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Abstract. Suppose we have n algorithms, quantum or classical, each
computing some bit-value with bounded error probability. We describe
a quantum algorithm that uses O(

√
n) repetitions of the base algo-

rithms and with high probability finds the index of a 1-bit among these
n bits (if there is such an index). This shows that it is not necessary
to first significantly reduce the error probability in the base algorithms
to O(1/poly(n)) (which would require O(

√
n logn) repetitions in total).

Our technique is a recursive interleaving of amplitude amplification and
error-reduction, and may be of more general interest. Essentially, it shows
that quantum amplitude amplification can be made to work also with a
bounded-error verifier. As a corollary we obtain optimal quantum upper
bounds of O(

√
N) queries for all constant-depth AND-OR trees on N

variables, improving upon earlier upper bounds of O(
√

Npolylog(N)).

1 Introduction

One of the main successes of quantum computing is Grover’s algorithm [10,7]. It
can search an n-element space in O(

√
n) steps, which is quadratically faster than

any classical algorithm. The algorithm assumes oracle access to the elements in
the space, meaning that in unit time it can decide whether the ith element
is a solution to its search problem or not. In some more realistic settings we
can efficiently make such an oracle ourselves. For instance, if we want to decide
satisfiability of an m-variable Boolean formula, the search space is the set of
all n = 2m truth assignments, and we can efficiently decide whether a given
assignment satisfies the formula. However, in these cases the decision is made
without any error probability. In this paper we study the complexity of quantum
search if we only have bounded-error access to the elements in the space.

More precisely, suppose that among n Boolean values f1, . . . , fn we want to
find a solution (if one exists), i.e., an index j such that fj = 1. For each i we have
at our disposal an algorithm Fi that computes the bit fi with two-sided error: if fi
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is 1 then the algorithm outputs 1 with probability, say, at least 9/10, and if fi = 0
then it outputs 0 with probability at least 9/10. Grover’s algorithm is no longer
applicable in this bounded-error setting, at least not directly, because the errors
in each step will quickly add up to something uncontrollably large. Accordingly,
we need to do something different to get a quantum search algorithm that works
here. We will measure the complexity of our quantum search algorithms by the
number of times they call the underlying algorithms Fi. Clearly, the Ω(

√
n) lower

bound for the standard error-less search problem, due to Bennett, Bernstein,
Brassard, and Vazirani [4], also applies to our more general setting. Our aim is
to give a matching upper bound.

An obvious but sub-optimal quantum search algorithm is the following. By
repeating Fi k = O(log n) times and outputting the majority value of the k
outcomes, we can compute fi with error probability at most 1/100n. If we then
copy the answer to a safe place and reverse the computation to clean up (most of)
the workspace, then we get something that is sufficiently “close” to perfect oracle
access to the fi bits to just treat it as such. Now we can apply Grover’s algorithm
on top of this, and because quantum computational errors add linearly [5], the
overall difference with perfect oracle access will be negligibly small. This solves
the bounded-error quantum search problem using O(

√
n log n) repetitions of the

Fi’s, which is an O(log n)-factor worse than the lower bound. Below we will refer
to this algorithm as “the simple search algorithm”.

A relatively straightforward improvement over the simple search algorithm is
the following. Partition the search space into n/ log2 n blocks of size log2 n each.
Pick one such block at random. We can find a potential solution (an index j in the
chosen block such that fj = 1, if there is such a j) in complexity O(log n log log n)
using the simple search algorithm, and then verify that it is indeed 1 with er-
ror probability at most 1/n using another O(log n) invocations of Fj . Applying
Grover search on the space of all n/ log2 n blocks, we obtain an algorithm with

complexity O(
√
n/ log2 n) ·O(log n log log n+ log n) = O(

√
n log log n).

A further improvement comes from doing the splitting recursively: we can
use the improved upper bound to do the computation of the “inner” blocks,
instead of the simple search algorithm. Using T (n) to denote the complexity on
search space of size n, this gives us the recursion

T (n) ≤ d

(
T (log2 n)

√
n

log2 n
+ log n

)

for some constant d > 0. This recursion resolves to complexity O(
√
n · clog∗ n)

for some constant c > 0. It is similar to (and inspired by) the communication
complexity protocol for the disjointness problem of Høyer and de Wolf [11].

