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We propose a quantum algorithm for solving combinatorial search problems that uses only a se-
quence of measurements. The algorithm is similar in spirit to quantum computation by adiabatic
evolution, in that the goal is to remain in the ground state of a time-varying Hamiltonian. Indeed,
we show that the running times of the two algorithms are closely related. We also show how to
achieve the quadratic speedup for Grover’s unstructured search problem with only two measure-
ments. Finally, we discuss some similarities and differences between the adiabatic and measurement
algorithms.

I. INTRODUCTION

In the conventional circuit model of quantum compu-
tation, a program for a quantum computer consists of a
discrete sequence of unitary gates chosen from a fixed set.
The memory of the quantum computer is a collection of
qubits initially prepared in some definite state. After a
sequence of unitary gates is applied, the qubits are mea-
sured in the computational basis to give the result of the
computation, a classical bit string.

This description of a quantum computer has been used
to formulate quantum algorithms that outperform clas-
sical methods, notably Shor’s factoring algorithm [1] and
Grover’s algorithm for unstructured search [2]. Subse-
quent development of quantum algorithms has focused
primarily on variations of the techniques introduced by
Shor and Grover. One way to motivate new algorithmic
ideas is to consider alternative (but in general, equiva-
lent) descriptions of the way a quantum computer oper-
ates. For example, the technique of quantum computa-
tion by adiabatic evolution [3] is most easily described by
a quantum computer that evolves continuously according
to a time-varying Hamiltonian.

Another model of quantum computation allows mea-
surement at intermediate stages. Indeed, recent work has
shown that measurement alone is universal for quantum
computation: one can efficiently implement a universal
set of quantum gates using only measurements (and clas-
sical processing) [4, 5, 6, 7]. In this paper, we describe
an algorithm for solving combinatorial search problems
that consists only of a sequence of measurements. Using
a straightforward variant of the quantum Zeno effect (see
for example [8, 9, 10]), we show how to keep the quan-
tum computer in the ground state of a smoothly varying
Hamiltonian H(s). This process can be used to solve a
computational problem by encoding the solution to the
problem in the ground state of the final Hamiltonian.

The organization of the paper is as follows. In Section
II, we present the algorithm in detail and describe how

measurement ofH(s) can be performed on a digital quan-
tum computer. In Section III, we estimate the running
time of the algorithm in terms of spectral properties of
H(s). Then, in Section IV, we discuss how the algorithm
performs on Grover’s unstructured search problem and
show that by a suitable modification, Grover’s quadratic
speedup can be achieved by the measurement algorithm.
Finally, in Section V, we discuss the relationship between
the measurement algorithm and quantum computation
by adiabatic evolution.

II. THE MEASUREMENT ALGORITHM

Our algorithm is conceptually similar to quantum com-
putation by adiabatic evolution [3], a general method
for solving combinatorial search problems using a quan-
tum computer. Both algorithms operate by remaining
in the ground state of a smoothly varying Hamiltonian
H(s) whose initial ground state is easy to construct and
whose final ground state encodes the solution to the prob-
lem. However, whereas adiabatic quantum computation
uses Schrödinger evolution under H(s) to remain in the
ground state, the present algorithm uses only measure-
ment of H(s).

In general, we are interested in searching for the mini-
mum of a function h(z) that maps n-bit strings to positive
real numbers. Many computational problems can be cast
as minimization of such a function; for specific examples
and their relationship to adiabatic quantum computa-
tion, see [3, 11]. Typically, we can restrict our attention
to the case where the global minimum of h(z) is unique.
Associated with this function, we can define a problem

Hamiltonian HP through its action on computational ba-
sis states:

HP |z〉 = h(z)|z〉 . (1)

Finding the global minimum of h(z) is equivalent to find-
ing the ground state of HP . If the global minimum is
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unique, then this ground state is nondegenerate.
To reach the ground state of HP , we begin with the

quantum computer prepared in the ground state of some
other HamiltonianHB, the beginning Hamiltonian. Then
we consider a one-parameter family of HamiltoniansH(s)
that interpolates smoothly from HB to HP for s ∈ [0, 1].
In other words, H(0) = HB and H(1) = HP , and the
intermediateH(s) is a smooth function of s. One possible
choice is linear interpolation,

H(s) = (1 − s)HB + sHP . (2)

Now we divide the interval [0, 1] into M subintervals of
width δ = 1/M . So long as the interpolating Hamiltonian
H(s) is smoothly varying and δ is small, the ground state
of H(s) will be close to the ground state of H(s + δ).
Thus, if the system is in the ground state of H(s) and
we measure H(s+δ), the post-measurement state is very
likely to be the ground state of H(s + δ). If we begin
in the ground state of H(0) and successively measure
H(δ), H(2δ), . . . , H((M − 1)δ), H(1), then the final state
will be the ground state of H(1) with high probability,
assuming δ is sufficiently small.

