ~δωij Î
z
imÎ

z
jm, (A.1)

where γ is the gyromagnetic ratio (2π × 40 MHz/T for 19F and ), a is the distance

between spins in a chain, and φ is the angle between the chain of spins and the

large applied magnetic field, which is taken to be in the z-direction. Other terms of

the dipolar Hamiltonian average to zero on a timescale of 1/∆ωij or faster, where

∆ωij = γa|∇Bz
ij| is the separation of the ith and jth resonant frequencies caused
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by the field gradient ∇Bz
ij between them. The Hamiltonian of Eq. (A.1) may be

“switched off” by applying a periodic succession of narrow band π pulses at, for

instance, the ith resonant frequency [75]. Simultaneous decoupling of more than two

qubits may be accomplished by timing the selective π pulses according to the entries of

an appropriately sized Hadamard matrix; a pair of qubits may be selectively recoupled

in order to implement two-bit gates [93].

A.2 Decoupling and Quantum Logic

Non-disturbing measurement is possible in this scheme because, orthogonal to the

chain direction, a nucleus of resonant frequency ωi has a large plane of copies with

equal frequency. The coupling between copies has a different form; the nth and mth

nucleus of identical resonant frequency ωi are coupled by the Hamiltonian [75]

Ĥiimn =
1

2

µ0

4π
γ2~2 1− 3 cos2 θmn

(aλmn)3

(
3Îz

imÎ
z
in − Îim · Îin

)
,

where λmn is the distance between the two nuclei in units of a, and θmn is the an-

gle between the vector which connects them and the direction of the applied field.

This coupling between copies must be “switched off” to prevent interference between

ensemble members. Decoupling these spins may be done by any number of pulse

sequences which have been developed over the past 40 years in solid-state NMR, the

simplest of which is the WAHUHA pulse sequence. Such sequences can reduce dipolar

broadening by more than three orders of magnitude [94].

Fortunately, the different forms of Ĥijmm and Ĥiimn allow constant decoupling

of copies without adverse effect on the manipulations of couplings within individual

computers. The qubit-qubit coupling of Eq. (A.1) may in general be rescaled and

rotated by the broadband WAHUHA-type sequence, but it may still be controlled

for logic gates with suitably phased π pulses. The broadband WAHUHA-type pulse

sequence which decouples all copies is unaffected by the addition of selective π-pulses,

insofar as those π-pulses are sufficiently short in comparison to the pulse spacing. This

criterion is difficult to meet, since the π pulses must last a time of about 1/∆ωi,i+1
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to be frequency selective.

The only problematic dipolar couplings which remain after applying the pulse

sequences described above are those between qubits with different resonant frequencies

(i 6= j) and in different chains (m 6= n). These couplings only arise when two planes of

qubits are selectively recoupled during a two-bit gate. The needed time duration for

a logic operation may be minimized by maximizing the desired qubit-qubit coupling

– this is accomplished by first letting a be the smallest nuclear distance in the crystal.

Second, we set φ = 0, hence putting the gradient parallel to the applied field. Third,

only nearest-neighbor qubit couplings are used (j = i + 1), with longer distance

couplings accomplished by bit-swapping [95]. After making these choices, we have

δω ≡ δωi,i+1 = −µ0γ
2~/2πa3, and the target qubit of frequency ωi in the mth chain

is coupled to control qubit copies at ωi+1 in the other chains by the Hamiltonian

Ĥ∗
im = −~δω

∑
n

λ2
mn − 2

2(1 + λ2
mn)5/2

Îz
imÎ

z
i+1,n

≡ −~δω
∑

n

bmnÎ
z
imÎ

z
i+1,n. (A.2)

The decoherence caused by this undesired Hamiltonian is minimized if the coupling

constants are sufficiently small to obey

σ

δω
=

1

2

√∑
n

b2mn � 1, (A.3)

where σ (the square root of the second moment [94]) is the effective linewidth of the

qubit ensemble during recoupling, which we demand to be much smaller than the

splitting δω. This inequality is best satisfied by a crystal whose nuclei couple only in

isolated chains.