Apart from being rather messy, this improved algorithm is still not optimal.
The main result of this paper is to give a relatively clean algorithm that uses the
optimal number O(

√
n) of repetitions to solve the bounded-error search problem.

Our algorithm uses a kind of “carrot-and-stick” approach that may be of more
general interest. Roughly speaking, it starts with a uniform superposition of all
Fi. It then amplifies all branches of the computation that give answer 1. These
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branches include solutions, but they also include “false positives”: branches cor-
responding to the 1/10 error probability of Fi’s where fi = 0. We then “push
these back” by testing whether a 1-branch is a real positive or a false one (i.e.,
whether fi = 1 or not) and removing most of the false ones. Interleaving these
amplify and push-back steps properly, we can amplify the weight of the solutions
to a constant using O(

√
n) repetitions. At this point we just do a measurement,

see a potential solution j, and verify it classically by running Fj a few times.
As an application of our bounded-error quantum search algorithm, in Sec-

tion 4 we give optimal quantum algorithms for constant-depth AND-OR trees in
the query complexity setting. For any constant d, we need only O(

√
N) queries

for the d-level AND-OR tree, improving upon the earlier O(
√
N(logN)d−1) algo-

rithms of Buhrman, Cleve, and Widgerson [9]. Matching lower bounds of Ω(
√
N)

were already shown for such AND-OR trees, using Ambainis’ quantum adversary
method [1,2]. Finally, in Section 5 we indicate how the ideas presented here can
be cast more generally in terms of amplitude amplification.

2 Preliminaries

Here we briefly sketch the basics and notation of quantum computation, referring
to the book by Nielsen and Chuang [12] for more detail. An m-qubit state is a
linear combination of all classical m-bit states

|φ〉 =
∑

i∈{0,1}m

αi|i〉,

where |i〉 denotes the basis state i (a classical m-bit string), the amplitude αi is
a complex number, and

∑
i |αi|2 = 1. We view |φ〉 as a 2m-dimensional column

vector. A measurement of state |φ〉 will give |i〉 with probability |αi|2, and the
state will then collapse to the observed |i〉. A non-measuring quantum operation
corresponds to applying a unitary (= linear and norm-preserving) transformation
U to the vector of amplitudes. If |φ〉 and |ψ〉 are quantum states on m and m′

qubits, respectively, then the two-register state |φ〉 ⊗ |ψ〉 = |φ〉|ψ〉 corresponds
to the 2m+m′

-dimensional vector that is the tensor product of |φ〉 and |ψ〉.
The setting of query complexity is as follows. For input x ∈ {0, 1}n, a query

corresponds to the unitary transformation O that maps |i, b, z〉 → |i, b ⊕ xi, z〉.
Here i ∈ [n] and b ∈ {0, 1}; the z-part corresponds to the workspace, which
is not affected by the query. A T -query quantum algorithm has the form A =
UTOUT−1 · · ·OU1OU0, where the Uk are unitary transformations, independent
of x. This A depends on x only via the T applications of O. The algorithm
starts in initial all-zero state |0〉 and its output (which is a random variable) is
obtained from observing some dedicated part of the final superposition A|0〉.



294 P. Høyer, M. Mosca, and R. de Wolf

3 Optimal Quantum Algorithm for Bounded-Error
Search

In this section we describe our quantum algorithm for bounded-error search.
The following two facts generalize, respectively, the Grover search and the error-
reduction used in the algorithms we sketched in the introduction.

Fact 1 (Amplitude amplication [8]) Let S0 be the unitary that puts a ‘-’ in
front of the all-zero state |0〉, and S1 be the unitary that puts a ‘-’ in front of
all basis states whose last qubit is |1〉. Let A|0〉 = sin(θ)|φ1〉|1〉 + cos(θ)|φ0〉|0〉
where angle θ is such that 0 ≤ θ ≤ π/2 and sin2(θ) equals the probability that a
measurement of the last register of state A|0〉 yields a ’1’. Set G = −AS0A−1S1.
Then GA|0〉 = sin(3θ)|φ1〉|1〉 + cos(3θ)|φ0〉|0〉.

