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Single-beam optical gradient force traps created by focusing helical modes

of light are known as optical vortices. Modulating the helical pitch of such

a modes’ wavefront yields a new class of optical traps whose dynamically

reconfigurable intensity distributions provide new opportunities for controlling

motion in mesoscopic systems. This Letter describes an implementation of

modulated optical vortices based on the dynamic holographic optical tweezer

technique. c© 2004 Optical Society of America

OCIS codes: 140.7010, 090.1760, 350,5030, 350.3850

A single-beam optical gradient force trap, known as an optical tweezer, is cre-

ated by focusing a beam of light with a strongly converging high-numerical-aperture

lens.1 Optical tweezers can trap and move materials noninvasively at lengthscales

ranging from tens of nanometers to tens of micrometers, and so have provided un-

precedented access to physical, chemical and biological processes in the mesoscopic

domain.2 Variants of optical tweezers based on specially crafted modes of light have

demonstrated additional useful and interesting properties: optical vortices created

from helical modes of light exert torques on trapped objects,3–11 traps based on Bessel
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beams facilitate controlled transport over long distances,12 and optical rotators pro-

vide fine orientation control.13 These specialized traps have potentially widespread

applications in biotechnology14 and micromechanics,15 particularly when created as

integrated optical systems using holographic techniques.16 This Letter introduces a

generalized class of optical vortices with novel properties, and describes their imple-

mentation as dynamic holographic optical traps.16

A vortex-forming helical mode is distinguished from a plane wave by an overall

phase factor, exp(i`θ), where θ is the polar angle in the plane normal to the opti-

cal axis and ` is an integral winding number that characterizes the beam’s helical

topology. The phase modulation ϕ`(θ) = `θ transforms the wavefront into an `-fold

helix winding around the optical axis. Semiclassical theory suggests that each pho-

ton in a helical beam carries an orbital angular momentum `h̄, distinct from the

photon’s intrinsic spin angular momentum, and yet quantized in units of Planck’s

constant.10,17 This has been confirmed through measurements of particles’ motions in

optical vortices.4,6, 8, 18,19 The topological charge ` also determines the annular inten-

sity distribution characteristic of an optical vortex.17,19,20 Because all phases appear

along a helical beam’s axis, destructive interference suppresses the axial intensity.

Similarly, each ray at a radius r from the axis has an out-of-phase counterpart with

which it destructively interferes when the beam is converged with a lens. Conse-

quently, an optical vortex’s core is dark, the beam’s intensity being redistributed to

an annulus at radius R` from the focal point.

Recently, we demonstrated that the radius of an optical vortex scales linearly
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Fig. 1. Creating optical vortices with dynamic holographic optical tweezers.

(a) Schematic diagram of the experimental apparatus. A reflective spatial light

modulator imprints the phase modulation ϕ(~r) onto the wavefront of a TEM00

laser beam. The transformed beam is relayed by a telescope to the back aper-

ture of a microscope objective lens that focuses it into an optical trap. A

conventional illuminator and video camera create images of objects in the

trap. (b) The phase modulations encoding an ` = 40 optical vortex. (c) The

resulting optical vortex’s intensity in the focal plane. (d) Trajectory of a single

800 nm diameter silica sphere traveling around the optical vortex’s circumfer-

ence, measured at 1/6 second intervals over 5 seconds.
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with topological charge:19,21

R` ≈ a
λ

NA

(
1 +

`

`0

)
, (1)

where λ is the wavelength of light, NA is the objective lens’ numerical aperture, and

the constants a and `0 depend on the beam’s radial amplitude profile. This observation

suggests the generalization

R(θ) = a
λ

NA

[
1 +

1

`0

dϕ(θ)

dθ

]
(2)

in which the local radius of maximum intensity at angle θ in the plane of the optical

vortex depends on the “local winding number”. For example, choosing

ϕ(θ) = ` [θ + α sin(mθ + β)] (3)

might be expected to produce an m-fold symmetric Lissajous pattern whose depth

of modulation is controlled by α and whose orientation depends on β. Direct vi-

sualization using the dynamic holographic optical tweezer technique16 confirms this

prediction, and thus verifies Eq. (2).

Our optical trapping system, shown in Fig. 1(a), has been described in detail

elsewhere.16,19 We use a reflective liquid crystal spatial light modulator (SLM)22 to

imprint a desired phase profile ϕ(r) onto the wavefront of a collimated TEM00 beam

of light (λ = 532 nm). The modified beam is relayed to the input pupil of a high-NA

objective lens mounted in an inverted light microscope. A mirror placed in the lens’

focal plane reflects the resulting intensity distribution back down the optical axis to

form an image on an attached video camera. Figure 1(b) shows a typical phase mask

encoding an optical vortex with ` = 40, and Fig. 1(c) shows the resulting intensity
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distribution. The SLM has a diffraction efficiency of roughly 50%, and the central

spot in Fig. 1(c) is a conventional optical tweezer centered on the optical axis formed

from the undiffracted portion of the input beam. Because the SLM can only impose

phase shifts in the range 0 to 2π radians, the projected phase function wraps around

at ϕ = 2π to create a scalloped appearance.

