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Quantum computation requires the precise manipulation of very large coherent superpositions
of quantum-mechanical states. Fundamental principles of quantum mechanics (broadly speaking,
the uncertainty principle) set constraints on the size of the apparatus needed to perform such
manipulations. In many cases, this would translate into a minimum energy requirement for accurate

quantum logic.

I. QUANTUM COMPUTING: AN
INTRODUCTION

The first motivation for thinking about quantum com-
puters may go back to Feynman [1], who, in 1982, re-
marked on the intrinsic difficulties of simulating the
physics of quantum systems on classical computers, and
suggested that what one would need for this purpose
would be quantum computers. The difficulty with classi-
cal computers that Feynman pointed out can be simply
explained as follows.

An arbitrary state of a quantum-mechanical system
is, in general, a vector in a Hilbert space of dimen-
sion N. For a particle in ordinary, three-dimensional
space, a familiar representation of its state makes use
of a wavefunction, which is mathematically a vector in
an infinite-dimensional space such as L? (the space of
square-integrable functions); nonetheless, for practical
(ccomputational) purposes, one uses most often a dis-
cretized and truncated representation of the wavefunc-
tion. For instance, one can introduce a spatial grid,
and a vector that contains the values of the wavefunc-
tion sampled at the grid points; or one could expand
the wavefunction on a complete, discrete (and, in gen-
eral, infinite) set of orthogonal functions, and work with
the vectors containing the coefficients of this expansion,
truncated after a suitable order in the expansion. Ei-
ther way, the result is, for practical purposes, a vector
in a Hilbert space of finite (but usually large) dimension
N. If the basis states are symbolically represented as
[n), with n = 0,..., N — 1, then the general state of the
system can be written as

N-1
) =3 Culn) 1)
n=0

with some coefficients C,,.

Now consider what happens when a second, identical
system is added, and allowed to interact with the first
one. It is a fundamental postulate of quantum mechanics
that the description of the joint system requires a vector
space that is a tensor product of the spaces of the two
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separate systems; that is, the new basis states are objects
that can symbolically be written as

1) ® |n2) (2)

with both indices n; and ns running from 0 to N — 1.
Therefore, the resulting Hilbert space has dimension N2,
which is typically a number much larger than N. In fact,
it is clear that as more particles are added to the problem,
the dimension d of the total Hilbert space increases ezpo-
nentially with the number of particles n: d = N™. This
means that N™ coefficients are needed to describe the
most general state of the system of n particles—an im-
possibly large number, as soon as n becomes moderately
large, even for very small N. Very soon, one finds it im-
possible to even store all the coefficients in memory (not
to mention manipulate them) in a conventional, classical
computer. This is a difficulty that is constantly faced by
scientists working on, for instance, quantum chemistry
(attempting to describe atoms and molecules form first
principles using quantum mechanics), or theoretical solid
state physics.

In this context, Feynman’s idea is very simple and very
sensible. To deal with the exponential growth of the
Hilbert space, use as the “computer” a physical system
with a comparably large “working space”—which is to
say, another quantum system. The result, which might
be called a quantum simulator, is conceptually closer to
conventional analog computers than to general-purpose
digital classical computers. Basically, it would consist
of a system, S, of quantum “objects” over which one
has very precise experimental control, and whose evolu-
tion can be followed with great accuracy. By establishing
a precise mathematical correspondence between observ-
ables in S and observables in the system O that is the
true object of the study, and between their respective
dynamics, one could in principle learn anything about
a property of O (including, for instance, how it evolves
in time, or how it varies with some external parameters)
by measuring the corresponding property in S. This gen-
eral idea of a quantum simulator remains, in this author’s
opinion, one of the most attractive potential applications
of quantum computers, and probably the one that will be
most easy to implement in the not-too-distant future.

In the years following Feynman’s proposal, a number
of scientists started to look into the possibilities of digital
quantum computation; they introduced formal models of



digital computers, based on the laws of quantum me-
chanics (in particular, the principle of superposition, as
embodied in the linear structure of the Hilbert space and
of the Schrodinger equation), and asked whether these
devices could do some things that classical Turing ma-
chines (the archetype of universal classical computers)
were incapable of.

