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Mixed-state sensitivity of several quantum-information benchmarks
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We investigate an imbalance between the sensitivity of the common state measures—fidelity, trace distance,
concurrence, tangle, von Neumann entropy, and linear entropy—when acted on by a depolarizing channel.
Further, in this context we explore two classes of two-qubit entangled mixed states. Specifically, we illustrate
a sensitivity imbalance between three of these measures for depol@rizew/erner-state-likenonmaximally
entangled and maximally entangled mixed states, noting that the size of the imbalance depends on the state’s
tangle and linear entropy.
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I. INTRODUCTION using generic depolarized density operators. The depolarized

Because the outcome of most quantum-information protol\l'leveI systentN=2for a qubitN=4 for two qubits, etg.is

cols hinges on the quality of the initial state, pure maximally €
entangled states are often the optimal inputs. However, de- p—p' =1-ep+ NN (1)
coherence and dissipation inevitably decrease the purity and
entanglement of resource states, yielding partially entangle@heree is the strength of depolarization.
mixed states. The most common measure used to benchmark
a starting state resource is the fideljty}, as used, e.g., in o
entanglement purificatiof2,3] and optimal mixed state tele- A. Fidelity
portation [4]. Likewise, the success of these procedures is For direct comparison of two mixed states, eggandp,,
often judged using the fidelity of the output state with somefor target and perturbed states, respectively, we first discuss
target, as is the case, for example, in quantum clofiflg the fidelity introduced by Jozd4]:
Recently it was found that, for the specific case of maximally —
entangled mixed statd6—8] (MEMS), using the fidelity to Fpwpp) = [Tr(\VpppVpd 2. (2
as a Ioss Sonaiive way of assessing experimental agreemd e SITPIT case of o pure stafes andlys),  recuces

; y g exp a9 l?ot]w | y|?. It is also important to note that some research-
than comparing the tang[®,10] and the linear entropig41] Pt . . o
of those state$l12]. Because one needs to understand theerss,_as m_[l7], use an amp“t.Ud? version of the fidelity:
best way to benchmark states for quantum-information pro-_ VF.n e!ther case, the fidelity is zero for orthogonal states

and 1 for identical states.

tocols, here we examine the fidelity for more general en- B ish id I bati in th
tangled two-qubit mixed quantum states and note its behay;  CSCaUSe We WIS to consider small perturbations in the

ior in relation to the common state measures of linear angde"ty’ the “amplitude version’f should be less sensitive

von Neumann entropy, tangle and concurrence, and trace di ecause it lacks the square. We consider a generip plate
Py, tang with eigenvalueg\;}, depolarized by. The amplitude fidel-

tance. . . :

After some general calculations for depolarized states, wdY f Petween the output stage and the inpuip is
consider explicitly two classes of two-qubit entangled states 6
acted on with depolarizing channels: nonmaximally en- f(p,p") =Try/(1—e)p?+ Np €]

tangled states and maximally entangled mixed states. The

effect of a depolarizing channel is to make the states we

study similar to the Werner statésn incoherent combination - /(1_ N2+ E)\ @
of a pure maximally entangled state and completely mixed B i €N N

statg [13,14, which have been realized with polarized pho-

tons [15,16. These two classes of states were chosen beWe assumee is small such that<N\/|1-N\|, where\ is

cause they allow us to study mixed-state entanglement fahe smallest nonzero eigenvalue. Thus, we can expand the
states of current interest, and also to understand how thesdove expression to second orderein

states change under uniform depolarization. Such a uniform 1/1-N 1/1-Nn\2
depolarization model is applicable to many examples of real ~ f~ > M[l +_( )\i> B _( M) 62]
experimental decoherence. N0 2\ N\ 8\ N\
— N\ \ 2
Il. GENERAL SENSITIVITIES OF MEASURES —1- (l _ ”_®>6_ S ﬁ(ﬂ) 2+0(), (5)
2 2N/7 Zp8\ N\ ’

Before considering specific examples of entangled mixed
states, we examine general sensitivities for several measurederen,, is the number of nonzero eigenvaluespotWhenp
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is of full rank (i.e., n,=N), the first order term vanishes, and No Ny  No

the fidelity is sensitive only to second order in the small AS= - me e+el1-S/(p) - N + N InN
depolarizing parameter. [ is not full rank, f is sensitive to

first order, but becomes less so as the rank becomes higher.

Squaring the resul) in fact gives thesameorder of sensi- N 2 In 7‘|>' 19
tivity for F. Naizo

wheren, (np) is the number of nonzer@ero eigenvalues of
B. Trace distance p, andng+ny=N. Whenp is not a full rank matrix(i.e., ng
# 0), the von Neumann entropy is, to leading order, sensitive
IR eln e (stronger than orde¢). As the rank become higher,
this e In e sensitivity decreases. Whenis of full rank (i.e.,
1 ny=0 andn,=N), the von Neumann entropy is linearly sen-
D(py, pp) = 5Tr|pt =~ pyl- (6)  sitive in e unlessS,=-(1/N)Z; In \;, which is again possible

only when\;=1/N, i.e., for the fully mixed stat@=1y/N.

