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Implementation of Quantum Search Algorithm using Classical Fourier Optics
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We report on an experiment on Grover’s quantum search algorithm showing that classical waves can
search a N-item database as efficiently as quantum mechanics can. The transverse beam profile of a
short laser pulse is processed iteratively as the pulse bounces back and forth between two mirrors. We
directly observe the sought item being found in ~+/N iterations, in the form of a growing intensity peak
on this profile. Although the lack of quantum entanglement limits the size of our database, our results
show that entanglement is neither necessary for the algorithm itself, nor for its efficiency.
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Quantum computers [1,2] hold the promise of perform-
ing tasks [3,4] that are either impossible or much less effi-
cient without the use of quantum mechanics. One such
task is quantum searching, introduced by Grover [4,5].
Consider using a phone book with N entries to find the
name of a person whose phone number you have. Classi-
cally, this would require ~N consultations of the phone
book. Grover’s algorithm finds the desired entry with
only ~+/N consultations, using quantum mechanics. Here
we show experimentally that classical waves can find a
“needle in a haystack™ as efficiently as quantum mechan-
ics can. Although some previous experiments [6—10] have
demonstrated various aspects of quantum searching, all of
them have been limited to four entries [6—8] or a single
query [8—10]. Our experiment closely follows Grover’s al-
gorithm, implementing for the first time an iterative search
on a 32-item database, using classical waves. It provides
a striking demonstration that the algorithm itself requires
only wave properties [11] but no entanglement [12].

In Grover’s (first) algorithm [4] each database item is
associated with a quantum state. Initially the system is
prepared in a superposition of all N quantum states. The
algorithm then amplifies the probability amplitude of the
state being sought, in an iterative way. The item has been
found once the probability amplitude of this “target state”
is near unity. Ideally this requires (7/4)+/N iterations
of the following two steps. In the first step a so-called
“oracle” marks the item by inverting the phase of the asso-
ciated quantum state [5]. In the second step the amplitudes
of all states are inverted about the average amplitude
(IAA operation), converting phase information into ampli-
tude information.

The above protocol maps onto our classical-wave
experiment as follows (see Fig. 1). A complex electric
field amplitude E(x), viz. a transverse laser beam profile
plays the role of the quantum probability amplitudes. The
continuous coordinate x labels the items of the database,
corresponding to all possible quantum states. By spatial
filtering we initialize the beam profile |E(x)|? as a smooth,
near-Gaussian, distribution with a 1.33 mm diameter
(FWHM; full width at half maximum). A single, ~300 ps
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laser pulse (wavelength 532 nm) enters a standing-wave
cavity of 2.02 m optical path length through input mirror
M, (transmission 2%). The pulse travels back and forth
between the cavity mirrors in 13.5 ns, each roundtrip rep-
resenting one iteration of the search algorithm. Inside the
cavity an “oracle plate” [5] marks the item by imprinting
a phase profile on the beam, E(x) — E(x)exp[i®,(x)],
where ®,(x) = ¢ in a narrow area around the “item
position” x, and ®,(x) = 0 elsewhere. Next, the TAA
operation is performed by the sequence F®FF®F,
where F denotes a Fourier transform and ®; denotes a
phase plate like the oracle, but now imprinting a phase
profile ®(x’) in the Fourier plane. The Fourier trans-
forms replace the Walsh-Hadamard transforms [13] in the
original proposal [4] and are experimentally performed by

Iteration
order

FIG. 1. Cavity implementing Grover’s algorithm using optical
interference. We launch a short laser pulse with a Gaussian
transverse beam profile E(x), x representing the data register,
into the cavity formed by mirrors M ;. A line shaped depression
in the oracle plate marks the item by imprinting a phase pro-
file ®,(x). The sequence F®;FF®,F performs the inversion
about average (IAA) as required by Grover’s algorithm. Here F
denotes a Fourier transform, performed by the lenses L, (focal
lengths f1 = 400 mm, f> = 600 mm). The IAA plate imprints
a phase profile ®(x’) in the Fourier plane of the oracle. The
enlargements show cuts of the phase plates perpendicular to the
lines. As the pulse bounces back and forth, the transverse beam
profile is processed iteratively and light is concentrated into the
shaded mode. A high intensity peak, growing on the beam pro-
file in the output plane, indicates the sought item.
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spherical, achromatic doublet lenses [14]. Since F Zisa
spatial inversion and ®;(x’) = ®;(—x'), the IAA opera-
tion reduces to F _IID,%F . Thus the amplitude amplifying

Grover iterator is ®2F _I(I)A,%F . Note that F®F can be
recognized as phase contrast imaging.

