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Abstract

This paper gives algorithms for the discrete log and the factoring problems that
take random polynomial time on a quantum computer (thus giving the first examples
of quantum cryptanalysis).

1 Introduction

Since the discovery of quantum mechanics, people have found the behavior of the laws of
probability in quantum mechanics counterintuitive. Because of this behavior, quantum me-
chanical phenomena act quite differently than the phenomena of classical physics that we
are used to. Feynman seems to have been the first to ask what effect this has on com-
putation [Fey]. He gave arguments as to why this behavior might make it intrinsically
computationally expensive to simulate quantum mechanics on a classical (Von Neumann)
computer. He also mentioned the possibility of using a computer based on quantum me-
chanical principles to avoid this problem, thus implicitly asking the converse question: by
using quantum mechanics in a computer can you compute more efficiently than on a classi-
cal computer. Other early work in the field of quantum mechanics and computing was done
by Benioff [Beni]. Although he did not ask whether quantum mechanics conferred extra
power to computation, he did show that a Turing machine could be simulated by the unitary
evolution of a quantum process, which is a necessary prerequisite for quantum computation.
Deutsch [Deul, Deu2] was the first to give an explicit model of quantum computation. He
defined both quantum Turing machines and quantum circuits and investigated some of their
properties.



This question of whether using quantum mechanics in a computer allows one to obtain
more computational power has not yet been satisfactorily answered. The question was ad-
dressed in [DJ, BB1, BB2], but it was not shown how to solve any problem in quantum
polynomial time that was not solvable in BPP (the class of problems which can be solved
in polynomial time with a bounded probability of error). Recent work on this problem was
stimulated by Bernstein and Vazirani’s seminal paper [BV], which contained two results.
One of these results was an oracle problem which can be done in polynomial time on a
quantum Turing machine and requires super-polynomial time on a classical computer; this
was the first indication (other than the fact that nobody knew how to simulate a quan-
tum computer on a classical computer without an exponential slowdown) that quantum
computation might obtain a greater than polynomial speedup over classical computation
augmented by randomization. This result was improved by Simon [Sim], who gave a much
simpler construction of an oracle problem which takes polynomial time on a quantum com-
puter and requires exponential time on a classical computer. Indeed, by viewing Simon’s
oracle as a subroutine, this result becomes a promise problem which takes polynomial time
on a quantum computer and looks as if it might be very difficult on a classical computer.
The algorithm for the “easy case” of discrete log given in this paper is directly analogous to
Simon’s algorithm, except with the group Z," replaced by the group Z,_;; I was only able
to discover this algorithm after seeing Simon’s paper.

In the other part of Bernstein and Vazirani’s paper, a particular class of quantum Turing
machine was rigorously defined and a universal quantum Turing machine was given which
could simulate any other quantum Turing machine of this class. Unfortunately, it was
not clear whether these quantum Turing machines could simulate other classes of quantum
Turing machines, so this result was not entirely satisfactory. Yao [Yao] has remedied the
situation by showing that quantum Turing machines can simulate, and be simulated by,
uniform families of polynomial size quantum circuits, with at most polynomial slowdown.
He has further defined quantum Turing machines with k& heads and showed that these
machines can be simulated with slowdown of a factor of 2*. This seems to show that
the class of problems which can be solved in polynomial time on one of these machines,
possibly with a bounded probability of error, is reasonably robust. This class is called
BQP in analogy to the classical complexity class BPP, and could be considered the class of
problems that are efficiently solvable on a quantum Turing machine.

Since Quantum P is contained in P#¥ [BV], any non-relativized proof that Quantum P
is strictly larger than P would imply a structural complexity result that is not yet proven.
In view of this difficulty, two approaches come to mind; one is showing that Quantum P C
P would lead to a collapse of classical complexity classes which are believed to be different:
Showing that NP C Quantum P, for example, would show that if Quantum P C P, then
the polynomial hierarchy would collapse. A second approach, which we take, is solve in
Quantum P some well-studied problem for which no polynomial time algorithm is known.
This would show that the extra power conferred by quantum interference is at least hard
to achieve using classical computation.

