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Summary

Imagine a phone directory containing N names
arranged in completely random order. In order to find

someone's phone number with a probability of % any
classical algorithm (whether deterministic or probabilis-
tic) will need to look & aminimum of g names. Quan-

tum mechanical systems can be in a superposition of
states and simultaneously examine multiple names. By
properly adjusting the phases of various operations, suc-
cessful computations reinforce each other while others
interfere randomly. As aresult, the desired phone num-

ber can be obtained in only O(./N) steps. The ago-
rithm is within a small constant factor of the fastest
possible quantum mechanical algorithm.

1. Introduction

1.0 Background Quantum mechanical computers
were proposed in the early 1980's [Benioff80] and in
many respects, shown to be at least as powerful as clas-
sical computers - an important but not surprising result,
since classical computers, at the deepest level, ulti-
mately follow the laws of quantum mechanics. The
description of quantum mechanical computers was for-
malized in the late 80's and early 90's [Deutsch85]
[BB94] [BV93] [Yao93] and they were shown to be
more powerful than classical computers on various spe-
cialized problems. In early 1994, [Shor94] demonstrated
that a quantum mechanical computer could efficiently
solve a well-known problem for which there was no
known efficient algorithm using classical computers.
This is the problem of integer factorization, i.e. finding
the factors of a given integer N, in atime which is poly-

nomial in logN .

This is an updated version of a paper that originaly
appeared in Proceedings, STOC 1996, Philadelphia PA
USA, pages 212-219.

This paper applies quantum computing to a
mundane problem in information processing and pre-
sents an algorithm that is significantly faster than any
classical algorithm can be. The problem is this: there is
an unsorted database containing N items out of which
just one item satisfies a given condition - that one item
has to be retrieved. Once an item is examined, it is pos-
sible to tell whether or not it satisfies the condition in
one step. However, there does not exist any sorting on
the database that would aid its selection. The most effi-
cient classical algorithm for thisis to examine the items
in the database one by one. If an item satisfies the
required condition stop; if it does not, keep track of this
item so that it is not examined again. It is easily seen

that this algorithm will need to look at an average of g

items before finding the desired item.

1.1 Search Problems in Computer Science
Even in theoretical computer science, the typical prob-
lem can be looked at as that of examining a humber of
different possihilities to see which, if any, of them sat-
isfy a given condition. This is analogous to the search
problem stated in the summary above, except that usu-
ally there exists some structure to the problem, i.e some
sorting does exist on the database. Most interesting
problems are concerned with the effect of this structure
on the speed of the algorithm. For example the SAT
problem asks whether it is possible to find any combina-
tion of n binary variables that satisfies a certain set of
clauses C, the crucia issue in NP-completeness is
whether it is possible to solve it in time polynomial in n.

In this case there are N=2" possible combinations which
have to be searched for any that satisfy the specified
property and the question is whether we can do that in a
time which is polynomia in O(logN), i.e. O(nk).
Thusif it were possible to reduce the number of stepsto

a finite power of O(logN) (instead of O(./N) asin
this paper), it would yield a polynomial time algorithm
for NP-complete problems.

In view of the fundamental nature of the search
problem in both theoretical and applied computer sci-



ence, it is natural to ask - how fast can the basic identifi-
cation problem be solved without assuming anything
about the structure of the problem? It is generally

assumed that thislimitis O(N) sincethereare N items
to be examined and a classical algorithm will clearly
take O(N) steps. However, quantum mechanical sys-

tems can simultaneously be in multiple Schrodinger cat
states and carry out multiple tasks at the sametime. This

paper presents an O(./N) step algorithm for the search
problem.

There is a matching lower bound on how fast
the desired item can be identified. [BBBV96] show in
their paper that in order to identify the desired element,
without any information about the structure of the data-
base, a quantum mechanical system will need at least

Q(./N) steps. Since the number of steps required by

the algorithm of this paper is O(./N) , itiswithin acon-
stant factor of the fastest possible quantum mechanical
algorithm.