A.3 Candidate Crystalline Systems

A crystal which approximates this description is fluorapatite, Ca5F(PO4)3, whose
19F. In fluorapatite, we find σ/δω ≈ 1/58, roughly six times smaller than in a simple
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cubic crystal such as CaF2. The one-dimensional nuclear structure of fluorapatite has

been recognized in several NMR experiments. Decoherence timescales in this crystal

are analagous to the well-known case of CaF2. The T2 time is limited by dipolar

broadening; if dipolar couplings are perfectly controlled, the timescale for internal

decoherence is pushed toward the spin-lattice relaxation time constant T1, which is

limited by thermal fluctuations of paramagnetic impurities (rare-earth substitutions,

for example) and can easily be several hours for reasonable crystal purities and tem-

peratures.

The advantages of an all silicon implementation are many. Foremost, the crystal

growth and processing technology for silicon are highly matured. In particular, the

most sensitive structures for force detection have been made from pure silicon. Also,

it is good fortune that the family of stable nuclear isotopes of silicon is quite simple:

95.33% of natural silicon is 28Si or 30Si, which are both spin-0, and 4.67% is 29Si,

which is spin-1/2, perfect for the qubit. Thus silicon is well suited for isotope engi-

neering [96]. Another crucial motivation for the choice of silicon is the observation

that nuclei in a semiconductor may be polarized by cross-relaxation with optically ex-

cited, spin-polarized conduction electrons [97]. Although there are many other means

for dynamic nuclear polarization, optical pumping in semiconductors has one impor-

tant feature: the electrons whose hyperfine couplings make the polarization possible

recombine shortly thereafter and hence do not contribute to decoherence during com-

putation. The lack of any spurious spins, nuclear or electronic, should leave the 29Si

nuclei well decoupled from their environment. Finally, we note that the use of sili-

con for a quantum computer opens the door for integration of quantum information

processing technology with silicon CMOS and SET circuits.

A.4 Initialization and achieving an low spin tem-

perature

For initialization of the quantum computer, we employ optical pumping, algorithmic

cooling, and pseudo-pure state techniques. The premise of optical pumping is that
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nuclei exchange Zéeman energy with a bath of photoexcited electrons and thereby

relax thermally to an effective spin temperature corresponding to the non-equilibrium

electron-spin polarization. Once those electrons recombine, the nuclei retain their spin

polarization for the “dark” T1 time, which is extremely long (200 hours in Ref. [97]).

In low-field experiments (∼ 1 G), the electron spin polarizations which have been

obtained in pure silicon have been limited due to unfavorable selection rules. Also, the

long recombination time due to the indirect bandgap prevents rapid recooling of the

electron bath. Consequently, nuclear polarizations have not exceeded 0.1% in these

experiments. Improved nuclear polarization may be observable in higher magnetic

fields (∼10 T) and in smaller structures where rapid recombination of surface states

is important.

A.5 Field Gradient

The field gradient is accomplished by a micron-sized ferromagnetic parallelopiped.

Calculations similar to those in Ref. [92] show that such a magnet, made of dyspro-

sium and placed in a 7 T external field can produce a field gradient of 1.4 T/µm at a

distance of 2.07 µm above the magnet, which leads to ∆ω ≡ ∆ωi,i+1 = 2π×19.2 kHz.

A 1 µm by 10 µm fluorapatite crystal above the magnet contains N = 107 equivalent-

frequency qubit copies in each xy-plane. The field variation along the y-direction is

negligible since the magnet is much longer than the crystal. The field variation along

the x-axis is sufficiently small that all of the equivalent-frequency nuclei lie within a

bandwidth of ∆ω. We also note that inhomogeneous broadening is constantly refo-

cused in this scheme by the narrow-band π pulse sequences during both decoupling

and selective recoupling.

A.6 Readout

The presence of a large magnetic field gradient provides a natural means for perform-

ing MRFM on a magnetization M z, since this technique is sensitive to the gradient
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force given by F = M z∇Bz [?]. The crystal is mounted on a microfabricated can-

tilever which oscillates in the z-direction. The long axis of the crystal-cantilever

heterostructure and magnet are aligned. The experiment is performed in high vac-

uum (< 10−5 torr) and at low temperatures. A coil is used to generate the RF pulses

for logic operations and decoupling sequences; it also generates the continuous-wave

radiation for readout. An optical fiber-based displacement sensor is used to moni-

tor deflection of the cantilever using interferometry. Sub-Ångstrom oscillations can

be detected; larger oscillations can be damped with active feedback which avoids

additional broadening while maintaining high sensitivity.