To complete our description of the quantum algorithm,
we must explain how to measure the operator H(s). The
technique we use is motivated by von Neumann’s descrip-
tion of the measurement process [8]. In this description,
measurement is performed by coupling the system of in-
terest to an ancillary system, which we call the pointer.
Suppose that the pointer is a one-dimensional free parti-
cle and that the system-pointer interaction Hamiltonian
is H(s) ⊗ p, where p is the momentum of the particle.
Furthermore, suppose that the mass of the particle is
sufficiently large that we can neglect the kinetic term.
Then the resulting evolution is

e−itH(s)⊗p =
∑

a

[

|Ea(s)〉〈Ea(s)| ⊗ e−itEa(s)p
]

, (3)

where |Ea(s)〉 are the eigenstates of H(s) with eigenval-
uesEa(s), and we have set ~ = 1. Suppose we prepare the
pointer in the state |x = 0〉, a narrow wave packet cen-
tered at x = 0. Since the momentum operator generates
translations in position, the above evolution performs the
transformation

|Ea(s)〉 ⊗ |x = 0〉 → |Ea(s)〉 ⊗ |x = tEa(s)〉 . (4)

If we can measure the position of the pointer with suf-
ficiently high precision that all relevant spacings xab =
t|Ea(s) − Eb(s)| can be resolved, then measurement of
the position of the pointer — a fixed, easy-to-measure
observable, independent of H(s) — effects a measure-
ment of H(s).

Von Neumann’s measurement protocol makes use of
a continuous variable, the position of the pointer. To
turn it into an algorithm that can be implemented on
a fully digital quantum computer, we can approximate
the evolution (3) using r quantum bits to represent the
pointer [12, 13]. The full Hilbert space is thus a tensor

product of a 2n-dimensional space for the system and a
2r-dimensional space for the pointer. We let the com-
putational basis of the pointer, with basis states {|z〉},
represent the basis of momentum eigenstates. The label
z is an integer between 0 and 2r − 1, and the r bits of
the binary representation of z specify the states of the r
qubits. In this basis, the digital representation of p is

p =

r
∑

j=1

2−j 1 − σ
(j)
z

2
, (5)

a sum of diagonal operators, each of which acts on only

a single qubit. Here σ
(j)
z is the Pauli z operator on the

jth qubit. As we will discuss in the next section, we have
chosen to normalize p so that

p|z〉 =
z

2r
|z〉 , (6)

which gives ‖p‖ ∼ 1. If H(s) is a sum of terms, each of
which acts on at most k qubits, then H(s) ⊗ p is a sum
of terms, each of which acts on at most k + 1 qubits. As
long as k is a fixed constant independent of the problem
size n, such a Hamiltonian can be simulated efficiently on
a quantum computer [14]. Expanded in the momentum
eigenbasis, the initial state of the pointer is

|x = 0〉 =
1

2r/2

2r−1
∑

z=0

|z〉 . (7)

The measurement is performed by evolving under H(s)⊗
p for a total time τ . We discuss how to choose τ in the
next section. After this evolution, the position of the
simulated pointer could be measured by measuring the
qubits that represent it in the x basis, i.e., the Fourier
transform of the computational basis. However, note that
our algorithm only makes use of the post-measurement
state of the system, not of the measured value ofH(s). In
other words, only the reduced density matrix of the sys-
tem is relevant. Thus it is not actually necessary to per-
form a Fourier transform before measuring the pointer,
or even to measure the pointer at all. When the system-
pointer evolution is finished, one can either re-prepare
the pointer in its initial state |x = 0〉 or discard it and
use a new pointer, and immediately begin the next mea-
surement.