1.2 Quantum Mechanical Algorithms A good
starting point to think of quantum mechanical algo-
rithms is probabilistic algorithms [BV93] (e.g. simu-
lated annealing). In these algorithms, instead of having
the system in a specified state, it isin a distribution over
various states with a certain probability of being in each
state. At each step, thereis a certain probability of mak-
ing atransition from one state to another. The evolution
of the system is obtained by premultiplying this proba-
bility vector (that describes the distribution of probabili-
ties over various states) by a state transition matrix.
Knowing the initial distribution and the state transition
matrix, it is possible in principle to calculate the distri-
bution at any instant in time.

Just like classical probabilistic agorithms,
guantum mechanical algorithms work with a probability
distribution over various states. However, unlike classi-
cal systems, the probability vector does not completely
describe the system. In order to completely describe the
system we need the amplitude in each state which is a
complex number. The evolution of the system is
obtained by premultiplying this amplitude vector (that
describes the distribution of amplitudes over various
states) by a transition matrix, the entries of which are
complex in general. The probabilities in any state are
given by the square of the absolute values of the ampli-
tude in that state. It can be shown that in order to con-
serve probabilities, the state transition matrix has to be
unitary [BV93].

The machinery of quantum mechanical algo-
rithms is illustrated by discussing the three operations

that are needed in the algorithm of this paper. Thefirstis
the creation of a configuration in which the amplitude of

the system being in any of the 2" basic states of the sys-
tem is equal; the second is the Walsh-Hadamard trans-
formation operation and the third the selective rotation
of different states.

A basic operation in quantum computing is that
of a “fair coin flip” performed on a single bhit whose
states are 0 and 1 [Simon94]. This operation is repre-

sented by the following matrix: M = % 1 1} A bit

2(1-1
in the state O is transformed into a superposition in the

two states: ) . Similarly a hit in the state 1 is

(i 1
J2 )2
1 1
J2 2

amplitude in each state is %2 but the phase of the

transformed into ( ) , i.e. the magnitude of the

amplitude in the state 1 is inverted. The phase does not
have an analog in classical probabilistic algorithms. It
comes about in quantum mechanics since the ampli-
tudes are in general complex. In a system in which the

states are described by n bits (it has 2" possible states)
we can perform the transformation M on each bit inde-
pendently in sequence thus changing the state of the sys-
tem. The state transition matrix representing this
operation will be of dimension 2" X 2. In case the ini-
tial configuration was the configuration with all n bitsin
the first state, the resultant configuration will have an
n

identical amplitude of 2 2 in each of the 2" states. This
isaway of creating a distribution with the same ampli-
tudein all 2" states.

Next consider the case when the starting state
is another one of the 2" states, i.e. a state described by
an n bit binary string with some Os and some 1s. The
result of performing the transformation M on each bit
will be a superposition of states described by all possi-
ble n bit binary strings with amplitude of each state hav-

n

ing a magnitude equal to 2 2 and sign either + or -. To
deduce the sign, observe that from the definition of the

1

matrix M, i.e. M = 1 , the phase of the result-
J201 -1

ing configuration is changed when a bit that was previ-
oudy a 1 remains a 1 after the transformation is

performed. Hence if X be the n-bit binary string describ-
ing the starting state and y the n-bit binary string



describing the resulting string, the sign of the amplitude
of y isdetermined by the parity of the bitwise dot prod-

uct of x and vy, i.e (—1))('y . This transformation is
referred to as the Walsh-Hadamard transformation
[DJ92]. This operation (or a closely related operation
called the Fourier Transformation) is one of the things
that makes quantum mechanical algorithms more pow-
erful than classical algorithms and forms the basis for
most significant quantum mechanical algorithms.

The third transformation that we will need is
the selective rotation of the phase of the amplitude in
certain states. The transformation describing this for a4

I 0 0 0
0 ido 0 0
state system is of the form: e _ , Where
0 0 &% o
0 0 0 &%

j = .J-1and 015 05, 05, 0, are arbitrary real numbers.

Note that, unlike the Walsh-Hadamard transformation
and other state transition matrices, the probability in
each state stays the same since the square of the absolute
value of the amplitude in each state stays the same.