The discrete log and factoring problems are two number-theory problems which have



been studied extensively but for which no polynomial-time algorithms are known. In fact,
these problems are so widely believed to be hard that cryptosystems based on their hardness
have been proposed, and the RSA public key cryptosystem [RSA], based on the hardness
of factoring, is in use. We show that these problems can be solved in random quantum
polynomial time, or RQP, which is the class of problems which run in polynomial time on
a quantum computer, but are allowed a small probability of (one-sided) error.

Currently, nobody knows how to build a quantum computer, although it seems as though
it should be possible within the laws of quantum mechanics. It is hoped that this paper
will stimulate research on whether it is feasible to actually construct one.

Even if no quantum computer is ever built, this research does illuminate the problem of
simulating quantum mechanics on a classical computer. Any method of doing this for an
arbitrary Hamiltonian would necessarily be able to simulate a quantum computer. Thus,
any general method for simulating quantum mechanics with at most a polynomial slowdown
would lead to a polynomial algorithm for factoring.

2 Quantum Computation

In this section we will give a brief introduction to quantum computation, emphasizing the
properties that we will use. For a more complete overview I refer the reader to [BV, Yao].

In quantum physics, an experiment behaves as if it proceeds down all possible paths
simultaneously. Each of the paths has a complex amplitude. The probability of any partic-
ular outcome of the experiment is then proportional to the square of the absolute value of
the sum of the amplitude of all the paths leading to that outcome. A quantum computer
behaves in much the same way. The computation proceeds down all possible paths at once,
and each path has associated with it a complex amplitude. To determine the probability
of any final state of the machine, we add the amplitudes of all the paths which reach that
final state, and then square the absolute value of this sum.

An equivalent way of looking at this process is to imagine that the machine is in some
superposition of states at every step of the computation. We will represent this superposition

of states as
Zai |Sz>

where the amplitudes a; are complex numbers such that Y, |a;/° = 1 and each |S;) is a
state of the machine; in a quantum Turing machine, a state is defined by what is written
on the tape at that step and by the position and state of the head. In a quantum circuit a
state is the values of the signals on all the wires at some level of the circuit. If the machine
is examined at a particular step, the probability of seeing state |.5;) is |ai|2; however, by
the Heisenberg uncertainty principle, looking at the machine interferes with the rest of
the computation. The laws of quantum mechanics only permit unitary transformations of
the state. A unitary matrix is one whose conjugate transpose is equal to its inverse, and
requiring unitary matrices ensures that the probabilities of obtaining each possible result
will add up to one. Further, the definitions of quantum Turing machine and quantum circuit



only allow local unitary transformations, that is, unitary transformations on a fixed number
of bits.
Perhaps an example will be informative at this point. Suppose our machine is in the
superposition of states
—51000) + 3 [100) — 5 [110)

and we apply the unitary transformation

00 01 10 11
A
I
I T
nl o

to the last two bits of our state. Then the machine will then go to the superposition of
states

5275 1000) + 55 1001) + 55 [010) + 55 |011) + 5 [101) + 5 [111).

Notice that the result would have been different if we had started with the superposition of
states
75 1000) + 3100) + 3 [110)

which has the same probabilities of being in any particular configuration if we observe it.

We now give certain properties of quantum computation that will be useful. These facts
are not apparent from the definition of quantum Turing machine or quantum circuit, and
they are very useful for constructing algorithms for quantum machines.

Fact 1: A deterministic computation is performable on a quantum computer if and only
if it is reversible [BV]. From results on reversible computation [Benn, BV], this
means that we can compute any polynomial time function f(a) as long as we keep
the input, a, on the machine. To erase a and replace it with f(a) we need in
addition that f is one-to-one and that @ is computable in polynomial time from
f(a); i.e., that both f and f~' are polynomial.

Fact 2: Any polynomial size unitary matrix can be approximated using a polynomial num-
ber of elementary unitary transformations [Deu2, BV, Yao] and thus can be approx-
imated in polynomial time on a quantum computer. Further, this approximation
is good enough so as to introduce at most a bounded probability of error into the
results of the computation.