Another possible measure used to compare two states
the trace distancgl7], given by

Evaluating the trace distance using KEt) gives
E. Concurrence and tangle

(7) Here we examine two ways of quantifying the entangle-
ment of a system, restricting our attention to two-qubit states.
We will first derive the variation of the concurrence for an
entangled state acted on by a depolarizing channel, then use
this to find the result for the tangle, which is the concurrence
squared.

1 1
D(p,p) == [N -=
(p.p') 22‘| ~E

Here the 1N term comes from theN X N mixed state
(In/N) used to depolarize to createp’ [EqQ. (1)]. Thus, we
see that the trace distance is alwéipearly sensitive to the
strength of depolarization, except fprly/N, i.e., the fully
mixed state. Consequently, the difference between two simi-

o . 1. Concurrence
lar states will in general be less apparent when usifay F)

than when usindD. The concurrence is given HQ]
Clp) = max{0, N~ o= e = Na},  (12)

C. Linear entropy

To quantify the mixedness of a given staie we first where_)\i are the eigenvalu.ei @p in nonincreasing orde_r by
consider the linear entrop ), which is based on the purity, Magnitude. Here we defing=(o,® a5)p* (02® o) with

and for anN-level system is 2= (?B')
Supposg\;} are arranged in nonmcreasmg order and the

statep is entangled, so thzﬁ(p)—\)\l—\)\z Ws= g (I p

- 11— 2

S.(p) = N — 1[1 Tr(p9)]. ® s unentangledp’, which has additional noise, is still unen-
tangled) To find the concurrence gf’, we have to evaluate

The linear entropy is zero for pure states and 1 for comthe eigenvalues of the matrix

pletely mixed states, i.e§ =1 for the normalizedN-qubit 2

identity 15/N. The change in the linear entropy under a de- == (1 - €205 + € 1- +3) 4+ —1 13

polarizing channel is PP =1-appt (1-ap+p)+ cls (13

AS =S (p)-S(p)=Re-(1-9). ©) We can treat the last two terms as perturbations and evaluate

the eigenvalues to leading order:

Therefore, the linear entropy is always linearly sensitive,in

except whenS (p)=1, namely, wherp is the fully mixed P (12 4 E01 ~ f
stately/N. Thus, the linear entropy is, in general, more sen- N~ (@t 4(1 Np+pi+ 16’ (14)
sitive to the depolarizing channel than the fidelity, as was
previously shown for the specific case of any depolarizedvhere
linear puresinglequbit state[18]. _ _
(p+D)i = Nil(p+D)IN). (15)
D. von Neumann entropy For e<\, where\ is the smallest nonzero value X}, we

Another frequently encountered entropy measure is th&ave, to leading order,
von Neumann entropy:

N o~ (1-eh
S/(p)=-Tr(pInp). (10) VA (L-eVN\i + 8\’/—<p +p)i. (16)

Using Eq.(1) and evaluatingAS=S,(p’)-S,(p) to first or-  Hence, the change in concurrent&C=C(p’')-Cl(p)] is
der gives given by
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{(p+ph r r
2\/ —€<p+p>|+_—6C() ( )\ 2 0 0 2
\i=0 VA
_ 01-r 0O 2 _ 1
i = I TSsIs I
(p 2}. ) 17) PMEMS | 0 0 00 3
=200 VA r r
I . ) . - 0 0 ¢
The variation of concurrence is thus first ordekiexcept for 2 2
the unlikely case that
~ 4 ~ 1 r
(p+p) (p+p) -~ 00 -
Clp=t—FL2- 3 LB (18) 3 2
VA1 i=2n#0 8YVA 1
whenp is full rank. PMEMS I = 0 3 00 , osrs< %;
0 00O
2. Tangle 1
r
To characterize a state’s entanglement, one may also use > 00 3
the tangle[9,10], i.e., the concurrence squared:
T(p) = Clp)>2. (19) the parameter is the concurrence of the MEMS.

