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We investigate an imbalance between the sensitivity of the common state measures—fidelity, trace distance,
concurrence, tangle, von Neumann entropy, and linear entropy—when acted on by a depolarizing channel.
Further, in this context we explore two classes of two-qubit entangled mixed states. Specifically, we illustrate
a sensitivity imbalance between three of these measures for depolarized(i.e., Werner-state-like) nonmaximally
entangled and maximally entangled mixed states, noting that the size of the imbalance depends on the state’s
tangle and linear entropy.
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I. INTRODUCTION

Because the outcome of most quantum-information proto-
cols hinges on the quality of the initial state, pure maximally
entangled states are often the optimal inputs. However, de-
coherence and dissipation inevitably decrease the purity and
entanglement of resource states, yielding partially entangled
mixed states. The most common measure used to benchmark
a starting state resource is the fidelity[1], as used, e.g., in
entanglement purification[2,3] and optimal mixed state tele-
portation [4]. Likewise, the success of these procedures is
often judged using the fidelity of the output state with some
target, as is the case, for example, in quantum cloning[5].
Recently it was found that, for the specific case of maximally
entangled mixed states[6–8] (MEMS), using the fidelity to
compare an experimentally produced state and a target state
was a less sensitive way of assessing experimental agreement
than comparing the tangle[9,10] and the linear entropies[11]
of those states[12]. Because one needs to understand the
best way to benchmark states for quantum-information pro-
tocols, here we examine the fidelity for more general en-
tangled two-qubit mixed quantum states and note its behav-
ior in relation to the common state measures of linear and
von Neumann entropy, tangle and concurrence, and trace dis-
tance.

After some general calculations for depolarized states, we
consider explicitly two classes of two-qubit entangled states
acted on with depolarizing channels: nonmaximally en-
tangled states and maximally entangled mixed states. The
effect of a depolarizing channel is to make the states we
study similar to the Werner states(an incoherent combination
of a pure maximally entangled state and completely mixed
state) [13,14], which have been realized with polarized pho-
tons [15,16]. These two classes of states were chosen be-
cause they allow us to study mixed-state entanglement for
states of current interest, and also to understand how these
states change under uniform depolarization. Such a uniform
depolarization model is applicable to many examples of real
experimental decoherence.

II. GENERAL SENSITIVITIES OF MEASURES

Before considering specific examples of entangled mixed
states, we examine general sensitivities for several measures

using generic depolarized density operators. The depolarized
N-level system(N=2 for a qubit,N=4 for two qubits, etc.) is

r → r8 = s1 − edr +
e

N
1N, s1d

wheree is the strength of depolarization.

A. Fidelity

For direct comparison of two mixed states, e.g.,rt andrp,
for target and perturbed states, respectively, we first discuss
the fidelity introduced by Jozsa[1]:

Fsrt,rpd ; uTrsÎÎrtrp
Îrtdu2. s2d

In the simpler case of two pure statesuctl anducpl, F reduces
to zkcpuctlz2. It is also important to note that some research-
ers, as in[17], use an amplitude version of the fidelity:f
;ÎF. In either case, the fidelity is zero for orthogonal states
and 1 for identical states.

Because we wish to consider small perturbations in the
fidelity, the “amplitude version”f should be less sensitive
because it lacks the square. We consider a generic stater
with eigenvalueshlij, depolarized bye. The amplitude fidel-
ity f between the output stater8 and the inputr is

fsr,r8d = TrÎs1 − edr2 +
e

N
r s3d

=o
i

Îs1 − edli
2 +

e

N
li . s4d

We assumee is small such thate!Nl / u1−Nlu, wherel is
the smallest nonzero eigenvalue. Thus, we can expand the
above expression to second order ine:

f < o
liÞ0

liF1 +
1

2
S1 − Nli

Nli
De −

1

8
S1 − Nli

Nli
D2

e2G
= 1 −S1

2
−

n^

2N
De − o

liÞ0

li

8
S1 − Nli

Nli
D2

e2 + Ose3d, s5d

wheren^ is the number of nonzero eigenvalues ofr. Whenr
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is of full rank (i.e., n^ =N), the first order term vanishes, and
the fidelity is sensitive only to second order in the small
depolarizing parameter. Ifr is not full rank, f is sensitive to
first order, but becomes less so as the rank becomes higher.
Squaring the result(5) in fact gives thesameorder of sensi-
tivity for F.

B. Trace distance

Another possible measure used to compare two states is
the trace distance[17], given by

Dsrt,rpd ;
1

2
Trurt − rpu. s6d

Evaluating the trace distance using Eq.(1) gives

Dsr,r8d =
1

2o
i
Uli −

1

N
U«. s7d

Here the 1/N term comes from theN3N mixed state
s1N/Nd used to depolarizer to creater8 [Eq. (1)]. Thus, we
see that the trace distance is alwayslinearly sensitive to the
strength of depolarization, except forr=1N/N, i.e., the fully
mixed state. Consequently, the difference between two simi-
lar states will in general be less apparent when usingf (or F)
than when usingD.