The basic physical element of a digital quantum com-
puter is the quantum bit or qubit. A qubit can be any
quantum system whose Hilbert space is (for practical pur-
poses) two dimensional. Its basis states can therefore be
written as |0) and |1), and these are, in fact, identified
with the corresponding “0” and “1” states of a classical
bit. But, in addition, the quantum system can also be in
any of an infinite set of other possible states, given by

) = Col0) + C1[1) 3)

with all the possible values of Cy and €'y compatible with
the normalization condition |Cy|? +|C1|?> = 1. The state
(3) is called a “coherent superposition” state, and, for
general values of Cy and C it corresponds to the qubit
being in some sense in both the |0) and |1) states si-
multaneously, in much the same way as, in the classi-
cal double-slit interference experiment with single pho-
tons, each photon passes through both slits simultane-
ously (much more on this in the next section).

This principle of superposition is at the root of the
“quantum parallelism” characteristic of quantum com-
puters. To see how it works, consider a set of two
qubits. Classically, a two-bit register can be used to store
(in binary) any of the numbers 0,1,2 or 3. Quantum-
mechanically, any of these numbers corresponds to a ba-
sis state of the two-qubit Hilbert space. For instance,
the number 2 = 10 in binary would be stored as the
two-qubit state

2) = 1) ©10) = [1)[0) = [10) (4)

(The above line gives an idea of the various equivalent
notations that can be used for the same state.) Now,
consider what happens if, starting from the state |00),
we apply a Hadamard transform to both qubits. This
is a unitary operation that turns the state |0) into the
superposition (|0) + [1))/v/2 and the state |1) into (|0) —
|1))/v/2. The final state of the register is then
1 1

(10} +[1) e (|0>+|1>):%(I00>+I01>+|10>+|11>)

V2 V2
(5)

and we can see that now “somehow” all the possible val-
ues from 0 to 3 are “in” the register, in superposition
form. Clearly, the idea generalizes: if we have a register
of n qubits, n Hadamard transforms suffice to “initialize
it” into a coherent superposition of all the 2™ values that
could be stored in a classical register of that size—all of
them, in some sense, present simultaneously.

Now suppose that we have a physical way to apply a
transformation to the register that corresponds to some

)

mathematical operation—a multiplication, or division, or
something like that. By the linearity of quantum mechan-
ics, the operation will act on all of the possible values of
the input simultaneously, yielding a degree of parallelism
that is exponential in the number of qubits. Ultimately,
of course, we do not want (nor would we be able to ex-
tract) all of the values of the coefficients in the large
superposition state that would result from these opera-
tions; what we hope is that some combination of these
will produce a useful result, essentially a set of at most
n bits that will correspond to the answer to some inter-
esting mathematical problem.

The first indication that one could use these ideas—
superposition and quantum parallelism—to answer a
query in fewer computational steps than with a classi-
cal computer was provided by the Deutsch algorithm in
1985 [2] (see [3] for a detailed discussion). The real break-
through, however, did not come until 1994, when Peter
Shor [4] announced an algorithm for, in essence, obtain-
ing the order of an integer a modulo another integer b
(a < b) in a number of steps of the order of L3, where
L =logyb. The order r is the lowest strictly positive in-
teger such that a” mod b =1 (assuming a and b have no
common factors). This is believed to be a “hard” prob-
lem for classical computers, which means that no classical
algorithms are known that can calculate r in a number of
steps that is a polynomial in L. Shor’s method requires,
naturally, enough qubits to store the input numbers a
and b, and, later, the answer, r, which is always < b.
The problem seems ideally suited for quantum comput-
ers, because it can be specified with relatively few bits of
information (of the order of L) and the output involves
also relatively few bits, but the “naive” way to approach
it, on a classical computer, would require generating a
large (exponential in L) number of intermediate results
that in themselves are not really interesting at all. These
would be the values of ' mod b, a®> mod b, a® mod b, . . .,
and so on, until one finally hits the correct exponent r.
The quantum algorithm somehow simultaneously “cal-
culates” all these numbers by preparing a register x in a
superposition of all the values of x from 0 to b — 1, and
then evaluating in parallel ¢® mod b for all these values;
then it does something to the coefficients of the result-
ing superposition state that ensures that a number from
which one could determine r gets written to an appropri-
ate register. In some sense, therefore, in the intermediate
stages, the quantum computer does use the exponentially
large amount of potential information represented by all
the values of ¢ mod b, but it only uses this to generate,
in the end, an amount of information, in bits, strictly
smaller than the input.