As an aside, note that the von Neumann measurement
procedure described above is identical to the well-known
phase estimation algorithm for measuring the eigenvalues
of a unitary operator [15, 16], which can also be used to
produce eigenvalues and eigenvectors of a Hamiltonian
[17]. This connection has been noted previously in [13],
and it has been pointed out that the measurement is a
non-demolition measurement in [18]. In the phase es-
timation problem, we are given an eigenvector |ψ〉 of a
unitary operator U and asked to determine its eigenvalue
e−iφ. The algorithm uses two registers, one that initially
stores |ψ〉 and one that will store an approximation of
the phase φ. The first and last steps of the algorithm are
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Fourier transforms on the phase register. The intervening
step is to perform the transformation

|ψ〉 ⊗ |z〉 → Uz|ψ〉 ⊗ |z〉 , (8)

where |z〉 is a computational basis state. If we take |z〉
to be a momentum eigenstate with eigenvalue z (i.e., if
we choose a different normalization than in (6)) and let
U = e−iHt, this is exactly the transformation induced by
e−i(H⊗p)t. Thus we see that the phase estimation algo-
rithm for a unitary operator U is exactly von Neumann’s
prescription for measuring i lnU .

III. RUNNING TIME

The running time of the measurement algorithm is the
product of M , the number of measurements, and τ , the
time per measurement. Even if we assume perfect projec-
tive measurements, the algorithm is guaranteed to keep
the computer in the ground state of H(s) only in the
limit M → ∞, so that δ = 1/M → 0. Given a finite
running time, the probability of finding the ground state
of HP with the last measurement will be less than 1. To
understand the efficiency of the algorithm, we need to
determine how long we must run as a function of n, the
number of bits on which the function h is defined, so that
the probability of success is not too small. In general, if
the time required to achieve a success probability greater
than some fixed constant (e.g., 1

2 ) is poly(n), we say the
algorithm is efficient, whereas if the running time grows
exponentially, we say it is not.

To determine the running time of the algorithm, we
consider the effect of the measurement process on the
reduced density matrix of the system. Here, we simply
motivate the main result; for a detailed analysis, see Ap-
pendix A.

Let ρ(j) denote the reduced density matrix of the sys-
tem after the jth measurement; its matrix elements are

ρ
(j)
ab = 〈Ea(jδ)|ρ(j)|Eb(jδ)〉 . (9)

The interaction with the digitized pointer effects the
transformation

|Ea(s)〉 ⊗ |z〉 → e−iEa(s)zt/2r |Ea(s)〉 ⊗ |z〉 . (10)

Starting with the pointer in the state (7), evolving ac-
cording to (10), and tracing over the pointer, the quan-
tum operation induced on the system is

ρ
(j+1)
ab = κ

(j+1)
ab

∑

c,d

U (j)
ac ρ

(j)
cd U

(j)∗
bd , (11)

where the unitary transformation relating the energy
eigenbases at s = jδ and s = (j + 1)δ is

U
(j)
ab = 〈Ea((j + 1)δ)|Eb(jδ)〉 (12)

and

κ
(j)
ab =

1

2r

2r−1
∑

z=0

ei[Eb(jδ)−Ea(jδ)]zt/2r

. (13)
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FIG. 1: The function |κ(x)|2 for r = 4.

Summing this geometric series, we find
∣

∣

∣
κ

(j)
ab

∣

∣

∣

2

= |κ([Eb(jδ) − Ea(jδ)]t/2)|2 , (14)

where

|κ(x)|2 =
sin2 x

4r sin2(x/2r)
. (15)

This function is shown in Fig. 1 for the case r = 4. It has
a sharp peak of unit height and width of order 1 at the
origin, and identical peaks at integer multiples of 2rπ.

If the above procedure were a perfect projective mea-
surement, then we would have κab = 0 whenever Ea 6=
Eb. Assuming (temporarily) that this is the case, we find

ρ
(j+1)
00 ≥

∣

∣

∣
U

(j)
00

∣

∣

∣

2

ρ
(j)
00 (16)

with the initial condition ρ
(0)
00 = 1 and ρ

(0)
ab = 0 otherwise.