We observe the progress of the search algorithm itera-
tion by iteration, using the 2% transmission of mirror M,
after each cavity roundtrip. This light is imaged onto a
55 wum wide movable slit and the transmitted light is col-
lected on a photodiode. The photodiode signal is amplified
and recorded by a digitizing oscilloscope. The light pulses
are short compared to the roundtrip time, so that a train of
output pulses is obtained, one pulse per iteration. In Fig. 2
we show two typical time traces. The trace in Fig. 2A has
been recorded in an “empty cavity,” leaving the oracle and
IAA plates inside the cavity, but moving the phase-shifting
lines on the plates out of the beam. We observe an expo-
nentially decaying peak amplitude, with a roundtrip loss
of about 0.25, due to reflections. Next, we move the IAA
phase line into the beam focus, put the oracle line in an ar-
bitrary position in the beam, and place the detection slit in
the image of the oracle line. We then observe a peak ampli-
tude that grows during the first few iterations, even though
the total optical energy decreases. This is shown in Fig. 2B
and is a direct observation of amplitude amplification.

We have measured the entire beam profile by recording
traces as in Fig. 2B for many different detection slit posi-
tions. We combined the peak values at the same time from
different traces into a transverse beam profile. A sequence
of such profiles for consecutive roundtrips shows how the
algorithm proceeds. In Figs. 3A-3C we show three such
sequences for increasing widths of the oracle line. Consec-
utive profiles within a sequence have been multiplied by
a factor 0.757!, in order to compensate for optical losses.
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FIG. 2. Amplitude amplification as observed in trains of light
pulses. Trace A shows the pulse train coupled out of a bare
cavity, i.e., with the phase lines shifted out of the beam. The
peak amplitudes decay exponentially with 25% roundtrip loss.
For trace B the phase lines were moved into the beam and the
pulses were recorded behind a narrow slit placed in the image of
the oracle phase line. The energy in the pulses increases, even
though the total energy decays.
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We clearly observe the solution growing as a high intensity
peak in the transverse beam profile. The position of this
peak is the position x, of the sought item, i.e., the phase
line in the oracle, imaged by the intracavity telescope.
In the quantum case it would of course be impossible
to watch the solution grow as the algorithm proceeds, be-
cause a measurement would cause the wave function to
collapse.

On the basis of Grover’s algorithm we expect the peak
height to reach a maximum after (77 /4){/N /m roundtrips,
where m is the number of marked items [15,16], and to os-
cillate through a sequence of maxima and minima with a
period of (77/2){/N /m. In an ideal, loss-free system, these
cycles of finding and “unfinding” would continue indefi-
nitely. This period assumes that the phase shifts ¢ have
their ideal values. Since we use the plates in double pass
inside the cavity, this ideal value is = /2, whereas our
measured value is ¢ = —1.1 £ 0.2 rad. This increases
the optimum number of iterations to [ /(4 sinl.1)]\/N/m.
Although ¢ may deviate from 7 /2, a “phase matching”
condition [17,18] requires that the two phase shifts of the
oracle and IAA plates must be approximately equal.

The ratio N /m can be interpreted as the size of the data-
base for a single item search. Alternatively, the same N /m
also describes a search for m adjacent items in a larger
database of size N. The maximum database size is de-
termined by optical diffraction, which limits the effective
number of positions x that can be resolved. For our
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FIG. 3. Iterative progress of the search algorithm as shown by
measured and simulated beam profiles. Oracle lines of widths
(A) 42 pm, (B) 84 pum, and (C) 126 um were used, corre-
sponding to databases of 31.7, 15.8, and 10.6 items, respec-
tively. Light coupled out of the cavity was recorded after each
roundtrip through a scanning slit. The peak growing in the first
iterations reveals the position of the sought item. The traces on
the right (D-F) have been simulated using realistic experimen-
tal parameters, corresponding to those on the left.

137901-2



VOLUME 88, NUMBER 13

PHYSICAL REVIEW LETTERS

1 ApriL 2002

cavity with a numerical aperture NA = 0.03, the limit
on the resolution is given by Rayleigh’s criterion as
0.61A/NA = 10 um. For our 1.33 mm input beam, the
maximum database size is then ~133.

We can estimate N/m as the ratio of the input beam
diameter to the oracle linewidth. The phase shifting lines
have been produced as the shadows of thin metal wires
(50, 100, and 200 wm diameter) while evaporating a thin
layer of SiO onto a BK7 substrate. A phase-contrast image
revealed line cross sections that are well approximated by
trapezoids, with flat inner regions of 42, 84, and 126 wm,
for the oracle plate and 136 um for the IAA plate. The
deviations are probably due to details of the evaporation
procedure. Using the 1.33 mm diameter (FWHM) of the
input beam, we get expected ratios N/m = 31.7, 15.8,
and 10.6. We can compare this to the N/m values as
obtained from the position of the first maximum in the
search, bearing in mind that the first image, having made
1/2 roundtrip, should be counted as 1/2 iteration. For
the data shown in Figs. 3A-3C we estimate the maximum
peak at 5, 3.5, and 3 iterations, leading to N/m = 32,
15.8, and 11.6, respectively, in good agreement with the
expected numbers. The results thus confirm the \/N/m
scaling behavior as expected from Grover’s algorithm.