3 Building Unitary Transformations

Since quantum computation deals with unitary transformations, it is helpful to be able
to build certain useful unitary transformations. In this section we give some techniques



for constructing unitary transformations on quantum machines, which will result in our
showing how to construct one particular unitary transformation in polynomial time. These
transformations will generally be given as matrices, with both rows and columns indexed
by states. These states will correspond to representations of integers on the computer; in
particular, the rows and columns will be indexed beginning with 0 unless otherwise specified.

A tool we will use repeatedly in this paper is the following unitary transformation.
Consider a number ¢ with 0 < a < ¢ for some ¢ where the number of bits of ¢ is polynomial.
We will transform it into a number b, 0 < b < ¢, with amplitude # exp(2miab/q). This
transformation is at the heart of our algorithms, and we will call the associated unitary
matrix A,. Since we use it for ¢ of exponential size, we must show how this transformation
can be done in polynomial time. In fact, we will only be able to do this for smooth numbers
¢, that is, ones with small prime factors. For the purposes of this paper, a smooth number
g will be one that contains no prime power factor that is larger than (log ¢)° for some fixed
c.

If we know a factorization ¢ = ¢1¢2¢3 - - - ¢, where ged(¢;, ¢;) = 1 and where k and all of
the g; are of polynomial size we will show how to build the transformation A, in polynomial
time. For this, we first need a lemma on quantum computation.

Lemma 3.1 Suppose the matriz B is a block-diagonal mn X mn unitary matriz composed of
n identical unitary m X m matrices B' along the diagonal and 0’s everywhere else. Suppose
further that the state transformation B’ can be done in time T(B') on a quantum Turing
machine. Then the matriz B can be done in T(B') + (logmn)® time on a quantum Turing
machine, where ¢ is a constant.

We will call this matrix B the direct sum of n copies of B” and use the notation B = @, B'.

Proof: Suppose that we have a number @ on our tape. We can reversibly compute «; and
a, from a where ¢ = ma; + a,. This computation erases a from our tape and replaces it
with a; and a,. Now a; tells in which block the row a is contained, and a, tells which
row of the matrix within that block is the row a. We can then apply B’ to a, to obtain 3,
(erasing a, in the process). Now, combining «; and f; to obtain b = may + §, gives the
result of B applied to A (with the right amplitudes). The computation of B’ takes T'(B’)
time, and the rest of the computation is polynomial in logm + logn. |

We now show how to obtain A, for smooth ¢. We will decompose A, into a product of a
polynomial number of unitary transformations, all of which are performable in polynomial
time; this enables us to construct A, in polynomial time. Suppose that we have ¢ = ¢,¢»
with ged(qr,¢2) = 1. What we will do is represent A, = C'D, where by rearranging the
rows and columns of D we obtain @, A4,, and rearranging the rows and columns of C' we
obtain ,, A,,. As long as these rearrangements of the rows and columns of C" and D are
performable in polynomial time (i.e., given row 7, we can find in polynomial time row r’ to
which it is taken) and the inverse operations are also performable in polynomial time, then
by using the lemma above and recursion we can obtain a polynomial-time way to perform
A, on a quantum computer.



We now need to define ¢' and D and check that A, = CD. To define ' and D

we need some preliminary definitions. Recall that ¢ = ¢1go with ¢; and ¢, relatively
prime. Let w = exp(27i/q). Let u be the number (mod ¢) such that v = 0 (mod ¢;)
and v = —1 (mod ¢3). Such a number exists by the Chinese remainder theorem, and can

be computed in polynomial time. We will decompose row and column indices a, b and ¢
as follows: ¢ = a9 + as, b = B1q1 + B2, and ¢ = 71¢; + 72. Note the asymmetry in the
definitions of a, b and c.

We can now define C' and D:

0 1fa27§ﬁ1

C(a,b) = { 12 walﬁgq2+ﬁ1ﬁz(“+l) otherwise

i/
1

0 if By # 72
D(b,c) = { i whma=fifu gtherwise

It is easy to see that C'D(a,c) = C(a,b)D(b,c) where b = as¢; + 72 since we need a, = 5,
and 5 = 7, for non-zero entries in C'(a,b) and D(b,c). Now,

CD((Z,C) = W walﬁ292+ﬁlﬁ2(“+1)+/317141—ﬁlﬁzu
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so CD(a,c)= Ay(a,c).