2. The Abstracted Problem Let a system
have N = 2" states which are labelled S;,S,,...Sy. These
2" states are represented as n bit strings. Let there be a
unique state, say S,, that satisfies the condition C(S) =

1, whereas for al other states S, C(S) = 0 (assume that
for any state S the condition C(S) can be evaluated in
unit time). The problem is to identify the state S,

3. Algorithm

(i) Initialize the system to the distribution:

(——1— 1L —1—) i.e. there is the same amplitude

INUNUNTTUN
to be in each of the N states. This distribution can be
obtained in O(logN) steps, as discussed in section 1.2.

(i) Repeat the following unitary operations O(./N)
times (the precise number of repetitions is important as
discussed in [BBHT96]):
(a) Let the system bein any state S:
Incase C(S) = 1, rotatethe
phase by 7 radians;
Incase C(S) = 0, leavethe
systemunaltered.
(b) Apply the diffusion transform D which
is defined by the matrix D as follows:
_ 2 .. _ 2
This diffusion transform, D, can be
implemented as D = WRW, where R the
rotation matrix & W the Walsh-Hadamard
Transform Matrix are defined as follows:
R; =0 ifi#];
R;=1ifi =0;R; =-1ifi=z0.
Asdiscussed in section 1.2:
W = 2-N/2(_1)i* ] wherei isthe
binary representation of i, and
i - j denotes the bitwise dot product

of thetwo n bit strings i and j.
(iif) Sample the resulting state. In case C(S)) =1
there is a unique state S, such that the final state is S,

with a probability of at least % .

Note that step (ii) (a) is a phase rotation transformation
of the type discussed in the last paragraph of section 1.2.
In a practical implementation this would involve one
portion of the quantum system sensing the state and then
deciding whether or not to rotate the phase. It would do
it in away so that no trace of the state of the system be
left after this operation (so as to ensure that paths lead-
ing to the same fina state were indistinguishable and
could interfere). The implementation does not involve a
classical measurement.



4. Outline of rest of paper

Theloop in step (ii) above, isthe heart of the algorithm.
Each iteration of thisloop increases the amplitude in the

. 1
desired state by O(——
JN
tions of the loop, the amplitude and hence the probabil -
ity in the desired state reach O(1) . In order to see that

the amplitude increases by O(ﬁ) in each repetition,

) ,asaresultin O(./N) repeti-

we first show that the diffusion transform, D, can be
interpreted as an inversion about average operation. A
simple inversion is a phase rotation operation and by the
discussion in the last paragraph of section 1.2, isunitary.
In the following discussion we show that the inversion
about average operation (defined more precisely below)
isalso aunitary operation and is equivalent to the diffu-
sion transform D as used in step (ii)(a) of the algorithm..

Let o denote the average amplitude over al states,

i.e. if o; be the amplitude in the i state, then the aver-
N
age is N 2 o As a result of the operation D, the
i=1
amplitude in each state increases (decreases) so that

after this operation it is as much below (above) o as it
was above (below) o before the operation.

_‘|___‘ ______ - Average (o)
A R D>
(before)
_______ — = —- Average (o)
~“a B C D>
(after)

Figure 1. Inversion about average operation.

The diffusion transform, D, is defined as follows:
2 ... 2

Next it is proved that D is indeed the inversion about

average as shown in figure 1 above. Observe that D can

be represented in the form D =—1 + 2P where | isthe

identity matrix and P is a projection matrix with

P.. =

i for al i, j. The following two properties of P

Zl-

are easily verified: firgt, that P> = P & second, that P
acting on any vector v gives a vector each of whose
componentsis equal to the average of all components.

Using the fact that P> = P, it follows immediately

from the representation D = —1 + 2P that D? = |
and hence D is unitary.

In order to seethat D isthe inversion about aver-
age, consider what happenswhen D acts on an arbitrary
vector v. Expressing D as— | + 2P, it follows that:

Dv = (=1 +2P)v = —v+2Pv. By the discussion
above, each component of the vector Pv isAwhere Ais
the average of all components of the vector v. Therefore
the it component of the vector Dv is given by

(=Vv;+2A) which can be written as (A+ (A-V;))
which is precisely the inversion about average.