Amplitude amplification is a process that is used in many quantum algo-
rithms to increase the success probability. Amplitude amplification effectively
implements a rotation by an angle 2θ in a two-dimensional space (a space differ-
ent from the Hilbert space acted upon) spanned by |φ1〉|1〉 and |φ0〉|0〉. Note that
we can always apply amplitude amplification regardless of whether the angle θ
is known to us or not.

Fact 2 (Error-reduction) Suppose A|0〉 =
√
p|φb〉|b〉 +

√
1 − p|φ1−b〉|1 − b〉,

where b ∈ {0, 1} and p ≥ 9/10. Then using O(log(1/ε)) applications of A
and majority-voting, we can build a unitary E such that E|0〉 =

√
q|ψb〉|b〉 +√

1 − q|ψ1−b〉|1 − b〉 with q ≥ 1 − ε, and |ψb/1−b〉 possibly of larger dimension
than |φb/1−b〉 (because of extra workspace).

We will recursively interleave these two facts to get a quantum search algo-
rithm that searches the space f1, . . . , fn ∈ {0, 1}. We assume each fi is computed
by unitary Fi with success probability at least 9/10. Let Γ = {j : fj = 1} be the
set of solutions, and t = |Γ | its size (which is unknown to our algorithm). The
goal is to find an element in Γ if t ≥ 1, and to output ‘no solutions’ if t = 0.

We will build an algorithm that has a superposition of all j ∈ [n] in its first
register, a growing second register that contains workspace and other junk, and
a 1-qubit third register indicating whether something is deemed a solution or
not. The algorithm will successively increase the weight of the basis states that
simultaneously have a solution in the first register and a 1 in the third.

Consider an algorithm A that runs all Fi once in superposition, producing
the state A|0〉, which we rewrite as

1√
n

n∑
i=1

|i〉
(√
pi|ψi,1〉|1〉 +

√
1 − pi|ψi,0〉|0〉

)
= sin(θ)|φ1〉|1〉 + cos(θ)|φ0〉|0〉,

where pi is the probability that Fi outputs 1, the states |ψi,b〉 describe the
workspace of the Fi, and sin(θ)2 =

∑n
i=1 pi ≥ 9t/10n.

The idea is to apply a round of amplitude amplification to A to amplify the
|1〉-part from sin(θ) to sin(3θ). This will amplify both the good states |j〉|1〉 for
j ∈ Γ and the “false positives” |j〉|1〉 for j �∈ Γ by a factor of sin(3θ)/ sin(θ) ≈ 3
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(here we didn’t write the second register). We then apply an error-reduction step
to reduce the amplitude of the false positives, setting “most” of its third register
to 0. These two steps together form a new algorithm that puts almost 3 times
as much amplitude on the solutions as A does, and that puts less amplitude on
the false positives than A. We then repeat the amplify-reduce steps on this new
algorithm to get an even better algorithm, and so on.

Let us be more precise. Our algorithm will consist of a number of rounds. In
round k we will have a unitary Ak that produces

Ak|0〉 = αk|Γk〉|1〉 + βk|Γ k〉|1〉 +
√
1 − α2

k − β2k|Hk〉|0〉,

where αk, βk are non-negative reals, |Γk〉 is a unit vector whose first register only
contains j ∈ Γ , |Γ k〉 is a unit vector whose first register only contains j �∈ Γ ,
and |Hk〉 is a unit vector. If we measure the first register of the above state, we
will see a solution (i.e. some j ∈ Γ ) with probability at least α2

k. A1 is the above
algorithm A, which runs the Fi in superposition. Initially, α2

1 ≥ 9t/10n since
each solution contributes at least 9/10n. We want to make the good amplitude
αk grow by a factor of almost 3 in each round.

Amplitude amplification step. For each round k, define θk ∈ [0, π/2] by
sin(θk)2 = α2

k + β2k. Applying amplitude amplification (Gk = −AkS0A
−1
k S1)

gives us the state GkAk|0〉, which we may write as

sin(3θk)
sin(θk)

αk|Γk〉|1〉 + sin(3θk)
sin(θk)

βk|Γ k〉|1〉 +
√
1 −

(
sin(3θk)
sin(θk)

)2

(α2
k + β2k)|Hk〉|0〉.

We applied Ak twice and A−1
k once, so the complexity goes up by a factor of 3.