Perturbation theory gives

∣

∣

∣
U

(j)
00

∣

∣

∣

2

= 1 − δ2
∑

a6=0

|〈Ea(s)|dH
ds |E0(s)〉|2

(E0(s) − Ea(s))2

∣

∣

∣

∣

∣

s=jδ

+O(δ3) (17)

≥ 1 − Γ(jδ)2 δ2

g(jδ)2
+O(δ3) , (18)

where

Γ(s)2 = 〈E0(s)|(dH
ds )2|E0(s)〉 − 〈E0(s)|dH

ds |E0(s)〉2 (19)

and

g(s) = E1(s) − E0(s) (20)

is the energy gap between the ground and first excited
states. If we let

Γ = max
s∈[0,1]

Γ(s) (21)

g = min
s∈[0,1]

g(s) , (22)
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then according to (16), the probability of being in the
ground state after the last measurement is at least

ρ
(M)
00 ≥

[

1 − Γ2

M2g2
+O(M−3)

]M

(23)

= exp

(

− Γ2

Mg2

)

+O(M−2) . (24)

The probability of success is close to 1 provided

M ≫ Γ2

g2
. (25)

When HB and HP are both sums of poly(n) terms, each
of which acts nontrivially on at most a constant number
of qubits, it is easy to choose an interpolation such as
(2) so that Γ is only poly(n). Thus we are mainly inter-
ested in the behavior of g, the minimum gap between the
ground and first excited states. We see that for the algo-
rithm to be successful, the total number of measurements
must be much larger than 1/g2.

In fact, the simulated von Neumann procedure is not
a perfect projective measurement. We must determine
how long the system and pointer should interact so that
the measurement is sufficiently good. The analysis in Ap-

pendix A shows that |κ(j)
01 |2 should be bounded below 1

by a constant for all j. In other words, to sufficiently re-
solve the difference between the ground and first excited
states, we must decrease the coherence between them by
a fixed fraction per measurement. The width of the cen-
tral peak in Fig. 1 is of order 1, so it is straightforward
to show that to have |κ(x)|2 less than, say, 1/2, we must
have x ≥ O(1). This places a lower bound on the system-
pointer interaction time of

τ ≥ O(1)

g
(26)

independent of r, the number of pointer qubits. (Note
that the same bound also holds in the case of a continuous
pointer with a fixed resolution length.)

Putting these results together, we find that the mea-
surement algorithm is successful if the total running time,
T = Mτ , satisfies

T ≫ Γ2

g3
(measurement) . (27)

This result can be compared to the corresponding expres-
sion for quantum computation by adiabatic evolution,

T ≫ Γ

g2
(adiabatic) . (28)

Note that the same quantity appears in the numerator
of both expressions; in both cases, Γ accounts for the
possibility of transitions to all possible excited states.

The adiabatic and measurement algorithms have qual-
itatively similar behavior: if the gap is exponentially
small, neither algorithm is efficient, whereas if the gap

is only polynomially small, both algorithms are efficient.
However, the measurement algorithm is slightly slower:
whereas adiabatic evolution runs in a time that grows
like 1/g2, the measurement algorithm runs in a time that
grows like 1/g3. To see that this comparison is fair, re-
call that we have defined the momentum in (5) so that
||p|| ∼ 1, which gives ||H(s)|| ∼ ||H(s) ⊗ p||. Alterna-
tively, we can compare the number η of few-qubit uni-
tary gates needed to simulate the two algorithms on a
conventional quantum computer. Using the Lie product
formula

eA+B ≃ (eA/meB/m)m , (29)

which is valid provided m ≫ ‖A‖2
+ ‖B‖2

, we find η =
O(1/g4) for adiabatic evolution and η = O(1/g6) for the
measurement algorithm, in agreement with the previous
comparison.

The argument we have used to motivate (27) is ex-
plained in greater detail in Appendix A. There, we also
consider the number of qubits, r, that must be used to
represent the pointer. We show that if the gap is only
polynomially small in n, it is always sufficient to take
r = O(log n). However, we argue that generally a single
qubit will suffice.

IV. THE GROVER PROBLEM

The unstructured search problem considered by Grover
is to find a particular unknown n-bit string w (the marked
state, or the winner) using only queries of the form “is
z the same as w?” [2]. In other words, one is trying to
minimize a function

hw(z) =

{

0 , z = w
1 , z 6= w

. (30)

Since there are 2n possible values for w, the best pos-
sible classical algorithm uses Θ(2n) queries. However,
Grover’s algorithm requires only Θ(2n/2) queries, pro-
viding a (provably optimal [19]) quadratic speedup. In
Grover’s algorithm, the winner is specified by an oracle

Uw with

Uw|z〉 = (−1)hw(z)|z〉 . (31)

This oracle is treated as a black box that one can use
during the computation. One call to this black box is
considered to be a single query of the oracle.