Next consider what happens when the inversion

about average operation is applied to a vector where
each of the components, except one, are equal to a

value, say C, which is approximately —}N ; the one com-

ponent that is different is negative. The average A is
approximately equal to C. Since each of the (N—1)
components is approximately equal to the average, it
does not change significantly as aresult of the inversion
about average. The one component that was negative to
start out, now becomes positive and its magnitude

increases by approximately 2C, which is approximately
2

N

- — - — - — —, — Average

S A A
(before)

- — _ — — Average

S A
(after)

Figure 2. The inversion about average operation is
applied to adistribution in which all but one of the com-



1

onents is initiall O(
p y N

) ; one of the components is
initially negative.

In the loop of step (ii) of section 3, first the amplitudein
a selected state is inverted (this is a phase rotation and
hence a valid quantum mechanical operation as dis-
cussed in the last paragraph of section 1.2). Then the
inversion about average operation is carried out. This
increases the amplitude in the selected state in each iter-

. 1 - .
ation b O(——-—) this is formally proved in the next
y N ( yp

section as theorem 3).

Theorem 3 - Let the state vector before step (ii)(a) of
the algorithm be as follows - for the one state that satis-
fies C(S) = 1, the amplitude is k, for each of the

remaining (N—1) states the amplitude is | such that
(0< k< —}é) and | >0. The change in k (Ak) after

steps (a) and (b) of the algorithm is lower bounded by
1
Ak > ——. Also after steps (@) and (b), | > 0.
W eps (&) and (b)

Using theorem 3, it immediately follows that there
existsanumber M lessthan /2N, such that in M repeti-

tions of the loop in step (ii), k will exceed %2 Since the
probability of the system being found in any particular
state is proportiona to the square of the amplitude, it
follows that the probability of the system being in the

desired state when k isi Lisk? = 1. Therefore if the
J2 2

system is now sampled, it will be in the desired state
with a probability greater than % .

Section 6 quotes the argument from [BBBV96]
that it is not possible to identify the desired record in

lessthan Q(./N) steps.

5. Proofs

The following section proves that the system discussed
in section 3 is indeed a valid quantum mechanical sys-
tem and that it converges to the desired state with a
probability Q(1). It was proved in the previous section
that D is unitary, theorem 1 proves that it can be imple-
mented as a sequence of three local quantum mechani-
cal state transition matrices. Next it is proved in

theorems 2 & 3 that it converges to the desired state.
As mentioned before (4.0), the diffusion trans-
form D is defined by the matrix D as follows:

(50) Dj = %,ifi:&j & Dj = —1+ﬁ.

Theway D is presented above, it isnot alocal transition
matrix since there are transitions from each stateto all N
states. Using the Walsh-Hadamard transformation
matrix as defined in section 3, it can be implemented as
a product of three unitary transformations as
D = WRW), each of W& Risalocal transition matrix. R
as defined in theorem 2 is a phase rotation matrix and is
clearly local. Wwhen implemented asin section 1.2 isa
local transition matrix on each bit.

Theorem 1 - D can be expressed as D = WRW,
where W, the Walsh-Hadamard Transform Matrix and R,
the rotation matrix, are defined as follows

R; =0 ifi#]j,

R;=1ifi=0,R; =-1ifi#0.

W = 2-n2(_qyi- i,

Proof - We evaluate WRW and show that it is equal to
D. As discussed in section 3, W;; = 2-N/2(_1)i ],
where i is the binary representation of i, and i- |
denotes the bitwise dot product of the two n bit strings i
and j. R can be written as R = R, +R, where
R, = —I, | is the identity matrix and Rz,oo = 2,
Rz,ij =0 ifi#0,j=#0. By observing that MM = |
where M is the matrix defined in section 1.2, it is easily
proved that WW=1 and hence D; = WR;W = —I. We

next evaluate D, = WR,W. By standard matrix multipli-
cation: Dy o4 = Zwasz bcWeq- Using the defini-
bc

tion of Ry and thefact N = 2" it follows that

- - 2. 1ya-0+0-d =
D aq = 2WaoWoq = on(-1)? 0+0-d = = Thus

pzd | N

all elements of the matrix D, equal % the sum of the

two matrices D, and D, gives D.



