Modulated optical vortices
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Single-beam optical gradient force traps created by focusing helical modes
of light are known as optical vortices. Modulating the helical pitch of such
a modes’ wavefront yields a new class of optical traps whose dynamically
reconfigurable intensity distributions provide new opportunities for controlling
motion in mesoscopic systems. This Letter describes an implementation of
modulated optical vortices based on the dynamic holographic optical tweezer

technique. (©) 2004 Optical Society of America
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A single-beam optical gradient force trap, known as an optical tweezer, is cre-
ated by focusing a beam of light with a strongly converging high-numerical-aperture
lens.! Optical tweezers can trap and move materials noninvasively at lengthscales
ranging from tens of nanometers to tens of micrometers, and so have provided un-
precedented access to physical, chemical and biological processes in the mesoscopic
domain.? Variants of optical tweezers based on specially crafted modes of light have
demonstrated additional useful and interesting properties: optical vortices created

from helical modes of light exert torques on trapped objects,> ! traps based on Bessel
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beams facilitate controlled transport over long distances,'? and optical rotators pro-
vide fine orientation control.'® These specialized traps have potentially widespread
applications in biotechnology'* and micromechanics,'® particularly when created as
integrated optical systems using holographic techniques.'® This Letter introduces a
generalized class of optical vortices with novel properties, and describes their imple-
mentation as dynamic holographic optical traps.'¢

A vortex-forming helical mode is distinguished from a plane wave by an overall
phase factor, exp(iff), where 6 is the polar angle in the plane normal to the opti-
cal axis and ¢ is an integral winding number that characterizes the beam’s helical
topology. The phase modulation ¢,(f) = ¢0 transforms the wavefront into an ¢-fold
helix winding around the optical axis. Semiclassical theory suggests that each pho-
ton in a helical beam carries an orbital angular momentum ¢h, distinct from the
photon’s intrinsic spin angular momentum, and yet quantized in units of Planck’s
constant.!®17 This has been confirmed through measurements of particles’ motions in
optical vortices.* %8119 The topological charge ¢ also determines the annular inten-
sity distribution characteristic of an optical vortex.!”!%20 Because all phases appear
along a helical beam’s axis, destructive interference suppresses the axial intensity.
Similarly, each ray at a radius r from the axis has an out-of-phase counterpart with
which it destructively interferes when the beam is converged with a lens. Conse-
quently, an optical vortex’s core is dark, the beam’s intensity being redistributed to
an annulus at radius R, from the focal point.

Recently, we demonstrated that the radius of an optical vortex scales linearly
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Fig. 1. Creating optical vortices with dynamic holographic optical tweezers.
(a) Schematic diagram of the experimental apparatus. A reflective spatial light
modulator imprints the phase modulation ¢(7) onto the wavefront of a TEMg
laser beam. The transformed beam is relayed by a telescope to the back aper-
ture of a microscope objective lens that focuses it into an optical trap. A
conventional illuminator and video camera create images of objects in the
trap. (b) The phase modulations encoding an ¢ = 40 optical vortex. (c) The
resulting optical vortex’s intensity in the focal plane. (d) Trajectory of a single
800 nm diameter silica sphere traveling around the optical vortex’s circumfer-

ence, measured at 1/6 second intervals over 5 seconds.
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where ) is the wavelength of light, NA is the objective lens’ numerical aperture, and
the constants a and £y depend on the beam’s radial amplitude profile. This observation

suggests the generalization
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in which the local radius of maximum intensity at angle # in the plane of the optical

vortex depends on the “local winding number”. For example, choosing
©(0) =€ [0+ asin(mb + ()] (3)

might be expected to produce an m-fold symmetric Lissajous pattern whose depth
of modulation is controlled by a and whose orientation depends on 3. Direct vi-
sualization using the dynamic holographic optical tweezer technique!® confirms this
prediction, and thus verifies Eq. (2).

Our optical trapping system, shown in Fig. 1(a), has been described in detail
elsewhere.'® ¥ We use a reflective liquid crystal spatial light modulator (SLM)?? to
imprint a desired phase profile p(r) onto the wavefront of a collimated TEMyy beam
of light (A = 532 nm). The modified beam is relayed to the input pupil of a high-NA
objective lens mounted in an inverted light microscope. A mirror placed in the lens’
focal plane reflects the resulting intensity distribution back down the optical axis to
form an image on an attached video camera. Figure 1(b) shows a typical phase mask
encoding an optical vortex with ¢ = 40, and Fig. 1(c) shows the resulting intensity
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distribution. The SLM has a diffraction efficiency of roughly 50%, and the central
spot in Fig. 1(c) is a conventional optical tweezer centered on the optical axis formed
from the undiffracted portion of the input beam. Because the SLM can only impose
phase shifts in the range 0 to 27 radians, the projected phase function wraps around
at o = 27 to create a scalloped appearance.