Readout is performed using cyclic adiabatic inversion [49], which modulates the

magnetization of a plane of nuclei at a frequency near or on resonance with the

cantilever. The spins of resonant frequency ωi are irradiated with the RF field Bx =

2B1 cos{ωit− (Ω/ωm) cos(ωmt)}, where ωm is the modulation frequency chosen to be

near the resonance of the cantilever, and Ω is the frequency excursion, which should

be much smaller than ∆ω [98]. Simultaneous detection of signal from multiple planes

is possible if the different planes to be measured are driven at distinct modulation

frequencies ωm.

The force resolution for MRFM is limited by thermal fluctuations of the cantilever.

Force resolutions of 5.6×10−18 N/
√

Hz have been reported for single crystal cantilevers

at 4 K [?]. To estimate the force involved in a measurement following a quantum

computation, we consider the case in which initialization is imperfect, so that the

temperature T is non-zero and an effective pure state must be used [19, 89]. The

usable magnetization is estimated [91] as

M z = γ~
N

2n

sinh(n~γB0/2kBT )

coshn(~γB0/2kBT )
.

In the high temperature limit, this magnetization approximates to (γ2~2B0/2kBT )Nn2−n

showing the exponential downscaling which plagues solution NMR. Even in this limit,

with the relatively small N of 107 and using the field gradient described above in a 7 T

field at 4 K, the force which needs to be measured works out to about 10−15n2−n new-

tons, allowing n ∼ 10 qubits. The density matrix of such a system would be outside
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the neighborhood in which it has been shown that all density matrices are separa-

ble. The situation is improved in larger fields and at lower temperatures, where M z

improves exponentially in B0/T. In the realistic laboratory extreme B0 = 20 T and

T = 10 mK, this design may scale to n ∼ 300 qubits; in this regime entanglement is

shown to be demonstrable.

A.7 Scalability

A primary limitation to the long-term scalability of this scheme is the number of

logic gates which can fit into the decoherence time when there is a large number of

qubits. The decoupling/recoupling pulse scheme based on Hadamard matrices has

a cycle time tc(n) of Ln2/∆ω, where the parameter L depends on the length of the

homonuclear decoupling subsequence and only weakly on the number of qubits n

[93]. Since single spin rotations must occur between cycles, the clock speed is set by

this cycle time. The number of logic gates we may perform is approximately tc(n)

divided into the remaining decoherence time T 0
2 . This timescale T 0

2 is due to residual

homonuclear couplings, cantilever thermal drift, and thermal relaxation resulting from

magnetic impurities; these contributions are limited by the experimental performance

of the homonuclear decoupling pulse sequence, cantilever feedback stabilization, and

crystal growth technique, respectively. Figure ?? shows the number of logic gates

possible for several values of T 0
2 . The bottom dashed trace (T 0

2 = 100 ms) corresponds

to the case in which homonuclear couplings are perfectly controlled but cantilever drift

is completely unsuppressed, while the middle (T 0
2 = 10 s) and top (T 0

2 = 1000 s) traces

assume suppression by 20 and 40 dB with a negative feedback circuit. The limited

number of gates at high numbers of qubits is a remaining problem which may be

addressed through error correcting codes [87], more sophisticated pulse sequences, or

the use of a more one-dimensional system .
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A.8 Summary

This proposal features two important advantages over schemes using solid-state NMR

with impurity dopants [26, 99]. The fabrication difficulty of artificially implanting

controlled arrays of spins is avoided in our proposal by using nuclei that are naturally

organized into a crystal structure. Also, the use of an ensemble of 107 spins avoids

the need for the daunting task of reading and initializing single nuclear spins. Indeed,

ensemble measurement has given solution NMR a developmental head-start against

other existing proposals for quantum computation, and it is hoped that the scheme

presented here will carry NMR quantum computation onward to the many-qubit

regime.
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Matlab Rate Equation Code

The code below was used to calculate the nuclear polarization timescale versus pump

laser power.

clear all

% pumping rates

x=-11:0.1:-7;

lp = 10.^x; %effective laser power

% lp=10^-9;

for i=1:length(lp)

laser_power=lp(i);