Error-reduction step. Conditional on the qubit in the third register being
1, the error-reduction step Ek now does majority voting on O(k) runs of the Fj

(for all j in superposition) to decide with error at most 1/2k+5 whether fj = 1.
It adds one 0-qubit as the new third register and maps (ignoring its workspace,
which is added to the second register)

Ek|j〉|1〉|0〉 = ajk|j〉|1〉|1〉 +
√
1 − a2jk|j〉|1〉|0〉

Ek|j〉|0〉|0〉 = |j〉|0〉|0〉

where a2jk ≥ 1 − 1/2k+5 if fj = 1 and a2jk ≤ 1/2k+5 if fj = 0. This way, Ek

removes most of the false positives.

Putting Ak+1 = EkGkAk and defining αk+1, βk+1, |Γk+1〉, |Γ k+1〉, and |Hk+1〉
appropriately, we now have

Ak+1|0〉 = αk+1|Γk+1〉|1〉 + βk+1|Γ k+1〉|1〉 +
√
1 − α2

k+1 − β2k+1|Hk+1〉|0〉.
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Here the second register has grown by the workspace used in the error-reduction
step Ek, as well as by the qubit that previously was the third register. The good
amplitude has grown in the process:

αk+1 ≥ αk
sin(3θk)
sin(θk)

√
1 − 1/2k+5.

Since x− x3/6 ≤ sin(x) ≤ x, we have

sin(3θk)
sin(θk)

≥ 3 − 9θ2k/2.

Accordingly, as long as θk is small, αk will grow by a factor of almost 3 in each
round. On the other hand, the weight of the false positives goes down rapidly:

βk+1 ≤ βk
sin(3θk)
sin(θk)

1√
2k+5

.

We now analyze the number m of rounds that we need to make the good am-
plitude large. In general, we have sin(θk)2 = α2

k + β2k, hence θ
2
k ≤ 2(α2

k + β2k) for
the domain we are interested in. Here α2

k ≤ 9k−1α2
1 and β2k ≤ 1

10 (9/2
6)k−1. Note

m−1∑
k=1

θ2k ≤ 2
m−1∑
k=1

α2
k + β2k

≤ 2
m−1∑
k=1

9k−1α2
1 + 2

m−1∑
k=1

1
10

(9/26)k−1

≤ 2 · 9m−1α2
1 + 1/4.

Therefore, m rounds of the above process amplifies the good amplitude αk to

αm ≥ α1

m−1∏
k=1

sin(3θk)
sin(θk)

√
1 − 1/2k+5

≥ α1

m−1∏
k=1

(
3 − 9θ2k/2

) (
1 − 1/2k+5)

= α13m−1
m−1∏
k=1

(
1 − 3θ2k/2

) (
1 − 1/2k+5)

≥ α13m−1

(
1 − 3

2

m−1∑
k=1

θ2k −
m−1∑
k=1

1
2k+5

)

≥ α13m−1
(
1 − 3

2
(2 · 9m−1α2

1 + 1/4) − 1/16
)

≥ α13m−1 (1/2 − 3 · 9m−1α2
1
)
.
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In particular, whenever the (unknown) number t of solutions lies in the interval
[n/9m+1, n/9m], equivalently 9m ∈ [n/9t, n/t], then we have

1
3m

√
10

≤
√

9t
10n

≤ α1 ≤
√
t

n
≤ 1

3m
.

This implies
αm ≥ 0.04,

so the probability of seeing a solution after m rounds is at least 0.0016. By
repeating this classically a constant number of times, say 1000 times, we can
bring the success probability close to 1 (note to avoid confusion: these 1000
repetitions are not part of the definition of Am itself).

The complexity Ck of the operation Ak, in terms of number of repetitions of
the Fi algorithms, is given by the recursion

C1 = 1 and Ck+1 = 3Ck +O(k),

where the 3Ck is the cost of amplitude amplification and O(k) is the cost of
error-reduction. This implies Cm = O(

∑m−1
k=1 k · 3m−k−1) = O(3m).

We now give the full algorithm when the number of solutions is unknown:

Algorithm: Quantum search on bounded-error inputs

1. for m = 0 to �log9(n)� − 1 do:
a) run Am 1000 times
b) verify the 1000 measurement results, each by O(log n) runs of the corre-

sponding Fj

c) if a solution has been found, then output a solution and stop
2. Output ‘no solutions’

This finds a solution with high probability if one exists. The complexity is

�log9(n)�−1∑
m=0

1000 ·O(3m) + 1000 ·O(log n) = O(3log9(n)) = O(
√
n).