We will now sketch how to rearrange the rows and columns of C' to get the matrix
®,, 44,- The matrix C' can be put in block-diagonal form where the blocks are indexed by
ay = [ (since all entries with a, # §; are 0). Let u + 1 = {¢g (mod ¢). Within a given
block as; = 3,, the entries look like

Vi Cla,b) = worfeethpaluty)
= exp(2mi(a18s + B1521)¢2/q)
= exp(2mi(og + aat)B2/q1).

Thus, if we rearrange the rows within this block so that they are indexed by o' = a; +
ayt (mod ¢;), we obtain the transformation o’ — §, with amplitude # exp(2mia/ B2/ q1),
which is A,,. The matrix D can similarly be rearranged to obtain the matrix @D, A

We also need to show how to find a smooth ¢ that lies between n and 2n in polynomial
time. There are actually smooth ¢ much closer to n than this, but this is all we need. It is
also not known how to find smooth numbers very close to n in polynomial time.

Lemma 3.2 Given n, there is a polynomial-time algorithm to find a number ¢ withn < ¢ <
2n such that no prime power larger than clogq diwvides q, for some constant ¢ independent

of n.



Proof: To find such a ¢, multiply the primes 2-3-5-7-11---p; until the product is larger
than n. Now, if this product is larger than 2n, divide by the largest prime that keeps the
number larger than n. This produces the desired g. There is always a prime between m and

m ([HW], Theorem 418), so n < ¢ < 2n. The prime number theorem ([HW], Theorem 6)
and some calculation show that the largest prime dividing ¢ is of size O(logn). |

4 Discrete Log: The Easy Case

The discrete log problem is: given a prime p, a generator g of the multiplicative group
(mod p) and an z (mod p), find an r such that ¢" =  (mod p). We will start by giving a
polynomial-time algorithm for discrete log on a quantum computer in the case that p — 1 is
smooth. This algorithm is analogous to the algorithm in Simon’s paper [Sim], with the group
25" replaced by Z,_;. The smooth case is not in itself an interesting accomplishment, since
there are already polynomial time algorithms for classical computers in this case; however,
explaining this case is easier than explaining the general case, and as the two algorithms
are similar, the easy case will illuminate how the general case works.

We will start our algorithm with z, g and p on the tape. We are trying to compute r
such that ¢" = = (mod p). Since we will never delete them, z, g, and p are constants, and
we will specify a state of our machine by the other contents of the tape.

The algorithm starts out by picking random numbers ¢ and b (mod p — 1), so the state
of the machine after this step is

p—2p-2

—122|a b).

p a=06=0

The algorithm next computes g°z~° reversibly, so we must keep the values ¢ and b on the

tape. The state of the machine is now

p—2p-—2
—122 |a b, g% b .
a=0 =0
What we do now is map a — ¢ with amplitude - )1/2 exp(2miac/(p—1)) and b — d with
amplitude 1)1/2 exp(2mibd/(p—1)). As was dlscussed in the previous section, this is a

unitary transformatlon and since p — 1 is smooth it can be accomplished in polynomial
time on a quantum machine. This leaves the machine in state

p—2p—2p—
QZZ
0b6=0

a=

2p-2
E exp(2mi(ac+bd)/(p— 1)) |¢,d, g"z™").
0

c=0 d=0

We now compute the probability that the computation ends with the machine in state
le,d,y) with y = ¢g*. This probability is the absolute square of the sum over all ways the



machine could produce this state, or

1
— E exp(2mi(ac+ bd)/(p— 1))

(p - 1) a,b

a—rb=k

where the sum is over all a,b satisfying @ — rb = k (mod p — 1). This condition arises
from the fact that computational paths can only interfere when they give the same y =
g° ™" = ¢g* (mod p). We now substitute the equation @ = k + rb (mod p — 1) in the above
exponential. The above sum then reduces to

1 = ,
TERE Z exp(2mi(ke+ b(d + re))/(p—1))
b=0
However, if d + r¢ # 0 (mod p — 1) the above sum is over a set of (p — 1)st roots of unity
evenly spaced around the unit circle, and thus the probability is 0. If d = —rc the above sum

is (p — 1)emi*e/(P=1) 5o the probability is 1/(p — 1)%. We can check that these probabilities
add up to one by counting that there are (p — 1)? states |¢, —7¢,y) since there are p — 1
choices of ¢ (mod p — 1) and p — 1 choices of y # 0 (mod p).