To be slightly more precise, note that the function
f(z) = a® mod b is periodic with period r (since f(0) =
f(r) = 1), and all we want is to determine this pe-
riod. The quantum computer accomplishes this task by
using what is called the “quantum Fourier transform”
algorithm, which acts on a superposition state to con-
vert it into another superposition whose coefficients are



given by the (discrete) Fourier transform of the original
coefficients. This gives us just what we need, because
the Fourier transform of a periodic function consists of
“peaks” at the fundamental frequency and its multiples.
A measurement of the appropriate register at the end of
the calculation will then yield a state whose amplitude
in the superposition is large, i.e., it corresponds to one
of the peaks in the Fourier transform, and therefore the
number corresponding to that basis state must be a good
approximation to an integer multiple of 1/7; a few runs
of the algorithm are then sufficient to determine r from
this information, with high probability (see [3] or [5] for
the full details).

Shor’s algorithm is important for several reasons, of
which the main one is that the problem of factoring a
large integer b can be reduced to the problem of finding
the order of a mod b, where ¢ is an (almost) random
number in the range 0 < a < b. Factoring, in turn, is an
important problem in cryptographic applications: the se-
curity of RSA (a form of public-key encryption) cryptog-
raphy depends on the computational difficulty of factor-
ing, with today’s computers, numbers of more than 500
bits. A quantum computer would thus be able to break
today’s most-widely used public-key encryption codes in
virtually no time at all. Shor’s discovery, therefore, made
quantum computers extremely interesting to the Intelli-
gence agencies, and this is what primarily accounted for
the large sums of money that have been invested, and
continue to be invested, on quantum computing research
since then.

II. COHERENCE AND DECOHERENCE

It was very soon realized that the main challenge to
the realization of a large-scale quantum computer would
come from the phenomenon generally known as “deco-
herence.” “Coherence” is a word used mostly in op-
tics, where it refers to the ability of light from different
sources to produce observable interference patterns. For
instance, in the classic double-slit experiment, one can
only see an interference pattern if the light coming from
both slits is (mutually) coherent (figure 1a); more pre-
cisely, the visibility of the interference pattern is a mea-
sure of the degree of mutual coherence between the light
at both slits. When the slits are illuminated by spatially
incoherent light, no interference is seen (figure 1b).

This traditional optical concept of coherence is closely
related to its quantum mechanical counterpart. In fact,
in the quantum-mechanical description of the double-slit
experiment, each photon “goes through both slits simul-
taneously” and as a result interference fringes are formed
that contain information about, for instance, the spacing
between the slits—something that would not be possible
if each photon went through only one slit. In this situa-
tion, if |0) represents, symbolically, the state in which a
photon goes through slit “0”, and |1) the state in which it
goes through slit “1”, the physical state could be written

(b)

FIG. 1: (a) Interference fringes in a double-slit arrangement
produced when each photon goes through both slits simulta-
neously. This is a coherent superposition of the two situations
depicted in (b), where each photon goes through only one slit.
An incoherent superposition of the two patterns shown in (b)
would exhibit no interference fringes.

as the superposition
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and we call this superposition “coherent” precisely be-
cause the physical system displays interference. On the

other hand, an incoherent superposition (or mizture) of
the two alternatives, described by the density matrix

[¥) (10) +11)) (6)

pine = 510){0] + 211 7)
does not display interference, and corresponds to the sit-
uation where each photon goes through one slit or the
other, not both at once; that is, it corresponds to the
completely incoherent case of classical optics. Note that
the state [1) of Eq. (6) also admits of a density matrix
representation, which would be

peon = 1)1 = Z10){01+ 5 1)1+ 10} (1| +511) 0] (&)

Comparing Eq. (7) with (8), we see that the difference be-
tween the coherent and incoherent case lies in the absence
of off-diagonal elements in (7). In general, the degree of
“decoherence” of a superposition state can be measured
from the relative size of these off-diagonal elements, in
some appropriate basis.