In addition to Grover’s original algorithm, quadratic
speedup can also be achieved in a time-independent
Hamiltonian formulation [20] or by adiabatic quantum
computation [21, 22]. In either of these formulations, the
winner is specified by an “oracle Hamiltonian”

Hw = 1 − |w〉〈w| (32)

whose ground state is |w〉 and that treats all orthogo-
nal states (the non-winners) equivalently. One is pro-
vided with a black box that implements Hw, where w is
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FIG. 2: Oracles for the Grover problem. (a) Top: Grover’s
original oracle. (b) Center: An oracle that performs evolution
according to Hw. The double line indicates a classical control
parameter, the time for which the Hamiltonian is applied. (c)
Bottom: An oracle that allows one to measure Hw.

unknown, and is asked to find w. Instead of counting
queries, the efficiency of the algorithm is quantified in
terms of the total time for which one applies the oracle
Hamiltonian.

Here, we show that if we are given a slightly differ-
ent black box, we can achieve quadratic speedup using
the measurement algorithm. We let the problem Hamil-
tonian be HP = Hw and we consider a one-parameter
family of Hamiltonians H(s) given by (2) for some HB.
Because we would like to measure this Hamiltonian, it
is not sufficient to be given a black box that allows one
to evolve the system according to Hw. Instead, we will
use a black box that evolves the system and a pointer
according to Hw ⊗ p, where p is the momentum of the
pointer. This oracle is compared to the previous two in
Fig. 2. By repeatedly alternating between applying this
black box and evolving according to HB ⊗ p, each for
small time, we can produce an overall evolution accord-
ing to the Hamiltonian [sHB + (1 − s)HP ]⊗ p, and thus
measure the operator H(s) for any s.

Now consider the beginning Hamiltonian

HB =
∑

j

1 − σ
(j)
x

2
, (33)

where σ
(j)
x is the Pauli x operator acting on the jth

qubit. This beginning Hamiltonian is a sum of lo-
cal terms, and has the easy-to-prepare ground state
|E0(0)〉 = 2−n/2

∑

z |z〉, the uniform superposition of all
possible bit strings in the computational basis. If we con-
sider the interpolation (2), then one can show [3] that the
minimum gap occurs at

s∗ = 1 − 2

n
+O(n−2) , (34)

where the gap takes the value

g(s∗) = 21−n/2[1 +O(n−1)] . (35)

Naively applying (27) gives a running time T = O(23n/2),
which is even worse than the classical algorithm.

However, since we know the value of s∗ independent
of w, we can improve on this approach by making fewer
measurements. We observe that in the limit of large n,
the ground state of H(s) is close to the ground state
|E0(0)〉 of HB for s <∼ s∗ and is close to the ground
state |E0(1)〉 = |w〉 of HP for s >∼ s∗, switching rapidly
from one state to the other in the vicinity of s = s∗.
In Appendix B, we show that up to terms of order 1/n,
the ground state |ψ+〉 and the first excited state |ψ−〉 of
H(s∗) are the equal superpositions

|ψ±〉 ≃
1√
2
(|E0(0)〉 ± |E0(1)〉) (36)

of the initial and final ground states (which are nearly
orthogonal for large n). If we prepare the system in
the state |E0(0)〉 and make a perfect measurement of
H(s∗) followed by a perfect measurement of H(1), we
find the result w with probability 1

2 . The same effect can
be achieved with an imperfect measurement, even if the
pointer consists of just a single qubit. First consider the
measurement of H(s∗) in the state |E0(0)〉. After the
system and pointer have interacted for a time t accord-
ing to (10) with r = 1, the reduced density matrix of the
system in the {|ψ+〉, |ψ−〉} basis is approximately

1

2

(

1 eig(s∗)t/4 cos[g(s∗)t/4]
e−ig(s∗)t/4 cos[g(s∗)t/4] 1

)

.

(37)
If we then measure H(1) (i.e., measure in the compu-
tational basis), the probability of finding w is approxi-
mately

1

2
sin2[g(s∗)t/4] . (38)

To get an appreciable probability of finding w, we choose
t = Θ(2n/2).