When an optical vortex is projected into a sample of colloidal microspheres dis-

persed in water, optical gradient forces draw spheres onto the ring of light, and the

beam’s orbital angular momentum drives them around the circumference, as shown

in Fig. 1(d). The resulting motion entrains a flow of both fluid and particles in a

way that has yet to be studied systematically, but whose qualitative features suggest

opportunities for pumping and mixing extremely small sample volumes.
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Fig. 2. Modulated optical vortex with m = 5, α = 0.1. (a) Phase modulation.

(b) Predicted radial profile R(θ). (c) Experimental intensity distribution.

Figure 2 shows how periodically modulating an optical vortex’s phase affects its

geometry. The phase mask in Fig. 2(a) includes an m = 5 fold modulation of ampli-

tude α = 0.1 superimposed on an ` = 60 helical pitch. The radial profile predicted

with Eq. (2) appears in Fig. 2(b) and agrees well with the observed intensity dis-
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tribution in Fig. 2(c). Comparably good agreement is obtained with our apparatus

for modulated helical phases up to m = 12 and α = 1 and ` = 60. Figure 3 shows

typical intensity patterns obtained by varying m with fixed depth of modulation α,

and by varying α with fixed m. Increasing the modulation beyond αc = (`0/` + 1)/m

causes the locus of maximum intensity to pass through the origin and to create lobes

of negative parity, as shown in the last two images in Fig. 3.

α = 0.3

m = 2 m = 4 m = 6

α = 0.5 α = 0.7

Fig. 3. Modulated optical vortices at α = 0.1 with m = 2, 4, and 6, (top)

and at m = 4 with α = 0.3, 0.5, and 0.7 (bottom). Additional lobes appear

in the lower patterns for α > αc ≈ 0.25 with the direction of tangential forces

indicated by arrows. All patterns were created with ` = 60. Scale bars indicate

1 µm.

Just as uniform optical vortices exert torques on trapped particles, modulated

optical vortices exert tangential forces. These forces can drive particles through quite
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complicated trajectories, as demonstrated in Fig. 4. Here, two 800 nm diameter

polystyrene spheres dispersed in water are shown circulating around a three-fold

modulated optical vortex, each completing one circuit in about two seconds. Whereas

spheres travel more or less uniformly around a conventional optical vortex,19 such

as the example in Fig. 1, they tend to circulate most rapidly where R(θ) is smallest

in modulated patterns. This arises both because the light is most intense at smaller

radii, and also because artifacts due to the SLM’s finite spatial resolution19 tend to

have a more pronounced effect on the traps’ structures at larger radii. Diminishing

intensities at larger radii also tend to weaken the traps at deeper modulations such

as those shown in Fig. 3. Deeply modulated patterns tend to project particles trans-

verse to the beam, rather than circulating them. Such optically mediated distribution

could be useful for manipulating samples in microfluidic devices. Unlike distribution

methods based on translating discrete optical tweezers,23 the present approach can

be implemented with a single static diffractive optical element.

In addition to translating particles, the forces exerted by modulated optical vor-

tices can be used to distinguish particles on the basis of their size, shape, and optical

properties. Consequently, modulated optical vortices may also provide a basis for

sorting and fractionating mesocopically sized materials,24 applications that will be

described elsewhere.

A modulated optical vortex can be rotated to any angle by varying β in Eq. (3).

An asymmetric object comparable in extent to the trapping pattern can be immobi-

lized on the pattern’s asperities, and its orientation controlled by varying the phase

angle. The negative-parity lobes of deeply modulated optical vortices exert retrograde
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3 µm

Fig. 4. Two particles’ transit around a modulated optical vortex. Data points

show the positions of two 800 nm diameter polystyrene spheres measured at

1/10 sec intervals over 10 sec. The two spheres, indicated by arrows, move along

a trap with ` = 60, m = 3, and α = 0.1 at 300 mW, in the direction indicated

by the curved arrow. Two additional spheres are trapped motionlessly in the

undiffracted central spot.

tangential forces useful for canceling the overall torque on large illuminated objects.

Comparable controlled rotation has been implemented by interfering an optical vortex

with a conventional optical tweezer,13 and by creating optical traps with elliptically

polarized light.25 The present approach offers several advantages: the trapped object

can be oriented by a single beam of light without mechanical adjustments; the inten-

sity distribution can be tailored to the targeted sample’s shape through Eq. (2); and

the same apparatus can create multiple independent rotators simultaneously.16 These

enhanced capabilities suggest applications for modulated optical vortices in actuating

microelectromechanical systems (MEMS) such as pumps and valves in microfluidic

and lab-on-a-chip devices.
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