The reason why decoherence is an important problem
for quantum algorithms can be illustrated by considering
again Shor’s order-finding algorithm. At some point, this
requires performing the quantum Fourier transform on a
register of about L qubits that may be in a state such as

lag) + |ag + ) + |ag + 2r) + ... + |ag + nr) (9)



[
[

—_—

L)

FIG. 2: Coherent light diffracted by an array of many slits (a
grating) exhibits very sharp interference maxima whose spac-
ing reflects the spacing of the slits in the diffracting screen
(the period of the grating). Observing the location of a few
of these maxima may be enough to infer the period of the grat-
ing, and this could be accomplished, in principle, with just a
few photons. Shor’s period-finding algorithm in a quantum
computer works in a very similar way, but the coherent super-
position is prepared in a mathematical Hilbert space, rather
than in “real” space.

where n may be a large number, perhaps of the order
of 2=, Now, recall that in classical optics the electro-
magnetic field diffracted by a plane screen is, far from
the screen, given by the Fourier transform of the field on
the screen plane. Hence, the quantum computer’s task is,
formally, completely equivalent to obtaining the distribu-
tion, in the far field, of light that has been put through a
set of equally-spaced slits (with r acting as the spacing);
see Fig. 2. Then, just as the optical system will not pro-
duce a proper Fourier transform (from which one could
infer the value of r) unless the light coming from all the
slits is coherent, the quantum Fourier transform will fail
if the superposition (9) is not fully coherent: the quan-
tum Fourier transform relies on quantum interference in
just the same way as the optical Fourier transform relies
on optical interference.

But how does a quantum-mechanical superposition
lose coherence? Again the double-slit example provides
an answer. We are familiar with the statement that it
is impossible to simultaneously observe interference and
determine through which slit the photon went. Physi-
cally, this means that any attempt to locate the photon
at either one of the two slits destroys the interference
pattern, and hence the underlying state coherence. The
general principle may be stated thus: if the photon leaves
any indication behind of having passed through one slit,
and not the other, the coherence of the state is lost, at
least in part—it is lost completely if the record leaves no
doubt as to which slit the photon went through.

Remember the interpretation of a superposition such
as (9) as representing a situation in which the system is
in some sense “simultaneously” in all of the states shown.
Then what we are saying is that coherence will be lost
if the “environment” (anything with which the system of
qubits might interact in its surroundings) has any way
to tell the states apart, to measure, however imperfectly,
the system as being in one of them and not the others.

Suppose, for instance, that the qubits were spins, and
the states |0) and [1) represented “spin up” and “spin
down”, respectively. Then the states being superimposed
in (9) would all correspond to different local magnetic
fields (since every spin carries with it a magnetic field).
Anything in the environment that could tell the differ-
ence between, for instance, a state with two spins up,
|00), and a state with two spins down, |11) could, at
least in part, destroy the coherence of a superposition
like (]00) +|11))/+/2, by responding to the magnetic field
of the qubits in a way that would identify one of the two
possibilities, and not the other one, as being actually
present at that location.

Now, a coherent superposition like (9) would, in a typi-
cal application of Shor’s algorithm, contain an extremely
large number of states, exponential in L—after all, as
discussed in the introduction, it is precisely this expo-
nentially large Hilbert space that gives the quantum al-
gorithm its advantage over the classical one. To preserve
the coherence requires to arrange for the interaction with
the environment to be so weak that none of these terms
leaves a distinctive trace on the environment, at least, for
as long as the computation lasts. This is a daunting task:
it has long been known that, under fairly general circum-
stances, the rate at which a superposition decoheres tends
to be, itself, exponential in the physical size of the sys-
tem, so that a superposition state of L qubits would deco-
here approximately 2% times faster than a superposition
state of just one qubit. If this scaling applies generically
to quantum computers, it would precisely negate their
calculational advantage, since the time available for the
computation would shrink exponentially.