The prime significance of the N /m values is in the scal-
ing of the searching period as /N/m. The absolute val-
ues of the expected N /m depend on our chosen definition
for the input beam diameter (FWHM) and thus may seem
somewhat arbitrary. Therefore we also compare our results
to a simulation, shown in Figs. 3D-3F. We simulate the
phase plates by multiplying the beam profile by the experi-
mentally determined trapezoidal phase profiles ®,(x) and
®/(x). We describe the lenses by a Fourier transform. The
results of the simulation agree well with the experiment,
producing the maximum peak at the same number of itera-
tions as the experiment. An important difference between
the experiment and the simulation is due to optical losses
in the experiment. As mentioned earlier, the experimental
data have been scaled to compensate for the losses, which
amplifies the noise in the last few iterations shown. Apart
from this noise, we also see the development of side peaks.
These are probably due to diffraction effects accumulating
as the iterations progress, e.g., due to slight misalignments
of our optical cavity.

Keeping the resolution at ~10 um and extending the
experiment to 2D, E(x,y), it should be feasible to per-
form database searches of up to 10° items experimentally,
assuming a beam diameter of 1cm. This is equivalent
to about 20 qubits, so that we gain experimental access
to problems that are as yet inaccessible for true quantum
computers. These include quantum counting [16,19], esti-
mation of the mean and median of a population [15], and
the synthesis of arbitrary superposition states [20]. Theo-
retical studies have investigated fault tolerance [21,22] and
noise [23] in Grover’s algorithm, predicting damping of
the cycles of finding and “unfinding,” as we also see in
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the experiment. The problem of “phase matching” [17,18]
can also be directly translated into optics as differential
phase shifts provided by the oracle and IAA plate. These
issues are as yet impossible to investigate experimentally
with present-day quantum computers. Our classical-wave
experiment can bridge this gap. Note that it is complemen-
tary to a theoretical proposal by Farhi and Gutmann [24]
to search a digital database in analog time, rather than us-
ing discrete iterations. In our case, an analog database is
searched using discrete iterations.

Some classical-wave analogies of quantum information
processing [25-27], as well as a hybrid quantum-classical
approach [28] have been proposed previously. Some ele-
ments of Grover’s algorithm have been demonstrated with
classical waves [8]. The latter experiment demonstrated an
oracle and IAA operation for a four-item database. Itera-
tions were neither present nor necessary, since for N = 4
a single query reveals the sought item. A four-item data-
base search has also been demonstrated using NMR tech-
niques [6,7]. Electronic wave packets in Rydberg atoms
have been used to store and retrieve numbers [9] and an
equivalent experiment has been reported recently with clas-
sical light waves [10]. However, it has been pointed out
that the Rydberg-atom experiment lacked the IAA opera-
tion [29], which is a crucial ingredient of the quantum
search algorithms. In our present experiment, Grover’s
second algorithm [5] can be recognized in the first trans-
mitted pulse, which is essentially a phase-contrast image of
the oracle. Since the contrast would be relatively low, the
light pulse must contain sufficiently many photons to build
up good readout statistics. By contrast, using Grover’s first
algorithm, the item could in principle be found with near
certainty by sending a single photon through the oracle
O(+/N ) times.

It should be clear that our optical system is not a univer-
sal quantum computer. Essentially we have mapped the
2"-dimensional Hilbert space of n qubits by the Hilbert
space of a single photon in a superposition of 2" trans-
verse modes. It is well known [11,30] that this unary map-
ping comes at the cost of an exponential overhead in some
physical resource. Previous classical analogies required
an exponential number of components such as beam split-
ters [8,25-27]. The efficiency of a true quantum com-
puter in implementing the transforms has been attributed to
entanglement, i.e., to the tensor product structure of the
Hilbert space. Despite the lack of entanglement in our
present experiment, the Fourier transform is performed ef-
ficiently using only a single lens, independently of the size
of the database. The lack of entanglement does, however,
limit the size of the database, which scales linearly with
the beam diameter D, or ocD? for a 2D version. Thus the
equivalent number of qubits scales only as oclogD. Even
if we set D equal to the size of the universe, ~10% m, this
would yield only 206 equivalent qubits. This limitation ex-
ists for any database containing classical information. On
the other hand, since Grover’s algorithm provides only a
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/N speedup, a quantum computer implementing Grover’s
algorithm becomes exponentially slow for an exponentially
large database. Thus our experiment shows that quantum
entanglement is not needed to implement the algorithm or
to improve the efficiency. Its only role in this case is to
allow for a larger database size.
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