%sigma plus pumping

P_plus1_down = 1/laser_power; P_plus1_up = 1/laser_power;

P_minus1_down = 0; P_minus1_up = 0;

%sigma minus pumping

P_plus1_down = 0; P_plus1_up = 0; P_minus1_down = 1/laser_power;

P_minus1_up = 1/laser_power;

%

% radiative recombination

w_r=1/0.5e-9; %(same for all bright states)

160
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B=10;

%

% phonon rates

muB = 5.7e-6; % eV

kb=8.617e1; % microeV/K

beta = muB*kb;

T=1.5; %Kelvin

d0=100e-6; d1=50e-6; d2=50e-6; ge=-2; gh=-1; beta1=muB*(ge+gh)*B;

beta2=-muB*(ge-gh)*B; E_plus1 = 0.5*d0+0.5*sqrt(d1^2+beta1^2);

E_minus1 = 0.5*d0-0.5*sqrt(d1^2+beta1^2); E_plus2 =

-0.5*d0+0.5*sqrt(d2^2+beta2^2); E_minus2 =

-0.5*d0-0.5*sqrt(d2^2+beta2^2);

% spin-flip assisted radiative recombination

w_plus = nulcear_polarization_rate((E_plus2-E_plus1)); w_minus =

nulcear_polarization_rate((E_minus2-E_minus1));

% w_plus=1/0.2e-3; %spin-flip radiative recombination from plus2 via plus1

% w_minus=1/1e-3; %spin-flip radiative recombination from minus2 via minus1

% Hole spin relaxation due to phonon interaction

w_1_a=1/1e-9; %going from +1 to -2

w_1_b=w_1_a*exp(-beta*(E_minus2-E_plus1)); %going from -2 to +1

w_2_a=1/1e-9; %going from -1 to +2

w_2_b=w_2_a*exp(-beta*(E_minus1-E_plus2)); %going from +2 to -1

%

%

% n_GS_down
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% n_GS_up

% n_plus1_down

% n_plus1_up

% n_minus1_down

% n_minus1_up

% n_plus2_down

% n_plus2_up

% n_minus2_down

% n_minus2_up

%

M=zeros(10,10);

M(1:10,1:2) = [-(P_plus1_down+P_minus1_down) 0;

0 -(P_plus1_up+P_minus1_up);

P_plus1_down 0;

0 P_plus1_up;

P_minus1_down 0;

0 P_minus1_up;

0 0;

0 0;

0 0;

0 0;

];

M(1:10,3:6) = [w_r 0 w_r 0;

0 w_r 0 w_r;

-w_r-w_1_a 0 0 0;

0 -w_r-w_1_a 0 0;

0 0 -w_r-w_2_a 0;

0 0 0 -w_r-w_2_a;
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0 0 w_2_a 0;

0 0 0 w_2_a;

w_1_a 0 0 0;

0 w_1_a 0 0;

];

M(1:10,7:10) = [0 0 0 w_minus;

w_plus 0 0 0;

0 0 w_1_b 0;

0 0 0 w_1_b;

w_2_b 0 0 0;

0 w_2_b 0 0;

-w_plus-w_2_b 0 0 0;

0 -w_2_b 0 0;

0 0 -w_1_b 0;

0 0 0 -w_1_b-w_minus;

];

[V,D]=eig(M);

n0 = [0.5 0.5 0 0 0 0 0 0 0 0]’;

c=inv(V)*n0;

% t=10.^[-9:0.2:0];

% n=zeros(10,length(t));

% for i=1:length(t)

% for k=1:10

% n(:,i)=n(:,i)+c(k)*V(:,k)*exp(V(k,k)*t(i));

% end
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% end

decay_rates=D*ones(10,1); ordered_decay_rates=sort(decay_rates);

for j=9:-1:1

j;

if (ordered_decay_rates(j)~=0)

p(i)=abs(1/ordered_decay_rates(j));

break

end

end

end loglog(1./lp,1e3*p,’ko’) XLABEL = ’Exciton Capture Rate

[s^{-1}]’; YLABEL = ’Polarization Timescale [ms]’;

set(get(gca,’XLabel’), ’String’, XLABEL, ’FontSize’, 30);

set(get(gca,’YLabel’), ’String’, YLABEL, ’FontSize’, 30); set(gca,

’Fontsize’, 26);
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