The above point was soon made by a number of sci-
entists, such as Unruh [6] and, perhaps most famously,
Haroche and Raymond [7], in a special column in Physics
Today. Ironically, even at the same time as these observa-
tions were being published, a solution was being worked
out. This was the realization that quantum error correc-
tion was possible, and moreover, that it was possible to
do it fault-tolerantly [8]. The practical meaning of this,
probably the most important discovery in the history of
quantum information processing, was that, as long as one
could perform error correction on a system of qubits be-
fore it had had a chance to decohere much, the initial
coherent superposition could be restored with high prob-
ability, and the process could be kept up, for as long as
necessary, provided that the error probability per qubit
(due to all error sources, including decoherence) per er-
ror correction step was kept below a certain threshold
value. Estimates of the threshold vary, depending on
assumptions about the computer’s architecture and the
error-correction process itself, but it is probably safe to
set it around 10~* for most practical purposes.



IIT. ERRORS DUE TO THE QUANTUM
NATURE OF THE CONTROL SYSTEMS

From the point of view of error correction, anything
that may cause a qubit to be in a state other than the
one it was supposed to be in is an error. The error prob-
ability can be quantified, if the actual density operator
p for the system is known, by comparing it to whatever
it was supposed to be, say, po. The overlap of these op-
erators, as measured, for instance, by the trace of their
product, gives the probability that no error occurred, and
1 —Tr(ppo) gives the error probability:

Pe=1-Tr(ppo) (10)

(it is easy to see, for instance, that if a qubit has deco-
hered to the point that its state is given by (7) instead of
(8), equation (10) predicts an error probability of 1/2).

Decoherence of the qubits due to their interaction with
the environment is just one of several possible sources
of errors. Others include imperfections in the control
systems that need to act on the qubits in order to perform
the logical operations needed for the computation (such
as, e.g., the Hadamard transforms introduced in Section
1). For instance, a particular radiation pulse could be
too strong or too long, or have the wrong relative phase.

A few years ago a number of authors, simultaneously
and independently, started to explore the errors that
would be introduced in quantum computation by the
quantum nature of these control systems (in what fol-
lows we will most often refer to these as control fields,
since they would typically be electromagnetic fields ap-
plied to the qubit system). It is interesting to observe
that there is also a clear parallel here with the discussions
of the double-slit interference experiment, mostly by Ein-
stein and Bohr [9], at the dawn of quantum mechanics.
When Einstein suggested that a movable screen could in
principle be used to obtain information on which slit the
photon went through, Bohr countered that the screen it-
self would then, for consistence, have to be described by
quantum mechanics, in which case the uncertainty princi-
ple applied to the screen would prevent the simultaneous
determination of the path taken by the photon and the
observation of the interference pattern.

Einstein’s idea (or, rather, a popular, somewhat mod-
ified version of it, perhaps due to Feynman [10]) is
schematically illustrated in Figure 3. For a photon that
reaches a particular point on the screen, a movable screen
would experience a different momentum recoil depending
on whether the photon passed through the upper or the
lower slit. If this momentum could be measured, one
could tell which way the photon went.

There are a number of ways to see why this would not
work, if the screen is treated as a quantum, rather than
a classical, object . Perhaps the most fundamental one is
to note that the full state of the system would then be,
instead of (6), the joint (entangled) state of photon and

q O
Po
I
Py
O D
@)

FIG. 3: Einstein’s concept of a double-slit screen, on friction-
less rollers, that can move in the transverse direction. Each of
the two possibilities shown for a difracted photon (po and p1)
leaves the screen in a different transverse momentum state.
By measuring this momentum, one could determine, in princi-
ple, which way the photon went. However, Bohr showed that,
in this case, the quantum-mechanical nature of the screen
would cause the interference fringes to disappear.
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where |pg) and |p;1) represent the states of the screen
after it has given the photon a transverse momentum pg
or p1, respectively. When one traces over the state of the
screen, one finds the following reduced density operator
for the state of the photon

[¥) (10}lpo) + [1)[p1)) (11)

1 1
p =510)(0] + 5/1){1

£ )01+ ol (12)
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This is a partly decohered state, which becomes a com-
pletely incoherent state (like (7)) if the states |pg) and
|p1) are orthogonal, in which case they are perfectly dis-
tinguishable. In this case, the interference completely
vanishes, as discussed in connection with (7) and illus-
trated in Figure 1b.