If we know that there is at least one solution but we don’t know how many there
are, then, using a modification of our algorithm as in [7], we can find a solution
using an expected number of repetitions in O(

√
N/t), where t is the (unknown)

number of solutions. This is quadratically faster than classically, and optimal for
any quantum algorithm.

4 Optimal Upper Bounds for AND-OR Trees

A d-level AND-OR tree on N Boolean variables is a Boolean function that is
described by a depth-d−1 tree with interleaved ORs and ANDs on the nodes and
the N input variables as leaves. More precisely, a 0-level AND-OR tree is just an
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input variable, and if f1, . . . , fn all are d-level AND-OR trees onm variables, each
with an AND (resp. OR) as root, then OR(f1, . . . , fn) (resp. AND) is a (d+1)-
level AND-OR tree on N = nm variables. AND-OR trees can be converted easily
into OR-AND trees and vice versa using De Morgan’s laws, if we allow negations
to be added to the tree.

Consider the two-level tree on N = n2 variables with an OR as root, ANDs
as its children, and fanout n in both levels. Each AND-subtree can be quantum
computed by Grover’s algorithm with one-sided error using O(

√
n) queries (we

let Grover search for a ‘0’, and output 1 if we don’t find any), and the value of
the OR-AND tree is just the OR of those n values. Accordingly, the construction
of the previous section gives an O(

√
n · √n) = O(

√
N) algorithm with two-sided

error. This is optimal up to a constant factor [1].
More generally, for d-level AND-OR trees we can apply the above algorithm

recursively to obtain an algorithm with O(cd−1
√
N) queries. Here c is the con-

stant hidden in the O(·) of the result of the previous section. For each fixed
d, this complexity is O(

√
N), which is optimal up to a constant factor [2]. It

improves upon the O(
√
N(logN)d−1) algorithm given in [9].

Our query complexity upper bound also implies that the minimal degree
among N -variate polynomials approximating AND-OR is O(

√
N) [3]. Whether

this upper bound on the degree is optimal remains open. The best known lower
bound for the 2-level case is Ω(N1/4√logN) [13].

5 Amplitude Amplification with Imperfect Verifier

In this section we view our construction in a more general light.
Suppose we are given some classical randomized algorithm A that succeeds

in solving some problem with probability p. In addition, we are given a Boolean
function χ that takes as input an output from algorithm A, and outputs whether
it is a solution or not. Then, we may find a solution to our problem by repetition.
We first apply algorithm A, obtaining some candidate solution, which we then
give as input to the verifier χ. If χ outputs that the candidate indeed is a solution,
we output it and stop, and otherwise we repeat the process by reapplying A.
The probability that this process terminates by outputting a solution within the
first Θ( 1p ) iterations of the loop, is lower bounded by a constant.

A quantum analogue of boosting the probability of success is to boost the
amplitude of being in a certain subspace of a Hilbert space. Thus far, amplitude
amplification [6] has assumed that we are given a perfect verifier χ: whenever a
candidate solution is found, we can determine with certainty whether it is a solu-
tion or not. Formally, we model this by letting χ be computed by a deterministic
classical subroutine or an exact quantum subroutine.

The main result of this paper may be viewed as an adaptation of amplitude
amplification to the situation where the verifier is not perfect, but sometimes
makes mistakes. Instead of a deterministic subroutine for computing χ, we are
given a bounded-error randomized subroutine, and instead of an exact quan-
tum subroutine, we are given a bounded-error quantum subroutine. Previously,
the only known technique for handling such cases has been by straightforward
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simulation of a perfect verifier: construct a subroutine for computing χ with er-
ror 1

2k by repeating a given bounded-error subroutine of order Θ(k) times and
then use majority voting. Using such direct simulations, we may construct good
but sub-optimal quantum algorithms, like the O(

√
n log n) query algorithm for

quantum search of the introduction. Here, we have introduced a modification of
the amplitude amplification process that allows us to efficiently deal with im-
perfect verifiers. Essentially, our result says that imperfect verifiers are as good
as perfect verifiers (up to a constant multiplicative factor in the complexity).
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