Our computation thus produces a random ¢ (mod p— 1) and d = —rc¢ (mod p — 1). If
c and p — 1 are relatively prime, we can find r by division. Because we are choosing among
all possible ¢’s with equal probability, the chance that ¢ and p — 1 are relatively prime is
¢(p—1)/(p—1), where ¢ is the Euler ¢-function. It is easy to check that ¢(p—1)/(p—1) >
1/log(p). (Actually, from [HW] Theorem 328, liminf ¢(p—1)/(p—1) ~ e~/ loglog p.) Thus
we only need a number of experiments polynomial in log p to obtain r with high probability.
In fact, we can find a set of ¢’s such that at least one is relatively prime to every prime
divisor of p — 1 by repeating the experiment only an expected constant number of times.
This also gives us enough information to obtain r.

5 A Note on Precision

The number of bits of precision needed in the amplitude of quantum mechanical computers
could be a barrier to practicality. The generally accepted theoretical dividing line between
feasible and infeasible is that polynomial precision (i.e., logarithmic number of bits) is
feasible and that more is infeasible. This is because on a quantum computer the phase angle
would need to be obtained through some physical device, and constructing such devices with
better than polynomial precision is clearly impractical. In fact, even polynomial precision
may prove to be impractical; however, using it as the dividing line results in nice theoretical
properties.

We thus need to show that the computations in the previous section need to use only
polynomial precision in the amplitudes. The very act of writing down the expression
exp(2miac/(p— 1)) seems to imply that we need exponential precision, as this phase angle
is exponentially precise. Fortunately, this is not the case. Consider the same matrix A4,_;



with every term exp(2miac/(p — 1)) replaced by exp(2miac/(p— 1)+ mi/20). Each positive
case, i.e., one resulting in d = —rc, will still occur with nearly as large probability as before;
instead of adding p — 1 amplitudes which have exactly the same phase angle, we add p— 1
amplitudes which have nearly the same phase angle, and thus the size of the sum will only
be reduced by a constant factor. The algorithm will thus give a (¢,d) with d = —rc¢ with
constant probability (instead of probability 1).

Recall that we obtain the matrix A,_; by multiplying at most log p matrices A,,. Fur-
ther, each entry in A,_; is the product of at most logp terms. Suppose each phase angle
were off by at most €¢/logp in the A,,’s. Then in the product, each phase angle would be
off by at most €, which is enough to perform the computation with constant probability of
success. A similar argument shows that the magnitude of the amplitudes in the A, can
be off by a polynomial fraction. Almost exactly the same arguments hold for the general
case of discrete log and for factoring to show that we need only polynomial precision for
the amplitudes in these cases as well.

We still need to show how to construct A,, from constant size unitary matrices with
limited precision. There is not room to do that in this extended abstract, but in fact,
Bernstein and Vazirani [Vaz]| have shown that it is sufficient to use polynomial precision for
any computation on a quantum Turing machine to obtain the answer with high probability.
An interesting open question is whether it is possible to do this computation with less than
polynomial precision, or whether some precision—time tradeoff is possible.

6 Discrete Log: The General Case

For the general case, we first find a smooth number ¢ such that ¢ is close to p, i.e., with
p < g < 2p (see Lemma 3.2).

Now, we do the same thing as before, we choose ¢ and b at random (mod p — 1), and
then compute g°z~" (mod p). This leaves our machine in state

p—2p-2

—ZZ|abgmb.
1(1 0b=0

As before, we next send @ — ¢ and b — d (mod ¢), with amplitude %exp(?m'(ac + bd)/q),
giving us the state

p—2 q— 1

exp(2mi(ac + bd)/q) |e,d, g"z™") .

p—2
b=0

Note that we now have two moduli to deal with, p — 1 and ¢. While this makes keeping

1g—
a=0 c¢=0 d=0
track of things more confusing, we will still be able to obtain r using a similar algorithm to
the easy case. The probability of observing a state |c,d, y) with y = ¢* (mod p) is, almost

as before,
2

=T Z exp(2mi(ac + bd)/q)

a—rb=k



where the sum is over all (a,b) such that a — rb = k (mod p — 1). We now use the relation

a=br+k—-(p-1) {MJ

p—1
and substitute in the above expression to obtain the amplitude

R

miexp <2m' <b7‘c—|— ke +bd—c(p—1) VZ%{“J) /q) .