An alternative approach invokes the uncertainty prin-
ciple as applied to the screen. To be able to determine the
photon’s path, the uncertainty in the screen’s transverse
momentum must be Ap < |pg — p1| =~ hd/AD. But then
its position uncertainty is Az > h/Ap = AD/d, which
is just of the order of magnitude of the width of the in-
terference fringes. With such a large uncertainty in the
position of the screen, the patterns formed by successive
photons would not overlap properly, and no interference
would be visible.

Either way, we may conclude that, when a quantum
system, like the photon in this example, interacts with
a seemingly classical apparatus, treating the apparatus
quantum-mechanically generally results in decoherence,



i.e., a loss of the system’s quantum ability to interfere.
We may expect the same thing to happen when the quan-
tum nature of the control systems used for quantum com-
putation is taken into account. Indeed, this was shown
to be the case in some of the first papers to address
this question, which roughly followed, independently, the
same two approaches sketched above. Thus, Van Enk
and Kimble [11] considered the entanglement between
an atomic qubit and a quantized laser field, whereas
Gea-Banacloche [12] considered the errors in the state
evolution that would arise from the fluctuations in the
phase and intensity of the quantized field (for a quantum
field, phase and intensity are approximately conjugate
variables, similarly to position and momentum for a ma-
terial particle).

At about the same time, Ozawa [13] had been exploring
the similarity between certain quantum logical operations
and measurements, and focused on the constraints im-
posed on quantum measurements by conservation laws,
originally discussed by Wigner, Araki and Yanase (WAY)
[14, 15]. Note that a conservation law (namely, conser-
vation of momentum) is the basis of the proposed used
of the screen as a measuring device in the double-slit
experiment, as well as the reason for the entanglement
exhibited by the state (11).

There are a number of ways in which different quan-
tum logic operations can be reinterpreted as stages in a
measurement of some qubit operator, and restrictions on
the operation can then be derived from the WAY theo-
rem, which states that any observable that does not com-
mute with an additively conserved quantity cannot be
measured with absolute precision. In a series of papers,
Ozawa [13, 16] was able to express these constraints as re-
quirements on the “size” of the auxiliary (or control) sys-
tem needed in order to be able to perform the operation
approximately, to some desired accuracy. For bosonic
controls, such as electromagnetic fields, these constraints
amount to the observation that the minimum error prob-
ability scales as 1/7, where 7 is the average number of
photons in the field (assuming that the field is in the
“most classical” state possible). This was in agreement
with the results obtained by other approaches, mentioned
above.

Many of these limits can be obtained from a conserva-
tion law of the form

0, + 27 = const (13)

where o, = [0)(0] — |1)(1] is one of the Pauli matrices,
which represent possible operators acting on the qubit,
and n is the photon number operator for the quantized
field. Conservation laws of the form (13) are related
to the conservation of angular momentum and/or en-
ergy in matter-radiation interactions, and they apply to
Hamiltonians used to model single-qubit quantum logic
in many physical systems. For all these systems, the
“conservation-law induced quantum limit” (CQL) takes

the form (for instance, for a Hadamard transformation)

1

1
P>-— -
~ 4 1+440(n)?

(14)

where P, is the error probability of the operation, max-
imized over all possible initial states, and o(n) is the
standard deviation of the photon number fluctuations in
the initial state of the control field. Recently Ozawa and
Gea-Banacloche have shown [17] that the CQL derived
from laws of the type (13) reproduces, in an appropriate
limit, the constraints due to (quantum) phase fluctua-
tions postulated for these systems in [12].