With these parametrizations, we may map out constant
Using the result for variation in concurrence, the variation offidelity curves between a target state and a perturbed state in
tangle can now be expressed Bs-T~2CAC. Thus, the the linear-entropy—tangle plarjgre choose these particular
tangle is also typically sensitive in the first order to depolar-measures for calculational simplicity and because E2@).
izing perturbations. and (22) cover the entire physically allowed region of the
In summary, we have thus far shown that, under the inpland. Itis our purpose to use these curves to gain insight as
fluence of a small depolarizing channel, the fidelity is not ago how the entanglement and mixedness may vary over a
sensitive as the change in trace distance, linear entropy, vagonstant fidelity curve and how this variation may in turn
Neumann entropy, concurrence, and tangle. Next we shaflepend on the amount of entanglement and mixedness. To do
illustrate this fact for specific states and investigate the situthis, we calculate the fidelity between a target siate;, 6,
ation for larger depolarization and for variable entanglementand a perturbed staig (e,, 6,). Specifically, the parameters
€, and 6, are varied to create perturbed states of all possible
lIl. INVESTIGATION FOR SPECIFIC STATES tangle and entropy values as long as the perturbed state has a
given fidelity with the target. Likewise, the process is re-
The first state we consider is similar to the classic Wernepeated forp,(e,ry), but instead varying the parameters of
state, but we allovarbitrary entanglement through the use of p,(ep,rp).
a variable nonmaximally entangled pure state component in In the pure, maximally entangled limit, both E¢20) and

addition to the mixed-state dilution: (22) reduce to the maximally entangled staig")= (/00)
+|11))/\2. Therefore, this is a natural state with which to
pi(€,0) = (1 - [T (ONT ()| + EJ14 (20) start our c_iiscussion. Because E@X)) and(2_2)_occupy dif-_ _
4 ferent regions of the entropy-tangle plane, it is not surprising

that we need to use both equations to map out the constant
fidelity curves for|¢*), as shown in Fig. 1. The horizontal
curves in the region bounded above by the Werner state
curve are traced out by computing the fidelity |@f*) with

where the parametef controls the entanglement arcthe  Ed.(20). This fidelity isF=(1+yT)/2 and, surprisingly, does
mixedness. We choose this parametrization for simplicitynot explicitly depend on the depolarization of the perturbed
and because the entropy and the entanglement of the state &t@te. The maximal fidelity of any two-qubit state with maxi-
somewhat uncoupled from each other. In this case, the cornally entangled pure states was found by Verstraete and Ver-
currence is C(py(e, 6))=max0,2(1-e)cos Bsin 20—€/2}  schelde[19] to be bounded above bt +\T)/2. The two-
(assuming cos@sin 20=0) and the linear entropy depends qubit stateg20) saturate this boun¢as does any two-qubit
only on €, S (pi(€,6))=2e—€% In a similar way, we depo- pure statg Any entangled state that saturates this bound ap-
larize a maximally entangled mixed state according to parently hasF>1/2, thus allowing concentration of en-
tanglement via the scheme of Bennettal. [2] without re-
€ quiring local filtering [20]. Another consequence of this
pa(€r) = (1 - &pyemdr) + 214’ (22) simple fidelity expression is that, when comparing E2D)
with |¢*), the fidelity by itself cannot distinguish between
where the MEMS, using the parametrizations of concurrencgure nonmaximally entangled states and Werner states of the
(or equivalently tangleand linear entropy, is given bj3] same tangle. For example, both the nonmaximally entangled

with

| (6)) = cos 20|00) + sin 2611), (21)
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FIG. 1. (Color online Constant fidelity curves for the maxi- FIG. 2. (Color onling Constant 0.99-fidelity curves for several

mally entangled statéOO)Hll))/\E (star, upper left corngrAlso starting MEMS, plotted as stars. The constant fidelity curves are
shown are the Werner state curgdotted ling and, bounding the calculated by comparing the target state wigke,r) wheree andr

gray region of nonphysical entropy-tangle combinations, theare varied to give different tangles and linear entropies. The dark
MEMS curve, which is solid fopyevs; and dashed fopyems - gray regions are 20 000 points per initial MEMS, corresponding to
The (horizonta) constant fidelity curves below the Werner state numerically generated density matrices that have fidelity of 0.9900
curve are swept out by comparing the starting state with states afr higher with the target.

the formp,(e, 6), Eq.(20), while the(nearly vertical curves above

the Werner state line are generated.by varying the parameters g@ficted counts one would expect to measure in an experiment
pz(€.1) given by Eq.(22). For comparison, the pure product state it ihere were no measurement noise or fluctuations. These
|00 (fower left comney has fidelity of 0.5 with this target. ideal counts are then perturbed in a statistical way to give a
variation one might expect in an experimental measurement
pure state py(0,11.259 and the Werner state for a total collection of~2000 counts[21]. Note that the

ﬁgg;;ﬁé@jiii@i’e tangle equal to 0.5, and each hassizes and shapes of the simulation and the constant fidelity

Tot h b the Wi cate i | curves are similar but not identical. As the simulation is ran-
0 trace the cuwfs above the vverner state lineé, We CalClyy,y, it pehaves somewhat like a depolarizing channel, add-
late the fidelity of|¢*) with Eq. (22). In this case, the ana-