This approach is similar to the way one can
achieve quadratic speedup with the adiabatic algorithm.
Schrödinger time evolution governed by (2) does not yield
quadratic speedup. However, because s∗ is independent
of w, we can change the Hamiltonian quickly when the
gap is big and more slowly when the gap is small. Since
the gap is only of size ∼ 2−n/2 for a region of width
∼ 2−n/2, the total oracle time with this modified sched-
ule need only be O(2n/2). This has been demonstrated
explicitly by solving for the optimal schedule using a dif-
ferent beginning Hamiltonian H ′

B that is not a sum of
local terms [21, 22], but it also holds using the beginning
Hamiltonian (33).

Note that measuring H(s∗) is not the only way to solve
the Grover problem by measurement. More generally,
we can start in some w-independent state, measure the
operator

H̃ = Hw +K (39)
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where K is also independent of w, and then measure in
the computational basis. For example, suppose we choose

K = 1 − |ψ〉〈ψ| , (40)

where |ψ〉 is a w-independent state with the property
|〈w|ψ〉| ∼ 2−n/2 for all w. (If we are only interested
in the time for which we use the black box shown in
Fig. 2(c), i.e., if we are only interested in the oracle query
complexity, then we need not restrict K to be a sum of
local terms.) In (40), the coefficient of −1 in front of
|ψ〉〈ψ| has been fine-tuned so that |ψ〉+ |w〉 is the ground

state of H̃ (choosing the phase of |w〉 so that 〈w|ψ〉 is real
and positive). If the initial state has a large overlap with
|ψ〉, then the measurement procedure solves the Grover
problem. However, the excited state |ψ〉 − |w〉 is also

an eigenstate of H̃ , with an energy higher by of order
2−n/2. Thus the time to perform the measurement must
be Ω(2n/2).

The measurement procedures described above saturate
the well-known lower bound on the time required to solve
the Grover problem. Using an oracle like the one shown
in Fig. 2(a), Bennett et al. showed that the Grover prob-
lem cannot be solved on a quantum computer using fewer
than of order 2n/2 oracle queries [19]. By a straightfor-
ward modification of their argument, an equivalent result
applies using the oracle shown in Fig. 2(c). Thus every

possible H̃ as in (39) that can be measured to find w
must have a gap between the energies of the relevant
eigenstates of order 2−n/2 or smaller.

V. DISCUSSION

We have described a way to solve combinatorial search
problems on a quantum computer using only a sequence
of measurements to keep the computer near the ground
state of a smoothly varying Hamiltonian. The basic prin-
ciple of this algorithm is similar to quantum computation
by adiabatic evolution, and the running times of the two
methods are closely related. Because of this close con-
nection, many results on adiabatic quantum computa-
tion can be directly imported to the measurement algo-
rithm — for example, its similarities and differences with
classical simulated annealing [23]. We have also shown
that the measurement algorithm can achieve quadratic
speedup for the Grover problem using knowledge of the
place where the gap is smallest, as in adiabatic quantum
computation.

One of the advantages of adiabatic quantum compu-
tation is its inherent robustness against error [24]. In
adiabatic computation, the particular path from HB to
HP is unimportant as long as the initial and final Hamil-
tonians are correct, the path is smoothly varying, and
the minimum gap along the path is not too small. Ex-
actly the same considerations apply to the measurement
algorithm. However, the adiabatic algorithm also en-
joys robustness against thermal transitions out of the
ground state: if the temperature of the environment is

much smaller than the gap, then such transitions are
suppressed. The measurement algorithm might not pos-
sess this kind of robustness, since the Hamiltonian of the
quantum computer during the measurement procedure is
not simply H(s).

Although it does not provide a computational advan-
tage over quantum computation by adiabatic evolution,
the measurement algorithm is an alternative way to solve
general combinatorial search problems on a quantum
computer. The algorithm can be simply understood in
terms of measurements of a set of operators, without ref-
erence to unitary time evolution. Nevertheless, we have
seen that to understand the running time of the algo-
rithm, it is important to understand the dynamical pro-
cess by which these measurements are realized.
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APPENDIX A: THE MEASUREMENT PROCESS

In Section III, we discussed the running time of the
measurement algorithm by examining the measurement
process. In this Appendix, we present the analysis in
greater detail. First, we derive the bound on the running
time by demonstrating (25) and (26). We show rigorously
that these bounds are sufficient as long as the gap is
only polynomially small and the number of qubits used
to represent the pointer is r = O(log n). Finally, we argue
that r = 1 qubit should be sufficient in general.