The simplest way to state, approximately, all these var-
ious results would be to say that fundamental quantum-
mechanical considerations require that, to perform a
quantum logical operation with an error probability of
the order of, say, 107°, using an electromagnetic field, a
minimum of about 10° photons must be employed. For
optical photons, which carry an energy of the order of 1
eV each, this means a very large energy requirement per
logical operation when compared to a classical computer,
which may dissipate only about 100 eV per elementary
operation today. Still, 10°> eV is “only” about 10~ J,
so it looks like one could perform many such operations
without a substantial energy cost, especially if the num-
ber of qubits is relatively small. However, one must keep
in mind that when using error correction, especially when
concatenated for fault tolerance, the number of physical
qubits can greatly exceed the number of logical qubits. In
order to factor a 1000-bit number, one might need a quan-
tum computer consisting of 10°~10° physical qubits, and
using error correction to protect all those qubits against
decoherence would require an almost constant applica-
tion of electromagnetic pulses to a large fraction of these
qubits simultaneously. In fact, the pulses must be applied
on a much smaller time scale than the characteristic de-
coherence time of the system, in order to keep the error
probability below the fault-tolerant error threshold. For
instance, if the decoherence time is 7., one expects the
off-diagonal elements of the density operator to decay as
e~t/7 5o that, for very short times, the error probability
will go as t/7.. To keep this smaller than, say, 107>, we
need ¢t < 107°7.. Suppose 7. = 1072 s, and that some
10° pulses of about 107'* J each need to be applied to
the system every 10~® s. The required power is then al-
ready of the order of 0.1 W. A much shorter decoherence
time or a much larger computer would result in probably
unmanageable power requirements, given the relatively
low efficiency of most laser systems.

In fact, the actual power requirements are likely to be
substantially greater because in most cases the coupling
between the electromagnetic pulse and the qubit is far
from optimal, and only the photons within a cross sec-
tion of the order of a wavelength squared actually interact
appreciably with the qubit [18]. This makes it possible
to rephrase the constraint as one on the required power
density (i.e., power per unit area). A possible way to
express it is as follows: if we are to keep P, smaller



than some number, say €, we need an energy density
of the order of hw/eA?, with w = 2mc/\. Also, if fre-
quency addressing is used, the frequency of the oscillator
and the operation time must satisfy a relationship like
(wt)? > 1/e, in order for the frequency to be sufficiently
sharply defined. Putting this together with the require-
ment ¢/7. < €, one arrives at a power per unit area that
scales as he~7/2772X2. Consider also that it would be
unrealistic to expect the electromagnetic field to be fo-
cused to a spot size much smaller than a wavelength;
then, if the spacing between the qubits is d, with d < A
(which may be especially true of solid-state proposals),
and one has to work simultaneously on a substantial frac-
tion of all the qubits most of the time, of the order of
A2/d? fields would overlap at any spot, and the actual
power density would be of the order of he~7/272d 2.
With € = 1075, 7. = 107 s (typical of today’s solid-state
qubits) and d = 10~% m, this results in power densities
of about 3 kW /cm?.

The above analysis shows, perhaps more than any-
thing, the difficulties inherent in trying to work with sys-
tems that have very short decoherence times. It does
not seem that a large-scale quantum computer with a
decoherence time shorter than a millisecond is a realistic
possibility, given the fundamental constraints on the re-
quired energy and power illustrated above. On the other
hand, it should be understood that these fundamental
constraints do not at all prove that quantum computing
is impossible; they simply show how difficult it is likely
to be.

There are still a few open questions regarding the fun-
damental constraints presented here. There are encoding
schemes that do not seem to suffer from the CQL-related
constraints [19, 20], since the qubit part of the additive
conserved quantity would commute with all the quan-

tum logical operations (for instance, one could encode the
qubit using a pair of states with zero total angular mo-
mentum). Depending on how the interactions are turned
on and off, however, some of the other constraints (for in-
stance, those related to field intensity fluctuations) might
still apply. This point was made by the present author
n [21], but a precise proof of the general applicability
of the arguments in [21] to all the relevant experimental
setups is still not really available.

IV. CONCLUSIONS

The possibility of building quantum computers is cer-
tainly an exciting one. Initially, decoherence was ex-
pected to be a fundamental obstacle, but fault-tolerant
error correction showed that this was not the case. The
quantum nature of the controls used for quantum logic
does pose fundamental restrictions, but these only show
that the task is difficult, not, in principle, impossible.

A small “quantum simulator” along the lines first en-
visioned by Feynman might use only a few tens of qubits,
and work using only minimal error correction, provided
the simulations are short and the qubits have intrinsically
long decoherence times: ion traps would probably be the
ideal physical system for this purpose. At the current
pace of entanglement engineering, one should not expect
to see such devices become a reality for at least another
couple of decades, but once they become widespread they
could be a useful computational tool for workers in a
number of technical and scientific fields. Whether the
large-scale quantum factoring machine is ever actually
built remains a question for an even more distant future.
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