C. Linear entropy

To quantify the mixedness of a given stater, we first
consider the linear entropysSLd, which is based on the purity,
and for anN-level system is

SLsrd ;
N

N − 1
f1 − Trsr2dg. s8d

The linear entropy is zero for pure states and 1 for com-
pletely mixed states, i.e.,SL=1 for the normalizedN-qubit
identity 1N/N. The change in the linear entropy under a de-
polarizing channel is

DSL ; SLsr8d − SLsrd = s2e − e2ds1 − SLd. s9d

Therefore, the linear entropy is always linearly sensitive ine,
except whenSLsrd=1, namely, whenr is the fully mixed
state1N/N. Thus, the linear entropy is, in general, more sen-
sitive to the depolarizing channel than the fidelity, as was
previously shown for the specific case of any depolarized
linear puresingle-qubit state[18].

D. von Neumann entropy

Another frequently encountered entropy measure is the
von Neumann entropy:

SVsrd ; − Trsr ln rd. s10d

Using Eq.(1) and evaluatingDS;SVsr8d−SVsrd to first or-
der gives

DS< −
n0

N
e ln e + eS1 − SVsrd −

n^

N
+

n0

N
ln N

−
1

N
o

liÞ0
ln liD , s11d

wheren^ sn0d is the number of nonzero(zero) eigenvalues of
r, andn^ +n0=N. Whenr is not a full rank matrix(i.e., n0
Þ0), the von Neumann entropy is, to leading order, sensitive
in e ln e (stronger than ordere). As the rank become higher,
this e ln e sensitivity decreases. Whenr is of full rank (i.e.,
n0=0 andn^ =N), the von Neumann entropy is linearly sen-
sitive in e unlessSV =−s1/Ndoi ln li, which is again possible
only whenli =1/N, i.e., for the fully mixed stater=1N/N.

E. Concurrence and tangle

Here we examine two ways of quantifying the entangle-
ment of a system, restricting our attention to two-qubit states.
We will first derive the variation of the concurrence for an
entangled state acted on by a depolarizing channel, then use
this to find the result for the tangle, which is the concurrence
squared.

1. Concurrence

The concurrence is given by[9]

Csrd ; maxh0,Îl1 − Îl2 − Îl3 − Îl4j, s12d

whereli are the eigenvalues ofrr̃ in nonincreasing order by
magnitude. Here we definer̃;ss2 ^ s2dr* ss2 ^ s2d with
s2= s 0 −i

i 0
d.

Supposehlij are arranged in nonincreasing order, and the
stater is entangled, so thatCsrd=Îl1−Îl2−Îl3−Îl4. (If r
is unentangled,r8, which has additional noise, is still unen-
tangled.) To find the concurrence ofr8, we have to evaluate
the eigenvalues of the matrix

r8r̃8 = s1 − ed2rr̃ +
e

4
s1 − edsr + r̃d +

e2

16
14. s13d

We can treat the last two terms as perturbations and evaluate
the eigenvalues to leading order:

li8 < s1 − ed2li +
e

4
s1 − edkr + r̃li +

e2

16
, s14d

where

kr + r̃li ; kliusr + r̃dulil. s15d

For e,l, wherel is the smallest nonzero value ofhlij, we
have, to leading order,

Îli8 < s1 − edÎli +
e

8Îli

kr + r̃li . s16d

Hence, the change in concurrencefDC;Csr8d−Csrdg is
given by
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DC < − o
li=0

Îe

4
s1 − edkr + r̃li +

e

16
− eCsrd +

e

8
S kr + r̃l1

Îl1

− o
i=2,liÞ0

4
kr + r̃li

Îli
D . s17d

The variation of concurrence is thus first order ine except for
the unlikely case that

Csrd =
kr + r̃l1

8Îl1

− o
i=2,liÞ0

4
kr + r̃li

8Îli

, s18d

whenr is full rank.

2. Tangle

To characterize a state’s entanglement, one may also use
the tangle[9,10], i.e., the concurrence squared:

Tsrd = Csrd2. s19d

Using the result for variation in concurrence, the variation of
tangle can now be expressed asT8−T<2CDC. Thus, the
tangle is also typically sensitive in the first order to depolar-
izing perturbations.

In summary, we have thus far shown that, under the in-
fluence of a small depolarizing channel, the fidelity is not as
sensitive as the change in trace distance, linear entropy, von
Neumann entropy, concurrence, and tangle. Next we shall
illustrate this fact for specific states and investigate the situ-
ation for larger depolarization and for variable entanglement.