: . - i o if i laini f the similari -
lytic expression for the fidelity does not provide much in- ing uniform noise(explaining some of the similarijy how

g . L ever, random fluctuations are not enough to mimic the
sight, so we only present numerical results, yielding the

. o ) .“extreme changes along the MEMS curve, as the MEMS den-
nearly vertical curves shown in Fig. 1. Notice that the verti- ity matrices possess a very specific form
cal curves scale in nearly fthe+sar_ne way as the hori_zonta The two previous cases dealt with states that have the
curves. Thus, when comparinig’) with states created USING highest entanglement values, i.e., they are bounded by the
Eqs.(29) and(22) that each separately have the same fldelltyedges of the physically allowed regions of the entropy-tangle
with |¢"), the linear entropy and tangle for EajEQ) and(22) lane. To investigate the behavior “on the open plane,” we
change by about the same amount when'the fidelity change xamine an entangled mixed target state that is a specific
So both Eqs(20) and (22) display approximately the same example of(20):
fidelity insensitivity. '

Next we consider the effect of depolarizing target maxi- p1(~0.225,~ 11.57)

mally entangled mixed states. In this case, we calculate the

0.99-fidelity curve for several target states, shown as stars in 0.7113 0 0 0.280
Fig. 2. Note that the 0.99-fidelity curve encloses a much | 0 00564 0 0 23
larger area for any of the MEMS targets than it does for the - 0 0 0.0564 0 ’ (23)
|¢*) calculation(Fig. 1). We attribute this to the fact that 0.2800 0 0 0.176

depolarizing a pure state changes the fundamental character

(as measured with the fidelityf the state more than does which is shown as a star in Fig. 3. Note that the 0.99-fidelity
depolarizing aralreadymixed state. Also shown in Fig. 2 are region is much larger than for any of the previous target
the results of a numerical Monte Carlo simulation, where westates, including the MEMS. This result is particularly aston-
assumed an ideal starting state, and then calculated the prishing when viewed in light of what is typically considered
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1 o thus Eq.(23) exhibits larger constant fidelity curves than the
) Constant Fidelity Curve MEMS or |¢*). In addition, we conjecture that this effect
may be further exacerbated because the addition of symmet-

*  Starting State ric noise to an already highly mixed staighich has a sym-
08 g . F=0.99 metric form) changes the character of the state less than for a
= F=0.98 MEMS (which has an asymmetric fopm
F=0.95 In summary, we have shown an imbalance between the
0.6 F=0.90 sensitivities of the common state measures—fidelity, trace

distance, concurrence, tangle, linear entropy, and von Neu-
mann entropy—for two classes of two-qubit entangled mixed
states. This imbalance is surprising in light of the fact that
orthogonal states which have zero fidelity with one another
may have the same entanglement and mixedness; thus, one
might have expected the fidelity to bereresensitive means
to characterize a state than quantifying state properties like
entanglement and mixedness. Here we have shown an oppo-
site effect. Specifically, we have investigated several ex-
amples at different locations in the entropy-tangle plane,
A e\, where the trend shows progressively larger 0.99-fidelity re-
0.4 0.6 0.8 1 gions as the state becomes more mixed and less entangled.
Linear Entropy We also have shown that, at least for maximally entangled
target states, the fidelity is insensitive when comparing be-
FIG. 3. (Color Online Constant fldellty curves for a nonmaxi- tween Werner states and nonmaxima”y entang|ed states of
mally entangled mixed statfp,(e=0.225=11.579] compared  the same tangle. This work has important ramifications for
with states calculated by varyingand 6. In the case of this mixed benchmarking the performance of quantum-information pro-
entangled state, the constant fidelity regions are surprisingly largesagsing systems, as it reveals that the usually quoted measure
for example, a 0.9 fidelity with this starting state could arise from aof fidelity is often a remarkably poor indicator, e.g., of the
ggigyfﬁéeoe;f:(?ﬁd ;é?tfei" d(;r“‘;rom an “nemaggcl)/ed ?teﬁr fukl]ly MX®8ntanglement in a state, on which the performance of
‘ -~ and hig ety region coversuvo of the phys guantum-information systems often depend. This may have
cally allowed region of the linear-entropy—tangle plane. L e
consequences, for example, for determining the limits of
“high fidelity” experimentally for entangled states: 0.9 to fault tolerant quantum computatig@3], and it may be ben-
0.99 depending on the particular two-qubit implementatioreficial to include other benchmarks in addition to/instead of
(although somesingle-qubit fidelities have been reported at fidelity when characterizing resources needed for various
the 0.999 leve[22]). Consider the 0.9-fidelity curve in Fig. quantum-information protocols.
3. This level of fidelity with the target states could mean one

F=0.85

Tangle

0.4

0.2
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