We will now analyze this expression. First, a factor of exp(27wike/q) can be taken out of
all the terms and ignored, because it does not change the probability. Next, we split the
exponent into two parts and factor out b to obtain

#Igexp <27:b ('f‘c +d— H{c(p- 1)}q)> P (27; (Pb—rl a {%D telp = 1)}4)

(r—1)q =
(1)

where by {a}, we mean the least residue of @ (mod ¢). We will show that if we get a “good”
output, then we still can deduce r, and that furthermore, the chance of getting a “good”
output is constant. The idea is that if

r
p—1

(2)

N | —

re+d—

{e(p—1)},

<

then as b varies between 0 and p — 1, the first exponential term in Eq. (1) only varies over
at most half of the unit circle. Further, if

{e(p = 1)}, < 4/20, (3)

the second exponential term never is farther than exp(7¢/10) from 1. By combining these
two observations, we show that if both conditions hold, then the contribution to the prob-
ability from the corresponding term is significant. Furthermore, both conditions will hold
with constant probability, and a reasonable sample of ¢’s for which condition (2) holds
allows us to deduce r.

We will now figure out a lower bound on the probability of each good output. By the
condition (2), we know that as b ranges from 0 to p — 2, the phase ranges from 1 to

W(de— Eielp - 1)}4)

p—1

and thus the component of the vector in the direction

exp (22 (re+ d = E{er - 1)) (4)

is at least sin 7b/p. Now, by condition (3), the phase can vary by at most 77/10 due to the
second exponential. Applying this variation in the manner that minimizes the component

10



in direction (4), we get that the component in this direction is at least sin(7b/p — 7/10)
if b < p/2 and at least sin(wb/p + 7/10) if b > p/2. Putting everything together, the
probability of arriving at a state |c, d, y) that satisfies both conditions (2), (3) is at least

97/10 2
(11/‘/ ﬁnb%),
qmTJ_r/10
or at least .366/¢*. Now, the number of pairs (¢, d) such that condition (2) holds is exactly
the number of possible ¢’s, since for every ¢ there is exactly one d such that it holds (round
off the fraction to the nearest integer to obtain this d). The number of ¢’s for which condition
(3) holds is approximately ¢/20. Thus, there are ¢/20 (¢, d) pairs satisfying both conditions.
Multiplying by p— 1, which is the number of possible y’s, gives roughly pq/20 states |¢, d, y).
Putting this calculation together with the lower bound on the probability of each good state
gives us that the probability of obtaining any good state is at least p/60¢q, or at least 1/120
(since ¢ < 2p).
We must now recover r from a pair ¢, d such that

1<§-|-i<c—w)<i (mod 1).

2 q ¢ p—1 2q

The first thing to notice is that multiplier on r is a fraction with denominator p — 1, since
q divides ¢(p — 1) — {c(p—1)},. Thus, we need only round d/q off to the nearest multiple
of 1/(p—1) and divide (mod p — 1) to find a candidate r. To show that this experiment
need only be repeated a polynomial number of times to find the correct r requires only a
few more details. The problem is again that we cannot divide by a number which is not
relatively prime to p — 1.