III. INVESTIGATION FOR SPECIFIC STATES

The first state we consider is similar to the classic Werner
state, but we allowarbitrary entanglement through the use of
a variable nonmaximally entangled pure state component in
addition to the mixed-state dilution:

r1se,ud ; s1 − eduCsudlkCsudu +
e

4
14 s20d

with

uCsudl ; cos 2uu00l + sin 2uu11l, s21d

where the parameteru controls the entanglement ande the
mixedness. We choose this parametrization for simplicity
and because the entropy and the entanglement of the state are
somewhat uncoupled from each other. In this case, the con-
currence is C(r1se ,ud)=maxh0,2s1−edcos 2u sin 2u−e /2j
(assuming cos 2u sin 2uù0) and the linear entropy depends
only on e, SL(r1se ,ud)=2e−e2. In a similar way, we depo-
larize a maximally entangled mixed state according to

r2se,rd ; s1 − edrMEMSsrd +
e

4
14, s22d

where the MEMS, using the parametrizations of concurrence
(or equivalently tangle) and linear entropy, is given by[8]

rMEMS I =1
r

2
0 0

r

2

0 1 − r 0 0

0 0 0 0

r

2
0 0

r

2

2,
2

3
ø r ø 1,

rMEMS II =1
1

3
0 0

r

2

0
1

3
0 0

0 0 0 0

r

2
0 0

1

3

2, 0 ø r ø
2

3
;

the parameterr is the concurrence of the MEMS.
With these parametrizations, we may map out constant

fidelity curves between a target state and a perturbed state in
the linear-entropy–tangle plane[we choose these particular
measures for calculational simplicity and because Eqs.(20)
and (22) cover the entire physically allowed region of the
plane]. It is our purpose to use these curves to gain insight as
to how the entanglement and mixedness may vary over a
constant fidelity curve and how this variation may in turn
depend on the amount of entanglement and mixedness. To do
this, we calculate the fidelity between a target stater1set ,utd
and a perturbed stater1sep,upd. Specifically, the parameters
ep andup are varied to create perturbed states of all possible
tangle and entropy values as long as the perturbed state has a
given fidelity with the target. Likewise, the process is re-
peated forr2set ,rtd, but instead varying the parameters of
r2sep,rpd.

In the pure, maximally entangled limit, both Eqs.(20) and
(22) reduce to the maximally entangled stateuf+l;su00l
+ u11ld /Î2. Therefore, this is a natural state with which to
start our discussion. Because Eqs.(20) and (22) occupy dif-
ferent regions of the entropy-tangle plane, it is not surprising
that we need to use both equations to map out the constant
fidelity curves foruf+l, as shown in Fig. 1. The horizontal
curves in the region bounded above by the Werner state
curve are traced out by computing the fidelity ofuf+l with
Eq. (20). This fidelity isF=s1+ÎTd /2 and, surprisingly, does
not explicitly depend on the depolarization of the perturbed
state. The maximal fidelity of any two-qubit state with maxi-
mally entangled pure states was found by Verstraete and Ver-
schelde[19] to be bounded above bys1+ÎTd /2. The two-
qubit states(20) saturate this bound(as does any two-qubit
pure state). Any entangled state that saturates this bound ap-
parently hasF.1/2, thus allowing concentration of en-
tanglement via the scheme of Bennettet al. [2] without re-
quiring local filtering [20]. Another consequence of this
simple fidelity expression is that, when comparing Eq.(20)
with uf+l, the fidelity by itself cannot distinguish between
pure nonmaximally entangled states and Werner states of the
same tangle. For example, both the nonmaximally entangled
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pure state r1s0,11.25°d and the Werner state
r1s0.19525,22.5°d have tangle equal to 0.5, and each has
fidelity 0.854 with uf+l.

To trace the curves above the Werner state line, we calcu-
late the fidelity ofuf+l with Eq. (22). In this case, the ana-
lytic expression for the fidelity does not provide much in-
sight, so we only present numerical results, yielding the
nearly vertical curves shown in Fig. 1. Notice that the verti-
cal curves scale in nearly the same way as the horizontal
curves. Thus, when comparinguf+l with states created using
Eqs.(20) and(22) that each separately have the same fidelity
with uf+l, the linear entropy and tangle for Eqs.(20) and(22)
change by about the same amount when the fidelity changed.
So both Eqs.(20) and (22) display approximately the same
fidelity insensitivity.