When an optical vortex is projected into a sample of colloidal microspheres dis-
persed in water, optical gradient forces draw spheres onto the ring of light, and the
beam’s orbital angular momentum drives them around the circumference, as shown
in Fig. 1(d). The resulting motion entrains a flow of both fluid and particles in a
way that has yet to be studied systematically, but whose qualitative features suggest

opportunities for pumping and mixing extremely small sample volumes.

Fig. 2. Modulated optical vortex with m =5, a = 0.1. (a) Phase modulation.

(b) Predicted radial profile R(6). (c) Experimental intensity distribution.

Figure 2 shows how periodically modulating an optical vortex’s phase affects its
geometry. The phase mask in Fig. 2(a) includes an m = 5 fold modulation of ampli-
tude o = 0.1 superimposed on an ¢ = 60 helical pitch. The radial profile predicted

with Eq. (2) appears in Fig. 2(b) and agrees well with the observed intensity dis-



tribution in Fig. 2(c). Comparably good agreement is obtained with our apparatus
for modulated helical phases up to m = 12 and a = 1 and ¢ = 60. Figure 3 shows
typical intensity patterns obtained by varying m with fixed depth of modulation «,
and by varying « with fixed m. Increasing the modulation beyond o = (¢o/¢+1)/m
causes the locus of maximum intensity to pass through the origin and to create lobes

of negative parity, as shown in the last two images in Fig. 3.

Fig. 3. Modulated optical vortices at o = 0.1 with m = 2, 4, and 6, (top)
and at m = 4 with a = 0.3, 0.5, and 0.7 (bottom). Additional lobes appear
in the lower patterns for a > a,. ~ 0.25 with the direction of tangential forces
indicated by arrows. All patterns were created with £ = 60. Scale bars indicate

1 pm.

Just as uniform optical vortices exert torques on trapped particles, modulated

optical vortices exert tangential forces. These forces can drive particles through quite



complicated trajectories, as demonstrated in Fig. 4. Here, two 800 nm diameter
polystyrene spheres dispersed in water are shown circulating around a three-fold
modulated optical vortex, each completing one circuit in about two seconds. Whereas
spheres travel more or less uniformly around a conventional optical vortex,'? such
as the example in Fig. 1, they tend to circulate most rapidly where R(6) is smallest
in modulated patterns. This arises both because the light is most intense at smaller
radii, and also because artifacts due to the SLM’s finite spatial resolution!® tend to
have a more pronounced effect on the traps’ structures at larger radii. Diminishing
intensities at larger radii also tend to weaken the traps at deeper modulations such
as those shown in Fig. 3. Deeply modulated patterns tend to project particles trans-
verse to the beam, rather than circulating them. Such optically mediated distribution
could be useful for manipulating samples in microfluidic devices. Unlike distribution
methods based on translating discrete optical tweezers,?® the present approach can
be implemented with a single static diffractive optical element.

In addition to translating particles, the forces exerted by modulated optical vor-
tices can be used to distinguish particles on the basis of their size, shape, and optical
properties. Consequently, modulated optical vortices may also provide a basis for
sorting and fractionating mesocopically sized materials,?* applications that will be
described elsewhere.

A modulated optical vortex can be rotated to any angle by varying 5 in Eq. (3).
An asymmetric object comparable in extent to the trapping pattern can be immobi-
lized on the pattern’s asperities, and its orientation controlled by varying the phase
angle. The negative-parity lobes of deeply modulated optical vortices exert retrograde
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Fig. 4. Two particles’ transit around a modulated optical vortex. Data points
show the positions of two 800 nm diameter polystyrene spheres measured at
1/10 sec intervals over 10 sec. The two spheres, indicated by arrows, move along
a trap with £ = 60, m = 3, and a = 0.1 at 300 mW, in the direction indicated
by the curved arrow. Two additional spheres are trapped motionlessly in the

undiffracted central spot.

tangential forces useful for canceling the overall torque on large illuminated objects.
Comparable controlled rotation has been implemented by interfering an optical vortex
with a conventional optical tweezer,'® and by creating optical traps with elliptically
polarized light.?> The present approach offers several advantages: the trapped object
can be oriented by a single beam of light without mechanical adjustments; the inten-
sity distribution can be tailored to the targeted sample’s shape through Eq. (2); and
the same apparatus can create multiple independent rotators simultaneously.'® These
enhanced capabilities suggest applications for modulated optical vortices in actuating
microelectromechanical systems (MEMS) such as pumps and valves in microfluidic

and lab-on-a-chip devices.
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