What we have is that each good (¢, d) pair is generated with probability at least 1/6¢.
These are mapped from ¢/q to

¢ {p-} |5

q p—1  p-1"

i.e., ¢/q is rounded down to the nearest multiple of 1/(p — 1), say ¢’/(p — 1). Further, the
good ¢’s are exactly those in which ¢/q is close to ¢//(p —1). Thus, each good ¢ corresponds
with exactly one good ¢’. We would like to show that for any prime p; dividing p — 1, a
random good ¢ is unlikely to contain p;. If we are willing to accept a large constant for
the algorithm, we can just ignore the primes under 40; if we know r modulo all primes over
40, we can try all possible residues for primes under 40 with a constant factor penalty in
running time. For a prime p; over 40, each good ¢’ is divisible by p; with probability at most
20/p;. Thus, if we have for ¢ good ¢'’s chosen uniformly from all good ¢’, the probability of
having a prime that divides all of them is at most

3 (QO)f

p.‘>|40 Pi ‘

11



This sum (over all primes > 40) converges for ¢ = 2, and goes down by at least a factor of
2 for each further increase of ¢ by 1; thus for some large constant ¢ it is less than 1/2. Now,
each experiment gives every good (¢, d) pair with probability at least 1/6¢. Since there are
q/20 good (¢, d) pairs, after 120t experiments, we are likely to obtain a sample of ¢ good
(c,d) pairs chosen equally likely from all good (¢, d) pairs. Thus, we will be able to find a
set of ¢’s such that all primes p; > 40 dividing p — 1 are relatively prime to at least one of
these ¢’s. This will enable us to deduce r.

If one were to actually program this algorithm (which must wait until a quantum com-
puter is built) there are many ways in which the efficiency could be increased over the
efficiency shown in this paper.

7 Factoring

This extended abstract will only have a brief section on factoring, which sketches the proof.
Filling in the details of the proof can be done by looking at the corresponding steps in the
proof of the general case of the discrete log.

We will give a quantum computational algorithm for finding the order of an element
(mod n); that is, the least integer r such that 2" = 1 (mod n). To factor n, given a way
to compute the order of an element, we choose a random =z, find the order r, of z, and
compute ged(z™=/2 — 1,n). This fails to give a non-trivial divisor of n only if r, is odd or if
z"=/2 = —1 (mod n). Using this criterion, it can be shown that the algorithm finds a factor
of n with probability at least 1/2.

Given z and n, to find r such that 2" = 1 (mod n), we do the following. First, we find a
smooth ¢ with 5n? < ¢ < 10n*. Next, we choose a random number a (mod ¢). This leaves

our machine in state .
1 =
RV Z |a) .
a=0

As in the algorithm for discrete log, we will not write  and n in the state of our machine,
because we never erase these values.
Next, we compute z*. We then map a — ¢ with amplitude #exp(%riac/q). This

leaves our machine in state
g—1

1
- Zexp(?m'ac/q) e, z?) .
q

a=0
We now compute the probability that our machine ends in this state. Writing @ = br + k,
we obtain that this probability is

L(a—k)/7]
Z exp(2mi(br + k)c/q)

b=0

==

Using the same argument as in the algorithm for discrete log, if {rc}, is small relative to
¢, all the amplitudes will point in nearly the same direction, giving a big probability. This
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probability of seeing a state |c, z*) will thus be at least 1/3r% if
-7
5 < {re}, <r/2,

i.e., if there is a ¢’ such that

_?T <re—cdqg<r/2

Dividing by rq and rearranging the terms gives

/

c 1

C
L (P
qg T 2

Now, if this holds and ¢ is relatively prime to r, we can obtain r by rounding ¢/q to the
nearest fraction with a denominator of at most n. Because ¢ > 5n?, there is at most one
such fraction. This fraction can be found in polynomial time by using a continued fraction
expansion of ¢/q, which finds all the best approximations of ¢/¢ by fractions.

There are 72 states |c, z*) with - <

r

< ;—q because there are r possible ¢’, each one
giving one ¢, and there are r possible k. Using similar arguments as in the case of discrete
log, we find that with probability at least ¢(r)/3r, we obtain ¢//r with ¢ relatively prime
to r. We can thus find r a polynomial fraction of the time, so by repeating this experiment
only polynomially many times, we are assured of a high probability of success.

Note that in the algorithm for order, we did not use many of the properties of multi-
plication (mod n). In fact, if we have a permutation f mapping the set {0,1,2,...,n — 1}
into itself such that its kth iterate, f*)(a), is computable in time polynomial in logn and
log k, the same algorithm will be able to find the order of an element @ under f, i.e., the
minimum 7 such that f(")(a) = a.
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