Next we consider the effect of depolarizing target maxi-
mally entangled mixed states. In this case, we calculate the
0.99-fidelity curve for several target states, shown as stars in
Fig. 2. Note that the 0.99-fidelity curve encloses a much
larger area for any of the MEMS targets than it does for the
uf+l calculation (Fig. 1). We attribute this to the fact that
depolarizing a pure state changes the fundamental character
(as measured with the fidelity) of the state more than does
depolarizing analreadymixed state. Also shown in Fig. 2 are
the results of a numerical Monte Carlo simulation, where we
assumed an ideal starting state, and then calculated the pre-

dicted counts one would expect to measure in an experiment
if there were no measurement noise or fluctuations. These
ideal counts are then perturbed in a statistical way to give a
variation one might expect in an experimental measurement
for a total collection of,2000 counts[21]. Note that the
sizes and shapes of the simulation and the constant fidelity
curves are similar but not identical. As the simulation is ran-
dom, it behaves somewhat like a depolarizing channel, add-
ing uniform noise(explaining some of the similarity); how-
ever, random fluctuations are not enough to mimic the
extreme changes along the MEMS curve, as the MEMS den-
sity matrices possess a very specific form.

The two previous cases dealt with states that have the
highest entanglement values, i.e., they are bounded by the
edges of the physically allowed regions of the entropy-tangle
plane. To investigate the behavior “on the open plane,” we
examine an entangled mixed target state that is a specific
example of(20):

r1s,0.225,, 11.57°d

=1
0.7113 0 0 0.2800

0 0.0564 0 0

0 0 0.0564 0

0.2800 0 0 0.1760
2 , s23d

which is shown as a star in Fig. 3. Note that the 0.99-fidelity
region is much larger than for any of the previous target
states, including the MEMS. This result is particularly aston-
ishing when viewed in light of what is typically considered

FIG. 1. (Color online) Constant fidelity curves for the maxi-
mally entangled statesu00l+ u11ld /Î2 (star, upper left corner). Also
shown are the Werner state curve(dotted line) and, bounding the
gray region of nonphysical entropy-tangle combinations, the
MEMS curve, which is solid forrMEMS I and dashed forrMEMS II .
The (horizontal) constant fidelity curves below the Werner state
curve are swept out by comparing the starting state with states of
the formr1se ,ud, Eq. (20), while the(nearly vertical) curves above
the Werner state line are generated by varying the parameters of
r2se ,rd given by Eq.(22). For comparison, the pure product state
u00l (lower left corner) has fidelity of 0.5 with this target.

FIG. 2. (Color online) Constant 0.99-fidelity curves for several
starting MEMS, plotted as stars. The constant fidelity curves are
calculated by comparing the target state withr2se ,rd wheree andr
are varied to give different tangles and linear entropies. The dark
gray regions are 20 000 points per initial MEMS, corresponding to
numerically generated density matrices that have fidelity of 0.9900
or higher with the target.
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“high fidelity” experimentally for entangled states: 0.9 to
0.99 depending on the particular two-qubit implementation
(although somesingle-qubit fidelities have been reported at
the 0.999 level[22]). Consider the 0.9-fidelity curve in Fig.
3. This level of fidelity with the target states could mean one
has a nearly pure maximally entangled state(SL>0.07, T
>0.79) or a nearly completely mixed unentangled state(SL
>0.85,T=0).

The extreme insensitivity of the fidelity for the target state
(23) is consistent with Eq.(5), which indicates that fidelity
sensitivity drops off as the rank of a state increases. In this
case Eq.(23) has rank 4 while the MEMS have rank either 2
or 3 (and the maximally entangled pure stateuf+l is rank 1);

thus Eq.(23) exhibits larger constant fidelity curves than the
MEMS or uf+l. In addition, we conjecture that this effect
may be further exacerbated because the addition of symmet-
ric noise to an already highly mixed state(which has a sym-
metric form) changes the character of the state less than for a
MEMS (which has an asymmetric form).

In summary, we have shown an imbalance between the
sensitivities of the common state measures—fidelity, trace
distance, concurrence, tangle, linear entropy, and von Neu-
mann entropy—for two classes of two-qubit entangled mixed
states. This imbalance is surprising in light of the fact that
orthogonal states which have zero fidelity with one another
may have the same entanglement and mixedness; thus, one
might have expected the fidelity to be amoresensitive means
to characterize a state than quantifying state properties like
entanglement and mixedness. Here we have shown an oppo-
site effect. Specifically, we have investigated several ex-
amples at different locations in the entropy-tangle plane,
where the trend shows progressively larger 0.99-fidelity re-
gions as the state becomes more mixed and less entangled.
We also have shown that, at least for maximally entangled
target states, the fidelity is insensitive when comparing be-
tween Werner states and nonmaximally entangled states of
the same tangle. This work has important ramifications for
benchmarking the performance of quantum-information pro-
cessing systems, as it reveals that the usually quoted measure
of fidelity is often a remarkably poor indicator, e.g., of the
entanglement in a state, on which the performance of
quantum-information systems often depend. This may have
consequences, for example, for determining the limits of
fault tolerant quantum computation[23], and it may be ben-
eficial to include other benchmarks in addition to/instead of
fidelity when characterizing resources needed for various
quantum-information protocols.
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