Our goal is to find a bound on the final success prob-
ability of the measurement algorithm. We consider the
effect of the measurements on the reduced density matrix
of the system, which can be written as the block matrix

ρ =

(

µ ν†

ν χ

)

(A1)

where µ = ρ00, νa = ρa0 for a 6= 0, and χab = ρab

for a, b 6= 0. Since tr ρ = 1, µ = 1 − trχ. For ease of
notation, we suppress j, the index of the iteration, except
where necessary. The unitary transformation (12) may
also be written as a block matrix. Define ǫ = Γδ/g. Using
perturbation theory and the unitarity constraint, we can
write

U =

(

u −w†V +O(ǫ3)
w V +O(ǫ2)

)

, (A2)
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where |u|2 ≥ 1 − ǫ2 + O(ǫ3), ‖w‖2 ≤ ǫ2 + O(ǫ3), and V
is a unitary matrix. We let ‖·‖ denote the l2 vector or
matrix norm as appropriate. Furthermore, let

κ =

(

1 k†

k J

)

. (A3)

From (11), the effect of a single measurement may be
written

ρ′ = (UρU †) ◦ κ , (A4)

where ◦ denotes the element-wise (Hadamard) product.
If we assume ‖ν‖ = O(ǫ), we find

µ′ = |u|2µ− w†V ν − ν†V †w +O(ǫ3) (A5)

ν′ = [V ν + µw − V χV †w +O(ǫ2)] ◦ k . (A6)

Now we use induction to show that our assumption al-
ways remains valid. Initially, ν(0) = 0. Using the triangle
inequality in (A6), we find

‖ν′‖ ≤ [‖ν‖ + ǫ+O(ǫ2)]k̃ , (A7)

where

k̃ = max
j,a

∣

∣

∣
k(j)

a

∣

∣

∣
. (A8)

So long as k̃ < 1, we can sum a geometric series, extend-
ing the limits to go from 0 to ∞, to find

∥

∥

∥
ν(j)

∥

∥

∥
≤ ǫ

1 − k̃
+O(ǫ2) (A9)

for all j. In other words, ‖ν‖ = O(ǫ) so long as k̃ is
bounded below 1 by a constant.

Finally, we put a bound on the final success probabil-
ity µ(M). Using the Cauchy-Schwartz inequality in (A5)
gives

µ′ ≥ (1 − ǫ2)µ− 2ǫ2

1 − k̃
+O(ǫ3) . (A10)

Iterating this bound M times with the initial condition
µ(0) = 1, we find

µ(M) ≥ 1 − Γ2

Mg2

(

1 +
2

1 − k̃

)

+O(Mǫ3) . (A11)

If k̃ is bounded below 1 by a constant (independent of
n), we find the condition (25) as claimed in Section III.

The requirement on k̃ gives the bound (26) on the
measurement time τ , and also gives a condition on the
number of pointer qubits r. To see this, we must inves-
tigate properties of the function |κ(x)|2 defined in (15)
and shown in Fig. 1. It is straightforward to show that
|κ(x)|2 ≤ 1/2 for π/2 ≤ x ≤ π(2r − 1/2). Thus, if we

want k̃ to be bounded below 1 by a constant, we require

π/2 ≤ [Ea(s) − E0(s)]t/2 ≤ π(2r − 1/2) (A12)

for all s and for all a 6= 0. The left hand bound with
a = 1 gives t ≥ π/g, which is (26). Requiring the right
hand bound to hold for the largest energy difference gives
the additional condition 2r >∼ (E2n−1 − E0)/g. Since
we only consider Hamiltonians H(s) that are sums of
poly(n) terms of bounded size, the largest possible energy
difference must be bounded by a polynomial in n. If we
further suppose that g is only polynomially small, this
condition is satisfied by taking

r = O(log n) , (A13)

as claimed at the end of Section III. Thus we see that the
storage requirements for the pointer are rather modest.