Theorem 2 - Let the state vector be as follows - for
any one state the amplitude is kq, for each of the remain-
ing (N-1) states the amplitude is |1. Then after applying
the diffusion transform D, the amplitude in the one state
. _ (2 (N-1)
is ky, = (N—l)kl+2 N

each of the

|, and the amplitude in

remaining (N-1) states is

_ 2 (N-2)
|2 = Nkl + Tll
Proof -Using the definition of the diffusion transform
(5.0) (at the beginning of this section), it follows that
(2 (N-1)
k, = (N—l)kl+2 =
_(2 2 2(N-2)
I, = (N—1)|1+Nkl+ =2,
Therefore:

(N—Z)l
N 1

_ 2

As is well known, in a unitary transformation the total
probability is conserved - this is proved for the particu-
lar case of the diffusion transformation by using theo-
rem 2.

Corollary 2.1 - Let the state vector be as follows -
for any one state the amplitude is k, for each of the
remaining (N —1) statesthe amplitudeisl!. Let kand |
be real numbers (in general the amplitudes can be com-

K<« /N.

]
Then after applying the diffusion transform both k; and
|1 are positive numbers.

Proof - From theorem 2,

plex). Let k be negative and | be positive and

k, = (ﬁ_l)k+2¥l . Assuming N > 2, it fol-

lows that (% - 1) is negative; by assumption k is nega-

(N-1

tive and 2 | is positive and hence k;>0.

Similarly it follows that since by theorem 2,

Iy = 2k+ P22 and soif the condition
'T<<(N—2‘2) s satisied, then 1,>0. 1f [K < /N,

then for N >9 the condition |I(<¥ is satisfied

and1;>0.

Corollary 2.2 - Let the state vector be as follows -
for the state that satisfies C(S) = 1, theamplitudeisk,

for each of the remaining (N —1) states the amplitude
isl. Then if after applying the diffusion transformation
D, the new amplitudes are respectively k; and |, as

derived in theorem 2, then
K+ (N=1)I12 = K+ (N=1)I%.
Proof - Using theorem 2 it follows that

2 _(N=2)2 , (N-1)2,
ki = NF: k2 +4 2 |

4N-2)(N-1)
N2

Similarly
AN-1)2,,

_1)2 =
(N-1)I2 =

(N—-2)2 4(N-2)(N-1)
+T(N_1)|2+Tkl .

Adding the previous two equations the corollary fol-
lows.

Theorem 3 - Let the state vector before step (a) of the
algorithm be as follows - for the one state that satisfies

C(S) = 1, the amplitude is k, for each of the remain-
ing (N-1) states the amplitude is | such that

(O<k<%2) and | >0. The change in k (AK) after
steps (a) and (b) of the algorithm is lower bounded by
1
Ak > ——. Also after steps (a) and (b), | > 0.
>N eps (a) and (b)

Proof - Denote the initial amplitudes by k and |, the
amplitudes after the phase inversion (step (a)) by k; and
I, and after the diffusion transform (step (b)) by k, and
I5. Using theorem 2, it follows that:

=(1_2 _1
k, = (1 N)k+2(1 N)|  Therefore

- - _2k _1
(51) Ak = kp-k = -2 +2(1 N)|.
Since (0< k< i) , it follows from corollary 2.2 that
J2
1 . S
[ll > —— and since by the assumption in this theorem, |
2N

. T 1
is positive, it follows that | > —. Therefore by (5.1),
~2N



assuming non-trivial N, it followsthat Ak > L.

2N

In order to prove |, >0, observe that after the phase

inversion (step (@), ky <0 & I;>0. Furthermoreit fol-

lows from the facts (0<k<i) & m>iN (dis

J2 J2N

K1l . N,
I1

cussed in the previous paragraph) that

Therefore by corollary 2.1, |, is positive.

6. How fast is it possible to find the

desired element? There is a matching lower

bound from the paper [BBBV96] that suggests that it is
not possible to identify the desired element in fewer than

Q(./N) steps. This result states that any quantum
mechanical algorithm running for T stepsis only sensi-

tive to O(T2) queries (i.e. if there are more possible
gueries, then the answer to at least one can be flipped
without affecting the behavior of the algorithm). So in
order to correctly decide the answer which is sensitive to

N querieswill takearunningtimeof T = Q(./N). To

see this assume that C(S) = 0 for all states and the

algorithm returns the right result, i.e. that no state satis-
fies the desired condition. Then, by [BBBV96] if

T <Q(/N), the answer to at least one of the queries

about C(S) for some S can be flipped without affecting
the result, thus giving an incorrect result for the case in
which the answer to the query was flipped.