However, the pointer need not comprise even this many
qubits. Since the goal of the measurement algorithm is
to keep the system close to its ground state, it would be
surprising if the energies of highly excited states were rel-
evant. Suppose we take r = 1; then |κ(x)|2 = cos2(x/2).
As before, (26) suffices to make |κ01|2 sufficiently small.
However, we must also consider terms involving |κ0a|2
for a > 1. The algorithm will fail if the term µw ◦ k
in (A6) accumulates to be O(1) over M iterations. This
will only happen if, for O(M) iterations, most of ‖w‖
comes from components wa with (Ea − E0)t close to an
integer multiple of 2π. In such a special case, changing
t will avoid the problem. An alternative strategy would
be to choose t from a random distribution independently
at each iteration.

APPENDIX B: EIGENSTATES IN THE GROVER

PROBLEM

Here, we show that the ground state of H(s∗) for the
Grover problem is close to (36). Our analysis follows
Section 4.2 of [3].

Since the Grover problem is invariant under the choice
of w, we consider the case w = 0 without loss of gener-
ality. In this case, the problem can be analyzed in terms
of the total spin operators

Sa =
1

2

n
∑

j=1

σ(j)
a , (B1)

where a = x, y, z and σ
(j)
a is the Pauli a operator acting

on the jth qubit. The Hamiltonian commutes with ~S2 =

S2
x +S2

y +S2
z , and the initial state has ~S2 = n

2 (n
2 + 1), so

we can restrict our attention to the (n + 1)-dimensional

subspace of states with this value of ~S2. In this subspace,
the eigenstates of the total spin operators satisfy

Sa|ma = m〉 = m|ma = m〉 (B2)

for m = −n
2 ,−n

2 +1, . . . , n
2 . Written in terms of the total

spin operators and eigenstates, the Hamiltonian is

H(s) = (1 − s)
(n

2
− Sx

)

+s
(

1 −
∣

∣

∣
mz =

n

2

〉〈

mz =
n

2

∣

∣

∣

)

. (B3)
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The initial and final ground states are given by |E0(0)〉 =
|mx = n

2 〉 and |E0(1)〉 = |mz = n
2 〉, respectively.

Projecting the equation H(s)|ψ〉 = E|ψ〉 onto the
eigenbasis of Sx, we find

〈

mx =
n

2
− r
∣

∣

∣
ψ
〉

=
s

1 − s

√
Pr

r − λ

〈

mz =
n

2

∣

∣

∣
ψ
〉

, (B4)

where we have defined λ = (E − s)/(1 − s) and Pr =
2−n

(

n
r

)

. Now focus on the ground state |ψ+〉 and the first
excited state |ψ−〉 of H(s∗). By equation (4.39) of [3],
these states have λ± = ∓n

2 2−n/2(1 + O(1/n)). Putting
r = 0 in (B4) and taking s = s∗ from (34), we find

〈

mx =
n

2

∣

∣

∣
ψ±

〉

= ±
〈

mz =
n

2

∣

∣

∣
ψ±

〉

(1 +O(1/n)) . (B5)

For r 6= 0, we have

〈

mx =
n

2
− r
∣

∣

∣
ψ±

〉

=
n

2

√
Pr

r

〈

mz =
n

2

∣

∣

∣
ψ±

〉

×(1 +O(1/n)) . (B6)

Requiring that |ψ±〉 be normalized, we find

1 =

n
∑

r=0

∣

∣

∣

〈

mx =
n

2
− r
∣

∣

∣
ψ±

〉∣

∣

∣

2

(B7)

=
∣

∣

∣

〈

mz =
n

2

∣

∣

∣
ψ±

〉
∣

∣

∣

2
(

1 +
n2

4

n
∑

r=1

Pr

r2

)

×(1 +O(1/n)) (B8)

=
∣

∣

∣

〈

mz =
n

2

∣

∣

∣
ψ±

〉
∣

∣

∣

2

(2 +O(1/n)) , (B9)

which implies |〈mz = n
2 |ψ±〉|2 = 1

2 +O(1/n). From (B5),

we also have |〈mx = n
2 |ψ±〉|2 = 1

2 + O(1/n). Thus we
find

|ψ±〉 ≃
1√
2

(∣

∣

∣
mx =

n

2

〉

±
∣

∣

∣
mz =

n

2

〉)

(B10)

up to terms of order 1/n, which is (36).
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