[BBHT96] gives a direct proof of this result along
with tight bounds showing the algorithm of this paper is
within a few percent of the fastest possible quantum
mechanical algorithm.

7. Implementation considerations This

algorithm is likely to be smpler to implement as com-
pared to other quantum mechanical algorithms for the
following reasons:

(i) The only operations required are, first, the
Walsh-Hadamard transform, and second, the conditional
phase shift operation both of which arerelatively easy as
compared to operations required for other quantum
mechanical algorithms [BCDP96].

(if) Quantum mechanical algorithms based on the
Walsh-Hadamard transform are likely to be much sim-
pler to implement than those based on the “large scale

Fourier transform”.

(iii) The conditional phase shift would be much eas-
ier to implement if the algorithm was used in the mode
where the function at each point was computed rather
than retrieved form memory. This would eliminate the
storage requirements in quantum memory.

(iv) In case the elements had to be retrieved from a
table (instead of being computed as discussed in (iii)), in
principle it should be possible to store the data in classi-
cal memory and only the sampling system need be
gquantum mechanical. This is because only the system
under consideration needs to undergo quantum mechan-
ical interference, not the bits in the memory. What is
needed, is a mechanism for the system to be able to feel
the values at the various datapoints something like what
happens in interaction-free measurements as discussed
in more detail in thefirst paragraph of the following sec-
tion. Note that, in any variation, the algorithm must be
arranged so as not to leave any trace of the path fol-
lowed in the classical system or else the system would
not undergo quantum mechanical interference.

8. Other observations

1. It is possible for quantum mechanica systems to
make interaction-free measurements by using the dual-
ity properties of photons [EV 93] [KWZ96]. In these the
presence (or absence) of an object can be deduced by
alowing for a very small probability of a photon inter-
acting with the object. Therefore most probably the pho-
ton will not interact, however, just alowing a small
probability of interaction is enough to make the mea
surement. This suggests that in the search problem also,
it might be possible to find the object without examining
all the objects but just by allowing a certain probability
of examining the desired object which is something like
what happens in the algorithm in this paper.

2. As mentioned in the introduction, the search algo-
rithm of this paper does not use any knowledge about
the problem. There exist fast quantum mechanical algo-
rithms that make use of the structure of the problem at
hand, e.g. Shor’'s factorization algorithm [Shor94]. It
might be possible to combine the search scheme of this
paper with [Shor94] and other quantum mechanical
algorithms to design faster algorithms. Alternatively, it
might be possible to combine it with efficient database
search algorithms that make use of specific properties of
the database. [DH96] is an example of such a recent
application. [Median96] applies phase shifting tech-
niques, similar to this paper, to develop a fast algorithm
for the median estimation problem.



3. The algorithm as discussed here assumes a unique
state that satisfies the desired condition. It can be easily
modified to take care of the case when there are multiple
states satisfying the condition C(S) = land it is
required to find one of these. Two ways of achieving this
are:

(i) The first possibility would be to repeat the experi-
ment so that it checks for a range of degeneracy, i.e.
redesign the experiment so that it checks for the degen-
eracy of the solution being in the range
(k, k+1,...2k) for various k. Then within log N repe-
titions of this procedure, one can ascertain whether or
not there exists at |east one out of the N states that satis-
fiesthe condition. [BBHT96] discusses thisin detail.

(i) The other possibility isto slightly perturb the prob-
lem in a random fashion as discussed in [MVV87] so
that with a high probability the degeneracy is removed.
Thereis also a scheme discussed in [VV86] by which it
is possible to modify any algorithm that solves an NP-
search problem with a unique solution and use it to
solve an NP-search problem in general.

9. Acknowledgments Peter Shor introduced
me to the field of quantum computing, Ethan Bernstein
provided the lower bound argument stated in section 6,
Gilles Brassard made several constructive comments
that helped to update the STOC paper.
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